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Abstract

Blackwell’s renewal theorem in probability theory deals with the asymptotic be-

haviour of an expected number of renewals. An analytical proof is given which

combines a selection principle with a uniqueness lemma. The selection argument

simplifies Feller’s argument by using only Helly’s selection theorem. The specialized

Beurling or Choquet-Deny uniqueness theorem is proved by standard Fourier analytic

tools.

1Mathematics Subject Classification (2000): Primary 60K05; Secondary 60E10.

Key words and phrases: Blackwell’s renewal theorem, Helly’s selection theorem, uniqueness theorems of

Beurling and Choquet-Deny, Fourier transform

Address for correspondence: Jürgen Dippon, Institut für Stochastik und Anwendungen, Fachbereich Math-

ematik, Universität Stuttgart, 70550 Stuttgart, Germany. E-mail: dippon@mathematik.uni-stuttgart.de



1 Introduction

In classical renewal theory the partial sum sequence (X1 + . . . + Xn) for independent

indentically distributed (i.i.d.) nonnegative random variables X1, X2, . . . is called renewal

process and is interpreted as the sequence of random renewal epochs (random arrival times

of customers) in a technical system (at a sever). The trivial case P [X1 = 0] = 1 is excluded,

i.e., 0 < EX1 ≤ ∞ is assumed. The renewal function V on R defined by

V (a) :=





1 + E sup{k ∈ N : X1 + . . .+Xk ≤ a}, a ≥ 0

0, a < 0

satisfies

V =

∞∑

n=0

F n∗ <∞

where F n∗ is the n-fold convolution of the distribution function F of X1 and F 0∗ := F0 :=

IR+
(I denoting an indicator function). There is of central importance in renewal theory

the asymptotic behaviour of V (a) − V (a − h), the mean number of renewals in the time

interval (a − h, a], for a → ∞ with arbitrary fixed h > 0. The case of an arithmetic

distribution of X1, i.e., concentration of the distribution on {0, λ, 2λ, . . .} for some λ > 0,

has been treated by Erdös, Feller and Pollard [7]. The case of a nonarithmetic distribution

of X1 has been treated by Blackwell [4]. Especially in the latter case different proofs, also

for the extension to i.i.d. real random variables Xn with EX1 > 0 have been given, partially

with restriction to the case EX1 < ∞. Among others, Smith [14] used Wiener’s theory

of Tauberian theorems in summability theory, Feller and Orey [10] used Fourier analysis,

Walk [15] used Laplace transforms, Feller [9], Section XI.2, mainly used measure theory

together with selection principles, Lindvall [13] used the probabilistic coupling method.

We mention the monographs of Feller [8],[9], Alsmeyer [1] and Asmussen [2] with further

references.
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In this paper we give an elementary analytical proof of Blackwell’s renewal theorem in

the classical case of nonnegative Xn’s. We simplify Feller’s [9] reduction of the problem to

a uniqueness lemma by use only of Helly’s selection theorem. The uniqueness lemma, in

different and more general forms, is due to Beurling [3] and Choquet and Deny [6]. We

further give a Fourier analytic proof of the uniqueness lemma which in the special case

EX1 <∞ is rather simple. Our proof of the renewal theorem can be extended to the case

of real Xn’s with 0 < EX1 ≤ ∞.

The method to combine a selection principle with a uniqueness theorem for proving

asymptotic renewal theorems has a predecessor in summability theory (see Zeller and

Beekmann [17], 48 IV, with references).

2 Notations

We set

F0(t) :=





1 t ≥ 0

0, t < 0

For the probability measure Q belonging to the distribution function F of X1 we denote

the Fourier-Stieltjes transform by Q̂, i.e.,

Q̂(u) :=
1√
2π

∫

R

e−iuxQ(dx), u ∈ R.

This is essentially the characteristic function of Q. For a distribution function (or difference

of distribution functions) H and a function z : R → R bounded on bounded intervals we

set

(H ∗ z)(x) :=

∫

R

z(x− t)H(dt), x ∈ R.
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With numbers 0 ≤ a < b, we use the functions χa,b with

χa,b(v) :=





1√
2π
, |v| ≤ a

1√
2π

b−|v|
b−a

, a ≤ |v| ≤ b

0, |v| ≥ b

and its Fourier transforms F(χa,b) := χ̂a,b with

χ̂a,b(t) :=
1√
2π

∫

R

χa,b(v)e
−itv dv =

1

π(b− a)

cos(at) − cos(bt)

t2
, t ∈ R.

χ̂0,2 is the Fejér kernel which can also be written in the form

χ̂0,2(t) =
1

π

(
sin t

t

)2

(compare Wheeden and Zygmund [16], (9.11), and Hewitt and Stromberg [11], pp. 407,

408). We notice

F(χa,b(· − c)) = χ̂a,b · e−ic·, χ̂0,b ≥ 0 and

∫

R

χ̂0,b(t) dt = 1.

In the case EX1 = ∞ we set 1/EX1 := 0.

3 Blackwell’s Renewal Theorem

Assume a nonnegative real random variable X1 with 0 < EX1 ≤ ∞. In other words, its

distribution function F : R → [0, 1] satisfies F (x) = 0 for x < 0, and F (0) < 1. Then the

renewal function V : R → R is given by V =
∑∞

n=0 F
n∗ where F n∗ is the n-fold convolution

of F and F 0∗ := F0. Assume further that the distribution Q of X1 is nonarithmetic, i.e.,

that Q is not concentrated on {0, λ, 2λ, . . .} for any λ > 0. This means

Q̂(u) :=
1√
2π

∫

R

e−iuxQ(dx) 6= 1 for all u 6= 0.(1)
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Theorem 1 (Blackwell’s Renewal Theorem). For any fixed h > 0 the renewal func-

tion fulfills

V (a) − V (a− h) → h

EX1

(a→ ∞).(2)

Proof. It is well known that (F0 − F ) ∗ V = F0. Set z := I[0,h) for some fixed h > 0, and

w := V ∗ r = V (·) − V (· − h). Then

(F0 − F ) ∗ w = (F0 − F ) ∗ V ∗ z = z on R(3)

and thus

∀
x∈R+

∫

R+

w(x− t)(1 − F (t)) dt =

∫

[0,x]

z(s) ds.(4)

w is bounded. This can be concluded from (F0−F )∗V = 1 and F0 −F ≥ (1−F (h′))I[0,h′]

for h′ sufficiently small. Then in all intervals of fixed finite length w can be represented

as a difference of nondecreasing uniformly bounded functions. Thus in each fixed interval

the functions w(·+ τ), τ ∈ R, can be represented as differences of nondecreasing uniformly

bounded functions. For any sequence (τ ′k) in R with τ ′k → ∞ there is a subsequence (τj)

of (τ ′k) such that w(· + τj) converges pointwise to a bounded function g : R → R, which

has at most countably many discontinuity points x with g(x) lying between lims↑x g(s) and

lims↓x g(s). This follows by Helly’s selection theorem (see, e.g., Feller [9], Section VIII.6, as

a reference) and by Cantor’s diagonal method for the at most countably many exception

points in Helly’s theorem. Then by the dominated convergence theorem we have

∀
x∈R

∫

R

w(x+ τj − t) d(F0 − F )(t) →
∫

R

g(x− t) d(F0 − F )(t) (j → ∞).

On the other hand, by (3),

∀
x∈R

∫

R

w(x+ τ − t) d(F0 − F )(t) = z(x + τ) → 0 (τ → ∞).
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Thus

∀
x∈R

∫

R

g(x− t) d(F0 − F )(t) = 0, i.e., (F0 − F ) ∗ g = 0,(5)

which is equivalent to F ∗g = g on R. Then, by Lemma 1 in the following section, g = const

on the set of continuity points of g and therefore, by the above features of g, everywhere.

We have to distinguish the cases of finite and infinite EX1.

First case: EX1 =
∫

R+
(1 − F (t)) dt <∞. By (4),

∫

R+

w(τj − t)(1 − F (t)) dt =

∫

[0,τj ]

z(s) ds→ h (j → ∞).

Since limj→∞w(τj − t) = const ∈ R for each t ∈ R, the dominated convergence theorem

ensures that the left hand side integral converges to const ·EX1. Thus const = h/EX1.

Second case: EX1 =
∫

R+
(1 − F (t)) dt = ∞. By Fatou’s lemma we deduce from (4)

∫

R+

lim
j
w(τj − t) (1 − F (t)) dt ≤ lim

j

∫

R+

w(τj − t) (1 − F (t)) dt

= lim
j

∫

[0,τj ]

z(s) ds = 1.

The left hand side above equals const ·
∫

R+
(1 − F (t)) dt. Thus const = 0.

Therefore in each case we have const = h/EX1. Thus for each sequence (τ ′k) in R with

τ ′k → ∞ there is a subsequence (τj) with w(τj) → h/EX1. Hence V (x) − V (x − h) =

w(x) → h/EX1 as x→ ∞. �

Remark. By essentially the same proof, one can show Blackwell’s renewal theorem [5]

in the extended case of a real random variable X1 with nonarithmetic distribution and

0 < EX1 ≤ ∞. One notices that V−V (·−h) for fixed h > 0 remains bounded (see Feller [9],

Section VI.10), further −∞ <
∫
(−∞,0)

(F0(x)−F (x) dx ≤ 0 <
∫
[0,∞)

(F0(x)−F (x)) dx ≤ ∞.
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4 Auxiliary Results

The following lemma is a specialized version of uniqueness theorems of Beurling [3] [(10)

and Proposition on p. 134] and Choquet and Deny [6] [on measures on groups].

Lemma 1. Suppose (1). If a bounded and measurable function g : R → R+ fulfills (5),

then g is constant on the set of its continuity points (even on the set of its Lebesgue points).

We give a Fourier analytic proof of Lemma 1. For the proof of Theorem 1 we use only

the easier part concerning the continuity points. As to a measure theoretic proof of the

equivalent (!) version with measurability of g replaced by continuity or uniform continuity

we refer to Feller [9], p. 382, Corollary.

For the proof of Lemma 1 we use the following in essential known lemma on Fourier

transforms.

Lemma 2. Let f : R → C be L(ebesgue)-integrable and absolutely continuous with L-

integrability of |f ′|2. Then its Fourier transform Ff := f̂ defined by

f̂(t) :=
1√
2π

∫

R

f(v)e−itv dv, t ∈ R,

is L-integrable. More precisely,
∫

R

|f̂(t)| dt ≤ 3 · (2π)−1/6

(∫

R

|f(v)| dv
)1/3 (∫

R

|f ′(v)|2 dv
)1/3

.

Proof of Lemma 2. For each δ > 0 we have
∫

R

|f̂(t)| dt =

∫

|t|≤δ

|f̂(t)| dt+
∫

|t|>δ

1

|t| |t||f̂(t)| dt

≤ 2δ
1√
2π

∫

R

|f(v)| dv +

√
2

δ

√∫

R

t2|f̂(t)|2 dt

= 2δ
1√
2π

∫

R

|f(v)| dv +

√
2

δ

√∫

R

|f̂ ′ (t)|2 dt

= 2δ
1√
2π

∫

R

|f(v)| dv +

√
2

δ

√∫

R

|f ′(v)|2 dv

11



according to Hewitt and Stromberg [11], (21.59)(b) and (21.52). Minimizing δ yields the

assertion. �

The proof of Lemma 1 given below is rather simple in the case
∫

R+
x dF (x) < ∞, i.e.,

EX1 < ∞. There only the functions χ0,b (of triangular form) and χ̂0,b are used. For the

proof in the general case additionally the functions χa,b with a > 0 sufficiently small (of

trapezoidal form) and χ̂a,b are used.

Proof of Lemma 1. In the first part we shall show that for each Lipschitz continuous

complex-valued function ϕ with compact suppϕ 63 0 one has

∫

R

ϕ̂(t)g(t) dt = 0.(6)

ϕ̂ is L-integrable because of Lemma 2. We set

ψ :=
ϕ

1 − Q̂
.

and show that ψ̂ is L-integrable.

In the special case that (EX1 =)
∫
x dF (x) < ∞ and thus Q̂ is continuously differen-

tiable, we obtain L-integrability of ψ̂ by Lemma 2.

In the general case we notice that it suffices to show (∗): For each c 6= 0 there is an

a = a(c) ∈ (0, |c|) such that for each Lipschitz continuous complex-valued function ϕ with

suppϕ ⊂ (c−a, c+a) the function ψ̂ is L-integrable. For then an application of the Heine-

Borel convering theorem and a suitable decomposition of ϕ with compact suppϕ 63 0 yield

the desired integrability result.

The proof of (∗) is motivated by an argument of Korevaar [12] in summability theory.

Let c > 0 without loss of generality. Let b ∈ (0, c). With Qs(B) := Q(−B), B ∈ B, it

12



holds

∫

R

| (Qs ∗ F(χ0,b(· − c))) (x)| dx =

∫

R

|
(
Qs ∗

(
χ̂0,b · e−ic·)) (x)| dx(7)

<

∫

R

(Qs ∗ χ̂0,b) (x) dx = 1.

To show strict inequality, suppose equality, then

Qs ∗
(
χ̂0,b · e−ic·) = Qs ∗ χ̂0,b L(ebesgue)-almost everywhere,

then for L-almost all x

χ̂0,b(x− t) e−ic(x−t) = χ̂0,b(x− t) for Qs-almost all t,

in contradiction to the assumption that Q is nonarithmetic. From (7) we obtain, via

L-integrability of u 7→ 1
1+u2 and the dominated convergence theorem, that also

∫

R

| (Qs ∗ F(χa,b(· − c))) (x)| dx < 1

for a ∈ (0, b) sufficiently small. Choose such an a = a(c). We use the abbreviation

χ = χa,b(· − c) and notice

ψ =
ϕ

1 − Q̂
=

ϕ

1 − Q̂χ
= ϕ

∞∑

n=0

(
Q̂χ

)n

.

To show L-integrability of ψ̂ in the general case EX1 ≤ ∞, set w := ϕ̂∗
∑∞

n=0(Qs∗ χ̂)n∗.

Then

∫

R

|w(x)| dx ≤
∞∑

n=0

∫

R

| (ϕ̂ ∗ (Qs ∗ χ̂)n∗) (x)| dx

≤
∞∑

n=0

∫

R

|ϕ̂(x)| dx
(∫

R

|(Qs ∗ χ̂)(x)| dx
)n

<∞ .

Thus w is L-integrable and

1√
2π

∫

R

w(x)eiux dx = ϕ(u) ·
∞∑

n=0

(
Q̂(u)χ(u)

)n

= ψ(u) for all u ∈ R.
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This together with L-integrability of ψ yields ψ̂ = w.

From the definition of ψ, by L-integrability of ψ̂ we obtain

ϕ̂(t) =
(
(F0 − F ) ∗ ψ̂(−·)

)
(−t),

further by Fubini’s theorem and (5)

∫

R

ϕ̂(t)g(t) dt =

∫

R

∫

R

ψ̂(s+ t) d(F0 − F )(s) g(t) dt

=

∫

R

ψ̂(x)

∫

R

g(x− s) d(F0 − F )(s) dx = 0.

In the second part, we shall show that (6) also holds for each Lipschitz continuous

complex-valued ϕ with compact suppϕ ⊂ [−D,D] for some D ∈ (0,∞) and ϕ(0) = 0. Let

L be a Lipschitz constant of ϕ. Then, if ε > 0 is sufficiently small, ϕ can be decomposed

into a sum ϕε + ρε of two Lipschitz continuous functions satisfying

ϕε(v) =





ϕ(v), if − ε
2
≤ v ≤ ε

2

ϕ(ε− v), if ε
2
< v < ε

ϕ(−ε− v), if − ε < v < − ε
2

0, if |v| ≥ ε

and ρε(v) =





0, if |v| ≤ ε
2

0, if |v| ≥ D.

By the first part

∫

R

ρ̂ε(t)g(t) dt = 0,

and by Lemma 2

|
∫

R

ϕ̂ε(t)g(t) dt| ≤ 3 · (2π)−1/6 sup
t∈R

|g(t)|
(∫

R

|ϕε(v)| dv
)1/3 (

2εL2
)1/3 → 0 (ε→ 0).

This yields (6).

In the third part we shall prove the assertion. Choose any continuity or more generally

Lebesgue points t∗, t∗∗ of g. For h > 0 let ϕ(h, ·) := χ0,he
it∗∗· −χ0,he

it∗·. ϕ(h, ·) is Lipschitz
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continuous with compact support and ϕ(h, 0) = 0. By the second part we have

0 =

∫

R

ϕ̂(h, ·)(t)g(t) dt =

∫

R

χ̂0,h(t− t∗∗)g(t) dt−
∫

R

χ̂0,h(t− t∗)g(t) dt

→ g(t∗∗) − g(t∗) (h→ 0).

As to the limit relation, which is elementary for continuity points t∗, t∗∗, see Wheeden

and Zygmund [16], Ch. 9 with (9.9), (9.11), (9.13) and Exercise 12 for p = ∞. Thus

g(t∗) = g(t∗∗). This shows that g is constant on its continuity set, even on its Lebesgue

set. �

Remark. In the third step of the proof of Lemma 1, instead of χ0,h one can use η0,h

(h > 0) with

η0,h(v) =
1√
2π

e−
v2

2h2 , v ∈ R.

In this case, the second step deals with a two times differentiable compex-valued function ϕ

with |ϕ′′| ≤ L∗ <∞ and ϕ(0) = 0, to be decomposed into a sum ϕε+ρε such that |ϕ′′
ε | ≤ L∗,

ϕε(v) = 0 for ε ≤ |v| ≤ 1
ε
, ρε(v) = 0 for |v| ≤ cε and for |v| ≥ 1

cε
, with suitable c ∈ (0, 1)

depending on ϕ, and ε > 0 sufficiently small. Then one obtains |
∫

R
ϕ̂ε(t)g(t) dt| → 0

(ε→ 0) by ϕ̂′′
ε(t) = −t2ϕε(t), t ∈ R (see Hewitt and Stromberg [11], (21.61)), without use

of Lemma 2.
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