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Abstract

Assume that n independent copies of Y = X + ε are observed where ε is an unobservable
measurement error with a known distribution. We consider the problem of estimating the unknown
density of X when this density is known to lie in a given smoothness class. An iterative procedure
for estimating the unknown density is introduced. Rates of convergence for mean integrated
squared error are studied for smoothness classes arising from Fourier conditions. Minimax rates
are derived for these classes. The sequence of estimators resulting from the iterative procedure
is shown to attain the optimal rates both for smooth and for supersmooth error densities. The
iterative scheme allows one to perform density estimation from contaminated observations by
simple additive corrections to an appropriate ordinary kernel density estimator. In this way,
the effect of the perturbation due to contamination by ε may be quantified. In addition, we
demonstrate that the sequence of estimators converges exponentially fast to a specific estimator
within the class of deconvoluting kernel density estimators. We also address the subtle theoretical
issues that arise when the error density is not in L2(

�
) leading to a modification of the iterative

procedure.
Keywords: density estimation, contaminated observations, estimator sequence, minimax rates.
AMS 1991 Mathematics Subject Classification: Primary 62G07; Secondary 62G20.

1 Introduction

Deconvolution has been a topic of intensive study during the last decade. Some recent additions to
the literature are [24], [25], [20], [18], [32], [13], [23], [7], [8]. Early interest goes back to [6] and [14],
when estimation of a cumulative distribution function is considered when data are contaminated
by measurement error. More recently, the emphasis in the deconvolution context has been mostly
on estimating density functions. [28], [2], [21], [30], [29], [9], [10], [11], [12], [22], [16], [17], [18]
constitute examples. Related to our work are also [31], [4], [15], and [19] where adaptive density
estimators for certain deconvolution problems are considered. Our results and the methods to
prove them are different. Finally, [3] and [33] give book length introductions to deconvolution and
density estimation.
The present paper aims to contribute to this line of work.

Assume that (Xj , εj), j = 1, 2, . . . , n are iid. bivariate random vectors where Xj has an un-
known density f, εj has a known density g and is independent of Xj . The aim is to estimate the
density f based on the observations

Yj = Xj + εj j = 1, 2, . . . , n (1.1)

where it is known a priori that f belongs to some class of functions F . Both the Xj and the
εj are unobservable.

One might interpret the observations Yj as measurements on the Xj that are corrupted by mea-
surement error. But the measurement error context is not the only area where mixture models of
type (1.1) arise. These models and the resulting density estimation problems appear naturally in
many branches of statistics. Here, we only mention the empirical Bayes approach to compound
decision problems as introduced in [27]. Using the notation employed earlier, let {X1, X2, . . . , Xn}
be a set of parameters and let f(x) be an unknown prior density. Conditionally on Xj = x the ob-
served Yj are realisations of independent random variables with known parametric density g̃(y/x).
Then, unconditionally, the Yj are realizations from a distribution with density

∫

g̃(y/x)f(x)dx.
The empirical Bayes approach now consists of estimating f(x) using Y1, Y2, . . . , Yn−1 and then
utilizes this estimate to obtain the posterior distribution of Xn given Yn. Thus, for the location
model where g̃(y/x) = g(y − x), we encounter the density estimation problem stated earlier.
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When estimating the density of a mixture component, the issue of identifiability arises. We
shall call a density f identifiable in a convolution with a density g, if the following implication
holds:

∫

g(y − x)f(x)dx =

∫

g(y − x)f̃(x)dx =⇒ f(x) = f̃(x) a.e.

Making use of the characteristic functions Ψf ,Ψf̃ ,Ψg, identifiability of f follows from

Ψf (t) · Ψg(t) = Ψf̃ (t) · Ψg(t) =⇒ Ψf (t) = Ψf̃ (t) ∀t ∈
�

This implication holds, for example, if Ψg(t) 6= 0 for all t ∈
�
. Hence, a non-vanishing

characteristic function of error guarantees identifiability. This is not the weakest such assumption,
but it is simple and we will use it throughout. In this paper we extend existing results in several
directions. As in [12], we study minimax rates of convergence for the density estimation problem
over certain smoothness classes. But while [12] focusses on Holder classes and Lp-risk on a compact
interval, we deal with smoothness classes arising from Fourier conditions and with L2-risk on the
entire real line. [23] is also concerned with L2-risk on the real line and with a similar function class
but only considers smooth error densities. In contrast, we also study the problem for supersmooth
error densities. In this context, deconvolution is more difficult. Some subtle theoretical issues
arise depending on whether the density of error is square integrable or not. The latter necessitates
some modifications in the iterative procedure. We study both cases in detail putting them on
firm functional analytic ground. A further innovation is the introduction of an iterative procedure
for density estimation. This procedure starts from an ordinary density estimator that ignores the
effect of contamination and successively performs additive corrections. In this way, the effect of
contamination by the error random variable ε may be quantified. In addition, we show that the
sequence of estimators resulting from the iterative procedure converges exponentially fast to a
specific member in the class of deconvoluting kernel density estimators.

2 Iterative deconvolution for square integrable error densi-

ties

In addition to the notation already introduced for the model (1.1), we here define the function
class

Fβ,a := {densities f |f ∈ L2(
�
) and

∞
∫

ω

|Ψf (t)|
2dt ≤ aω1−2β, ∀ω > ω0} (2.1)

for fixed contants a > 0, ω0 > 0 and β > 1
2 . This is the smoothness class for which we aim

to establish minimax results for mean integrated squared error (MISE) and develop an iterative
procedure that attains the optimal rate. The iterative procedure turns out to depend on whether
the density of error is square integrable or not. Also, the properties of the resulting estimator
sequence depend on the rate of decrease of the characteristic function of error. In view of this, we
distinguish several cases and first study the problem for densities of error belonging to the class

Fε,2,η = {densities g|g ∈ L2(
�
), |Ψg (t)| 6= 0, ∀t ∈

�
, and|Ψg(t)| ≥ d|t|−η ,

∀|t| > T}
(2.2)

for some positive constants d, T and η > 1
2 .

In accordance with common practice, we refer to the densities in Fε,2,η as smooth densities.
An example of such a density is the double-exponential for which g(x) = 1

2exp(−|x|) with Ψg(t) =
(1 + t2)−1.
To introduce the iterative procedure conveniently, we first define several operators. Towards this
end we write

Lω2 (
�
) = {f ∈ L2(

�
)|Ψf (t) = 0 λ− a.e. ∀t with |t| > ω} (2.3)
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where λ is Lebesgue measure. Lω2 (
�
) is a closed linear subspace of the Hilbert space L2(

�
)

and therefore is a Hilbert space itself. Linearity of Lω2 (
�
) is elementary and closedness can be

seen as follows: If (fn)n∈ � is a sequence in Lω2 (
�
) which converges to some f ∈ L2(

�
) in the

L2(
�
) −Norm ‖ · ‖L2(� ), then Ψf (t) = Ψf (t)−Ψfn

(t) = Ψf−fn
(t), λ− a.e. ∀t with |t| > ω. Here,

Ψf denotes the Fourier-transform of the function f . Hence,

−ω
∫

−∞

|Ψf (t)|
2dt+

∞
∫

ω

|Ψf (t)|
2dt =

−ω
∫

−∞

|Ψf−fn
(t)|2|dt+

∞
∫

ω

|Ψf−fn
(t)|2dt

≤

∫

�

|Ψf−fn
(t)|2dt = ‖Ψf−fn

‖2
L2( � )

= 2π‖f − fn‖
2
L2( � )

n→∞
−→ 0 (2.4)

by Parseval’s identity. Therefore, since the left side of (2.4) does not depend on n,
−ω
∫

−∞

|Ψf (t)|
2dt+

∞
∫

ω

|Ψf (t)|
2dt = 0

from which it follows that Ψf (t) = 0 λ-a.e. for t with |t| > ω and, hence, that f ∈ Lω2 (
�
).

For every closed linear subspace of a Hilbert space there is a unique operator that orthogonally
projects on this subspace. In the case of Lω2 (

�
), we denote this operator by Pω. Its induced

operator norm is ‖Pω‖L2( � ), ind. = 1. Also, I − Pω , with I being the identity operator, is the
unique orthogonal projection operator on the orthogonal complement

(Lω2 (
�
))

⊥
= {f ∈ L2(

�
)|Ψf (t) = 0 λ -a.e. for t ∈ [−ω,+ω]}

and ‖I − Pω‖L2( � ), ind. = 1.
For the Fourier-transform of a projected function f , we have

ΨPωf (t) = Ψf (t) · 1[−ω,+ω](t) (2.5)

where 1A(t) is the indicator function of the set A. For large ω and f ∈ Fβ,a the distortion
caused by an application of Pω is small. A bound is given by

‖Pωf − f‖2
L2(� ) ≤

a

π
ω1−2β (2.6)

as can be shown by Parseval’s identity, (2.5), and the definition of Fβ,a.
We also introduce convolution operators. Let γ be any L2(

�
)-density. Then, for any L2(

�
)-density

f
Cγf := γ ∗ f

where ∗ is convolution. Cγ is a continuous linear operator with
‖Cγ‖L2( � ),ind. ≤ ‖γ‖L1(� ) = 1. Also, since γ ∈ L1(

�
) ∩ L2(

�
) and f ∈ L2(

�
), the convolution

identity
ΨCγf

= Ψγ · Ψf (2.7)

holds. This identity, however, is no longer valid if we merely assume that γ ∈ L1(
�
). This

case, i.e. when the error densities are no longer in L2, will be studied subsequently.

We collect some further properties of these operators, for later use. Clearly, for densities
γ, γ̃ ∈ L2(

�
), the corresponding operators Cγ and Cγ̃ commute and so do Cγ and Pω . Furthermore,

we have

Proposition 1 Let γ ∈ L2(
�
) be a density and g ∈ Fε,2,η be the density of error.

a. The Hilbert-adjoint operator Ctγ of Cγ is Ctγ = Cγ− where γ−(x) = γ(−x), ∀x.
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b. If γ is an even function, then Cγ is Hermitian.

c. Cg and Cg− are injective.

d. CgC
t
g = CtgCg is Hermitian and positive-definite.

Proof. a. Let f, f̃ be in L2(
�
). Denote by 〈·, ·〉 the L2(

�
) inner product. Then, since for all

t ∈
�

Ψγ−(t) = Ψγ(t), the complex-conjugate of Ψγ(t), we have

〈Cγf, f̃〉 =
1

2π
< ΨγΨf ,Ψf̃ 〉 =

1

2π

∫

�
Ψγ(t)Ψf (t)Ψf̃ (t)dt

=
1

2π

∫

�

Ψf (t)Ψγ(t)Ψf̃ (t)dt =
1

2π
〈Ψf ,ΨγΨf̃ 〉

=
1

2π
〈Ψf ,Ψγ−Ψf̃ 〉 =

1

2π
〈Ψf ,ΨC

γ− f̃
〉

= 〈f, Cγ− f̃〉

using Plancherel’s identity. b. This follows from a. since for an even function γ− = γ and, hence,
C+
γ = Cγ− = Cγ . For c. it suffices to show that the null spaces of Cg , Cg− consist of the zero

element only. This holds since |Ψg(t)| = |Ψg−(t)| > 0 for all t ∈
�

by assumption. d. The stated
identity is verified by

CtgCg = Cg−Cg = Cg−∗g = Cg∗g− = CgC
t
g .

Positive-definiteness follows from

〈f, CtgCgf〉 = 〈Cgf, Cgf〉 = ‖Cgf‖
2
L2( � ) ≥ 0 for all f ∈ L2(

�
) (2.8)

with equality in (2.8) if and only if Cgf = 0 which by c. is equivalent to f = 0 in the
L2(

�
)-sense. Finally,

〈f, CtgCg f̃〉 = 〈Cgf, Cg f̃〉 = 〈CtgCgf, f〉

so that (CtgCg)
t = CtgCg and CtgCg is Hermitian. �

The model (1.1) implies the relationship h = f ∗ g between the densities h, f and g of Yj , Xj

and εj . A possible strategy to obtain an estimator f̂ of f is therefore to first estimate h by ĥ, say,
based on the direct observations Y1, Y2, . . . , Yn and then to solve the functional equation

Cg f̂ = ĥ (2.9)

for f̂ . It follows from Proposition 1c. that (2.9) has at most one solution. Now, Cg is an

L2(
�
) → L2(

�
) operator. However, for a given ĥ ∈ L2(

�
) and g ∈ Fε,2,η a solution of (2.9) does

not always exist. Setting

ĥ with ψĥ(t) =

{

1 if |t| ≤ 1

|t|−3/4 if |t| > 1

g(x) =
1

2
exp(−|x|), x ∈

�

provides an example for this claim. A resolution of this difficulty is to restrict attention to certain
subsets of L2(

�
) in the choice of the estimator ĥ. For our smoothness class Fβ,a, in view of

the results on asymptotic optimality due to [5], it makes sense to restrict attention to estimators

ĥ ∈ Lω2 (
�
) for some appropriate sample size dependent ω = ω(n). Now, (2.9) is equivalent to

CtgCg f̂ = Ctgĥ and since both Cg and Ctg commute with Pω we arrive at

CtgCg(Pωf̂) = CtgPωĥ (2.10)
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to be solved. The operator CtgCg |Lω
2 (� ) (i.e. CtgCg restricted to Lω2 (

�
)) is an Lω2 (

�
) → Lω2 (

�
)

operator and as such it is continuous. Its induced norm is not larger than the norm of C tgCg

viewed as an L2(
�
) → L2(

�
) operator. For any ĥ ∈ L2(

�
), the functional equation (2.10)

possesses exactly one solution Pω f̂ if ω is sufficiently large. This follows from

Proposition 2 For g ∈ Fε,2,η the operator CtgCg |Lω
2 ( � ) is invertible and for ω sufficiently large it

is
‖I − CtgCg‖Lω

2 ( � ),ind. ≤ 1 − d2ω−2η < 1 (2.11)

where

‖I − CtgCg‖Lω
2 ( � ),ind. = sup

f∈Lω
2 (� )\{0}

‖(I − CtgCg)f‖Lω
2 (� )

‖f‖Lω
2
(

�
)

is the induced Lω2 (
�
)-norm. The Neumann series

∞
∑

j=0

(I−CtgCg)
j converges in the induced Lω2 (

�
)-

norm to (CtgCg |Lω
2 (� ))

−1.

Proof. It suffices to show (2.11). Then, both invertibility of the operator and convergence of
the Neumann series follow from known results about Neumann series in Hilbert spaces (e.g. [26]).
It is

‖I − CtgCg‖Lω
2 ,ind.

= sup
f∈Lω

2 ( � )\{0}

‖Ψf − Ψg−ΨgΨf‖L2( � )

‖Ψf‖Lω
2 (� )

= sup
f ∈Lω

2 ( � )\{0}

(
+ω
∫

−ω

|Ψf (t)|
2|1 − |Ψg(t)|

2|2dt)
1
2

(
∫ +ω

−ω
|Ψf (t)|2dt)

1
2

≤ sup
t∈[−ω,+ω]

{

|1 − |Ψg(t)|
2|
}

= 1 − min{ inf
t∈[−ω,+ω]\[−T,+T ]

{|Ψg(t)|
2}, inf

t∈[−T,+T ]
{|Ψg(t)|

2}} for ω > T.

≤ 1 − d2ω−2η for ω > max

{

(

d

|Ψg(tmin)|

)
1
η

, T

}

where tmin is such that inf
t∈[−T,+T ]

{|Ψg(t)|
2} = |Ψg(tmin)|2.

�

Formally, the unique solution Pω f̂ of (2.10) is

Pω f̂ = (CtgCg)
−1CtgPωĥ (2.12)

for ω large enough. The inverse operator (C tgCg)
−1 is in general not easy to compute. But

Proposition 2 allows us to represent the solution (2.12) by means of a Neumann series as

Pω f̂ =

∞
∑

j=0

(I − CtgCg)
jCtgPωĥ

Truncation of this series then leads to the estimator sequence

f̂ (k) =
k
∑

j=0

(I − CtgCg)
jCtgPωĥ , k ∈ � 0 (2.13)

or in recursive notation
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f̂ (0) = CtgPωĥ

f̂ (1) = 2f̂ (0) − CtgCg f̂
(0)

f̂ (k+2) = 2f̂ (k+1) − f̂ (k) − CtgCg(f̂
(k+1) − f̂ (k)) , k ∈ � 0

(2.14)

The sequence (f̂ (k))k∈ � 0 converges to Pω f̂ exponentially fast . Specifically, we have

Proposition 3 For (f̂ (k))k∈ � 0 as defined by (2.14) and Pωf̂ as given in (2.12)

‖f̂ (k) − Pω f̂‖L2(� ) ≤ (1 − d2ω−2η)k+1‖Pωf̂‖L2( � )

for all k larger than some k0 ∈ � 0 if ω is sufficiently large.

Proof. Clearly,

‖
N
∑

j=k+1

(I − CtgCg)
jCtgPωĥ‖L2(� )

N→∞
−→ ‖f̂ (k) − Pωf̂‖L2( � )

as well as

‖

N
∑

j=k+1

(I − CtgCg)
jCtgPωĥ‖L2(� ) ≤ ‖I − CtgCg‖

k+1
Lω

2 ( � ),ind.‖

N−k−1
∑

j=0

(I − CtgCg)
jCtgPωĥ‖L2(� ) (2.15)

so that for N → ∞ the right side of (2.15) converges to

‖I − CtgCg‖
k+1
Lω

2 (� ),ind.‖Pωf̂‖ and, therefore,

‖f̂ (k) − Pωf̂‖L2( � ) ≤ ‖I − CtgCg‖
k+1
Lω

2 ( � ),ind.‖Pωf̂‖L2(� )

≤ (1 − d2ω−2η)k+1‖Pωf̂‖L2(� )

for ω large enough by Proposition 2.
�

The iterative scheme (2.14) is somewhat awkward since a given sequence element depends on
the two preceding elements. We, therefore, look for an alternative. Towards this end, consider
that Cg f̂ = ĥ implies that

Pωf̂ = Pωf̂ + U(Pωĥ− CgPωf̂) (2.16)

for any linear continuous operator U : Lω2 → Lω2 . If, in addition, the operator U is taken to be

injective, then the solutions of the equations CgPω f̂−Pωĥ = 0 and U(CgPω f̂−Pωĥ) = 0 coincide.

From (2.16) we deduce a fixed-point identity for Pω f̂ , namely

Pωf̂ = Γ(Pωf̂) (2.17)

with Γ defined by Γ(φ) = UPωĥ+(I−UCg)φ for φ ∈ Lω2 (
�
). Γ is an Lω2 (

�
) → Lω2 (

�
) operator

and it is a contraction if ‖I−UCg‖Lω
2 ( � ),ind. < 1. In this case, by an application of the fixed-point

theorem, (2.17) possesses a unique solution, namely (2.12), and the sequence of iterations

f̃ (k+1) := Γ(f̃ (k)) (2.18)

converges to this solution for any initialization f̃ (0) ∈ Lω2 (
�
).

The advantage of this alternative approach is that we may fine-tune our iterative scheme to the
actual error density g and optimize with regard to speed of convergence by chosing an appropriate
U . For example, the choice U = Ctg , which is a linear continuous injective operator by Proposition
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1 with ‖I − UCg‖Lω
2 (� ),ind. < 1 by Proposition 2 is seen to lead to the iteration (2.14) for the

initialization f̂ (0) = CtgPωĥ.
We now motivate a different choice for U resulting in enhanced speed of convergence of the iteration
scheme. According to Proposition 1d, CtgCg is positive-definite and Hermitian. Consequently,
there exists a unique Hermitian, positive-definite operator C, the root of C tgCg , such that C2 =
CtgCg .

Lemma 1 a. The root C of CtgCg has the representation

C = Ψ−1M|Ψg|Ψ

with

Ψ : L2(
�
) −→ L2(

�
)

f 7−→ Ψf

and Mξ is the multiplication operator, i.e. Mξf = ξ · f .
b. For the root C of CtgCg we have

ΨCf = |Ψg| · Ψf , ∀f ∈ L2(
�
)

Proof. Observe that

ΨC2Ψ−1 = ΨCtgCgΨ
−1 = M|Ψg|2ΨΨ−1 = M|ψg|2 (2.19)

where ΨCt
gCgf = |Ψg|

2Ψf , ∀f ∈ L2(
�
) was used.

Quite generally, multiplication operators are well-defined on L2(
�
). They are linear and contin-

uous, if ξ is bounded. They are Hermitian and positive-definite, if ξ is
�

+ -valued. Hence, in
particular, since 0 < |Ψg(t)| ≤ 1 , ∀t ∈

�
, M|Ψg| and M|Ψg|2 are linear, continuous, Hermitian,

positive-definite L2(
�
) → L2(

�
) operators. Furthermore,

M|Ψg|2 = M2
|Ψg|

. (2.20)

The operator ΨCΨ−1 also is positive-definite and Hermitian. This is so since for any f, f ∗ ∈
L2(

�
)

〈ΨCΨ−1f, f∗〉 = 2π〈CΨ−1f,Ψ−1f∗〉 = 2π〈Ψ−1f, CΨ−1f∗〉
= 〈f,ΨCΨ−1f∗〉.

Setting f∗ = f ,

〈ΨCΨ−1f, f〉 = 2π〈CΨ−1f,Ψ−1f〉 ≥ 0

due to positive-definiteness of C. Here, equality holds if Ψ−1f = 0, which is equivalent to
f = 0 (in the L2(

�
)-sense) due to Ψ being an isomorphism. Furthermore,

(ΨCΨ−1)2 = ΨC2Ψ−1 = M|Ψg|2 (2.21)

by (2.19). As evidenced by (2.20) and (2.21) we thus have identified two positive-definite,
Hermitian operators whose square is M|Ψg|2 , namely ΨCΨ−1 and M|Ψg|. But since M|Ψg|2 is itself
positive-definite and Hermitian, it possesses a unique positive-definite, Hermitian root. Hence,

M|Ψg| = ΨCΨ−1

from which we get
M|Ψg|Ψ = ΨC (2.22)

11



and Ψ−1M|Ψg|Ψ = C. This proves a. Applying (2.22) to some f ∈ L2(
�
) results in |Ψg |Ψf =

ΨCf which proves b.
�

The operator C |Lω
2 ( � ) is invertible; its inverse may be approximated by a Neumann series. In

fact, for ω large enough
‖I − C‖Lω

2 ( � ),ind. ≤ 1 − dω−η (2.23)

which may be proved similarly to Proposition 2. Now, we define U : Lω2 (
�
) → Lω2 (

�
) as

U := C−1Ctg (2.24)

Then, U is an isometry, e.g.

U tU = (C−1Ctg)
tC−1Ctg

= Cg((CgC
t
g)

−1)Ctg
= CgC

t
g(CgC

t
g)

−1

= I

since Cg and Ctg commute and so do (CgC
t
g)

−1 and Ctg . Being an isometry, U is also an
injective, linear operator. Using Lemma 1a. and
MξMξ−1 = I , U may be represented as

U = Ψ−1MΨg/|Ψg|
Ψ

With this choice of U , the iterative scheme now reads

f
(k+1)

= C−1CtgPωĥ+ (I − C)Pωf
(k)

(2.25)

(f
(k)

)k∈ � is an estimator sequence in Lω2 (
�
) since C, C−1, I − C are all Lω2 (

�
) → Lω2 (

�
)-

operators. Compared to the previous choice U = C tg , speed of convergence has been increased,
specifically we have

Proposition 4 For the sequence of estimators (f
(k)

)k∈ � defined by (2.25) with some f
(0)

∈ L2(
�
)

it is

‖f
(k+1)

− Pωf̂‖L2(� ) ≤ c(1 − dω−η)k+1 < 1

if ω is large enough. Here and throughout c denotes a generic positive constant that may change
from one occurrence to another.

Proof. It is

‖f
(k+1)

− Pωf̂‖L2(� ) = ‖C−1CtgPωĥ− (I − C)Pωf
(k)

− Pωf̂‖L2( � )

= ‖(I − C)(Pωf
(k)

− Pωf̂)‖
L

(
2 � )

in view of (2.18)

≤ ‖I − C‖Lω
2 ( � ),ind.‖f

(k)
− Pω f̂‖L2( � )

≤ (1 − dω−η)k+1‖f
(0)

− Pωf̂‖L2( � )

for ω large enough by (2.22).
�

In general, the operator C can be difficult to obtain. We consider two special cases where
this is possible, where, in particular, C can be viewed as a convolution operator Cγ for some
L2(

�
)-density γ. This requires

C2
γ = Cg−∗g ⇔ Ψ2

γ = |Ψg |
2 ⇔ Ψγ = ±|Ψg(t)|

which in turn is equivalent to

12



Ψγ = |Ψg(t)| (2.26)

due to continuity of Ψγ , positivity of |Ψg(t)| and the fact that Ψγ(0) = 1. Hence Ψγ is a
real-valued positive function. If the error density g is even, then Cg = Ctg and Cg is both positive-
definite and Hermitian. Since C2

g = CgC
t
g = C2 it follows by uniqueness of the positive-definite

root that
C = Cg = Ctg .

Hence, γ = g can be chosen in (2.26) resulting in U = C−1Ctg = I . The iterative scheme (2.25)
becomes

f
(k+1)

= Pωĥ+ (I − Cg)Pωf
(k)
.

Error densities g for which there exists an L2(
�
)-density ζ such that ζ ∗ ζ = g constitute the

second special case we here consider. Generalizing the concept of infinite divisibility, we call these
densities divisible. Now, if g is divisible then g ∗ g− = ζ ∗ ζ ∗ ζ− ∗ ζ− = (ζ ∗ ζ−)∗ (ζ ∗ ζ−) leading to
γ = ζ ∗ ζ− ∈ L2(

�
). In this case Cγ = C = CζC

t
ζ . Without additional assumptions C−1 is

difficult to compute explicitely. It may, however, be approximated by its Neumann series. Writing
S := I − C one obtains by induction

f
(k)

= Skf
(0)

+
k−1
∑

j=0

SjC−1CtgPωĥ (2.27)

and replacing C−1 by
m
∑

l=0

Sl leads to

f
(k)

m = Skf
(0)

+

k−1
∑

j=0

m
∑

l=0

Sj+lCtgPωĥ.

Concerning the rate of convergence, consider that

‖Pωf̂ − f
(k)

m ‖L2(� ) ≤ ‖Pωf̂ − f̂
(k)
m ‖L2(� ) + ‖f̂ (k) − f

(k)

m ‖L2(� )

≤ c(1 − dω−η)k + ‖
∞
∑

l=m+1

Sl
k−1
∑

j=0

SjCtgPωĥ‖L2( � )

and

‖
∞
∑

l=m+1

Sl
k−1
∑

j=0

SjCtgPωĥ‖L2( � ) ≤ c
∞
∑

l=m+1

(1 − dω−η)l‖C−1CtgPωĥ‖L2(� )

≤ c
(

1
1−(1−dω−η) −

1−(1−dω−η)m+1

1−(1−dω−η)

)

so that

‖Pωf̂ − f
(k)

m ‖L2( � ) ≤ c(1 − dω−η)k + c(1 − dω−η)m+1

With m = k − 1, the sequence (f
(k)

m )k∈ � has the same rate of convergence as (f
(k)

)k∈ � in

(2.27). Then, writing f
(k)

∗ for f
(k)

k−1,

f
(k)

∗ = Skf̂ (0) +
k−1
∑

j,l=0

Sj+lCtgPωĥ

= Skf̂ (0) +
2k−2
∑

j=0

[k − |j − k + 1|]SjCtgPωĥ.

This scheme works whenever the operator C can be computed.

13



3 Minimax result

In this section, we establish a minimax rate for the mean integrated squared error over the function
class Fβ,a and we prove that the estimator

Pω f̂ = (CtgCg)
−1CtgPωĥ (3.1)

for an appropriate ordinary density estimator ĥ achieves the optimal rate. In particular, we
take

ĥλ(x) =
1

n

n
∑

i=1

Kλ(x− Yi) (3.2)

where Kλ(x) = λK(λx) is a kernel and λ = λ(n) is a scaling parameter. [34] shows that the
minimum MISE J∗

n within the class of kernel estimators is

J∗
n =

1

2π

∫

|Ψh(t)|
2(1 − |Ψh(t)|

2)

1 + (n− 1)|Ψh(t)|2
dt

The optimal kernel depends on the unknown density h. [5] studies MISE of the kernel density
estimator based on the sync kernel K̃(x) = (πx)−1 sinx whose characteristic function is ΨK̃(t) = 1
for |t| ≤ 1 and zero otherwise. For densities satisfying certain Fourier conditions similar to the

ones considered here, the rate of decrease of its MISE is of the same order as J ∗
n. Hence ĥλ in

(3.2) with the sync kernel K̃λ and λ = ω is a plausible choice for an ordinary density estimator
for the class of functions here considered. We will show that with this choice the MISE-minimax
rate for deconvolution is in fact attained: Using ĥλ in (3.2) with Kλ = K̃ω, the sync kernel, we
obtain

f̂ω := Pω f̂ = (CtgCg)
−1Ctgĥω (3.3)

since Pωĥω = ĥω. We first establish an upper bound for MISE uniform over the function class
Fβ,a.

Theorem 1 For error densities g from Fε,2,η and with ω = ωn = cn
1

2(β+η) it is

sup
f∈Fβ,a

Ef‖f̂ωn
− f‖2

L2( � ) ≤ c n− 2β−1
2(β+η)

with f̂ωn
as in (3.3).

Proof. First,

sup
f∈Fβ

Ef‖f̂ωn
− f‖2

L2( � ) ≤ 2 sup
f∈Fβ

Ef‖f̂ωn
− Pωn

f‖2
L2(� ) + 2 sup

f∈Fβ

‖Pωn
f − f‖2

L2( � )

and the second summand on the right hand side can be handled by (2.6). To bound the
remaining summand, consider that with h = f ∗ g it is Pωn

h = Pωn
Cgf = CgPωn

f from which we
get CtgPωn

h = CtgCgPωn
f and, hence,

Pωn
f = (CtgCg)

−1CtgPωn
h.

This gives

sup
f∈Fβ,a

Ef‖f̂ωn
− Pωn

f‖2
L2( � ) = sup

f∈Fβ

Ef‖(C
t
gCg)

−1CtgPωn
(ĥωn

− h)‖2
L2(� )

where Pωn
(ĥωn

− h) is in Lωn

2 (
�
). For any ξ ∈ Lω2 (

�
), it is (CtgCg)

−1Ctgξ = η for some

η ∈ Lω2 (
�
). Since ΨCt

gCgη = ΨCt
gξ

, this implies ΨgΨξ = |Ψg |
2Ψη and hence Ψη = Ψξ/Ψg. As a

result, we obtain
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sup
f∈Fβ,a

Ef‖f̂ωn
− Pωn

f‖L2( � )

≤ 1
2π sup
f∈Fβ,a

+ωn
∫

−ωn

|Ψg(t)|
−2Ef |Ψĥωn

(t) − Ψh(t)|
2dt

≤ 1
2π sup
f∈Fβ,a

+ωn
∫

−ωn

(

1
n1[−ωn,+ωn](t)|Ψg(t)|

−2 +
∣

∣

∣

Ψh(t)
Ψg(t)

∣

∣

∣

2

(1 − 1[−ωn,+ωn])

)

dt

(3.4)

since

Ef |Ψĥωn
(t) − Ψh(t)|

2 = Ef

∣

∣

∣

∣

∣

1
n

n
∑

j=1

eitYj (1[−ωn,+ωn](t) − Ψh(t))

∣

∣

∣

∣

∣

2

= Ef

∣

∣

∣

∣

∣

1
n

n
∑

j=1

eitYj 1[−ωn,+ωn](t) − Ψh(t)1[−ωn,+ωn](t)

∣

∣

∣

∣

∣

2

+ |Ψh(t)(1[−ωn,+ωn](t) − 1)|2

≤ 1
nEf |e

itYj |2 · 1[−ωn,+ωn](t) + |Ψh(t)(1[−ωn,+ωn](t) − 1)|2

= 1
n1[−ωn,+ωn](t) + |Ψh(t)|

2(1 − 1[−ωn,+ωn](t))

With Ψh = ΨfΨg, we finally arrive at

sup
f∈Fβ,a

Ef‖f̂ωn
− f‖L2( � ) ≤ c ω1−2β

n + 1
πn

+ωn
∫

−ωn

|Ψg(t)|
−2dt

+ 1
π sup
f∈Fβ,a

+ωn
∫

−ωn

|Ψf (t)|
2(1 − 1[−ωn,+ωn](t))dt

= c ω1−2β
n + 2

πn

T
∫

0

|Ψg(t)|
−2dt + 2

πn

ωn
∫

T

|Ψg(t)|
−2dt

≤ c ω1−2β
n + c n−1 + c n−1ω2η+1

n

which is optimized for ωn = n
1

2(β+η) and then gives the bound stated in the theorem.
�

We can also obtain a corresponding lower bound of the same order if g is in the subset F ′
ε,2,η :=

{g ∈ Fε,2 | |Ψ
(l)
g (t)| ≤ d̃t−(η+l) , l = 0, 1, . . .}

Theorem 2 For error densities g from F ′
ε,2,η we have

inf
T̂∈Tn

sup
f∈Fβ,a

Ef‖T̂ − f‖2
L2( � ) ≥ c n− 2β−1

2(β+η)

where Tn is the set of all estimators based on n iid observations.

Proof.
Our strategy of proof leans on [12] in places. Then, in turn, the method of [1] is utilized, also

known as Assouad’s lemma. However, for our function class Fβ,a the method requires significant
modifications.
First, we introduce the Sobolev class of densities

Hs,a := {L2(
�
)-densities f | ‖|t|sΨf (t)‖

2
L2( � ) ≤ a}

Since f ∈ Hs,a implies

a ≥

∞
∫

ω

|t|2s|Ψf (t)|
2dt ≥ ω2s

∞
∫

ω

|Ψf (t)|
2dt
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and, hence,
∞
∫

ω

|Ψf (t)|
2dt ≤ aω−2s for all ω ≥ ω0 > 0, we have the inclusion

Hβ− 1
2 ,a

⊆ Fβ,a.

Now, let H ∈ Hβ− 1
2 ,a/4q

(for some constant q still to be determined) be some bounded function
with compact support integrating to zero. Also, define

Φ(x) :=











− 1
b−a for a− b < x < 0
1
b−a for 0 < x < b− a

0 otherwise

and

f0(t) = (1 + t2)−r

For appropriate r, f0 ∈ Hβ− 1
2 ,a/4

can be assured. With these definitions in place, let

fΘ(t) := f0(t) + a−1
n

mn
∑

j=1

Θj(Φ ∗H)(mn(t− xn,j))

with Θ = (Θ1,Θ2, . . . ,Θmn
), an = m

β− 1
2

n , xn,j = a+ j
n (b− a) ,

j = 1, . . . ,mn and set

Fn := {fΘ | Θ ∈ {0, 1}mn}.

The elements of Fn are L2(
�
)-functions. For later use we note that

b−a
∫

0

|(Φ ∗H)(x)|2dx > 0 (3.5)

Next we will show that at least a sufficiently large subset of Fn lies in Hβ− 1
2 ,a

and, thus, in

Fβ,a. Towards this end, write

bn,Θ(t) :=

mn
∑

j=1

Θje
i(b−a)tjΨΦ(t) (3.6)

and for f ∈ Fn consider that

∫

|t|2β−1|Ψf (t)|
2dt ≤

a

2
+ 2

∫

|t|2β−1m−1
n |bn,Θ(t)|2|ΨH(t)|2dt (3.7)

To evaluate this bound, let Θ̂ be an mn-dimension random vector whose components Θ̂j are
iid. B(1, 1

2 ) random variables and show that

E(|bn,Θ̂(t)|2) ≤ cmn ∀t ∈
�
, ∀n ∈ � (3.8)

This is true, since

E(|bn,Θ̂(t)|2) = var(bn,Θ̂(t)) + |E(bn,Θ̂(t))|2

≤ var

(

mn
∑

j=1

Θ̂j |e
i(b−a)tjΨΦ(t)|

)

+ 1
4

∣

∣

∣

∣

∣

mn
∑

j=1

ei(b−a)tjΨΦ(t)

∣

∣

∣

∣

∣

2

≤ mn + 4
∣

∣

∣

cos((b−a)t)−1
(1−ei(b−a)t)(b−a)t

∣

∣

∣

2

and the second summand is a continuous function of t and uniformly bounded. Note that for
a complex-valued random variable Z the variance is defined as var(Z) := E(|Z −E(Z)|2). Then
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the identity var

(

n
∑

j=1

Zj

)

=
n
∑

j=1

var(Zj) for iid. Zj continues to hold.

Now, using (3.8), we conclude with Markov’s inequality that

P
(

∫

|t|2β−1m−1
n |bn,Θ̂(t)|2|ΨH(t)|2dt ≤ a/4

)

≥ 1 − 4
aE
(

∫

|t|2β−1m−1
n |bn,Θ̂(t)|2|ΨH(t)|2dt

)

≥ 1 − 4c
a

∫

|t|2β−1|ΨH(t)|2dt
≥ 1 − c

q =: p > 3
4

(3.9)

by appropriate choice of the constant q.
Hence we have shown that there exists a set Λn ⊆ {0, 1}mn with
2−mncard(Λn) > 3

4 such that

F ′
n := {fΘ | Θ ∈ Λn} ⊆ Hβ− 1

2 ,a

We will now establish that for this subset F ′
n and with −∞ < a < b < +∞

sup
f∈F ′

n

Ef

b
∫

a

|f̂(x) − f(x)|2dx ≥ c n− 2β−1
2(β+η)

where f̂ is any estimator of f based on Y1, Y2, . . . , Yn. Then the statement of the theorem
follows. First, observe that

sup
f∈F ′

n

Ef
b
∫

a

|f̂(x) − f(x)|2dx

= sup
Θ∈Λn

EfΘ

b
∫

a

|f̂(x) − fΘ(x)|2dx

≥ P (Θ̂ ∈ Λn) ·
b
∫

a

EΘ̂

(

Ef̂Θ̂
|f̂(x) − fΘ̂(x)|2 | Θ̂ ∈ Λn

)

dx

(3.10)

Next, define the sets

Λ(j,i) := {Θ ∈ {0, 1}mn | Θj = i} ; i = 0, 1

Λ
(j,i)
n := Λn ∩ Λ(j,i)

By simple computations, P (Θ̂ ∈ Λ
(j,0)
n ) = P (Θ̂ ∈ Λ

(j,1)
n ) ≥ p − 1

2 for the p used in (3.9).
Furthermore, set

Λ
(j,1)

n := {Θj,1 | Θ ∈ Λ
(j,0)
n } ∩ Λ

(j,1)
n

Λ
(j,0)

n := {Θj,0 | Θ ∈ Λ
(j,1)

n }

where for Θ = (Θ1,Θ2, . . . ,Θmn
) the corresponding

Θj,1 := (Θ1, . . . ,Θj−1, 1,Θj+1, . . . ,Θmn
)

Θj,0 := (Θ1, . . . ,Θj−1, 0,Θj+1, . . . ,Θmn
)

are the vectors where the j-th components have been set to 1 or 0 , respectively. Similarly, the
random vectors Θ̂j,1 and Θ̂j,0 are defined.

Clearly, Λ
(j,1)

n ⊆ Λ
(j,1)
n and Λ

(j,0)

n ⊆ Λ
(j,0)
n and

P (Θ̂ ∈ Λ
(j,1)

n ) = P (Θ̂ ∈ {Θj,1 | Θ ∈ Λ
(j,0)
n }) + P (Θ̂ ∈ Λ

(j,1)
n )

−P
(

Θ̂ ∈ {Θj,1 | Θ ∈ Λ
(j,0)
n } ∪ Λ

(j,1)
n

)

≥ P (Θ̂ ∈ Λ
(j,0)
n ) + P (Θ̂ ∈ Λ

(j,1)
n ) − 1

2
≥ 2p− 3

2 .
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Similarly, P (Θ̂ ∈ Λ
(j,0)

n ) ≥ 2p− 3
2 is obtained.

The integrand on the right side of (3.10) may be lowerbounded by

(p− 1
2 )
{

EΘ̂

(

EfΘ̂ |f̂(x) − fΘ̂(x)|2 | Θ̂ ∈ Λ
(j,0)
n

)

+EΘ̂

(

EfΘ̂ |f̂(x) − fΘ̂(x)|2 | Θ̂ ∈ Λ
(j,1)
n

)} (3.11)

Furthermore, for i = 0, 1

EΘ̂

(

EfΘ̂ |f̂(x) − fΘ̂(x)|2 | Θ̂ ∈ Λ
(j,i)
n

)

≥
(

P (Θ̂ ∈ Λ
(j,i)

n )/P (Θ̂ ∈ Λ
(j,i)
n )

)

EΘ̂

(

EfΘ̂ |f̂(x) − fΘ̂(x)|2 | Θ̂ ∈ Λ
(j,i)

n

)

Since P (Θ̂ ∈ Λ
(j,i)

n )/P (Θ̂ ∈ Λ
(j,i)
n ) ≥ 2p− 3

2 , (3.11) is not smaller than

(p− 1
2 )(2p− 3

2 ){EΘ̂

(

EfΘ̂ |f̂(x) − fΘ̂(x)|2 | Θ̂ ∈ Λ
(j,1)

n

)

+EΘ̂

(

EfΘ̂ |f̂(x) − fΘ̂(x)|2 | Θ̂ ∈ Λ
(j,0)

n

)

}

= c
{

EΘ̂

(

EfΘ̂ |f̂(x) − fΘ̂(x)|2 | Θ̂ ∈ Λ
(j,1)

n

)

+EΘ̂

(

EfΘ̂ |f̂(x) − fΘ̂(x)|2 | Θ̂ ∈ Λ
(j,0)

n

)}

(3.12)

and in the second summand Λ
(j,0)

n may be replaced by Λ
(j,1)

n without changing the right hand
side of (3.12). Hence (3.12) equals

c · EΘ̂

(

EfΘ̂j,1
|f̂(x) − fΘ̂j,1

(x)|2 + EfΘ̂j,0
|f̂(x) − fΘ̂j,0

(x)|2 | Θ̂ ∈ Λ
(j,1)

n

)

≥ c · EΘ̂(a2
nj(x)PΘ̂j,1

(|f̂(x) − fΘ̂j,1
(x)| ≥ anj(x)))

+ a2
nj(x)PΘ̂j,0

(|f̂(x) − fΘ̂j,0
(x)| ≥ anj(x)))

(3.13)

with anj(x) = 1
2 |fΘ̂j,0

(x) − fΘ̂j,1
(x)| = 1

2an
|(Φ ∗H)(mn(t− xn,j))|.

Writing

R0 := {|f̂(x) − fΘ̂j,0
(x)| ≥ anj(x)}

R1 := {|f̂(x) − fΘ̂j,1
(x)| ≥ anj(x)}

we see that R0 = Rc1 =: R and the right hand side of (3.13) upperbounds

ca2
nj(x)

[

1 −EΘ̂(PΘ̂j,1
(R) − PΘ̂j,0

(R))
]

(3.14)

Now, if the chi-square distance χ2(hΘ̂j,0
, hΘ̂j,1

) ≤ c/n where hΘ̂ = g ∗ fΘ̂, then for the expec-

tation in (3.14)

|EΘ̂(PΘ̂j,1
(R) − PΘ̂j,0

(R))|

≤ E

(

∫

R

∣

∣

∣

∣

n
∏

k=1

hΘ̂j,0
(yk) −

n
∏

k=1

hΘ̂j,1
(yk)

∣

∣

∣

∣

dy1 · · · dyn

)

≤ 1− e−c

by the Bretagnolle-Huber inequality. For n sufficiently large

fΘj,0(x) ≥
1

2
f0(x) ∀x ∈

�

and
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f0(x) ≥ c max
xn,j∈[a,b]

f0(x− xn,j) ∀x ∈
�

so that the argument of [12] may be applied to show that

χ2(fΘ̂j,0
∗ g, fΘ̂j,1

∗ g) ≤
2

c
m1−2β
n

∫

[(Φ ∗H)(mnx) ∗ g(x)]
2

(f0 ∗ g)
dx

and this is smaller than or equal to c/n for mn = c · n
1

2(β+η)+1 by the local result of [9]. Hence
(3.14) is not smaller than c · a2

nj(x) and since j was arbitrary, we arrive at

EΘ̂

(

EfΘ̂ |f̂(x) − fΘ̂(x)|2 | Θ̂ ∈ Λn

)

≥ c max
1≤j≤mn

a2
nj(x)

so that, finally,

sup
f∈F ′

n

Ef

b
∫

a

|f̂(x) − f(x)|2dx ≥ c

b
∫

a

max
1≤j≤mn

a2
nj(x)dx

≥ c

mn−1
∑

j=0

xn,j+1
∫

xn,j

|a−1
n (Φ ∗H)(mn(x− xn,j))|

2dx

= c

b−a
∫

0

|a−1
n (Φ ∗H)(y)|2dy

= c a−2
n by (3.5)

= cm1−2β
n since an = mβ−1/2

n

= c n− 2β−1
2(β+η) .

�

4 Error densities not in L2(
�

)

In this section, we study the deconvolution problem for error densities taken from

Fε,1,η = {densities g | |Ψg(t)| ≥ d|t|−η , ∀t with |t| ≥ T and |Ψg(t)| 6= 0 , ∀t}

for some positive constants d, T and η ≤ 1
2 . For this case compared to the analysis in Sections

2 and 3 some subtle theoretical issues arise which we now address. First of all, to be precise, the
Fourier transform Ψf of some function f is to be understood as the Fourier-Plancherel transform
if f is in L2(

�
) , and as the characteristic function if f is in L1(

�
). For f ∈ L1(

�
) ∩ L2(

�
) both

interpretations coincide. Secondly, the convolution identity Ψg∗f = ΨgΨf which was crucial in
Sections 2 and 3 is valid only if both f and g are in L1(

�
), if f ∈ L1(

�
) ∩ L2(

�
) and g ∈ L2(

�
),

and if g ∈ L1(
�
) ∩ L2(

�
) and f ∈ L2(

�
). It is, however , not valid for g ∈ L1(

�
) and f ∈ L2(

�
).

In the latter case, convolution of the two functions is not even well-defined. This has several
implications. One of them is that the operator Cg can no longer be viewed as an L2(

�
) → L2(

�
)-

operator. Instead, we consider it as an operator with domain L := L1(
�
)∩L2(

�
). But L equipped

with the L2(
�
)-norm though a normed linear space is not complete. A further problem arises from

the fact that the operator Pω for which ΨPωf = Ψf1[−ω,+ω] is not an L → L-operator:
For f ∈ L, Pωf is in L2(

�
) but not necessarily also in L1(

�
). This is so since for f ∈ L1(

�
)

the Fourier transform Ψf is continuous or at least is equal to a continuous function outside of a

(Lebesgue-)null set. Now, if for the continuous modification Ψ̃f of Ψf , Ψ̃f (ω) 6= 0 or Ψ̃f (−ω) 6=
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0 then ΨPωf is discontinuous at ω or at −ω and this discontinuity cannot be eliminated by
modification of the function on a null set. In conclusion, application of the operator Pω may
lead to functions not in L and in the sequel the convolution formula may no longer be applied.
Therefore, an alternative operator needs to be introduced with the purpose to restrict frequencies
to a compact set similar to what is accomplished by Pω. Towards this end, set

gω(x) =
2

ωπx2

(

cos(
ω

2
x) − cos(ωx)

)

(4.1)

which is in L and whose characteristic function is given by

Ψgω
(t) =

2(t+ ω)

ω
1(−ω,−ω/2)(t) + 1[−ω/2,+ω/2](t) +

2(ω − t)

ω
1(ω/2,ω)(t)

We utilize gω to replace the operator Pω by the convolution operator P ∗
ω defined by

P ∗
ωf = gω ∗ f , f ∈ L.

Convolution of two L1(
�
)-functions produces an L1(

�
)-function and convolution of two L2(

�
)-

functions leads to an L2(
�
)-function. Hence, P ∗

ω is an L → L-operator and for f ∈ L

ΨP∗

ωf = Ψgω∗f = Ψgω
Ψf

since both f and gω are in L. We also have an analogy to (2.6), namely

‖P ∗
ωf − f‖2

L2( � ) ≤
a

π21−2β
ω1−2β for f ∈ Fβ,a ⊂ L.

Now, let us consider the convolution operator Cγ for densities γ not in L2(
�
). Cγ is an

L → L-operator: for f ∈ L, Cγf ∈ L1(
�
) is clear and Cγf ∈ L2(

�
) follows from

|(Cγf)(x)|2 =

∣

∣

∣

∣

∫

�
γ(y)f(x− y)dy

∣

∣

∣

∣

2

= |E[f(x− Y )]|2 , if the random variable Y
has density γ.

≤ E[|f(x− Y )|2]
=
∫

�
|f(x− y)|2γ(y)dy

which is integrable. In fact,

‖f‖2
L2( � ) =

∫

�

∫

�

|f(x)|2γ(y)dxdy =

∫

�





∫

�

|f(x− y)|2γ(y)dy



 dx.

Unlike before, in the present context, the convolution operator Cg− cannot be considered the
Hilbert-adjoint operator of Cg , since L equipped with the inner product norm of L2(

�
) fails to be

complete and, hence, is not a Hilbert space.
In analogy to (2.13), we set

f̂
(k)
∗ =

k
∑

j=0

(I − Cg−Cg)
jCg−P

∗
ω ĥ , k ∈ � 0 (4.2)

for some ordinary density estimator ĥ ∈ L of the density h based on direct observations. In
analogy to Proposition 2, for f ∈ L ∩ Lω2 (

�
) we have

‖(I − Cg−Cg)f‖L2( � ) ≤ (1 − d2ω−2η)‖f‖L2( � ) (4.3)

from which we conclude that
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‖(I − Cg−Cg)
jCg−P

∗
ω ĥ‖L2( � ) ≤ (1 − d2ω−2η)j‖Cg−P

∗
ω ĥ‖L2( � )

and so the sequence (f̂
(k)
∗ )k∈ � 0 converges in L2(

�
)-norm. Since Lω2 (

�
) equipped with this norm

is a Hilbert space, the L2(
�
)-limit of the sequence in (4.2) is in Lω2 (

�
). We denote this limit by

f̂∗
ω. It can be represented as

f̂∗
ω :=

∞
∑

j=0

(I − Cg−Cg)
jCg−P

∗
ω ĥ (4.4)

We mention that the sequence in (4.2) may not converge in L1(
�
)-norm and f̂∗

ω in (4.4) may
not be an L1(

�
)-function.

It remains to specify an appropriate estimator ĥ ∈ L for the sequence in (4.2). In the context
considered in this Section, the sync-kernel estimator is not available as previously, since it fails to
lie in L. Instead, we take

ĥ∗ω(y) :=
1

n

n
∑

j=1

gω(y − Yj) (4.5)

with gω from (4.1). Then we can state

Theorem 3 For error densities g from Fε,1,η and with ω = ωn = c n
1

2(β+η) we have

sup
f∈Fβ,a

Ef ‖f̂
∗
ωn

− f‖2
L2( � ) ≤ c n− 2β−1

2(β+η) (4.6)

with f̂∗
ωn

as in (4.4) using ĥ = ĥ∗ωn
from (4.5).

The proof of Theorem 3 follows the line of argument of the proof of Theorem 1. But one needs
to be mindful of the technical aspects outlined earlier in this Section and so it turns out to be
more technically intricate. Also, the constant on the right hand side of (4.6) is different from the
corresponding constant in Theorem 1.

5 Supersmooth error densities

In this Section we allow for error densities from the smoothness class

Gε,η,ξ := {densities g | g ∈ L2(
�
), |Ψg (t)| ≥ b|t|η exp(−δ|t|ξ)∀t with

|t| ≥ T for some T > 0 and |Ψg(t)| 6= 0 ∀t}

Densities with an exponentially decreasing characteristic function are commonly referred to as
supersmooth densities. In addition to smooth densities the class Gε,η,ξ does contain supersmooth
densities. In analogy to the results in Section 3:

Proposition 5 For the root C of the operator C tgCg with g ∈ Gε,η,ξ it is

‖I − C‖Lω
2 ( � ),ind. ≤ 1 − bωη exp(−δωξ)

Proposition 6 For f
(k)

as defined in (2.25) with g ∈ Gε,η,ξ and Pω f̂ as in (2.12) we have

‖f
(k)

− Pωf̂‖L2(� ) ≤ (1 − bωη exp(−δωξ))k+1‖Pωf̂‖L2( � )
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Theorem 4 For error densities g from Gε,η,ξ and with ω = ωn =
[(

1
4δ

)

ln n
]1/ξ

we have

sup
f∈Fβ

Ef‖f̂ωn
− f‖2

L2( � ) ≤ c(lnn)
1−2β

ξ

with f̂ωn
as in (3.3).

The proofs are similar in each case to those of the corresponding previous results. Note that
the optimal sequence ωn in Theorem 4 can be determined exactly, not merely up to a constant.
Similarly to Theorem 2 we can also obtain a lower bound result for error densities from

G′
ε,η,η̃,ξ := {g ∈ Gε,η,ξ | |Ψg(t)| ≤ b̃|t|η̃ exp(−δ|t|ξ)

and P (|ε− u| ≤ |u|α0 = O(|u|−(α−α0)) as |u| → ∞}.

Theorem 5 For error densities g from G ′
ε,η,η̃,ξ we have

inf
T̂∈Tn

sup
f∈Fβ

Ef‖T̂ − f‖2
L2( � ) ≥ c(ln n)

1−2β
ξ

For the definition of Tn, see Theorem 2. Again, the proof follows the line of argument of the
corresponding previous result.

6 Simulations

Now, we illustrate the iterative deconvolution estimator with some numerical experiments. We
take the standard normal density (N(0, 1)) and the standard Cauchy density as examples of the
density f which is being estimated. For the error density g we also take two paradigmatic cases,
one smooth and one supersmooth density: the double exponential density and N(0, 1). Hence,
the summary of our simulations consists of four simulated cases:

Figure f g
1 N(0, 1) double exponential
2 Cauchy double exponential
3 N(0, 1) N(0, 1)
4 Cauchy N(0, 1)

Selecting the scaling parameter λn = n1/8 in figure (1) and (2) according to Theorem 1 and
λn =

√

ln(n)/2 in figure (3) and (4) according to Theorem 4, we compute the iterative estimators
based on n = 1000 independent contaminated observations in each case. This is a relatively small
sample size for deconvolution tasks, especially if the error density is supersmooth. The estimators
are calculated by the iterative scheme (2.4). We have plotted f (the dashed line) as well as

the iterations f̂ (0), f̂ (1), f̂ (2), f̂ (5), f̂ (10), constituting successively improving (in each of the four
figures) approximations to f .
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Figure 1: X ∼ N(0, 1), ε ∼ double exponential
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Figure 2: X ∼ Cauchy, ε ∼ double exponential
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Figure 3: X ∼ N(0, 1), ε ∼ N(0, 1)
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Figure 4: X ∼ Cauchy, ε ∼ N(0, 1)

References

[1] Bretagnolle, J. and Huber, C., Estimation des densités, risque minimax, Z. Wahrsch.
Verw. Gebiete 47, (1979), 119-137

[2] Carroll,R.J. and Hall,P., Optimal rates of convergence for deconvolving a density, J.
Amer. Statist. Assoc. 83, (1988), 1184-1186.

[3] Carroll, R.J., Ruppert, D. and Stefanski, L.A., Measurement Error in Nonlinear

Models, Chapman and Hall, London, (1995).

[4] Cavalier, L. and Tsybakov, A.B., Sharp adaption for inverse problems with random

noise, Probab. Theory Relat. Fields 123, (2002), 323-354.

24



[5] Davis,K.B., Mean integrated square error properties of density estimates, Ann. Statist., 5 ,
(1977), 530-535.

[6] Eddington, A.S., On a formula for correcting statistics for the effects of a known probable

error of observation, Mon. Not. R. Astron. Soc., 73, (1913), 359-360.

[7] Efromovich,S., Robust and efficient recovery of a signal passed through a filter and then

contaminated by non-Gaussian noise, IEEE Trans. Inform. Theory, 43, (1997a), 1184-1191.

[8] Efromovich,S., Density estimation for the case of supersmooth measurement error, J. Amer.
Statist. Assoc., 92, (1997b), 526-535.

[9] Fan,J., On the optimal rates of convergence for non-parametric deconvolution problems,
Ann. Statist., 19, (1991a), 1257-1272.

[10] Fan, J., Global behaviour of deconvolution kernel estimates, Statist. Sinica, 1, (1991b), 541-
551.

[11] Fan,J., Deconvolution with supersmooth distributions, Canad. J. Statist., 20, (1992), 155-
169.

[12] Fan,J., Adaptively local one-dimensional subproblems with application to a deconvolution

problem, Ann. Statist., 21, (1993), 600-610.

[13] Fotopoulos,S.B., Invariance principles for deconvoluting kernel density estimation under

stationary sequences of random variables, Journal of Statistical Planning and Inference, 86,
(2000), 31-50.

[14] Gaffy,W.R., A consistent estimator of a component of a convolution, Ann. Math. Statist.,
30, (1959), 198-205.

[15] Goldenshluger, A., On pointwise adaptive nonparametric deconvolution, Bernoulli, 5,
(1998), 907-926.

[16] Hesse,C.H., Deconvolving a density from partially contaminated observations, J. Multivari-
ate Anal., 55, (1995a), 246-260.

[17] Hesse,C.H., How many good oberservations do you need for fast density deconvolution from

supersmooth errors, Sankhya A, 58, (1995b), 491-506.

[18] Hesse,C.H., Data-driven deconvolution, Nonparametric Statistics, 10, (1999), 343-373.

[19] Johnstone, I.M., Wavelet shrinkage for correlated data and inverse problems: adaptive

results, Statistica Sinica, 9, (1999) 51-83.

[20] Koo,J.-K., Longspline deconvolution in Besov space, Scand. J. Statist. 26, (1999), 73-86.

[21] Liu,M.C. and Taylor,R.C., A consistent nonparametric density estimator for the decon-

volution problem, Canad. J. Statist., 17, (1989), 427-438.

[22] Masry,E. and Rice,J.A., Gaussian deconvolution via differentiation, Canad. J. Statist.,
20, (1992), 9-21.

[23] Neumann,M.H., On the effect of estimating the error density in nonparametric deconvolu-

tion, Nonparametric Statistics, 7, (1997), 307-330.

[24] Pensky,M. and Vidakovic,B., Adaptive wavelet estimator for nonparametric density de-

convolution, Ann. Statist., 27, (1999), 2033-2053.

25



[25] Rachdi,M. and Sabre,R., Consistent estimates of the mode of the probability density

function in nonparametric deconvolution problems, Statist. and Probab. Lett., 47, (2000),
105-114.

[26] Reed,M. and Simon,B., Methods of Modern Mathematical Physics, I Functional Analysis,
Academic Press, (1980)

[27] Robbins,H., The empirical Bayes approach to statistical decision problems, Ann. Math.
Statist., 35, (1964), 1-20

[28] Snyder,D.L., Miller,M.I. and Schultz,T.J., Constrained probability density estimation

from noisy data, Proceedings of the 1988 Conference on Information Sciences and Systems,
Johns Hopkins University, Baltimore, Maryland, (1988), 170-172.

[29] Stefanski, L.A., Rates of convergence of some estimators in a class of deconvolution prob-

lems, Statist. Prob. Lett., 9, (1990), 229-235

[30] Stefanski,L.A. and Carroll,R.J., Deconvolving kernel density estimators, Statistics, 21,
(1990), 169-184.

[31] Tsybakov, A.B., Pointwise and sup-norm sharp adaptive estimation of functions on the

Sobolev classes, Ann. Statist. 26, (1998), 2420-2469.

[32] Walter,G.G. and Shen,X., Deconvolution using Meyer wavelets, J. Integral Eq. Appl., 11,
(1999), 515-534.

[33] Wand, M.P. and Jones, M.C., Kernel Smoothing, Chapman and Hall, London, (1995).

[34] Watson,G.S. and Leadbetter,M.R., On the estimation of the probability density, I. Ann.
Math. Statist., 34, (1963), 480-491.

Christian H. Hesse
Pfaffenwaldring 57
70569 Stuttgart
Germany
E-Mail: hesse@mathematik.uni-stuttgart.de

Alexander Meister
Pfaffenwaldring 57
70569 Stuttgart
Germany
E-Mail: meistear@mathematik.uni-stuttgart.de

26





Erschienene Preprints ab Nummer 2004/001
Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints

2004/001 Walk, H.: Strong Laws of Large Numbers by Elementary Tauberian Arguments.

2004/002 Hesse, C.H., Meister, A.: Optimal Iterative Density Deconvolution: Upper and
Lower Bounds.

2004/003 Meister, A.: On the effect of misspecifying the error density in a deconvolution
problem.

2004/004 Meister, A.: Deconvolution Density Estimation with a Testing Procedure for the
Error Distribution.

2004/005 Efendiev, M.A., Wendland, W.L.: On the degree of quasiruled Fredholm maps and
nonlinear Riemann-Hilbert problems.

2004/006 Dippon, J., Walk, H.: An elementary analytical proof of Blackwell’s renewal theo-
rem.


