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1 Introduction

Deconvolution density estimation has become a widely studied topic. Lots of articles (Devroye
(1989), Fan (1991), Fan (1993), Hesse (1999), Liu and Taylor (1990), Stefanski and Carroll (1990))
were published. The basic problem is the estimation of a probability density f based on con-
tamined observations Y1, . . . , Yn. Mathematically spoken, identically distributed random variables
X1, . . . , Xn with probability density f and also identically distributed random variables ε1, . . . , εn
with probability density g which represent the error or the contamination are given. Furthermore,
the random variables X1, ε1, . . . , Xn, εn are independent. The random variables X1, . . . , Xn whose
density f shall be estimated cannot be observed directly, but only the contamined data Y1, . . . , Yn
defined by

Yj = Xj + εj , ∀j ∈ {1, . . . , n}
can be used for the construction of the estimator. So the density h of Yj equals h = f ∗ g,

i.e. the convolution of the densities f and g. Now it is aimed to find an estimator f̂n of the
density f based on the observations Y1, . . . , Yn. Deterministic stipulations of nonparametric char-
acter like conditions refering to the asymptotic behaviour of the Fourier-transform for the density
f are made. These can be expressed by the definition of a density class F and the stipulation
f ∈ F . In the classical approach of deconvolution estimation , the error density g is supposed to
be exactly known and therefore it may be used for the construction of the estimator. An essential
condition is a non-vanishing Fourier-transform of the error density ψg(t) 6= 0 for all t ∈ �

(see
Devroye (1989)). Commonly, the error density g is assumed to be a normal distribution density or
a commonly smooth density with a polynomial asymptotic behaviour of the Fourier-transform. In
the literaure described above, consistent estimators are constructed in the case of a known error
density. That means the MISE (= mean integrated square error) converges to zero if the number
of observations n tends to infinity. The rates of convergence of the MISE has intensively been
studied. In the case of a normal distributed error, the rates which are achieved by the constructed
estimators are very slow (logarithmic rates), but they are optimal as it is proved in Fan (1993).
However, in lots of practical work, the assumption of a perfectly known error density g is not
always realistic. So, there are papers of Efromovich (1997) and Neumann (1997), in which the
error distribution is assumed to be unknown but can be estimated based on additional empirical
data which directly hail from the error distribution.
In this paper, we consider the situation of an unknown error density without any further observa-
tions. In Hesse (1999), it is mentioned that lots of work is left to do for this situation. So several
densities can occure as the error density. We introduce the set G of all densities that can possibly
be the error density. In section 2, We give theorem 1 that answers the question how the MISE will
asymptotically behave if the used error density is misspecified. In section 3, we will investigate
some useful properties of the distance dF which is important in theorem 1. In section 4, we focus
on the consequences of theorem 1 and will give some examples. Even a surprisingly fatal result
is derived about the effects a misspecification may cause. In section 5, we derive some important
rules for everybody using deconvolution estimation from the theory of the previous sections. These
rules shall avoid the disasters caused by a misspecification. In section 6, we give the proofs of the
lemmas and theorems of this paper.

2 Asymptotic behaviour

The most general shape of the deconvolution density estimator may be

f̂n(x) :=
1

2π

∫

exp(−itx)Ln(t)
1

n

n∑

j=1

exp(itYj)/ψg(t) dt (2.1)

as it is mentioned in Neumann (1997), for example. ψy denotes the Fourier-transform of a
function y. One has to stipulate that ψg vanishes nowhere and that Ln/ψg ∈ L2(

�
), the set of
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all absolute square integrable functions. By this, we can be sure that the estimator (2.1) is in
L2(

�
), otherwise we cannot consider the MISE of this estimator. The usual selection of Ln is

ψK(·/ωn) with a kernel function K and a bandwidth sequence (ωn)n which is chosen with respect

to the error density. A widely used kernel is the sync kernel K(x) := sin(x)
πx with Fourier-transform

ψK(t) = 1[−1,1](t). In this case, the estimator (2.1) is

f̂n(x) :=
1

2π

ωn∫

−ωn

exp(−itx) 1

n

n∑

j=1

exp(itYj)/ψg(t) dt. (2.2)

Now, we consider the situation of a misspecified error density. This means, a false error density
g̃ is used instead of the real error density g. However, a misspecification may occure so that the
false error density g̃ is not even a density. This can theoretically be avoided, but if numerical
effects are included, an arbitrarily small perturbation of g in the L1-sense can push g out of the
sets of all densities: Just imagine we have g̃ = g + η · 1[0,1] with some small η > 0. Then g̃ is no
density because it does not integrate to one. Therefore, we introduce a function ξ :

� → � with
inf

t∈[−R,R]
|ξ(t)| > 0 for all R > 0 which replaces the error density’s Fourier-transform. So we have

the deconvolution estimator (2.1) with misspecified error density

f̂n(x) =
1

2π

∫

exp(−itx)Ln(t)
1

n

n∑

j=1

exp(itYj)/ξ(t) dt. (2.3)

The density class F which the density f should be a member of can be chosen respecting the
only condition that F is a subset of L2(

�
). Then we can state

Lemma 1 Let f̂n be the estimator defined in (2.3) and let inf
t∈[−R,R]

|ξ(t)| > 0 for all R > 0 and

Ln/ξ ∈ L2(
�
) hold. Then for the real error density g, the supreme MISE of f̂n equals

sup
f∈F

Ef,g ‖f̂n − f‖2
L2( � )

=
1

2π
sup
f∈F

∫
(∣
∣
∣
∣

Ln(t)

ξ(t)

∣
∣
∣
∣

2

· 1 − |ψf∗g(t)|2
n

+

∣
∣
∣
∣
Ln(t)

ψf (t)ψg(t)

ξ(t)
− ψf (t)

∣
∣
∣
∣

2
)

dt.

So lower bounds of the MISE are

1

2π
sup
f∈F

∫

|ψf (t)|2
∣
∣
∣
∣
Ln(t)

ψg(t)

ξ(t)
− 1

∣
∣
∣
∣

2

dt and
1

2π
sup
f∈F

∫ ∣
∣
∣
∣

Ln(t)

ξ(t)

∣
∣
∣
∣

2

· 1 − |ψf∗g(t)|2
n

dt

and an upper bound is

1

2π
sup
f∈F

∫ ∣
∣
∣
∣

Ln(t)

ξ(t)

∣
∣
∣
∣

2

· 1 − |ψf∗g(t)|2
n

dt +
1

2π
sup
f∈F

∫ ∣
∣
∣
∣
Ln(t)

ψf (t)ψg(t)

ξ(t)
− ψf (t)

∣
∣
∣
∣

2

dt

If ξ is the Fourier-transform of a density then it suffices to stipulate that ξ vanishes nowhere.

Lemma 2 We assume: The selected function ξ is the Fourier-transform of a density, the Fourier-
transforms of all densities in G vanish nowhere, in the case of a correct specification of the error
density, i.e. ξ = ψg, the supremum of the MISE converges to zero (uniform consistency). Then

sup
f∈F

∫

|ψf (t)|2|Ln(t) − 1|2 dt n→∞−→ 0 (2.4)

and
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sup
f∈F

R∫

−R

∣
∣
∣
∣
Ln(t)

ψg(t)

ξ(t)
− ψg(t)

ξ(t)

∣
∣
∣
∣

2

|ψf (t)|2 dt n→∞−→ 0 (2.5)

hold for all R > 0 and for all possible g and

1

n

∫ ∣
∣
∣
∣

Ln(t)

ξ(t)

∣
∣
∣
∣

2

dt
n→∞−→ 0. (2.6)

Let us return to the MISE in the case of misspecification. If ξ is not the Fourier-transform of a
density in G, then there is no correct specification. However, as we want to continue to study the
general case, we will stipulate (2.5) or (2.6) if necessary. In order to state the theorem we need
another lemma

Lemma 3 The law

1

2π
sup
f∈F

R∫

−R

|ψf (t)|2
∣
∣
∣
∣

ψg(t)

ξ(t)
− 1

∣
∣
∣
∣

2

dt
R→∞−→ 1

2π
sup
f∈F

∫

|ψf (t)|2
∣
∣
∣
∣

ψg(t)

ξ(t)
− 1

∣
∣
∣
∣

2

dt.

is valid. The tending
R→∞−→ is meant as convergence if

1

2π
sup
f∈F

∫

|ψf (t)|2
∣
∣
∣
∣

ψg(t)

ξ(t)
− 1

∣
∣
∣
∣

2

dt < +∞

and as divergence to infinity otherwise.

Now we can formulate the theorem

Theorem 1 Let f̂n be the estimator defined by (2.3) and inf
|t|≤T

|ξ(t)| > 0 and Ln/ξ ∈ L2(
�
) n ∈ �

hold for every T > 0 and for all n ∈ � . Condition (2.5) holds. Then

(a) The estimator sequence (sup
f∈F

Ef,g ‖f̂n− f‖2
L2(� ))n∈ � possesses no accumulation point which is

smaller than 1
2π sup
f∈F

∫
|ψf (t)|2

∣
∣
∣
ψg(t)
ξ(t) − 1

∣
∣
∣

2

dt.

(b) If in addition (2.4), (2.6) and |Ln(t)| ≤ 1, ∀t ∈ �
, ∀n ∈ � hold, then

(sup
f∈F

Ef,g ‖f̂n − f‖2
L2(� ))n∈ � converges or diverges to

1
2π sup
f∈F

∫
|ψf (t)|2

∣
∣
∣
ψg(t)
ξ(t) − 1

∣
∣
∣

2

dt.

(An undefined integral is to be taken over the whole real line.) The additional condition
|Ln(t)| ≤ 1, ∀t ∈ � ∀n ∈ � seems to be realistic. It is fulfilled if Ln = ψK(·/ωn) with K being a
density or the sync kernel.
Whenever one wants to keep the consistency of the deconvolution estimator in the case of correct
error density selection, the supremum of the MISE tends to the distance

1

2π
sup
f∈F

∫

|ψf (t)|2
∣
∣
∣
∣

ψg(t)

ξ(t)
− 1

∣
∣
∣
∣

2

dt.

So the theorem makes all attempts to improve the asymptotic quality of the estimator by
changing the bandwidth sequence or the kernel function fail. Even if a deterioration of the conver-
gence rate in the case of correct specification is accepted while the pure consistency is kept, one is
not able to change something about the convergence or divergence of the MISE. So this distance
decides about the robustness of the deconvolution estimator. Because of its importance, we will
illustrate the distance in the following section.
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3 Distance dF

If numerical aspects are not considered ξ can be seen as a density’s Fourier-transform ξ = ψg̃ as
explained in section 2. Then we derive the distance dF defined by

dF : G × G −→ � ∪ {+∞}

(g, g̃) 7−→ 1
2π sup

f∈F

∫
∣
∣
∣
ψg(t)
ψg̃(t) − 1

∣
∣
∣

2

|ψf (t)|2 dt
(3.1)

with G being the set defined in section 1. Theorem 1 says that the supremum of the MISE with
f ∈ F tends to dF(g, g̃) if g̃ is used in the construction of the estimator instead of the real error
density g. Notice that this distance of two densities can also be +∞. Furthermore the distance is
not symmetric, i.e. in general we have dF(g, g̃) 6= dF (g̃, g). So dF is no metric. However common
properties of the intuitive expression distance can be derived:

• dF is positive semidefinite, i.e.

dF (g, g̃) ≥ 0 ∀g, g̃ ∈ G
dF (g, g) = 0 ∀g ∈ G

The first law follows from the non negative integrand in (3.1), the
second one is elementary.

• This leads to the question whether dF is positive definite. As the integrand is non negative,
we have

dF (g, g̃) = 0 ⇔
∣
∣
∣
ψg(t)
ψg̃(t) − 1

∣
∣
∣

2

|ψf (t)|2 = 0 for almost all t ∈ �
, ∀f ∈ F

As the integrand is continuous:

⇔
∣
∣
∣
ψg(t)
ψg̃(t) − 1

∣
∣
∣

2

|ψf (t)|2 = 0 ∀t ∈ �
, ∀f ∈ F

⇔ ψg(t) = ψg̃(t) ∨ ψf (t) = 0 ∀t ∈ �
, ∀f ∈ F

Hence, dF is positive definite if and only if

ψg(t) = ψg̃(t) ∨ ψf (t) = 0 ∀t ∈ �
, ∀f ∈ F =⇒ g = g̃.

This is a very weak condition. The membership of at least one f with a non-vanishing
Fourier-transform (normal distribution density or double exponential density, for example)
in F suffices to ensure positive definiteness because the identity of the Fourier-transforms
(ψg = ψg̃) implies the identity of the densities (g = g̃) by a famous result of probability
theory. If dF is positive definite then any misspecification of the error density destroys the
consistency of the deconvolution estimator i.e. the supremum of the MISE will not tend to
zero.

• Assume g, g̃ ∈ G with |ψg(t)| ≥ |ψg̃(t)| ∀t ∈ �
. Then we receive

dF(g, g̃) ≥ dF(g̃, g) (3.2)

8



Proof:

dF (g, g̃) = 1
2π sup

f∈F

∫
∣
∣
∣
ψg(t)
ψg̃(t) − 1

∣
∣
∣

2

|ψf (t)|2 dt

= 1
2π sup

f∈F

∫
∣
∣
∣1 − ψg̃(t)

ψg(t)

∣
∣
∣

2
∣
∣
∣
∣

ψg(t)

ψg̃(t)

∣
∣
∣
∣

2

︸ ︷︷ ︸

≥1,∀t

|ψf (t)|2 dt

≥ 1
2π sup

f∈F

∫
∣
∣
∣1 − ψg̃(t)

ψg(t)

∣
∣
∣

2

|ψf (t)|2 dt

= dF (g̃, g).

(3.2) is important for the discussion in the next section.

4 Selection of the error density

In order to calculate a deconvolution estimator (2.3) we have to choose an error density g̃ and
ξ = ψg̃ . The set G consists of more than one density, so a misspecification is possible. We assume
that there is no a priori weight of the error densities but every density in G is equal before the
empirical data become known. (3.2) may help if one Fourier-transform |ψg(t)| is larger or equal
to another |ψg̃(t)| for all t ∈ �

. Then density g should be prefered. But all densities cannot be
compared by the stipulation of (3.2). This is the case in the following very important example:

Assume G consists of two densities, the normal density gN with Fourier-transform ψgN
(t) =

exp(−x2/2) and the double exponential density gL(x) = 1
2 exp(−|x|) with Fourier-transform

ψgL
(t) = 1

1+t2 . These are the usual examples for supersmooth and smooth densities. The only
stipulations made refering to the density class F are the membership of the Laplace density in F
and the uniform L2(

�
)-boundedness of F , i.e. there is a constant c > 0 with sup

f∈F

∫
|f(t)|2dt ≤ c.

• We assume that the real error density is gL but gN is mistakenly used in the deconvolution
estimator. For the asymptotic bias we have

dF(gL, gN) = 1
2π sup

f∈F

∫
∣
∣
∣
ψgL

(t)

ψgN
(t) − 1

∣
∣
∣

2

|ψf (t)|2 dt

≥ 1
2π

∫
∣
∣
∣

(1+t2)−1

exp(−t2/2) − 1
∣
∣
∣

2

|ψgL
(t)|2 dt

= 1
2π

∫
∣
∣
∣
exp(t2/2)

1+t2 − 1
∣
∣
∣

2 ∣
∣
∣

1
1+t2

∣
∣
∣

2

dt

= 1
2π

∫
∣
∣
∣
exp(t2/2)−1−t2

(1+t2)2

∣
∣
∣

2

dt

The integrand is a fraction with the numerator tending to infinity with a exponential rate
while the denominator diverges to infinity in 8th power. So the integrand itself diverges to
infinity. Therefore the integral does not exist as a finite number and we get

dF (g, g̃) = +∞.

That is a disaster! The supremum of the MISE tends to infinity. The more observations are
used the worse the result of the estimation becomes. Even an estimator which is based on
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ignoring the contamination has got a better asymptotic quality than the deconvolution esti-
mator. As huge sample sizes are commonly used in density estimation, the misspecification
like this can cause a totally false result.

• Now we consider the opposite situation. gN is the real error density and gL is misspecified.
We receive

dF (gN , gL) = 1
2π sup

f∈F

∫
∣
∣
∣
ψgN

(t)

ψgL
(t) − 1

∣
∣
∣

2

|ψf (t)|2 dt

= 1
2π sup

f∈F

∫
∣
∣
∣
∣

t2 + 1

exp(t2/2)
− 1

∣
∣
∣
∣

2

︸ ︷︷ ︸

→ 1 for |t| → ∞ and continuous
⇒ upper bounded to S <∞

|ψf (t)|2 dt

≤ S
2π sup

f∈F

∫
|ψf (t)|2 dt

= S sup
f∈F

‖f‖2
L2( � ) dt

< +∞.

So in this case the supremum of the MISE is no sequence tending to zero but it possesses at
least a finite upper bound.

So if one has to choose if the normal density or the double exponential density has to be used
in deconvolution estimation without any a priori knowledge refering to the error density, then the
double exponential density should be selected. Another aspect emphasizes this choice: In the case
of correct selection the MISE converges to zero with an algebraic rate with a double exponential
error density while the MISE converges to zero with a logarithmic rate with a normal error density,
see Fan (1993).
Now, a further example

(a) The stipulations to F are the same as in the previous context, G consists of normal distri-
bution densities with an exactly known variance σ2 but an unknown mean µ ∈ �

. So #G is
infinity. For the asymptotic quality we receive

dF (g, g̃) =
1

2π
sup
f∈F

∫ ∣
∣
∣
∣

exp(iµt− (1/2) · σ2t2)

exp(itµ̃− (1/2) · σ2t2)
− 1

∣
∣
∣
∣

2

|ψf (t)|2dt

=
1

2π
sup
f∈F

∫

|exp(i(µ− µ̃)t) − 1|2
︸ ︷︷ ︸

≤4

|ψf (t)|2dt

≤ 4 · sup
f∈F

‖f‖2
L2(� ).

So the supremum of the MISE is upper bounded and cannot tend to infinity. If the |ψf | with
f ∈ F are uniformly upper bounded to a square integrable function ζ, we can derive that
small distance between µ and µ̃ causes a small asymptotic bias using dominated convergence
here.
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(b) Now, we assume µ is exactly known but the variance of the normal density is misspecified.
So we have

dF (g, g̃) =
1

2π
sup
f∈F

∫
∣
∣
∣
∣
∣

exp(iµt− (1/2) · σ2t2)

exp(iµt− (1/2) · σ̃2t2)
− 1

∣
∣
∣
∣
∣

2

|ψf (t)|2dt

=
1

2π
sup
f∈F

∫ ∣
∣
∣exp((1/2)(σ̃2 − σ2)t2) − 1

∣
∣
∣

2

|ψf (t)|2dt.

In the case σ̃2 > σ2,
∣
∣
∣exp((1/2)(σ̃2 − σ2)t2) − 1

∣
∣
∣

2

diverges to infinity with an exponential

rate for |t| → ∞. It suffices that a density like gL with ψgL
(t) = 1

1+t2 is in F and we have

dF(g, g̃) = ∞. Now, if σ̃2 < σ2 , then
∣
∣
∣exp((1/2)(σ̃2 − σ2)t2) − 1

∣
∣
∣

2

possesses the upper

bound 1. So the uniform boundedness of the density class F in L2-sense suffices to prove
that dF (g, g̃) < ∞. So we see that a too large selected variance is more dangerous than a
too small one.
We also notice in this example that dF is not L1(

�
)-continuous, this means

∫
|gn(t) −

g(t)|dt → 0 does not imply dF (g, gn) → 0, in general. Assume gn to be the normal density
with mean 0 and variance σ2

n and g the normal density with mean 0 and variance σ2 and
σ2
n ↓ σ2. Then we have

∫
|gn(t) − g(t)|dt → 0, dF (g, gn) = ∞ for each n ∈ � under realistic

conditions to F as seen before and dF (g, g) = 0. So dF (g, gn) 6→ dF(g, g). Hence, even an
arbitrarily small difference between g and g̃ can cause a completely wrong result.

5 Consequences

We summarize and derive the following rules from the previous sections. They are interesting for
any user of deconvolution density estimation.

• A supersmooth error density (for example normal density) causes more trouble than a smooth
density (for example double exponential density) if a misspecification can possibly occure.

• If the error density is a normal density the variance should be chosen rather too small than
too large.
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6 Proofs

Proof of lemma 1:

Consider the risk

sup
f∈F

Ef,g ‖f̂n − f‖2
L2( � )

= sup
f∈F

Ef,g ‖ 1
2π

∫
exp(−it·)Ln(t) 1

n

n∑

j=1

exp(itYj)/ξ(t) dt− f‖2
L2(� )

(Parseval identity)

= 1
2π sup
f∈F

Ef,g
∫

∣
∣
∣
∣
∣
Ln(t)

1
n

n∑

j=1

exp(itYj)/ξ(t) dt− ψf (t)

∣
∣
∣
∣
∣

2

dt

(Fubini’s theorem)

= 1
2π sup
f∈F

∫
Ef,g

∣
∣
∣
∣
∣
Ln(t)

1
n

n∑

j=1

exp(itYj)/ξ(t) dt− ψf (t)

∣
∣
∣
∣
∣

2

dt

= 1
2π sup
f∈F

∫ {

varf,g
(
Ln(t)

1
n

n∑

j=1

exp(itYj)/ξ(t)
)

+

∣
∣
∣
∣
∣
Ef,gLn(t)

1
n

n∑

j=1

exp(itYj)/ξ(t) − ψf (t)

∣
∣
∣
∣
∣

2
}

dt

= 1
2π sup
f∈F

∫
(∣
∣
∣
Ln(t)
ξ(t)

∣
∣
∣

2

· 1−|ψf∗g(t)|2

n +
∣
∣
∣Ln(t)

ψf (t)ψg(t)
ξ(t) − ψf (t)

∣
∣
∣

2
)

dt

�

Proof of lemma 2:

It follows from lemma 1 using the uniform L2-consistency on the one hand

⇒ 1
2π sup
f∈F

∫
|ψf (t)|2 |Ln(t) − 1|2 dt n→∞−→ 0 , so (2.4)

(R > 0 arbitrary)

⇒ 1
2π sup
f∈F

R∫

−R

|ψf (t)|2 |Ln(t) − 1|2 dt n→∞−→ 0

As inf
|t|≤R

|ξ(t)|2 > 0 and ξ(t) 6= 0, ∀t ∈ �
is valid because of the stipulations (ξ is a density in

G) and the continuity of ξ, we conclude

sup
|t|≤R

∣
∣
∣
∣

ψg(t)

ξ(t)

∣
∣
∣
∣

2

≤ 1

inf
|t|≤R

|ξ(t)|2 < ∞.
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Hence

1
2π sup
f∈F

R∫

−R

sup
|τ |≤R

∣
∣
∣
ψg(τ)
ξ(τ)

∣
∣
∣

2

|ψf (t)|2 |Ln(t) − 1|2 dt n→∞−→ 0

≥ 1
2π sup
f∈F

R∫

−R

∣
∣
∣Ln(t)

ψg(t)
ξ(t) − ψg(t)

ξ(t)

∣
∣
∣

2

|ψf (t)|2 dt

≥ 0

So we receive (2.5)

1

2π
sup
f∈F

R∫

−R

∣
∣
∣
∣
Ln(t)

ψg(t)

ξ(t)
− ψg(t)

ξ(t)

∣
∣
∣
∣

2

|ψf (t)|2 dt n→∞−→ 0

for all R > 0.

As the second condition of consistency one gets

1
2π sup
f∈F

∫
∣
∣
∣
Ln(t)
ξ(t)

∣
∣
∣

2

· 1−|ψf∗g(t)|2

n dt
n→∞−→ 0

≥ 1
2π

∫

|t|≥T

∣
∣
∣
Ln(t)
ξ(t)

∣
∣
∣

2

· 1−|ψf∗g(t)|2

n dt

≥ 0

for an arbitrary T > 0 and an arbitrary density f ∈ F . As f ∗ g is a density we get according
to the results of probability theory ψf∗g(t) = 1 ⇔ t = 0 and |ψf∗g(t)| ≤ 1, ∀t ∈ �

. Finally, it
follows from the continuity of ψf∗g that inf

|t|≥T
(1 − |ψf∗g(t)|2) > 0. So

∫

|t|≥T

∣
∣
∣
∣

Ln(t)

ξ(t)

∣
∣
∣
∣

2

· 1− |ψf∗g(t)|2
n

dt
n→∞−→ 0

≥ 1

n
inf

|t|≥T
(1 − |ψf∗g(t)|2)

︸ ︷︷ ︸

independent of n

∫

|t|≥T

∣
∣
∣
∣

Ln(t)

ξ(t)

∣
∣
∣
∣

2

dt

≥ 0

⇒ 1
n

∫

|t|≥T

∣
∣
∣
Ln(t)
ξ(t)

∣
∣
∣

2

dt
n→∞−→ 0 for each T > 0.

We choose f ∈ F arbitrarily and determine T > 0 so that |ψf (t)| > 1
2 for all t with |t| ≤ T .

This is possible because ψf (0) = 1 and ψf is continuous.
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sup
f∈F

∫
|ψf (t)|2 |Ln(t) − 1|2 dt n→∞−→ 0

≥
T∫

−T

|ψf (t)|2 |Ln(t) − 1|2 dt

≥ 1
2

T∫

−T

|Ln(t) − 1|2 dt

That implies the convergence of the functional sequence (Ln−1)n in L2([−T, T ]) and hence its
boundedness. As 1 seen as function in this space possesses the (finite) norm

√
2T , the sequence

(Ln)n is bounded in the L2([−T, T ])-norm.
Notice that the stipulation inf

|t|≤T
|ξ(t)| > 0 is valid following from the condition that the Fourier-

transform of densities in G vanishes nowhere. Then (2.6)

1

n

T∫

−T

∣
∣
∣
∣

Ln(t)

ξ(t)

∣
∣
∣
∣

2

dt
n→∞−→ 0,

hence

1
n

∫
∣
∣
∣
Ln(t)
ξ(t)

∣
∣
∣

2

dt

= 1
n

T∫

−T

∣
∣
∣
Ln(t)
ξ(t)

∣
∣
∣

2

dt + 1
n

∫

|t|≥T

∣
∣
∣
Ln(t)
ξ(t)

∣
∣
∣

2

dt
n→∞−→ 0.

�

Proof of lemma 3:

We have to consider two cases

1st case: 1
2π sup
f∈F

∫
|ψf (t)|2

∣
∣
∣
ψg(t)
ξ(t) − 1

∣
∣
∣

2

dt < +∞

sup
f∈F

R∫

−R

|ψf (t)|2
∣
∣
∣
ψg(t)
ξ(t) − 1

∣
∣
∣

2

dt

is monotonically increasing refering to R and bounded by the proposed limit

1

2π
sup
f∈F

∫

|ψf (t)|2
∣
∣
∣
∣

ψg(t)

ξ(t)
− 1

∣
∣
∣
∣

2

dt.

On the other hand

1

2π
sup
f∈F

∫

|ψf (t)|2
∣
∣
∣
∣

ψg(t)

ξ(t)
− 1

∣
∣
∣
∣

2

dt

has to be the infimum because for each ε > 0 there is a f̃(ε) ∈ F so that
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sup
f∈F

∫
|ψf (t)|2

∣
∣
∣
ψg(t)
ξ(t) − 1

∣
∣
∣

2

dt ≤
∫
|ψf̃ (t)|2

∣
∣
∣
ψg(t)
ξ(t) − 1

∣
∣
∣

2

dt + ε/2

(∃R(f̃(ε), ε) > 0 :) ≤
R(f̃(ε),ε)∫

−R(f̃(ε),ε)

|ψf̃ (t)|2
∣
∣
∣
ψg(t)
ψξ(t)

− 1
∣
∣
∣

2

dt + ε/2 + ε/2

≤ sup
f∈F

R(f̃(ε),ε)∫

−R(f̃(ε),ε)

|ψf (t)|2
∣
∣
∣
ψg(t)
ξ(t) − 1

∣
∣
∣

2

dt + ε

2nd case: 1
2π sup
f∈F

∫
|ψf (t)|2

∣
∣
∣
ψg(t)
ξ(t) − 1

∣
∣
∣

2

dt = ∞

There is a sequence of densities (fn)n so that

1

2π

∫

|ψfn
(t)|2

∣
∣
∣
∣

ψg(t)

ξ(t)
− 1

∣
∣
∣
∣

2

dt

for n→ ∞ tends to infinity. For every fn a positive number Rn can be found so that

1

2π

Rn∫

−Rn

|ψfn
(t)|2

∣
∣
∣
∣

ψg(t)

ξ(t)
− 1

∣
∣
∣
∣

2

dt and hence
1

2π
sup
f∈F

Rn∫

−Rn

|ψf (t)|2
∣
∣
∣
∣

ψg(t)

ξ(t)
− 1

∣
∣
∣
∣

2

dt

diverge to infinity for n→ ∞. Because of the increasing monotonicity refering to R we get

sup
f∈F

R∫

−R

|ψf (t)|2
∣
∣
∣
∣

ψg(t)

ξ(t)
− 1

∣
∣
∣
∣

2

dt
R→+∞−→ ∞.

�

Proof of theorem 1:

ad (a): sup
f∈F

Ef,g ‖f̂n − f‖2
L2( � ) can be lower bounded (lemma 1) by

1
2π sup
f∈F

∫
|ψf (t)|2

∣
∣
∣Ln(t)

ψg(t)
ξ(t) − 1

∣
∣
∣

2

dt. Let us consider a sequence of inequalities for this upper

bound

1
2π sup
f∈F

∫
|ψf (t)|2

∣
∣
∣Ln(t)

ψg(t)
ξ(t) − 1

∣
∣
∣

2

dt

≥ 1
2π sup
f∈F

R∫

−R

|ψf (t)|2
∣
∣
∣Ln(t)

ψg(t)
ξ(t) − 1

∣
∣
∣

2

dt

= 1
2π sup
f∈F

R∫

−R

|ψf (t)|2
∣
∣
∣Ln(t)

ψg(t)
ξ(t) − ψg(t)

ξ(t) +
ψg(t)
ξ(t) − 1

∣
∣
∣

2

dt
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= 1
2π sup
f∈F

{
R∫

−R

|ψf (t)|2
∣
∣
∣Ln(t)

ψg(t)
ξ(t) − ψg(t)

ξ(t)

∣
∣
∣

2

dt

+ 2 ·Re
R∫

−R

|ψf (t)|2
(

Ln(t)
ψg(t)
ξ(t) − ψg(t)

ξ(t)

)(
ψg(t)
ξ(t) − 1

)

dt

+
R∫

−R

∣
∣
∣
ψg(t)
ξ(t) − 1

∣
∣
∣

2

|ψf (t)|2 dt}

(Cauchy-Schwarz inequality)

≥ 1
2π sup
f∈F

{
R∫

−R

|ψf (t)|2
∣
∣
∣Ln(t)

ψg(t)
ξ(t) − ψg(t)

ξ(t)

∣
∣
∣

2

dt

−2 ·
(

R∫

−R

|ψf (t)|2
∣
∣
∣Ln(t)

ψg(t)
ξ(t) − ψg(t)

ξ(t)

∣
∣
∣

2

dt

)1/2

·
(

R∫

−R

∣
∣
∣
ψg(t)
ξ(t) − 1

∣
∣
∣

2

|ψf (t)|2 dt
)1/2

+
R∫

−R

∣
∣
∣
ψg(t)
ξ(t) − 1

∣
∣
∣

2

|ψf (t)|2 dt}

= 1
2π sup
f∈F

{
(

R∫

−R

|ψf (t)|2
∣
∣
∣Ln(t)

ψg(t)
ξ(t) − ψg(t)

ξ(t)

∣
∣
∣

2

dt

)1/2

−
(

R∫

−R

|ψf (t)|2
∣
∣
∣
ψg(t)
ξ(t) − 1

∣
∣
∣

2

dt

)1/2

}2

≥ 1
2π{
(

sup
f∈F

R∫

−R

|ψf (t)|2
∣
∣
∣Ln(t)

ψg(t)
ξ(t) − ψg(t)

ξ(t)

∣
∣
∣

2

dt

)1/2

−
(

sup
f∈F

R∫

−R

|ψf (t)|2
∣
∣
∣
ψg(t)
ξ(t) − 1

∣
∣
∣

2

dt

)1/2

}2

It follows from (2.5) that (sup
f∈F

Ef,g ‖f̂n − f‖2
L2( � ))n∈ � cannot possess any accumulation point

that is smaller than 1
2π sup
f∈F

R∫

−R

|ψf (t)|2
∣
∣
∣
ψg(t)
ξ(t) − 1

∣
∣
∣

2

dt for every R > 0. Because of lemma 3 there

can be no accumulation point smaller than 1
2π sup
f∈F

∫
|ψf (t)|2

∣
∣
∣
ψg(t)
ξ(t) − 1

∣
∣
∣

2

dt. So (a) is shown.

ad (b): We just have to look at the case 1
2π sup
f∈F

∫
|ψf (t)|2

∣
∣
∣
ψg(t)
ξ(t) − 1

∣
∣
∣

2

dt < ∞, in the other

case everything is shown by (a) because a sequence of real numbers with a lower bound with-
out any finite accumulation points diverges to +∞ (theorem of Bolzano-Weierstrass). The risk

(sup
f∈F

Ef,g ‖f̂n − f‖2
L2(� ))n∈ � can be upper bounded according to Lemma 1 by

1

2π
sup
f∈F

∫ ∣
∣
∣
∣

Ln(t)

ξ(t)

∣
∣
∣
∣

2

· 1 − |ψf∗g(t)|2
n

︸ ︷︷ ︸

≤1/n

dt +
1

2π
sup
f∈F

∫ ∣
∣
∣
∣
Ln(t)

ψf (t)ψg(t)

ξ(t)
− ψf (t)

∣
∣
∣
∣

2

dt.

Condition (2.6) which can be used in addition now implies that the first part of the sum in the
term above converges to 0. For the second part we have found a lower bound in the proof of (a)
and we can derive an upper bound as well
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1
2π sup

f∈F

∫
|ψf (t)|2

∣
∣
∣Ln(t)

ψg(t)
ξ(t) − 1

∣
∣
∣

2

dt

= 1
2π sup

f∈F

∫
|ψf (t)|2

∣
∣
∣Ln(t)

ψg(t)
ξ(t) − Ln(t) + Ln(t) − 1

∣
∣
∣

2

dt

= 1
2π sup

f∈F

∫
|ψf (t)|2

( ∣
∣
∣Ln(t)

ψg(t)
ξ(t) − Ln(t)

∣
∣
∣

2

+ 2Re
((
Ln(t)

ψg(t)
ξ(t) − Ln(t)

)

·
(
Ln(t) − 1

))

+ |Ln(t) − 1|2
)

dt

≤ 1
2π sup

f∈F

∫
|ψf (t)|2

( ∣
∣
∣Ln(t)

ψg(t)
ξ(t) − Ln(t)

∣
∣
∣

2

+ 2
∣
∣
∣Ln(t)

ψg(t)
ξ(t) − Ln(t)

∣
∣
∣

· |Ln(t) − 1| + |Ln(t) − 1|2
)

dt

(Cauchy-Schwarz inequality)

≤ 1
2π sup

f∈F

{ ∫
|ψf (t)|2

∣
∣
∣Ln(t)

ψg(t)
ξ(t) − Ln(t)

∣
∣
∣

2

dt

+ 2
(∫

|ψf (t)|2
∣
∣
∣Ln(t)

ψg(t)
ξ(t) − Ln(t)

∣
∣
∣

2

dt
)1/2( ∫

|ψf (t)|2|Ln(t) − 1|2dt
)1/2

+
∫
|ψf (t)|2|Ln(t) − 1|2dt

}

= 1
2π sup

f∈F

{(∫
|ψf (t)|2

∣
∣
∣Ln(t)

ψg(t)
ξ(t) − Ln(t)

∣
∣
∣

2

dt
)1/2

+
(∫

|ψf (t)|2|Ln(t) − 1|2dt
)1/2}2

≤ 1
2π

{

sup
f∈F

(∫
|ψf (t)|2

∣
∣
∣Ln(t)

ψg(t)
ξ(t) − Ln(t)

∣
∣
∣

2

dt
)1/2

+sup
f∈F

(∫
|ψf (t)|2|Ln(t) − 1|2dt

)1/2}2

(Because of |Ln(t)| ≤ 1 we get)

≤ 1
2π

{

sup
f∈F

(∫
|ψf (t)|2

∣
∣
∣
ψg(t)
ξ(t) − 1

∣
∣
∣

2

dt
)1/2

+sup
f∈F

(∫
|ψf (t)|2|Ln(t) − 1|2dt

)1/2}2

Because of (2.4) one can conclude

sup
f∈F

(∫
|ψf (t)|2|Ln(t) − 1|2dt

)1/2

=
(

sup
f∈F

∫
|ψf (t)|2|Ln(t) − 1|2dt

)1/2 n→∞−→ 0.

So we have shown the boundedness of the sequence (sup
f∈F

Ef,g ‖f̂n − f‖2
L2( � ))n∈ � and the fact

that this sequence cannot possess any accumulation points which are larger than

sup
f∈F

∫

|ψf (t)|2
∣
∣
∣
∣

ψg(t)

ξ(t)
− 1

∣
∣
∣
∣

2

dt.
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According to (a) the sequence can also possess no accumulation points which are smaller than
this term. So there is exactly one accumulation point and so the sequence converges to this term
according to results of elementary analysis (Bolzano-Weierstrass).

�
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