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Abstract

Blackwell’s renewal theorem in probability theory deals with the asymptotic be-
haviour of an expected number of renewals. An analytical proof is given which
combines a selection principle with a uniqueness lemma. The selection argument
simplifies Feller’s argument by using only Helly’s selection theorem. The specialized
Beurling or Choquet-Deny uniqueness theorem is proved by standard Fourier analytic

tools.
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1 Introduction

In classical renewal theory the partial sum sequence (X; + ...+ X,,) for independent
indentically distributed (i.i.d.) nonnegative random variables X, Xs, ... is called renewal
process and is interpreted as the sequence of random renewal epochs (random arrival times
of customers) in a technical system (at a sever). The trivial case P[X; = 0] = 1 is excluded,

ie., 0 < FX; < oo is assumed. The renewal function V on R defined by

1+ Esup{keN: Xj+...+ Xty <a}, a>0
V(a) :=

0, a<0
satisfies
V=> F"<oo

n=0

where F™* is the n-fold convolution of the distribution function F of X; and F% := F}, :=
Iy, (I denoting an indicator function). There is of central importance in renewal theory
the asymptotic behaviour of V' (a) — V(a — h), the mean number of renewals in the time
interval (a — h,al, for a — oo with arbitrary fixed h > 0. The case of an arithmetic
distribution of Xj, i.e., concentration of the distribution on {0, A, 2\, ...} for some A > 0,
has been treated by Erdos, Feller and Pollard [7]. The case of a nonarithmetic distribution
of X7 has been treated by Blackwell [4]. Especially in the latter case different proofs, also
for the extension to i.i.d. real random variables X,, with £X; > 0 have been given, partially
with restriction to the case FX; < oco. Among others, Smith [14] used Wiener’s theory
of Tauberian theorems in summability theory, Feller and Orey [10] used Fourier analysis,
Walk [15] used Laplace transforms, Feller [9], Section XI.2, mainly used measure theory
together with selection principles, Lindvall [13] used the probabilistic coupling method.
We mention the monographs of Feller [8],[9], Alsmeyer [1] and Asmussen [2] with further

references.



In this paper we give an elementary analytical proof of Blackwell’s renewal theorem in
the classical case of nonnegative X,,’s. We simplify Feller’s [9] reduction of the problem to
a uniqueness lemma by use only of Helly’s selection theorem. The uniqueness lemma, in
different and more general forms, is due to Beurling [3] and Choquet and Deny [6]. We
further give a Fourier analytic proof of the uniqueness lemma which in the special case
E X, < oo is rather simple. Our proof of the renewal theorem can be extended to the case
of real X,,’s with 0 < EX; < o0.

The method to combine a selection principle with a uniqueness theorem for proving
asymptotic renewal theorems has a predecessor in summability theory (see Zeller and

Beekmann [17], 48 IV, with references).

2 Notations

We set

For the probability measure () belonging to the distribution function F of X; we denote

the Fourier-Stieltjes transform by @, ie.,

-~

1 —iuT
Qu) = Nr /Re Qdz), uelR.

This is essentially the characteristic function of Q. For a distribution function (or difference
of distribution functions) H and a function z : R — R bounded on bounded intervals we

set

(H * z)(x) ::/Rz(x—t)H(dt), z eR.



With numbers 0 < a < b, we use the functions x,; with

(

Xa,b(v) =

\

and its Fourier transforms F(xas) := Xap With

1 cos(at) — cos(bt)

itv
a . a v = 5
Xaa(! \/E/Xb T ab-a) 2

Xo.2 is the Fejér kernel which can also be written in the form

o 1 /sint\?
t = —  —
Xo2(t) W( ; )

(compare Wheeden and Zygmund [16], (9.11), and Hewitt and Stromberg [11], pp. 407,

teR.

408). We notice

FXap(- —€)) =Xap- €, Xop >0 and /@(t) dt = 1.
R

In the case EX; = oo we set 1/EX; :=0.

3 Blackwell’s Renewal Theorem

Assume a nonnegative real random variable X; with 0 < EX; < oco. In other words, its
distribution function F': R — [0, 1] satisfies F'(z) = 0 for z < 0, and F/(0) < 1. Then the
renewal function V : R — Ris given by V = 3"~ / F"™ where F"™* is the n-fold convolution
of F and F% := F,. Assume further that the distribution @) of X, is nonarithmetic, i.e.,

that @ is not concentrated on {0, A\, 2\, ...} for any A > 0. This means

~

(1) Qu) = \/%/ e ™ Q(dr) # 1 for all u # 0.



Theorem 1 (Blackwell’s Renewal Theorem). For any fized h > 0 the renewal func-
tion fulfills

h
[N
EX,

(2) V(a) = V(a—h) (a — ).

Proof. It is well known that (Fy — F) * V = Fy. Set z := Ijo ) for some fixed h > 0, and

w:=Vxr=V()—-V(-—h). Then

(3) (Fo—F)xw=(Fy—F)*Vxz=2 onR

(4) v /R w(x—t)(l—F(t))dt:/ z(s) ds.

zeR, [0,2]
w is bounded. This can be concluded from (Fy— F)*V = 1 and Fy — F > (1 = F(R'))Ijo,nm
for b’ sufficiently small. Then in all intervals of fixed finite length w can be represented
as a difference of nondecreasing uniformly bounded functions. Thus in each fixed interval
the functions w(-+7), 7 € R, can be represented as differences of nondecreasing uniformly
bounded functions. For any sequence (7) in R with 7, — oo there is a subsequence (7;)
of (77,) such that w(- + 7;) converges pointwise to a bounded function g : R — R, which
has at most countably many discontinuity points  with g(z) lying between lim,y, g(s) and
limg, g(s). This follows by Helly’s selection theorem (see, e.g., Feller [9], Section VIIL.6, as
a reference) and by Cantor’s diagonal method for the at most countably many exception

points in Helly’s theorem. Then by the dominated convergence theorem we have

v [wlrn—0dR-FO— [ de-dF-P) (- )

z€eR

On the other hand, by (3),

v /Rw(x+r—t)d(F0—F)(t):Z(a:+7)—>0 (1 — 00).

zeR



Thus

(5) v /Rg(x—t)d(Fo—F)(t) =0, ie, (Fp—F)*xg=0,

zeR

which is equivalent to F'xg = g on R. Then, by Lemma 1 in the following section, g = const
on the set of continuity points of g and therefore, by the above features of g, everywhere.
We have to distinguish the cases of finite and infinite £X;.

First case: FX; = fR+(1 — F(t))dt < co. By (4),

/ w(Tj—t)(l—F(t))dt:/ z2(s)ds — h (j — o0).
Ry [0,75]

Since lim;_,., w(7; —t) = const € R for each t € R, the dominated convergence theorem
ensures that the left hand side integral converges to const -EX;. Thus const = h/EXj;.

Second case: EX; = fR+(1 — F(t)) dt = co. By Fatou’s lemma we deduce from (4)

/ limw(r; — 1) (1 — F(t))dt < lim w(r; —t) (1 —F(t))dt
Ry J i JRry

= lim z(s)ds = 1.
J [0,75]

The left hand side above equals const - fR+(1 — F(t))dt. Thus const = 0.
Therefore in each case we have const = h/EX;. Thus for each sequence (7) in R with
7. — 0o there is a subsequence (7;) with w(r;) — h/EX;. Hence V(z) — V(z — h) =

w(z) — h/EX; as x — 0. O

Remark. By essentially the same proof, one can show Blackwell’s renewal theorem [5]
in the extended case of a real random variable X; with nonarithmetic distribution and
0 < EX; < o0o. One notices that V-V (-—h) for fixed h > 0 remains bounded (see Feller [9],

Section VI.10), further —oo < f(foo 0)(F0(a:) —F(z)der <0< f[o Oo)(FO(:c) — F(z))dx < 0.
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4 Auxiliary Results

The following lemma is a specialized version of uniqueness theorems of Beurling [3] [(10)

and Proposition on p. 134] and Choquet and Deny [6] [on measures on groups].

Lemma 1. Suppose (1). If a bounded and measurable function g : R — Ry fulfills (5),

then g is constant on the set of its continuity points (even on the set of its Lebesque points).

We give a Fourier analytic proof of Lemma 1. For the proof of Theorem 1 we use only
the easier part concerning the continuity points. As to a measure theoretic proof of the
equivalent (!) version with measurability of g replaced by continuity or uniform continuity
we refer to Feller [9], p. 382, Corollary.

For the proof of Lemma 1 we use the following in essential known lemma on Fourier

transforms.

Lemma 2. Let f : R — C be L(ebesque)-integrable and absolutely continuous with L-

integrability of | f'|?. Then its Fourier transform F [ = J? defined by

0 ::\/LQ_W /R f)e®dv, teR,

15 L-integrable. More precisely,

/R|f(t>|dt§3‘(27r)1/6 (/R|f(v)]dv)1/3 (/R|f’(v)\2dv)l/3.

Proof of Lemma 2. For each § > 0 we have
IS /| P+ /| leFla
§26\/%/R|f(v)ldv+\/§ /Rmﬂmw
=25¢%/R\f(v)\dv+\/%//Rﬁ(t)\?dt
=25¢%/R\f(v)\dv+\/%//R|f’(v)|2dv

11



according to Hewitt and Stromberg [11], (21.59)(b) and (21.52). Minimizing 0 yields the

assertion. ]

The proof of Lemma 1 given below is rather simple in the case fR+ rdF(z) < o0, ie.,
EX; < oco. There only the functions xo; (of triangular form) and Yo, are used. For the
proof in the general case additionally the functions y,;, with a > 0 sufficiently small (of

trapezoidal form) and Y, are used.

Proof of Lemma 1. In the first part we shall show that for each Lipschitz continuous

complex-valued function ¢ with compact supp ¢ Z 0 one has

) [ @tgtar=o.
R
p is L-integrable because of Lemma 2. We set

2
1-Q

b=

and show that @ is L-integrable.

In the special case that (EX; =) [z dF(z) < oo and thus Q is continuously differen-
tiable, we obtain L-integrability of 1//}\ by Lemma 2.

In the general case we notice that it suffices to show (x): For each ¢ # 0 there is an
a = a(c) € (0, |c|) such that for each Lipschitz continuous complex-valued function ¢ with
supp ¢ C (¢—a,c+a) the function 1; is L-integrable. For then an application of the Heine-
Borel convering theorem and a suitable decomposition of ¢ with compact supp ¢ Z 0 yield
the desired integrability result.

The proof of (x) is motivated by an argument of Korevaar [12] in summability theory.

Let ¢ > 0 without loss of generality. Let b € (0,¢). With Q4(B) := Q(—B), B € B, it

12



holds
(7) /R [ (@s % Fxop(- = ¢))) ()] dz = /R [ (@s * (Xop - 7)) (2)] dz
<4(Qs*@)<x)dx:1.
To show strict inequality, suppose equality, then
Qs * (Xop - €7) = Qs *Xop L(ebesgue)-almost everywhere,
then for L-almost all x
Xoop(z —t) e7™@) = x3(x — t)  for Q,-almost all ¢,

in contradiction to the assumption that @) is nonarithmetic. From (7) we obtain, via

L-integrability of u — ﬁ and the dominated convergence theorem, that also

/R\ (Qs % Fxap(- — ) (x)]dz < 1

for a € (0,0) sufficiently small. Choose such an a = a(c). We use the abbreviation

X = Xap(- — ¢) and notice

¢:11P©:1_¢©X:¢;<@X>"_

To show L-integrability of QZ in the general case EX; < 00, set w 1= @y (QsxX)™.

Then
[ 1wt < fj JACRCRS I
g§4|¢<x>|dx (1@ Dwlar) <oo

Thus w is L-integrable and

\/%_W /Rw(x)e““” dzx = ¢(u) - i (@(u)x(u))n =(u) for all u € R.

n=0

13



This together with L-integrability of v yields ’(z}\ = w.

From the definition of ¢, by L-integrability of ’(//; we obtain

2(t) = ((F = F) x 9(=)) ()

further by Fubini’s theorem and (5)

/ t)dt = //ws+t (Fy — F)(s) g(t) dt

_ /RQ/J(:E)/Rg(x— §)d(Fy — F)(s) dx = 0.

In the second part, we shall show that (6) also holds for each Lipschitz continuous
complex-valued ¢ with compact supp ¢ C [—D, D] for some D € (0,00) and ¢(0) = 0. Let
L be a Lipschitz constant of . Then, if ¢ > 0 is sufficiently small, ¢ can be decomposed

into a sum ¢, + p. of two Lipschitz continuous functions satisfying

(v), if —3=sv=3

(e —v), if $ <v<e 0, iffv] <5
pelv) = and  p.(v) =

p(—e—w), if —e<v<—5 0, ifjw|>D

0, if [v] > ¢

\

By the first part

and by Lemma 2

/3
|/gp8 t)dt| <3- (27r)_1/6sup|g </|cp6 |dv) (25L2)1/3 0 (¢—0).

This yields (6).
In the third part we shall prove the assertion. Choose any continuity or more generally

Lebesgue points t*,¢** of g. For h > 0 let o(h,-) = xone™  — xone™ . @(h,-) is Lipschitz

14



continuous with compact support and ¢(h,0) = 0. By the second part we have

0= / U )(t)g(t) dt = / Tl — ) g(t) dt — / Tt — ) () dt

R

—g(™) —g(t")  (h —0).

As to the limit relation, which is elementary for continuity points t*, t**, see Wheeden
and Zygmund [16], Ch. 9 with (9.9), (9.11), (9.13) and Exercise 12 for p = oo. Thus
g(t*) = g(t™). This shows that g is constant on its continuity set, even on its Lebesgue

set. O

Remark. In the third step of the proof of Lemma 1, instead of o, one can use 7o

(h > 0) with
1 o2
e 2n? v e R.

770,h<U) = NG )

In this case, the second step deals with a two times differentiable compex-valued function ¢

with |¢”| < L* < oo and ¢(0) = 0, to be decomposed into a sum .+ p. such that || < L*
@-(v) =0 for e < |v| <1, p.(v) =0 for |[v]| < ce and for |v] > L, with suitable ¢ € (0,1)
depending on ¢, and € > 0 sufficiently small. Then one obtains | [, @=(t)g(t)dt| — 0
(¢ — 0) by @(t) = —t%p.(t), t € R (see Hewitt and Stromberg [11], (21.61)), without use

of Lemma 2.

15
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