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1 Introduction

The basic task in deconvolution density estimation is the estimation of a probability density f
based on contaminated observations Y1, . . . , Yn. Mathematically spoken, identically distributed
random variables X1, . . . , Xn with density f and also identically distributed random variables
ε1, . . . , εn with density g which represent the error or the contamination are given. The random
variables X1, ε1, . . . , Xn, εn are independent. The random variables X1, . . . , Xn whose density f
shall be estimated cannot be observed directly but only the contaminated data Y1, . . . , Yn defined
by

Yj = Xj + εj , ∀j ∈ {1, . . . , n}
can be used for constructing the estimator. So the density h of Yj equals h = f ∗ g, i.e. the

convolution of the densities f and g. Now, it is aimed to find an estimator f̂n of the density
f based on Y1, . . . , Yn. Deterministic a-priori knowledge of nonparametric character about the
density f is usually given, for example conditions referring to the asymptotic behaviour of the
Fourier transform. These informations are expressed by defining a density class F and stipulating
f ∈ F . In the classical approach, the error density g is assumed to be exactly known (see for
example Devroye (1989), Fan (1991), Fan (1993), Hesse (1999), Liu and Taylor (1990), Stefanski
and Carroll (1990)). Therefore g can be used in the estimator’s construction.
However, in lots of practical situations the assumption of a perfectly known error density is not
realistic. So, in the papers of Efromovich (1997) and Neumann (1997), the error density is assumed
to be unknown but can be estimated by additional empirical data which directly hail from the
error distribution.
In this paper, I regard the situation that the error density is neither exactly known nor can be
estimated by further observations. Therefore, I introduce the set G of all densities that can possibly
be the error density and the a-priori knowledge about the error density can be expressed by the
stipulation g ∈ G. The case of a known error density is inbedded and equivalent with #G = 1.
So it is aimed to achieve consistency although g is unknown. Therefore, I define the expression of
robust consistency. An estimator (f̂n)n is called robustly dk-consistent if

d(f̂n(Y1, . . . , Yn), f)k
p−→ 0

is valid for all f ∈ F and for all g ∈ G as n → ∞. The symbol
p−→ means weak convergence.

d is an arbitrary metric with a coordinated metrical space X and k > 0. An estimator (f̂n)n is
called uniformly robustly dk-consistent if

sup
f∈F

sup
g∈G

Ef∗g d(f̂n(Y1, . . . , Yn), f)k
n→∞−→ 0.

This is a stronger version of consistency. In order to construct a robustly consistent estimator,
we have to do some theoretical work for finding conditions to the density classes F and G, under
which such an estimation is impossible. This is done in section 2. Of course, negative results are
not very exciting but they help to avoid searching for non-existing robustly consistent estimators.
In section 3, I regard specially defined density classes F and G, for which a uniformly robustly
L2(

�
)2 -consistent estimator can indeed be constructed and calculated. After this work had been

completed, I noticed that Butucea and Matias (2003) considered a similar deconvolution procedure
with supersmooth error densities with unknown scaling parameter. I considered the situation of
two possible error densities – a smooth versus a supersmooth density. While Butucea and Matias
regarded pointwise consistency, I considered the MISE (=mean integrated square error) of the
estimator. Then, I show that these rates are optimal under the given conditions. In section 4, I
give the proofs of the lemmas and theorems.
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2 Overlapping of F and G
First, I define the meaning of overlapping density sets in this work: We call the density classes F
and G overlapping if

∃f, f̃ ∈ F ∃g, g̃ ∈ G : f 6= f̃ ∧ f ∗ g = f̃ ∗ g̃.
Hence, we can derive the first theorem

Theorem 1 Assume the density classes F and G are overlapping. Let (X, d) be an arbitrary
metrical space, let F be a subset of X. Then a robustly dk-consistent estimator for any k > 0 does
not exist.

By this, we recognize the great meaning of overlapping in this case. It follows naturally that
a uniformly robustly dk-consistent estimator cannot exist, too. We look at some examples of
overlapping density sets:

(1) The set F ∩ G consists of more than one element. Then we have two different f, g ∈ F ∩ G
fulfilling

f
︸︷︷︸

∈F

∗ g
︸︷︷︸

∈G

= g
︸︷︷︸

∈F

∗ f
︸︷︷︸

∈G

.

So F and G are overlapping. This is quite intuitive. In the first case, f occurs as the estimated
density and g as the error density and, in the second case, exactly the other way round. So in
both situations the density of the observed data is h = f ∗ g and it cannot be decided whether f
or g is the density which shall be estimated.

(2) We postulate the existence of a 6= 0, f ∈ F and g ∈ G so that

f(· − a) ∈ F and g(· + a) ∈ G.
Then, for every x ∈ �

, we have

f(· − a) ∗ g(· + a) = f ∗ g
and f 6= f(· − a). Just imagine f = f(· − a). Then, by Fourier transformation, we receive

ψf (t) = exp(ita) · ψf (t) for all t ∈ �
. So, for every t ∈ �

, we have ψf (t) = 0 or exp(ita) = 1.
As a 6= 0, there is an interval of positive length with center 0 so that ψf (t) = 0 for all t in this
interval except 0. Since ψf (0) = 1 holds, ψf is not continuous and we receive a contradiction as
f is a density.

(3) Due to the importance of the following set of overlapping densities, I formulate

Lemma 1 Let H := {f ∗ g | f ∈ F , g ∈ G}. Under the conditions H ⊆ F and ∃f ∈ F : ψf (t) 6=
0 , ∀t ∈ �

, the stipulation #G ≥ 2 suffices to ensure the overlapping of F and G.

So, if the conditions referring to F in lemma 1 are fulfilled, the membership of more than one
density in G, which is equivalent with any kind of imperfect knowledge of the error density, makes
a consistent estimation of f impossible. Lots of widely used density classes for F are affected by
these conditions.

Theorem 2 Let F be one of the sets

F (1)
(C,β) := {f density | |ψf (t)| ≤ C|t|−β , ∀t ∈ � } (β > 1, C > 0)

F (2)
(C,β) := {f density |

∫
|ψf (t)|2(1 + |t|)2βdt ≤ C} (β ∈ �

, C > 0)

and assume that G consists of more than one element. Then F and G are overlapping.

F (1)
(C,β) is used in Hesse and Meister (2001). F (2)

(C,β) appears in Neumann (1997).
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3 Uniformly Robustly L2(
�
)2-consistent estimation

Now, we consider the situation

F := {f density | C2t
−2 ≥ |ψf (t)| ≥ C1t

−2 , ∀t with |t| ≥ T ≥ 1}
G := {gL, gN}, (3.1)

with gL being the Laplace density (i.e. gL(t) = 1
2 exp(−|x|)) and gN being the standard

normal distribution density. So G contains a smooth and a supersmooth density. T is fixed and
known. The empirical data can be used twice: in order to estimate both the error density and,
afterwards, the density f . One can recognize that for all h = f ∗ gL, f ∈ F

|ψh(t)| = |ψgL(t)| · |ψf (t)| ≥
C1

t2
· 1

1 + t2
=

C1

t2 + t4
=: O(t)

for all |t| ≥ T and that for all h = f ∗ gN , f ∈ F

|ψh(t)| = |ψgN (t)| · |ψf (t)| ≤
C2

t2
· exp(−t2/2) =: U(t)

for all |t| ≥ T . One can easily see by the definition of the functions O and U that O(t0) > U(t0)
is valid if t0 > T is large enough (for example t0 = 3 if T = 1, C1 = 1/2, C2 = 1). By using the
empirical Fourier transform, one can construct an estimator of the error density

ĝt0,n(Y1, . . . , Yn) :=







gL if

∣
∣
∣
∣
∣

1
n

n∑

j=1

eit0Yj

∣
∣
∣
∣
∣
≥ 1

2 (O(t0) + U(t0))

gN if

∣
∣
∣
∣
∣

1
n

n∑

j=1

eit0Yj

∣
∣
∣
∣
∣
< 1

2 (O(t0) + U(t0))

(3.2)

This estimator’s risk can be bounded

Lemma 2

sup
f∈F

PgN∗f (ĝt0,n = gL) ≤ 4(O(t0)−U(t0))−2

n ,

sup
f∈F

PgL∗f (ĝt0,n = gN ) ≤ 4(O(t0)−U(t0))−2

n ,

So one can derive an estimator of the density f

f̂n(x) =
1

2π

ωn∫

−ωn

exp(−itx) 1

n

n∑

j=1

exp(itYj)/ψĝt0,n(t) dt. (3.3)

Hence, one receives the following result

Theorem 3 The estimator defined by (3.3) is uniformly robustly L2(
�
)2 -consistent in the problem

(3.1). The rate of consistency in the case of the bandwidth selection (ωn)n = ( 1
2

√
lnn)n is upper

bounded by
sup
g∈G

sup
f∈F

Ef∗g‖f̂n − f‖2
L2( � ) ≤ Const. · (lnn)−3/2

This rate of convergence of the MISE is optimal as the following theorem says.

Theorem 4 Let f̂n be an arbitrary estimator of f based on the contaminated data Y1, . . . , Yn in
the estimation problem (3.1). The technical condition T 2 ≥ 3C2 is stipulated to hold. Then there
is a c > 0 so that

sup
g∈G

sup
f∈F

Ef∗g‖f̂n − f‖2
L2(� ) ≥ c · (lnn)−3/2
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Notice that this lower bound corresponds to the lower bound in the case of an exactly known
standard normal density g. Since only two densities can occur as the error distribution, a deteri-
oration of the asymptotical quality of the estimation does not occur. Lower bounds with known
error density have been studied in several papers but the class F in (3.1) has not yet been regarded
as far as I know.

4 Proofs

Proof of theorem 1: We assume f̂n to be a robustly dk-consistent estimator with d being an
arbitrary metric and k > 0, i.e. for any ε > 0,

Pf∗g
(
d(f̂n(Y1, . . . , Yn), f)k ≥ ε

) n→∞−→ 0 , ∀f ∈ F , g ∈ G

holds. As F and G are overlapping, there are f, f̃ ∈ F and g, g̃ ∈ G with f 6= f̃ and f ∗g = f̃ ∗ g̃.
Setting ε := 1

4 min{21−k, 1} · d(f, f̃)k, the postulation ε > 0 is fulfilled because of the positive
definiteness of d. Then,

Pf∗g
(
d(f̂n(Y1, . . . , Yn), f)k ≥ ε

)
+ Pf̃∗g̃

(
d(f̂n(Y1, . . . , Yn), f̃)k ≥ ε

) n→∞−→ 0

≥ Ph=f∗g=f̃∗g̃

(
d(f̂n(Y1, . . . , Yn), f)k ≥ ε ∨ d(f̂n(Y1, . . . , Yn), f̃)k ≥ ε

)

≥ Ph
(
d(f̂n(Y1, . . . , Yn), f)k + d(f̂n(Y1, . . . , Yn), f̃)k ≥ 2ε

)

≥ Ph
(
min{21−k, 1}

(
d(f̂n(Y1, . . . , Yn), f) + d(f̂n(Y1, . . . , Yn), f̃)

)k ≥ 2ε
)

≥ Ph(4ε ≥ 2ε)
= 1.

So we receive a contradiction referring to the assumption of the existence of a robustly dk-
consistent estimator. �

Proof of lemma 1: Choose f ∈ F so that ψf (t) 6= 0 holds for all t ∈ �
and select g, g̃ ∈ G

with g 6= g̃. Hence, we have

g ∗ f ∈ H ⊆ F
g̃ ∗ f ∈ H ⊆ F

Using the commutation law of convolution, we get

⇒ (g ∗ f
︸︷︷︸

∈F

) ∗ g̃
︸︷︷︸

∈G

= g
︸︷︷︸

∈G

∗(f ∗ g̃
︸︷︷︸

∈F

).

So it remains to be shown that g ∗ f 6= f ∗ g̃. Assume that g ∗ f = f ∗ g̃ holds. Hence, by
Fourier transformation, we have ψg · ψf = ψg̃ · ψf . As ψf vanishes nowhere by stipulation, it fol-
lows that ψg = ψg̃ and hence g = g̃ and we have a contradiction related to the assumption above. �

Proof of theorem 2: The stipulations of lemma 1 have to be proven. Firstly, we regard

F = F (1)
(C,β). Therefore, we consider the normal distribution density with mean 0 and variance σ2

called fσ2 . It is well-known that the Fourier transform

ψfσ2 (t) = exp
(
− 1

2
σ2t2

)

vanishes nowhere for all σ > 0. So one has to choose σ > 0 appropriately so that fσ2 is a

member of F (1)
(C,β). This is equivalent with
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exp(−1

2
σ2t2)|t|β ≤ C , ∀t.

By elementary analytic calculation, one receives that the function on the left side of the equa-
tion above possesses its maximum for t =

√
β/σ. Hence, the function is upper bounded by√

β
β
σ−β exp(−β/2) and the equation is equivalent with

σ ≥ C−1/βe−1/2β1/2.

Under this condition, fσ2 is in F (1)
(C,β). Secondly, we regard F = F (2)

(C,β).

∫

exp(−σ2t2)(1 + |t|)2β dt
!
≤ C

with σ > σ0 > 0. So exp(−σ2
0 ·2)(1 + | · |)2β is an integrable upper bound. Furthermore, for all

t 6= 0 and hence for (Lebesgue-)almost all t ∈ �
, we have

lim
σ→∞

(
exp(−σ2t2)(1 + |t|)2β

)
= 0.

Using dominated convergence, it follows that

∫

exp(−σ2t2)(1 + |t|)2β dt σ→∞−→ 0.

So, for each β > 1, σ can be chosen sufficiently large so that

∫

exp(−σ2t2)(1 + |t|)2β dt ≤ C

and hence fσ2 ∈ F (2)
(C,β).

It remains to be shown that H ⊆ F holds for both cases F = F (1)
(C,β) and F = F (2)

(C,β). Since every

g ∈ G is a density and hence |ψg(t)| ≤ 1 is valid for all t ∈ �
, it follows that for any h ∈ H

|ψh(t)| = |ψf (t)| · |ψg(t)| ≤ |ψf (t)|
holds for all t ∈ �

. So we have

|ψh(t)| ≤ |ψf (t)| ≤ C|t|−β , ∀t ∈ �

∫
|ψh(t)|2 (1 + |t|)2β dt ≤

∫
|ψf (t)|2 (1 + |t|)2β dt ≤ C.

and the inclusion H ⊆ F is valid in both cases. �

Proof of lemma 2: proof of the first inequality:
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sup
f∈F

PgN∗f (ĝt0,n = gL)

= sup
f∈F

PgN∗f

(∣
∣
∣
∣
∣

1
n

n∑

j=1

eit0Yj

∣
∣
∣
∣
∣
≥ 1

2 (O(t0) + U(t0))

)

≤ sup
f∈F

PgN∗f






∣
∣
∣
∣
∣

1
n

n∑

j=1

eit0Yj − ψgN∗f (t0)

∣
∣
∣
∣
∣
+ |ψgN∗f (t0)|
︸ ︷︷ ︸

≤U(t0)

≥ 1
2 (O(t0) + U(t0))






≤ sup
f∈F

PgN∗f

(∣
∣
∣
∣
∣

1
n

n∑

j=1

eit0Yj − ψgN∗f (t0)

∣
∣
∣
∣
∣
≥ 1

2 (O(t0) − U(t0)) > 0

)

(Markov inequality)

≤ sup
f∈F

4(O(t0) − U(t0))
−2 vargN∗f

(

1
n

n∑

j=1

eit0Yj

)

= 4(O(t0) − U(t0))
−2 1

n sup
f∈F

(1 − |ψf∗gN (t0)|2)

≤ 4(O(t0)−U(t0))−2

n

and the second one:

sup
f∈F

Ph=gL∗f (ĝt0,n = gN)

= sup
f∈F

Ph=gL∗f

(∣
∣
∣
∣
∣

1
n

n∑

j=1

eit0Yj

∣
∣
∣
∣
∣
< O(t0)+U(t0)

2

)

= sup
f∈F

Ph=gL∗f






∣
∣
∣
∣
∣

1
n

n∑

j=1

eit0Yj

∣
∣
∣
∣
∣
− |ψh(t0)| < O(t0)+U(t0)

2 − |ψh(t0)|
︸ ︷︷ ︸

≥O(t0)






≤ sup
f∈F

Ph=gL∗f

(∣
∣
∣
∣
∣

1
n

n∑

j=1

eit0Yj

∣
∣
∣
∣
∣
− |ψh(t0)| < U(t0)−O(t0)

2 < 0

)

≤ sup
f∈F

Ph=gL∗f

(∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1
n

n∑

j=1

eit0Yj

∣
∣
∣
∣
∣
− |ψh(t0)|

∣
∣
∣
∣
∣
≥ O(t0)−U(t0)

2

)

≤ sup
f∈F

Ph=gL∗f

(∣
∣
∣
∣
∣

1
n

n∑

j=1

eit0Yj − ψh(t0)

∣
∣
∣
∣
∣
≥ O(t0)−U(t0)

2

)

≤ sup
f∈F

4(O(t0) − U(t0))
−2 varh=gL∗f

(

1
n

n∑

j=1

eit0Yj

)

≤ 4(O(t0)−U(t0))−2

n .

�

Proof of theorem 3:

Using the Parseval identity, we have
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sup
g∈G

sup
f∈F

Ef∗g‖f̂n − f‖2
L2( � )

≤ sup
f∈F

Ef∗gN ‖f̂n − f‖2
L2(� ) + sup

f∈F
Ef∗gL‖f̂n − f‖2

L2(� )

= 1
2π sup

f∈F
Ef∗gN

∫

∣
∣
∣
∣
∣

χ[−ωn,ωn]

ψĝt0,n (t)
1
n

n∑

j=1

eitYj − ψf (t)

∣
∣
∣
∣
∣

2

dt

+ 1
2π sup

f∈F
Ef∗gL

∫

∣
∣
∣
∣
∣

χ[−ωn,ωn]

ψĝt0,n (t)
1
n

n∑

j=1

eitYj − ψf (t)

∣
∣
∣
∣
∣

2

dt

≤ 1
2π sup

f∈F
Ef∗gN

∫
2

∣
∣
∣
∣
∣

χ[−ωn,ωn]

ψĝt0,n(t)
1
n

n∑

j=1

eitYj − χ[−ωn,ωn]

ψgN
(t)

1
n

n∑

j=1

eitYj

∣
∣
∣
∣
∣

2

dt

+ 1
2π sup

f∈F
Ef∗gN

∫
2

∣
∣
∣
∣
∣

χ[−ωn,ωn]

ψgN
(t)

1
n

n∑

j=1

eitYj − ψf (t)

∣
∣
∣
∣
∣

2

dt

+ 1
2π sup

f∈F
Ef∗gL

∫
2

∣
∣
∣
∣
∣

χ[−ωn,ωn]

ψĝt0,n (t)
1
n

n∑

j=1

eitYj − χ[−ωn,ωn]

ψgL
(t)

1
n

n∑

j=1

eitYj

∣
∣
∣
∣
∣

2

dt

+ 1
2π sup

f∈F
Ef∗gL

∫
2

∣
∣
∣
∣
∣

χ[−ωn,ωn]

ψgL
(t)

1
n

n∑

j=1

eitYj − ψf (t)

∣
∣
∣
∣
∣

2

dt

≤ 1
π sup
f∈F

ωn∫

−ωn

Ef∗gN










∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

eitYj

∣
∣
∣
∣
∣
∣

2

︸ ︷︷ ︸

≤1

∣
∣
∣
∣

1
ψĝt0,N (t)

− 1
ψgN

(t)

∣
∣
∣
∣

2










dt

+ 1
π sup
f∈F

Ef∗gN

∫

∣
∣
∣
∣
∣

χ[−ωn,ωn]

ψgN
(t)

1
n

n∑

j=1

eitYj − ψf (t)

∣
∣
∣
∣
∣

2

dt

+ 1
π sup
f∈F

ωn∫

−ωn

Ef∗gL










∣
∣
∣
∣
∣
∣

1

n

n∑

j=1

eitYj

∣
∣
∣
∣
∣
∣

2

︸ ︷︷ ︸

≤1

∣
∣
∣
∣

1
ψĝt0,N (t)

− 1
ψgL

(t)

∣
∣
∣
∣

2










dt

+ 1
π sup
f∈F

Ef∗gL

∫

∣
∣
∣
∣
∣

χ[−ωn,ωn]

ψgL
(t)

1
n

n∑

j=1

eitYj − ψf (t)

∣
∣
∣
∣
∣

2

dt

≤ 1
π sup
f∈F

ωn∫

−ωn

∣
∣
∣

1
ψgL

(t) − 1
ψgN

(t)

∣
∣
∣

2

dt · Ph=gN∗f (ĝt0,n = gL)

+ 1
π sup
f∈F

Ef∗gN

∫

∣
∣
∣
∣
∣

χ[−ωn,ωn]

ψgN
(t)

1
n

n∑

j=1

eitYj − ψf (t)

∣
∣
∣
∣
∣

2

dt

+ 1
π sup
f∈F

ωn∫

−ωn

∣
∣
∣

1
ψgL

(t) − 1
ψgN

(t)

∣
∣
∣

2

dt · Ph=gL∗f (ĝt0,n = gN )

+ 1
π sup
f∈F

Ef∗gL

∫

∣
∣
∣
∣
∣

χ[−ωn,ωn]

ψgL
(t)

1
n

n∑

j=1

eitYj − ψf (t)

∣
∣
∣
∣
∣

2

dt
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(lemma 2)

≤ 8(O(t0)−U(t0))−2

πn ·
ωn∫

−ωn

∣
∣
∣

1
ψgL(t)

− 1
ψgN

(t)

∣
∣
∣

2

dt

+ 1
π sup
f∈F

Ef∗gN

∫

∣
∣
∣
∣
∣

χ[−ωn,ωn]

ψgN
(t)

1
n

n∑

j=1

eitYj − ψf (t)

∣
∣
∣
∣
∣

2

dt

+ 1
π sup
f∈F

Ef∗gL

∫

∣
∣
∣
∣
∣

χ[−ωn,ωn]

ψgL
(t)

1
n

n∑

j=1

eitYj − ψf (t)

∣
∣
∣
∣
∣

2

dt

≤ 8(O(t0)−U(t0))−2

πn ·
ωn∫

−ωn

∣
∣
∣

1
ψgL(t)

− 1
ψgN

(t)

∣
∣
∣

2

dt+ 4
π sup
f∈F

∞∫

ωn

|ψf (t)|2dt

+ 1
π sup
f∈F

ωn∫

−ωn

varf∗gN

(

1
n

n∑

j=1

eitYj/ψgN (t)

)

dt

+ 1
π sup
f∈F

ωn∫

−ωn

varf∗gL

(

1
n

n∑

j=1

eitYj/ψgL(t)

)

dt

≤ 8(O(t0)−U(t0))−2

πn ·
ωn∫

−ωn

∣
∣
∣

1
ψgL(t)

− 1
ψgN

(t)

∣
∣
∣

2

dt+ 4
π sup
f∈F

∞∫

ωn

|ψf (t)|2dt

+ 2
nπ

ωn∫

0

|ψgN (t)|−2dt+ 2
nπ

ωn∫

0

|ψgL(t)|−2dt

≤ 32(O(t0)−U(t0))−2

πn ·
ωn∫

0

(∣
∣
∣

1
ψgL(t)

∣
∣
∣

2

+
∣
∣
∣

1
ψgN

(t)

∣
∣
∣

2

dt

)

+ 4
π sup
f∈F

∞∫

ωn

|ψf (t)|2dt

+ 2
nπ

ωn∫

0

|ψgN (t)|−2dt + 2
nπ

ωn∫

0

|ψgL(t)|−2dt

≤ 4
π sup
f∈F

∞∫

ωn

|ψf (t)|2dt+
(

2
nπ + 32(O(t0)−U(t0))−2

πn

) ωn∫

0

|ψgN (t)|−2dt

+
(

2
nπ + 32(O(t0)−U(t0))

−2

πn

) ωn∫

0

|ψgL(t)|−2dt

This term converges to 0 if and only if all three nonnegative summands do so. The rate of
convergence equals the rate of the most slowly converging summand. The first summand can be
upper bounded by

∞∫

ωn

t−4dt =
1

3
ω−3
n ,

the second one by

n−1ωn exp(ω2
n)

and the third one by

n−1ωn(1 + ω2
n)

2.

These bounds are given up to multiplication of a positive constant. If we optimize the rate
of convergence by choosing the bandwidth sequence as given in the theorem, then we receive
(lnn)−3/2 as rate of convergence of the complete term. �

Proof of theorem 4:

First, I define the function

ϕn(t) :=

{
T−2C2−1

T t+ 1 if |t| ≤ T

C2t
−2 else.
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Let (Mn)n be a sequence with Mn > T which will exactly be determined later. One can
construct another function ϕ̃n which equals ϕn on the restriction to [−Mn,Mn]. I apply the
tangent of ϕn in t = Mn and t = −Mn for ϕ̃n in the sections [Mn, Dn] and [−Mn,−Dn] with Dn

denoting the unique intersection of the tangent and the curve C1•−2 in |t| ≥Mn. For the sections
[Dn,+∞) and (−∞,−Dn], ϕ̃n(t) equals C1t

−2. So, we have

ϕ̃n =







ϕn(t) if |t| ≤Mn

C2M
−2
n − 2C2M

−3
n (t−Mn) if Mn < |t| ≤ Dn

C1t
−2 if |t| > Dn.

Notice that, due to the definition of Dn, the equation

C2M
−2
n − 2C2M

−3
n (Dn −Mn) = C1D

−2
n

is valid. This is equivalent with

3C2

(
Dn

Mn

)2

− 2C2

(
Dn

Mn

)3

= C1.

The polynomial function P (x) := 3C2x
2 − 2C2x

3 − C1 decreases strictly monotoniously for
x > 1 and tends to −∞ if x → +∞. Combining this with P (1) > 0, it is evident that there is
exactly one D > 1 fulfilling P (D) = 0. Hence, Dn equals

Dn = D ·Mn,

respecting that D does not depend on n. One can recognize that ϕn is the Fourier transform
of a probability density by using Polya’s criterion (see Durrett (1996)). The conditions are non-
negativity, convexity, decreasingness, continuity of ϕn on (0,∞) and ϕn(t) = ϕn(−t), ϕn(0) = 1
as well as lim

t↑∞
ϕn(t) = 0. Respecting the technical stipulation T 2 ≥ 3C2, these conditions can be

proven for ϕn. Regarding the construction of ϕ̃n, those properties can also be seen. So, ϕn is the
Fourier transform of a probability density, too. Denoting these densities fn and f̃n, we have

ϕn = ψfn and ϕ̃n = ψf̃n
.

One can also see that ϕn and ϕ̃n fulfill the upper and lower bound stipulations in the defining
condition of F . So, we receive

fn, f̃n ∈ F .
Denoting hn = fn ∗ gN and h̃n = f̃n ∗ gN , one recognizes that ψhn is continuous on

�
and

differentiable on
� \{−T, T}. Its derivative is given by

ψ′
hn

(t) = exp(−1

2
t2) ·

(
ϕ′
n(t) + ϕn(t) · (−t)

)
.

Since ϕn and

ϕ′
n(t) =

{
T−2C2−1

T if |t| ≤ T

−2C2t
−3 else

are uniformly upper bounded, ‖ψ′
hn

‖L2(� ) possesses an upper bound which is independent of n.
Considering ψhn , one can derive continuity on

�
and differentiability on

� \{−DMn ,−T, T,DMn}.
Accordingly, we have

ψ′
h̃n

(t) = exp(−1

2
t2) ·

(
ϕ̃′
n(t) + ϕ̃n(t) · (−t)

)
.

In analogy, one can see that ϕ̃n and

13



ϕ̃′
n(t) =







ϕ′
n(t) if |t| ≤Mn

−2C2M
−3
n if Mn < |t| ≤ DMn

−2C1t
−3 if |t| > DMn,

are also uniformly upper bounded, respecting Mn > T . Hence, ψhn and ψh̃n
are weakly

differentiable with the derivative being uniformly (relating to n) bounded in the L2(
�
)-norm. So

ψhn and ψh̃n
are members of the Sobolev space of order 1 and so the Fourier analytic results

‖ψh′‖L2( � ) = ‖ • ψh(•)‖L2(� ) and ψψh
= 2π h(−•)

can be used. So we have

+∞ > Const. ≥ ‖ψ′
hn
‖2
L2( � ) + ‖ψ′

h̃n
‖2
L2( � )

=
1

2π
‖ψψ′

hn
‖2
L2( � ) +

1

2π
‖ψψ′

h̃n

‖2
L2( � )

=
1

2π

∫

|t|2|ψψhn
(t)|2dt +

1

2π

∫

|t|2|ψψh̃n
(t)|2dt

=

∫

|t|2hn(−t)2dt +

∫

|t|2h̃n(−t)2dt

=

∫

t2hn(t)
2dt +

∫

t2h̃n(t)
2dt. (4.1)

This inequality will be applicated later.

The Fourier transform of every density in F is upper bounded to

S(t) =

{

1 , for |t| ≤ T

C2|t|−β , otherwise.

Since S is square integrable over the whole real line, there is a uniform upper bound for the
densities in F relating to their L2(

�
)-norm. Let us call this upper bound C > 0. Notice that

hence one can also postulate ‖f̂n‖L2(� ) ≤ C without loss of generality.

The MISE of an arbitrary estimator f̂n can be lower bounded

sup
g∈G

sup
f∈F

Ef∗g‖f̂n(Y1, . . . , Yn) − f‖2
L2( � )

≥ sup
f∈F

Ef∗gN ‖f̂n(Y1, . . . , Yn) − f‖2
L2( � )

≥ 1
2

(

Ehn‖f̂n(Y1, . . . , Yn) − fn‖2
L2(� ) + Eh̃n

‖f̂n(Y1, . . . , Yn) − f̃n‖2
L2(� )

)

≥ 1
2

(

Ehn‖f̂n(Y1, . . . , Yn) − fn‖2
L2(� ) − Eh̃n

‖f̂n(Y1, . . . , Yn) − fn‖2
L2(� )

+Eh̃n
‖f̂n(Y1, . . . , Yn) − fn‖2

L2( � ) + Eh̃n
‖f̂n(Y1, . . . , Yn) − f̃n‖2

L2( � )

)

≥ 1
2

(

Eh̃n
‖f̂n(Y1, . . . , Yn) − fn‖2

L2(� ) + Eh̃n
‖f̂n(Y1, . . . , Yn) − f̃n‖2

L2(� )

−
∣
∣Ehn‖f̂n(Y1, . . . , Yn) − fn‖2

L2( � ) − Eh̃n
‖f̂n(Y1, . . . , Yn) − fn‖2

L2( � )

∣
∣

)

≥ 1
2

(

Eh̃n

(

‖f̂n(Y1, . . . , Yn) − fn‖2
L2(� ) + ‖f̂n(Y1, . . . , Yn) − f̃n‖2

L2( � )

)

−
∣
∣
∫
· · ·
∫
‖f̂n(y1, . . . , yn) − fn‖2

L2( � )|hn(y1) · · ·hn(yn) − h̃n(y1) · · · h̃n(yn)|
∣
∣

)

≥ 1
2

(
1
2‖fn − f̃n‖2

L2(� ) − C2 · n ·
∫
|hn(y) − h̃n(y)|dy

)

.

Defining the density
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ξ(t) :=

{

c if|t| ≤ 1

c · |t|−3/2 if |t| > 1

with an appropriately selected constant c > 0, the inequality sequence above continues

1
2

(
1
2‖fn − f̃n‖2

L2( � ) − C2 · n ·
∫
|hn(y) − h̃n(y)|dy

)

= 1
2

(
1
2‖fn − f̃n‖2

L2(� ) − C2 · n ·
∫ √

ξ(y)|hn(y) − h̃n(y)|/
√

ξ(y)dy
)

≥ 1
2

(
1
2‖fn − f̃n‖2

L2(� ) − C2 · n · (
∫

ξ(y)dy)1/2

︸ ︷︷ ︸

=1

·(
∫
|hn(y) − h̃n(y)|2/ξ(y)dy)1/2

)

,

utilizing the Cauchy-Schwarz-inequality. Now one can see that if the condition

n · (
∫
|hn(y) − h̃n(y)|2/ξ(y)dy)1/2

‖fn − f̃n‖2
L2(� )

n→∞−→ 0 (4.2)

holds then the MISE of the estimator can be lower bounded by

1

8
‖fn − f̃n‖2

L2(� ). (4.3)

One has to remember that the sequence (Mn)n can still be chosen appropriately. First, we
regard

‖fn − f̃n‖2
L2( � ) = 1

2π

∫
|ϕn(t) − ϕ̃n(t)|2 dt

= 1
2π

∫

|t|≥Mn
|ϕn(t) − ϕ̃n(t)|2 dt

≤ C2
2

π

∫

|t|≥Mn
t−4 dt

≤ Const. ·M−3
n .

On the other hand, one can also derive a lower bound for this term

‖fn − f̃n‖2
L2(� ) = 1

2π

∫
|ϕn(t) − ϕ̃n(t)|2 dt

≥ 1
2π

∫

|t|≥D·Mn
(C2 − C1)

2t−4 dt

≥ Const. ·M−3
n .

So we have ‖fn − f̃n‖2
L2( � ) ∼ M−3

n .

Now, we consider

‖hn − h̃n‖2
L2( � ) = 1

2π

∫
|ψgN (t)|2|ϕn(t) − ϕ̃n(t)|2 dt

= 1
2π

∫

|t|≥Mn
|ψgN (t)|2|ϕn(t) − ϕ̃n(t)|2 dt

≥ C2
2

2π exp
(
−M2

n

) ∫

|t|≥Mn
t−4dt

≥ Const. · exp
(
−M2

n

)
M−3
n .

Hence, with (Rn)n being a sequence yet to be specified
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n · (
∫
|hn(y) − h̃n(y)|2/ξ(y)dy)1/2

= n · (
∫

|y|≤Rn

|hn(y) − h̃n(y)|2/ξ(y)dy +
∫

|y|>Rn

|hn(y) − h̃n(y)|2/ξ(y)dy)1/2

≤ n · (
∫

|y|≤Rn

|hn(y) − h̃n(y)|2/ ξ(y)
︸︷︷︸

≥cR
−3/2
n

dy)1/2

+n · (
∫

|y|>Rn

|hn(y) − h̃n(y)|2/ξ(y)dy)1/2

≤ n · c−1/2R
3/4
n · ‖hn − h̃n‖L2( � ) + n · (

∫

|y|>Rn

|hn(y) − h̃n(y)|2/ξ(y)dy)1/2

≤ Const. · n · R3/4
n M

−3/2
n exp

(
− 1

2M
2
n

)

+ 2n · (
∫

|y|>Rn

|hn(y)|2/ξ(y)dy +
∫

|y|>Rn

|h̃n(y)|2/ξ(y)dy)1/2.

The two summands which remain to be upper bounded can be calculated utilizing (4.1).

∫

|y|>Rn

|hn(y)|2/ξ(y)dy +
∫

|y|>Rn

|h̃n(y)|2/ξ(y)dy

=
∫

|y|>Rn

|hn(y)|2c−1|y|3/2dy +
∫

|y|>Rn

|h̃n(y)|2c−1|y|3/2dy

≤ Const. ·
(
R

−1/2
n

∫

|y|>Rn

|hn(y)|2y2dy + R
−1/2
n

∫

|y|>Rn

|h̃n(y)|2y2dy
)

≤ Const. ·R−1/2
n ·

( ∫
hn(y)

2y2dy +
∫
h̃n(y)

2y2dy
)

≤ Const. ·R−1/2
n

Finally, we get

n · (
∫
|hn(y) − h̃n(y)|2/ξ(y)dy)1/2

‖fn − f̃n‖2
L2( � )

≤ Const. · n · R
3/4
n M

−3/2
n exp

(
− 1

2M
2
n

)
+ R

−1/4
n

M−3
n

.

If one selects Rn = n5 and Mn = 4(lnn)1/2, this term converges to zero and (4.2) is fulfilled.
Hence, by (4.3), one finally receives the asymptotic lower bound

M−3
n ∼ (lnn)−3/2.

�
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