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Elementary Tauberian Arguments
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Abstract. For Kolmogorov’s strong law of large numbers an alternative short proof is
given which weakens Etemadi’s condition of pairwise independence. The argument uses
the known – and elementary – equivalence of (Cesàro) C1- and C2-summability for one-
sided bounded sequences. Also other strong laws of large numbers are established, partially
via Borel summability.
2000 Mathematics Subject Classification: 60 F 15
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1 INTRODUCTION

A sequence (Xn)n∈N of real random variables having finite expectations EXn obeys a so-
called strong law of large numbers, if

1

n

n
∑

k=1

(Xk − EXk) → 0 almost surely (a.s.), (1)

i.e.,
C1 − lim(Xn − EXn) = 0 a.s.

For the classical strong law of large numbers of Kolmogorov, which concerns independent
identically distributed (integrable) real random variables, Etemadi [6] gave an elementary
proof together with a generalization to pairwise independence. He used Chebyshev’s in-
equality and the Borel-Cantelli lemma in the context of suitable subsequences of partial
sums. In this paper we give an alternative short proof of the result, under a weakened
independence assumption (Theorem 2), using the monotone convergence theorem in series
form and the well-known equivalence of (Cesàro) C1- and C2-summability for one-sided
bounded sequences which can be proved in an elementary way. The core of the argument
leads to a general theorem which generalizes several known results on strong laws of large
numbers for square integrable random variables (Theorem 1). A corresponding argument
using C1 and Borel summability yields a strong law of large numbers in a context slightly
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more general than second order stationarity (Theorem 3) and further under the classical
Cramér-Leadbetter condition. A comparison with related results is given.

2 STRONG LAWS OF LARGE NUMBERS

First we formulate a rather general result.

Theorem 1 Let (Xn)n∈N be a sequence of square integrable real random variables satisfying

inf(Xn − EXn) > −∞ (a.s.) (2)

(e.g., Xn ≥ 0, supEXn <∞),
∞
∑

n=1

Var(X1 + . . .+Xn)

n3
<∞. (3)

Then (Xn) obeys a strong law of large numbers, i.e., (1) holds.

Remark 1 a) With covariance Γ(i, j) := E
[

(Xi − EXi)(Xj − EXj)
]

, i, j ∈ N, one has

Var(X1 + . . .+Xn) =
∑

i,j∈{1,...,n}

Γ(i, j). (4)

Thus Theorem 1 generalizes the discrete time version of the almost sure stability theorem
in Loève [21], section 37.7, A, in so far as (2) and (3) weaken the assumptions

|Xn| ≤ c <∞,
∑ 1

n3

∑

i,j∈{1,...,n}

|Γ(i, j)| <∞

there. A sufficient condition for (3) together with (4) is

∑

i,j∈N

|Γ(i, j)|
(i+ j)2

<∞.

For, with

dn :=
∑

i,j∈{1,...,n}

|Γ(i, j)|

and by partial summation,

∞
∑

n=1

dn

n3
= d1

∞
∑

k=1

1

k3
+

∞
∑

n=1

(

∞
∑

k=n+1

1

k3

)

(dn+1 − dn)

≤ 2|Γ(1, 1)|+
∞
∑

n=1

1

n2

n+1
∑

j=1

|Γ(n+ 1, j)|

≤ 16
∑

n,j∈N

|Γ(n, j)|
(n + j)2

<∞.
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b) Theorem 1 also generalizes Theorem 1 of Etemadi [7], mainly in so far as (3) weakens
the assumptions

EXiXj ≤ EXiEXj, j > i,

∑ Var(Xn)

n2
<∞ (5)

there. For these two conditions imply (3) via

∞
∑

n=1

· 1

n3
Var

(

n
∑

k=1

Xk

)

≤
∞
∑

n=1

1

n3

(

n
∑

k=1

Var(Xk)

)

=
∞
∑

k=1

(

∞
∑

n=k

1

n3

)

Var(Xk) <∞.

c) Note that the Rademacher-Menchoff theorem (Rademacher [25], Menchoff [22]; see
Révész [26], § 3.2, and, in a generalization, Loève [21], section 36, and Stout [29], Theorem
3.7.2) states a.s. convergence of

∑

(Xn − EXn)/n and thus (1) for a sequence (Xn)n∈N of
square integrable pairwise uncorrelated real random variables under the condition

∞
∑

n=1

Var(Xn)

n2
(log n)2 <∞.

The proof of Theorem 1 is based on the following deterministic Lemma 1, which is a classic
Tauberian theorem and can be proved in an elementary way (see section 3).

Lemma 1 Let the sequence (cn)n∈N of real numbers be bounded from below. If

∞
∑

n=1

(c1 + . . .+ cn)2

n3
<∞ (6)

or only
1

n2

n
∑

k=1

(c1 + . . .+ ck) → 0, (7)

then
1

n

n
∑

i=1

ci → 0. (8)

The following theorem can be easily deduced from Theorem 1, by usual truncation and use
of the well-known Lemma 2. It contains Etemadi’s [6] as well as Cohn’s [4] generalizations
of the classical strong law of large numbers of Kolmogorov [18] (Loève [21], section 17). Its
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formulation uses the maximal-correlation coefficient κ = κ(X, Y ) (Hirschfeld [13], Gebelein
[10]) defined for a pair (X, Y ) of random variables by

κ(X, Y ) : = sup

{

E(X̃ − EX̃)(Ỹ − EỸ )

Var(X̃)1/2 Var(Ỹ )1/2
; X̃ ∈ L2(F(X)), Ỹ ∈ L2(F(Y ))

}

= sup

{

EX̃Ỹ − EX̃EỸ

(EX̃2)1/2(EỸ 2)1/2
; X̃ ∈ L2(F(X)), Ỹ ∈ L2(F(Y ))

}

where 0/0 := 0, F(X) denotes the σ-algebra generated by X and X̃ ∈ L2(F(X)) denotes
an F(X)-B-measurable square integrable real random variable (compare also Kolmogorov
and Rozanov [19]). κ(X, Y ) = 0 means independence of X and Y .

Theorem 2 Let (Xn)n∈N be a sequence of identically distributed integrable real random
variables. If κi,j := κ(Xi, Xj), satisfies

∑

n

sup
m
κm,m+n <∞ (9)

or only

sup
j∈{2,3,...}

j−1
∑

i=1

κ(j − i, j) <∞, (10)

then (1) holds.

Remark 2 a) For κi,j = 0 (i, j ∈ N), i.e., pairwise independence of the X ′
ns, Theorem 2

yields Etemadi’s ([6], [7]) generalization of Kolmogorov’s strong law of large numbers from
independence to pairwise independence.
b) For a pair (X, Y ) of random variables let

φ(X, Y ) := sup
{

|P (A∩B)−P (A)P (B)|
P (A)

;A ∈ F(X), B ∈ F(Y )
}

,

λ(X, Y ) := sup
{

|P (A∩B)−P (A)P (B)|

P (A)1/2P (B)1/2 ;A ∈ F(X), B ∈ F(Y )
}

.

Then
κ(X, Y ) ≤ 2φ(X, Y )1/2

(Ibragimov [14], p. 351) and

λ(X, Y ) ≤ κ(X, Y ) ≤ 3000λ(X, Y )(1 − logλ(X, Y ))

(Bradley [2], p. 168, and Bradley and Bric [3], p. 337). Setting

φ∗
n := sup

m
φ(Xm, Xm+n),

λ∗n := sup
m
λ(Xm, Xm+n),

κ∗n := sup
m
κ(Xm, Xm+n) (= sup

m
κm,m+n)
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for a sequence (Xn)n∈N of random variables, we immediately obtain that
∑

φ∗1/2
n <∞ or

∑

λ∗n| logλ∗n| <∞

implies
∑

κ∗n <∞, i.e., (9), which implies condition (10).
c) For a sequence (Xn)n∈N of random variables let Fm

1 = F(X1, . . . , Xm), Fm+n

= F(Xm+n, Xm+n+1, . . .) be the σ-algebras generated byX1, . . . , Xm andXm+n, Xm+n+1, . . .)
respectively, and let

φ(n) := sup
m

sup
A∈Fm

1
,B∈Fm+n

|P (A ∩ B) − P (A)P (B)|
P (A)

.

φ(n) → 0 (n→ ∞) means that (Xn)n∈N is φ-mixing. Cohn [4] showed that for a sequence

(Xn)n∈N of identically distributed integrable real random variables (1) holds if
∑

φ
1/2
n <∞

(see also Iosifescu and Theodorescu [15], p. 19). This result is a consequence of Theorem 2,

because
∑

φ
1/2
n <∞ implies

∑

φ
∗1/2
n <∞ and thus (9) by b).

Lemma 2 Let X be an integrable nonnegative random variable and set

X [n] := XI[X≤n], n ∈ N

(I denoting an indicator function). Then

∞
∑

n=1

E(X [n]2)

n2
<∞.

Remark 3 Theorem 1, Lemma 1, and Remark 1 can be generalized from arithmetic means
to weighted means. Let αn ∈ [0, 1), n ∈ N, satisfy αn → 0,

∑

αn = ∞, and set

βn :=
1

(1 − αn) . . . (1 − αn)
, γn := αnβn,

thus βn = 1+γ1+ . . .+γn ↑ ∞. The special case αn = 1/(n+1) leads to βn = n+1, γn = 1.
Replace assumption (3) in Theorem 1 by

∞
∑

n=1

γn Var(γ1X1 + . . .+ γnXn)

β3
n

<∞,

assumptions (6) and (7) in Lemma 1 by

∞
∑

n=1

γn(γ1c1 + . . .+ γncn)2

β3
n

<∞

and
1

βn

n
∑

k=1

γk
1

βk

(

k
∑

j=1

γjcj

)

→ 0,
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respectively, and assumption (5) in Remark 1b by

∞
∑

n=1

α2
n Var(Xn) <∞.

Then the assertion (1) in Theorem 1, also in context of Remark 1 b, has to be replaced by

1

βn

n
∑

k=1

γk(Xk − EXk) → 0 a.s., (11)

and the assertion (8) in Lemma 1 has to be replaced by

1

βn

n
∑

k=1

γkck → 0

(as to the latter, compare Karamata [17], with review in Zentralblatt Math. 19, pp. 341,
342). Relation (11) is of interest in stochastic approximation (see, e.g., Ljung, Pflug, and
Walk [20], I.1, I.2, with further references).

Condition (2) of one-sided boundedness in Theorem 1 can be avoided by sharpening now
the condition on Γ appearing in (3) together with (4). The proof uses another Tauberian
argument.

Proposition 1 Let (Xn)n∈N) be a sequence of square integrable real random variables sat-
isfying

∞
∑

k=0

∞
∑

j=k

e−k2/(6j)j−3/2|Γ(j + k, j)| <∞, (12)

where Γ(i, j) is defined by (4). Then (1) holds.

The following theorem is a consequence of Proposition 1 and comprehends the case of
second order stationarity where Γ(i, j) only depends on the difference i− j.

Theorem 3 Let (Xn)n∈N be a sequence of square integrable real random variables satisfying

|Γ(i, j)| ≤ r(|i− j|), i, j ∈ N (13)

with
∞
∑

k=1

r(k)

k
<∞, (14)

e.g., with

r(k) = O

(

1

log k(loglog k)1+δ

)

(15)

for some δ > 0. Then (1) holds.
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Remark 4 In the case of second order stationarity with autocovariance function R(k) :=
Γ(j + k, k), via the spectral measure of (Xn), Gaposhkin [9] established (1) under the (in
some sense) weakest possible condition that

∞
∑

k=2

R(k)

k log k
log log k converges,

where R(k) also may be replaced by R(k) := (R(1) + . . .+ R(k))/k. It is well-known and
can easily be proved via Lemma 1 that for a second order stationary process (Xn) the
condition R(n) → 0 (n→ ∞) is necessary and sufficient for

E
∣

∣

∣

1

n

n
∑

k=1

(Xk − EXk)
∣

∣

∣

2

→ 0 (n→ ∞).

Remark 5 Noticing

∑

i,j∈{m+1,...,n}

|Γ(i, j)| +
∑

i,j∈{n+1,...,N}

|Γ(i, j)| ≤
∑

i,j∈{m+1,...,N}

|Γ(i, j)|

for m < n < N , from Serfling [28] (see also Stout [29], Theorem 3.7.3) one obtains that
the condition

∑

i,j∈{1,...,n}

|Γ(i, j)| ≤ cn2(log n log log n)−2, n ∈ N (16)

for some c ∈ R+, is sufficient for (1). |Γ| may be replaced by the positive part Γ+. In the
special case (13), the conditions

k
∑

j=1

|r(j)| = O (k(log k log log k)−2)

(compare Stout [29], Theorem 3.7.4 with proof) and

r(k) = O((log k log log k)−2)

yielding (16), are stronger than (14) and (15), respectively.
The proof of Proposition 1 is based on the deterministic Lemma 4 below. This lemma will
be proved by Lemma 3, which is a consequence of a classic and deep Tauberian theorem
on Borel summability, but can be shown in an elementary way (see section 3).

Lemma 3 Let the sequence (dn)n∈N0
of real numbers satisfy

∞
∑

n=1

n1/2(dn − dn−1)
2 <∞. (17)
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If

e−λ
∞
∑

j=0

1

j!
λjdj → 0 (λ→ ∞), (18)

then
dn → 0 (n→ ∞). (19)

Relation (18) denotes the so-called Borel summability of the series d0 +
∞
∑

k=0

(dk+1 − d0) or

of the sequence (dn) (see Hardy [11], p. 80, or Zeller and Beekmann [30], p. 134).

Lemma 4 Let the sequence (cn)n∈N of real numbers satisfy

∞
∑

n=1

n−3/2c2n <∞. (20)

If
∞
∫

0

t−1|e−t
∞
∑

k=1

tk

k!
ck|2dt <∞ (21)

or only

1

λ

λ
∫

0

e−t
∞
∑

k=1

tk

k!
ckdt→ 0 (λ→ ∞), (22)

then
1

n

n
∑

i=1

ci → 0 (n→ ∞), (23)

Remark 6 As in the proof of Theorem 3 given in section 3, one can conclude from Propo-
sition 1 that the condition

|Γ(i, j)| ≤ c
iα + jα

1 + |i− j|β , i, j ∈ N, (24)

for some c ∈ R+, 0 < 2α < β < 1 is sufficient for (11) and thus (1). This condition for
the strong law of large numbers was established by Cramér and Leadbetter [5], p. 94. It
seems to be an open problem whether the condition can be relaxed to 0 < α < β < 1.
Ninness [24] in his argument does not verify completely the conditions of Lemma 1 there.
The relaxed condition yields

∑

i,j∈{1,...,n}

|Γ(i, j)| ≤ c∗n2+(α−β), n ∈ N

for some c∗ ∈ R+ (see Ninness [24], p. 219, and (3), via (4)). Under the additional
assumption (2), now (1) is obtained by Theorem 1.
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Remark 7 In a straightforward way Theorems 1 and 3 and their proofs can be transferred
to the case of stochastic processes {X(t); t ∈ R+(or R)} that are continuous in squared
mean, where sums are replaced by integrals. Especially one obtains a generalization of
Loève’s [21] continuous time version of his result mentioned in Remark 1 a.

3 PROOFS

Assumption (6) in Lemma 1 implies

1

n3

n
∑

k=1

(c1 + . . .+ ck)
2 → 0

by the Kronecker lemma and thus assumption (7) by the Cauchy-Schwarz inequality. (7)
is equivalent to

1
(

n+1
2

)

n
∑

k=1

(n+ 1 − k)ck → 0, (25)

i.e., C2-summability of the sequence (cn) to 0, while the assertion (8) means C1-summability
of (cn) to 0 (see Hardy [11], p. 96, p. 7, or Zeller and Beekmann [30] p. 100, p. 104). With

(1 − s)
∞
∑

k=1

cks
k−1 → 0 (s ↑ 1), (26)

i.e., Abel summability of (cn) to 0, one has (8) =⇒ (25) =⇒ (26) for general sequences (cn)
of real numbers (see Hardy [11], p. 7, Theorems 43 and 55, or Zeller and Beekmann [30], p.
110, 53 I and 55 II). For one-side bounded sequences (cn) also the converse holds. In this
situation, in contrast to the implication (26)=⇒(8) (see Hardy [11], Theorem 97, or Zeller
and Beekmann [30], 55 IV, or Feller [8], XIII.5, Theorem 5) the implication (25) (or (7))
=⇒ (8) can be proved in an elementary way. To make the paper self-contained, we give the
proof of Lemma 1, i.e., of (7) =⇒ (8) for(cn) bounded from below, according to Mordell
[23] and Boas [1], proof of Theorem 4b there (in these papers with φ(n) = n2, ψ(n) = −1
and 1, respectively), compare also Zeller and Beekmann [30], p. 117, for further references.

Proof of Lemma 1. It suffices to conclude (8) from (7) under the assumption cn ≥ −c (n ∈
N), c ∈ R+. Set

tn :=

n
∑

k=1

ck, wn :=

n
∑

k=1

tk, n ∈ N.

For k ∈ {1, . . . , n} one has

k
∑

j=1

(tn+j − tn)

k−1
∑

j=0

(tn − tn−j)















≥ −c
k
∑

j=1

j ≥ −k2c,
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thus

wn±k ≥ wn ± ktn − k2c,

±tn
n

≤ wn±k − wn

kn
+
k

n
c. (27)

One notices

σn := max{|wj|; j = 1, . . . , 2n} = o(n2) (by (7)),

δn := 1 + b√σnc = o(n),

(b c denoting integer part). Now from (27) with k = δn (< n for n sufficiently large), one
obtains

lim sup(±tn
n

) ≤ lim

(

2σn

nδn
+
δn
n
c

)

= 0,

i.e. tn/n→ 0, i.e., (8). �

Proof of Theorem 1. Using the monotone convergence theorem in series form, we obtain

E

∞
∑

n=1

|
n
∑

j=1

(Xj − EXj)|2

n3
=

∞
∑

n=1

E|
n
∑

j=1

(Xj − EXj)|2

n3

=

∞
∑

n=1

Var(X1 + . . . Xn)

n3

< ∞ (by (2.2)).

Thus

∞
∑

n=1

(
n
∑

j=1

(Xj − EXj))
2

n3
<∞ a.s.

By (2) the sequence (Xn − EXn) is bounded from below a.s. Now Lemma 1 yields the
assertion. �

To make the paper self-contained we repeat the following well-known proof.

Proof of Lemma 2.
∞
∑

n=1

E(X [n]2)

n2
=

∞
∑

n=1

n
∑

i=1

1

n2

∫

(i−1,i]

t2PX(dt)

=

∞
∑

i=1

∫

(i−1,i]

t2PX(dt)

∞
∑

n=i

1

n2

≤
∞
∑

i=1

2

i

∫

(i−1,i]

t2PX(dt)

≤ 2EX <∞.
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�

Proof of Theorem 2. Assume Xn ≥ 0 without loss of generality. The first step is well-
known. Set

X∗
n := X [n]

n := XnI[Xn≤n], n ∈ N.

Because of
∞
∑

i=1

P [Xi 6= X∗
i ] =

∞
∑

i=1

P [X1 > i] ≤ EX1 <∞,

a.s. Xi = X∗
i from some index on (by the Borel-Cantelli lemma; Loève [21], sections 16,17).

Therefore and because of
EX∗

n = EX
[n]
1 → EX1 <∞

(by the monotone convergence theorem), it suffices to show

1

n

n
∑

i=1

(X∗
i − EX∗

i ) → 0 a.s. (28)

In the second step we notice

X∗
n ≥ 0, EX∗

n ≤ EX1 <∞,

further,

∞
∑

n=1

Var(X∗
1 + . . .+X∗

n)

n3

≤
∞
∑

n=1

Var(X∗
1 ) + . . .+ Var(X∗

n)

n3
+ 2

∞
∑

n=1

1

n3

n
∑

j=2

j−1
∑

i=1

κ(j − i, j)
√

Var(Xj−i)
√

Var(Xj)

≤
∞
∑

n=1

EX∗2

n

n2

(

1 + 2 sup
j∈{2,3,...}

j−1
∑

i=1

κ(j − i, j)

)

< ∞ (by Lemma 2 and (10)).

Thus (28) follows by Theorem 1. �

Proof of Lemma 3. We use the abbreviation

vn,k := e−nn
k

k!
(n ∈ N, k ∈ N0).

By Hölder’s inequality, for arbitrary M ∈ N we obtain

∞
∑

k=M+1

vn,k|dk − dn| ≤
(

∞
∑

k=M+1

vn,k|dk − dn|4
)1/4

15



noticing
∞
∑

k=0

vn,k = 1. (29)

We now modify an argument of Jurkat [16], p. 280. We set

uj := dj − dj−1, j ∈ N0

and obtain

|dl − di|2 =

∣

∣

∣

∣

∣

l
∑

j=i+1

uj

∣

∣

∣

∣

∣

2

≤
l
∑

j=i+1

j−1/2
l
∑

j=i+1

j1/2u2
j

(by the Cauchy-Schwarz inequality)

≤ 2
l − i

l1/2 + i1/2

l
∑

j=i+1

j1/2u2
j (1 ≤ i < l), (30)

thus for n > M(∈ N)

(

∞
∑

k=M+1

vn,k|dk − dn|
)4

≤ 4

∞
∑

k=M+1

vn,k
|k − n|2

n

(

∞
∑

j=M+1

j1/2u2
j

)2

≤ 4

(

∞
∑

j=M+1

j1/2u2
j

)2

, (31)

the latter because of
∞
∑

k=0

vn,k(k − n)2 = n, n ∈ N.

For arbitrary ε > 0, by (31) and (17),

∞
∑

k=M+1

vn,k|dk − dn| < ε

if M is sufficiently large and n > M . Further for each k ∈ N0

vn,k → 0, vn,k|dn| → 0 (n→ ∞),

16



because (17) yields dn − dn−1 = o(n−1/4), and thus dn = o(n3/4). Therefore

∞
∑

k=0

vn,k|dk − dn| → 0 (n→ ∞).

This together with (18) and (29) yields (19). �

Lemma 3 can also be obtained by a classic and deep Tauberian theorem of R. Schmidt [27]
(see Hardy [11], p. 225, p. 312, and Zeller and Beekmann [30], 66 X). It states that (19)
is implied by (18) together with

lim inf(dn − dm) ≥ 0 (32)

where

m→ ∞, n > m,
n−m

m1/2
→ 0.

(32) is weaker than (17), because of (30).

Proof of Lemma 4. Set c0 := 0 and

dj :=
1

j + 1

j
∑

k=0

ck, j ∈ N0. (33)

Then

∞
∑

n=1

n1/2(dn − dn−1)
2

≤ 2

∞
∑

n=1

n−3/2c2n + 2

∞
∑

n=1

n−7/2

(

n
∑

k=1

ck

)2

≤ 2

∞
∑

n=1

n−3/2c2n + 2

∞
∑

n=1

n−5/2

n
∑

k=1

c2k.

Changing the order of summation, we obtain (17) by (20). From (21) we obtain

1

λ

λ
∫

0

|e−t
∞
∑

k=1

tk

k!
ck|2dt→ 0 (λ→ ∞)

via partial integration as in the proof of the classical Kronecker lemma (see, e.g., Loève [21],
section 17), and then (22) by the Cauchy-Schwarz inequality. Thus it suffices to assume
(22). This assumption means that the integral Cesàro limit of the Borel transformation

λ→ e−λ
∞
∑

k=0

λk

k!
ck, λ ≥ 0

17



of (ck)k∈N0
is 0. As is well known, Cesàro transformation and Borel transformation are

commutative for sequences whose Borel transformation exists (see Zeller and Beekmann
[30], p. 139). In fact

λ
∫

0

1

k!
tke−tdt = e−λ

∞
∑

j=k+1

1

j!
λj, k ∈ N0, λ > 0

(proof by differentiation), thus for the considered sequence (ck)k∈N0

1

λ

λ
∫

0

∞
∑

k=0

1

k!
tke−tckdt

= e−λ
∞
∑

k=0

∞
∑

j=k+1

1

j!
λj−1ck

= e−λ
∞
∑

j=1

(

j−1
∑

k=0

ck

)

1

j!
λj−1

= e−λ
∞
∑

j=0

1

j!
λj

(

1

j + 1

j
∑

k=0

ck

)

, λ > 0.

Therefore (22) and (18) with (33) are equivalent.
Now we use Lemma 3. With (33), from (18) and (17) we obtain (19), i.e., the assertion
(23). �

Proof of Proposition 1. We assume EXn = 0, n ∈ N, without loss of generality. Condition
(12) together with Γ(j, j) = EX2

j immediately yields

∑

n−3/2EX2
n <∞ (34)

and thus
∑

n−3/2X2
n <∞ a.s. (35)

We shall show

I :=

∞
∫

0

t−1E|e−t

∞
∑

k=1

tk

k!
Xk|2dt <∞ (36)

and thus
∞
∫

0

t−1|e−t
∞
∑

k=1

tk

k!
Xk|2dt <∞ a.s. (37)

18



Apparently

I =

∞
∫

0

t−1e−2t
∑

j,l∈N

tj

j!

tl

l!
Γ(l, j)dt

≤ 2

∞
∫

0

t−1e−2t
∞
∑

k=0

∞
∑

j=1

t2j

j!

tk

(j + k)!
|Γ(j + k, j)|dt

= 2

∞
∑

k=0

sk

with

sk =

∞
∑

j=1

(2j + k − 1)! 2−(2j+k) 1

j!

1

(j + k)!
|Γ(j + k, j)|, k ∈ N0,

via the Gamma function. Now, by Stirling’s formula, we obtain

sk ≤ c1

∞
∑

j=1

(2j + k)2j+k

jj(j + k)j+k
√
j(j + k)

2−(2j+k)|Γ(j + k, j)|

= c1

∞
∑

j=1

(1 + k/(2j))2j+k

(1 + k/j)j+k
√
j(j + k)

|Γ(j + k, j)|

with suitable c1 > 0. By (34) we have

s0 <∞ (38)

We notice for 0 < s <∞

0 > h (s) := (
2

s
+ 1) ln (1 +

s

2
) − (

1

s
+ 1) ln (1 + s)

=

{

−(s/4) + o(s) (s→ 0)

− ln 2 + o(1) (s→ ∞),

thus, for suitable c > 0,

(1 + s/2)(2/s)+1

(1 + s)(1/s)+1
≤
{

e−cs , 0 < s ≤ 1
e−c , s ≥ 1.

Noticing convexity of h we can choose c = 1/6. Then, with s = k/j (k ∈ N, j ∈ N) we
obtain

sk ≤ c1

[

e−ck
k
∑

j=1

j−3/2|Γ(j + k, j)| +
∞
∑

j=k+1

e−ck2/jj−
3

2 |Γ(j + k, j)|
]

= s′k + s′′k.

19



From (34) we obtain

|Γ(j + k, j)| ≤ |Γ(j + k, j + k)|1/2|Γ(j, j)|1/2

= O((j + k)3/2)

and thus
∞
∑

k=1

s′k <∞. (39)

By (12) we have
∞
∑

k=1

s′′k <∞ (40)

(38), (39), and (40) yield (36). Finally from (35) together with (37) we obtain (1) by
Lemma 4. �

Proof of Theorem 3. We use Proposition 1. It is enough to show

∞
∑

k=1

∞
∫

k

e−k2/(6t)t−3/2dt r(k) <∞

(because of (13) and piecewise monotonicity of the integrand). But this follows from

∞
∫

k

e−k2/(6t)t−3/2dt =

k
∫

0

e−v/6v−1/2dv k−1 and (14).

�
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