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Abstract

We prove new inequalities of the Lieb-Thirring type on the eigenvalues of Schrödinger operators in

wave guides with local perturbations. The estimates are optimal in the weak-coupling case. To

illustrate their applications, we consider, in particular, a straight strip and a straight circular tube

with either mixed boundary conditions or boundary deformations.

1 Introduction

Recent progress in experimental physics provides various examples of guided particles: electrons in
semiconductor quantum wires or carbon nanotubes, atoms in hollow fibers, etc. Moreover, there is a
close analogy between two-dimensional systems of this type and flat microwave resonators – see [4, 20, 24]
for more details and bibliography. The most simple model of such quantum wave guides is a one-particle
Schrödinger operator in a domain of a strip or tube form subject to various boundary conditions. If no
external field is present, the stationary part of the problem, in particular the search for bound states, is
then reduced to spectral analysis of the Laplace operator in such domains.

Consider the Dirichlet Laplacian on a straight tube R × ω0 with a rather general cross-section ω0 ⊂
Rd−1. The spectrum of this operator is obviously purely absolutely continuous and it covers the interval
[λ1(ω0),∞), where λ1(ω0) is the lowest eigenvalue of the Dirichlet Laplacian on ω0. If this ideal wave
guide is perturbed, for example, by local deformations or by a local change of the boundary conditions,
eigenvalues below the threshold λ0 can appear. The corresponding bound states are sometimes called in
the literature trapped modes; the corresponding electron wave functions are localized in the vicinity of the
perturbation. This effect is well studied and, in particular, the asymptotic behavior of these eigenvalues
for gentle deformations or small perturbations of the boundary conditions has been investigated in several
papers, see e.g. [1, 2, 4, 5, 7, 9] and references therein.

On the other hand, only few quantitative results are known in the non-asymptotic regime. Here one
looks for estimates on the discrete spectrum, such as the counting function [6, 9] of the trapped modes
or their Riesz means [10]. In the last named paper it has been shown that due to the special geometry
of mixed dimensionality of quantum wave guides, operator-valued Lieb-Thirring inequalities represent a
suitable tool to tackle this problem. This was then applied to a straight wave guide with an attractive
potential interaction. In the present work we are going to demonstrate how a similar approach can
yield estimates for the case of locally deformed “quantum wires” or for bound states induced by a local
modification of boundary conditions.

2 Preliminary about Lieb-Thirring inequalities

The aim of this section is to collect an auxiliary material on Lieb-Thirring estimates on L2(Rd), which
shall be of use in the following.

Let G be a separable Hilbert space and let W be a function on Rd which takes almost everywhere
non-negative compact operators on G as its values. We consider eigenvalue moments of the Schrödinger
type operator

H = 1G ⊗ (−∆) − W (x) on G ⊗ L2(Rd) .

Suppose that trGW σ+ d
2 (·) ∈ Lσ+ d

2 (Rd). Then for σ ≥ 1/2 if d = 1, and for σ > 0 if d ≥ 2, the following
estimate holds true1:

trG×L2(Rd) Hσ
− ≤ r(σ, d)Lcl

σ,d

∫

Rd

trG W σ+ d
2 (x)dx , (1)

where

Lcl
σ,d :=

Γ(σ + 1)

2dπd/2Γ(σ + d
2 + 1)

.

1Throughout the paper, we use the notation x± := (|x| ± x)/2 for the positive and negative part of numbers, functions
or self-adjoint operators, respectively.
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Moreover, the constants r(σ, d) in (1) satisfy the inequalities

r(σ, d) = 1 if σ ≥ 3/2, d ∈ N, (2)

r(σ, d) ≤ 2 if 1 ≤ σ < 3/2, d ∈ N, (3)

r(σ, d) ≤ 2 if 1/2 ≤ σ < 1, d = 1, (4)

r(σ, d) ≤ 4 if 1/2 ≤ σ < 1, d ∈ N, d ≥ 2, (5)

see [21, 17, 18, 16]. Usually these inequalities are stated for the scalar operator

Hα = −∆ − αV on L2(Rd) ,

i.e. for G = C, see [23, 3, 22, 27] and [29, 18]; then these bounds give estimates on spectral quantities in
terms of the classical phase space volume.

The generalization (1) to operator-valued potentials has been the crucial step for the recent progress
on the constants in Lieb-Thirring inequalities in higher dimensions. The idea of “lifting” in dimensions,
given in [21], is also the base for the proof of the main result of this paper.

3 Statement of the result

Consider an open set Ω ⊂ Rd. Let (x1, . . . , xd) be the Cartesian coordinates in Rd. For a vector x ∈ Rd

we shall single out the first coordinate and write x = (ξ, η) with η = (x2, . . . , xd) ∈ Rd−1 and ξ = x1 ∈ R.
For a given value of ξ let

ω(ξ) = {η ∈ R
d−1| x = (ξ, η) ∈ Ω }

be the cross-section of Ω at the point ξ which is an open set in R
d−1. We shall assume that the sets

ω(ξ) are uniformly bounded and non-empty for any ξ ∈ R, and that Ω is a straight tube with local
perturbations, that is

ω(ξ) = ω0 for all |ξ| > R .

for some open set ω0 and a positive R. The local deformation of Ω is given by the shape of the cross-
sections ω(ξ).

Consider further a set Γ ⊂ Ω, such that Ω \ Γ is open and that its projection onto the transverse
plane,

PΓ := {η ∈ R
d−1| ∃ξ ∈ R such that x = (ξ, η) ∈ Γ} ,

has zero Lebesgue measure in Rd−1.
Let −∆Ω

Γ be the self-adjoint realization of the Laplace operator on L2(Ω\Γ) with Dirichlet conditions
on ∂Ω \ Γ and Neumann conditions on Γ. This means that the quadratic form

∫

Ω\Γ

|∇u|2ddx

generating the operator −∆Ω
Γ is defined on the closure (with respect to the W 1,2 Sobolev norm) of the

set of all smooth functions in Ω \ Γ, which vanish for large |ξ| and in a vicinity of ∂Ω \ Γ and which are
square integrable together with their first partial derivatives. For a fixed ξ ∈ R we define

γ(ξ) = {η ∈ R
d−1| x = (ξ, η) ∈ Γ} .

As above let −∆ω
γ be the self-adjoint realization of the Laplace operator on ω\γ with Dirichlet conditions

on ∂ω \ γ and Neumann conditions on γ, where ω = ω(ξ) and γ = γ(ξ). Under suitable conditions on γ
the spectrum (or at least the lower portion of it) is discrete2. In this case the corresponding eigenvalues
will be denoted by λj(ω, γ) , j = 1, 2, . . . ; if γ = ∅ we shall simply write λj(ω) instead of λj(ω, ∅). Of

2In general, this is the case unless the set γ is too “wild” – see, e.g., [15, 28].
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particular importance is the “asymptotic” quantity λ1(ω0) with ω0 from eq. (3). We will suppose that
the functions ξ 7→ λj(ω(ξ), γ(ξ)) are measurable3, or at least that this property is valid below λ1(ω0).

Assume now that the spectrum of −∆Ω
Γ below λ1(ω0) is discrete. In general it may be empty, of

course; we are interested in situations when it is not. Then the corresponding eigenvalues will be called
Λj(Ω, Γ) , j = 1, 2, . . . , and in case of Γ = ∅ we write Λj(Ω) instead of Λj(Ω, ∅). In particular, if there
is only one such eigenvalue we drop the index j. It is convenient to define the “shifted” operator

H := −∆Ω
Γ − λ1(ω0)

on L2(Ω \ Γ), the essential spectrum of which is by assumption and an elementary bracketing argument
equal to

σess(H) = [0,∞) ,

while the perturbation can give rise to bound states of negative energy. The following estimate on the
moments of these negative eigenvalues is the main result of this paper:

Theorem 1 Suppose that the spectrum of the operators −∆ω
γ with ω = ω(ξ) and γ = γ(ξ) below λ1(ω0)

is discrete and finite for almost all ξ ∈ R, the eigenvalues are measurable w.r.t. ξ, and that

IΩ,Γ,σ :=

∫

R

tr
(

−∆
ω(ξ)
γ(ξ) − λ1(ω0)

)σ+1/2

−
dξ =

∫

R

∑

j

(

λj(ω(ξ), γ(ξ)) − λ1(ω0)
)σ+1/2

−
dξ

is finite for σ ≥ 1/2. Then the negative spectrum of H is discrete and the inequality

tr Hσ
− ≤ r(σ, 1) Lcl

σ,1IΩ,Γ,σ (6)

holds true.

We will prove Theorem 1 in Sec. 6. Before doing that we notice that it applies to a variety of particular
cases, a selection of which is given in the following section.

4 Examples

4.1 Strip with a Neumann perturbation

Let Ω = R × (0, 1) be a planar strip and Γ = [0, α] × {b} with α > 0 and 1
2 < b ≤ 1 a line segment

in the interior or on the boundary of Ω, away of the strip axis. Then the cross-section of the strip is
ω(ξ) = ω0 = (0, 1) while the cross-section of Γ is γ(ξ) = {b} for ξ ∈ [0, α] and γ(ξ) = ∅ otherwise.

The spectrum of the Laplacian −∆
ω(ξ)
γ(ξ) can be determined easily as its eigenfunctions are simple sine

functions. The lowest eigenvalue of −∆ω0

∅ is λ1(ω0) = π2, which is therefore also the lower edge of the

essential spectrum of −∆Ω
Γ . For ξ ∈ [0, α], the operator ∆

ω(ξ)
γ(ξ) has a single eigenvalue π2

4b2 below π2.

Combining this information with (6) we obtain:

Corollary 1 For H = −∆Ω
Γ − π2 and σ ≥ 1/2 the following inequality is valid,

tr Hσ
− ≤ r(σ, 1) Lcl

σ,1 α

(

π2 −
π2

4b2

)σ+1/2

. (7)

The result remains valid, of course, for b = 1
2 when it becomes trivial.

3This requirement imposes again a restriction on the geometry of Ω and Γ. For instance, in the pure Dirichlet case,
Γ = ∅, this property is guaranteed provided that, apart of a discrete subset of [−R,R], to each ξ and ε > 0 there is an
open set O 3 ξ such that for any ξ′ ∈ O the symmetric difference ω(ξ)∆ω(ξ′) is contained in the ε-neighborhood of the
boundary ∂ω(ξ), because the eigenvalues are in this case piecewise continuous as functions of ξ – cf. [26].
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4.2 Strip with bulges

Suppose now that Γ = ∅ and Ωf = {(ξ, η) ∈ R2| 0 < η < 1 + f(ξ)} with a piecewise continuous and
compactly supported function f such that 0 ≤ f(ξ) < 1. Then we get in a similar way as above the
following bound:

Corollary 2 For H = −∆Ωf − π2 and σ ≥ 1/2 we have

tr Hσ
− ≤ r(σ, 1) Lcl

σ,1 π2σ+1

∞
∫

−∞

(

1 −
1

(1 + f(ξ))2

)σ+1/2

dξ .

Note that the assumption f(ξ) < 1 is made here only for simplicity; it ensures that −∆ω(ξ) has not
more that one eigenvalue below π2. It is straightforward to generalize the claim to a more general profile

function replacing the integrand by
∑∞

j=1

(

1− j2(1 + f(ξ))−2
)σ+1/2

+
, where the sum has, of course, only

a finite number of nonzero terms for any fixed ξ.

4.3 Circular tube with bulges

As another particular case let us consider a tube in R
3 with Dirichlet boundary which is circular outside

a compact and has local bulges. The spectrum of the Laplace operator on a circular disk with unit
radius is well known: it is purely discrete and expressed in terms of Bessel function zeros, in particular,
the lowest eigenvalue is j2

0,1, where j0,1 is the first positive root of the function J0. It is also known that
among all domains of the same area, the first eigenvalue is minimized by the circular disk; this fact is
expressed in the well-known Rayleigh-Faber-Krahn inequality [11, 19]

λ1(ω) ≥
πj2

0,1

A(ω)
, (8)

where A(ω) is the area of the domain ω and λ1(ω) = inf σ
(

− ∆ω
)

.
We are again interested primarily in the situation when the bulge is not too big. Notice that the

second eigenvalue λ2(ω) can also be estimated with the help of (8): since −∆ω commutes with the
involution defined by complex conjugation, the eigenfunction Ψω

2 corresponding to λ2(ω) can be chosen
as real-valued; it vanishes on a smooth nodal line without endpoints in (the interior of) the cross section4.
It follows that this curve divides ω into two parts, one of which must cover an area not exceeding A(ω)/2;
we call this part ω̃. Then Ψ2(ω) restricted to ω̃ is also the ground-state eigenfunction of the Dirichlet
Laplacian −∆ω̃, thus eq. (8) yields5

λ2(ω) ≥
πj2

0,1

A(ω̃)
≥

2πj2
0,1

A(ω)
.

Consequently6, if A(ω) ≤ 2π then λ2(ω) ≥ j2
0,1 so that λ1(ω) is the only eigenvalue which could be below

j2
0,1. It is indeed the case in the bulged part of the tube where ω \ω0 has a nonzero measure as it follows

from the domain monotonicity of Dirichlet eigenvalues [13]. From the above remarks and Theorem 1 we
make the following conclusion:

4The shape of this nodal line depends on the cross section geometry. If ω is simply connected the endpoints lie at the
boundary, while for a non-simply connected ω it may be also a closed loop which does not touch the boundary [14, 12].

5The conclusion is not affected by the fact that ω \ ω̃ may have a larger area because the ground-state eigenvalue in the
two parts must be the same, of course.

6In particular cases one can do better. For instance, if the bulged tube is circular again, being described by a radius
function r, then there is a single transverse eigenvalue below the threshold as long as r(ξ) ≤ j1,1/j0,1 ≈ 1.5933 which
means A(ω) . 2.5387 π.
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Corollary 3 Define Ω as in Sec. 3 with ω0 being a circular disk of unit radius and Γ = ∅ and ω(ξ) ⊃ ω0

for all ξ ∈ R. Moreover, suppose that the area A(ω(ξ)) of ω(ξ) satisfies A(ω(ξ)) ≤ 2π. Then for

H = −∆Ω − j2
0,1 and σ ≥ 1/2 the inequality

tr Hσ
− ≤ r(σ, 1) Lcl

σ,1 j2σ+1
0,1

∞
∫

−∞

dξ

(

1 −
π

A(ω(ξ))

)σ+1/2

holds true.

5 Discussion of the results

Let us next compare the obtained results with those of earlier publications.

5.1 Strip with a small bulge

Consider the set Ωαf defined as in Corollary 2 with the function f replaced by αf to have a parameter
which controls the deformation. For the sake of brevity we denote

Fn :=

∫ ∞

−∞

f(x)n dx .

It is known from [2] that for a sufficiently smooth f and small α the operator −∆Ωαf has exactly one
eigenvalue below π2 and its asymptotic behavior is

Λ(Ωαf ) = π2 − π4F 2
1 α2 + O(α3) .

Expanding the estimate of Corollary 2 into powers of α, substituting π2−Λ(Ωαf ) for tr H− and choosing
σ = 1

2 , we obtain

Λ(Ωαf ) ≥ π2 − π4F 2
1 α2 + 3π4F1 F2 α3 −

(

9

4
F 2

2 + 4F1F3

)

π4α4 + O(α5) ,

which means that our Lieb-Thirring inequality reproduces the true weak-coupling asymptotics in this
case.

5.2 Strip with Neumann perturbation on the boundary

The last claim need not be valid in general. Consider the set Ω of Corollary 1 with the perturbation at
the boundary, i.e. take Γα = [0, α]×{1} with some α > 0. Then by [6] the operator −∆Ω

Γα
has for small

enough α exactly one eigenvalue below π2. Choosing σ = 1
2 , Corollary 1 yields

Λ(Ω, Γα) ≥ π2 −
9

16
π4α2.

On the other hand it is known from [7] that for small α there are positive c1, c2 such that7

π2 − c1α
4 ≤ Λ(Ω, Γα) ≤ π2 − c2α

4

holds, and consequently, our Lieb-Thirring inequality gives a too rough weak-coupling estimate in this
case.

On the other hand, the estimate is of a correct order in α in the strong coupling case, i.e. for large
α. To justify this claim, recall a simple bracketing bound used in [6]. The spectrum is estimated from

7In fact, the eigenvalue has a Taylor expansion in α and the coefficient of the leading fourth-order term can be computed
explicitly – see [25] and also [1].

9



above by means of adding extra Dirichlet conditions at ξ = 0, a which yield the following orthogonal
family of functions,

Ψn(ξ, η) :=

{

cos π
2 η sin nπ

α ξ for ξ ∈ [0, α] ,
0 for ξ /∈ [0, α] .

This leads to a lower bound on tr Hσ
−, namely

trHσ
− ≥

∞
∑

n=1

(

π2

4
+

n2π2

α2
− π2

)σ

−

= π2σ

(

3

4

)σ+1/2

α

∞
∫

0

(s2 − 1)σ
− ds + o(α)

= Lcl
σ,1α

(

3π2

4

)σ+1/2

+ o(α) .

In a similar way Neumann bracketing provides an upper bound on tr Hσ
− which differs from the lower

one only by the summation range which now starts from n = 0, and hence gives the same expression
up to the error term. A comparison with eq. (7) for b = 1 shows that our estimate exhibits the correct
power of α, the only difference being the factor r(σ, 1) – cf. the relations (2)–(5).

5.3 General considerations

In the paper [10] a similar formula has been derived to estimate the moments of the binding energies in
a straight wave guide with an attractive potential. The estimating expression differs from the r.h.s. of
eq. (6): it consists of two terms reflecting the mixed dimensionality of the problem. One term describes
the effect of a weak potential where the dominating behavior of the eigenfunctions is one-dimensional.
The second one is important in the case of a strongly attractive potential where the influence of the
boundary and the “leads” on the wave functions of the trapped particle in the lower part of the spectrum
is negligible and the problem is essentially d-dimensional.

In the present work we have worked out estimates consisting of one term only, having on mind in
the first place systems which have no more than one transverse eigenvalue below the threshold λ1(ω0).
This can still yield a good estimate if the perturbation is rather “long” than “wide” as the previous
example illustrates. Moreover, spectra of wave guides with large deformations can be well estimated by
combination of bracketing and standard phase-space methods.

Our result exhibits the usual Lieb-Thirring features in the sense that it neglects repulsive components
of the interaction, and the bound may become useless if the latter dominate. Consider, for instance, a
deformed circular tube of Sec. 4.3 and suppose that the deformation is both squeezing and expanding
the cross section. If the cross section in the deformed part deviates substantially from the circular shape,
it may happen that the discrete spectrum is empty even if the deformation adds volume to Ω and the
r.h.s. of the inequality in Corollary 3 is nonzero.

For sake of simplicity we have limited our considerations to wave guides which differ from a straight
tube on a compact only. Some generalizations would not be difficult to derive. For example, the basic
estimate (6) of Theorem 1 will also hold true for a wave guide the straight parts of which on both sides
of the local perturbation are parallel but not in line with each other. In a similar way it is possible to
generalize Theorem 1 to certain perturbations that are not compactly supported but still local in the
sense that they fall off asymptotically fast enough. On the other hand, for instance, it is not possible to
extend our results in a straightforward manner to the case of Neumann boundary conditions on a surface
which is not parallel to the tube axis; the reason will become clear from the proof of Theorem 1 which
we are now finally going to present.
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6 Proof of Theorem 1

As usual the (shifted) Laplace operator on L2(Ω) is associated with the closed quadratic form

h[Ψ, Ψ] =

∫

Ω

(

|∇Ψ|2 − λ1(ω0)|Ψ|2
)

dx , (9)

where the boundary conditions are implemented by a proper choice of the domain Q(h) of the form h.
In our case, when we deal with H = −∆Ω

Γ − λ1(ω0), the form domain Q(h) is given by the | · |h-closure8

of the set M(Ω, Γ) of all functions Ψ ∈ C∞(Ω \ Γ), which vanish in the vicinity of ∂Ω \ Γ as well as for
sufficiently large |ξ|, and for which the expression (9) is finite9.

Now we define the smallest common envelope of the cross sections, which is bounded by assumption,
and the corresponding cylindrical envelope of the tube by

ω̂ :=
⋃

ξ∈R

ω(ξ) and Ω̂ := R × ω̂ ,

so we have Ω ⊂ Ω̂. Consider the quadratic form on L2(Ω̂) given by

ĥ[Ψ, Ψ] :=

∫

Ω

(

|∇Ψ|2 − λ1(ω0)|Ψ|2
)

dx +

∫

Ω̂\Ω

∣

∣

∣

∣

∂Ψ

∂ξ

∣

∣

∣

∣

2

dx (10)

with the form domain Q(ĥ) equal to the | · |ĥ-closure of the set M̂(Ω, Γ) of all functions Ψ ∈ L2(Ω̂) for

which Ψ|Ω ∈ M(Ω, Γ) holds and the restriction Ψ|Ω̂\Ω is smooth and vanishes near ∂Ω and ∂Ω̂. Then

Q(ĥ) = Q(h)⊕ĥ Y where the set Y ⊂ L2(Ω̂ \Ω) consists of all functions φ which are differentiable in the

sense if distributions in the ξ-direction and satisfy ∂φ
∂ξ ∈ L2(Ω̂ \ Ω).

The closed quadratic form ĥ is associated with the self-adjoint operator

Ĥ = H ⊕

(

−
∂2

∂ξ2

)

on L2(Ω̂) = L2(Ω) ⊕ L2(Ω̂ \ Ω),

which is the direct sum of our original operator H on L2(Ω) and the differential operator − ∂2

∂ξ2 on

L2(Ω̂ \ Ω) with Dirichlet condition on the part of ∂Ω which is not parallel to ∂Ω̂. The last named
operator is positive by definition, and therefore Ĥ and H have the same negative spectrum.

We can write the form ĥ as a sum of parallel and transverse components,

ĥ[Ψ, Ψ] =

∫

R

dξ

(

∫

ω̂

dη

∣

∣

∣

∣

∂Ψ

∂ξ

∣

∣

∣

∣

2

+ w(ξ)[Ψ(ξ, ·), Ψ(ξ, ·)]

)

,

with the second term defined through the quadratic form

w(ξ)[φ, φ] :=

∫

ω(ξ)

dη
[

|∇ηφ(η)|2 − λ1(ω0)|φ(η)|2
]

.

The domain of w(ξ) can be chosen as

Q(w(ξ)) := {φ ∈ L2(ω̂) : φ|ω(ξ) ∈ Q(h(ξ))},

where Q(h(ξ)) is the domain of the quadratic form h(ξ)[φ, φ] =
∫

ω(ξ) |∇ηφ|2dη associated with −∆
ω(ξ)
γ(ξ)

on L2(ω(ξ)). Indeed, with such a domain choice we have Ψ(ξ, ·) ∈ Q(w(ξ)) for any Ψ ∈ Q(ĥ) and almost
every ξ ∈ R.

8Here and in the following we use the symbol | · |h for the slightly modified Sobolev norm defined by | · |2
h

= h[·, ·] +
(λ1(ω0) + 1)|| · ||2.

9In particular, such functions can have a “jump” on Γ ∩ Ω.
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It is straightforward to check that the form w(ξ) is closed and associated with the operator

W (ξ) =
[

−∆
ω(ξ)
γ(ξ) − λ1(ω0)

]

⊕ 0ω̂\ω(ξ) ,

where 0ω̂\ω(ξ) is, of course, the zero operator on L2(ω̂ \ ω(ξ)). It follows from the assumptions of
Theorem 1 that the negative spectrum of W (ξ) consists of at most finitely many negative eigenvalues.
Let W−(ξ) be the negative part of the operator W (ξ). Then W−(ξ) is an operator of finite rank on
L2(ω̂), and consequently, its quadratic form w−(ξ) is defined on Q(w−(ξ)) = L2(ω̂).

Next we introduce the quadratic form

h̃[Ψ, Ψ] :=

∫

R

(

∫

ω̂

∣

∣

∣

∣

∂Ψ

∂ξ

∣

∣

∣

∣

2

dη − w−(ξ)[Ψ(ξ, ·), Ψ(ξ, ·)]

)

dξ ,

defined on the | · |h̃-closure of the set of all smooth functions in L2(Ω̂). Making the closure explicit, we

find that Q(h̃) consists of all functions Ψ ∈ L2(Ω̂) for which the following conditions hold true:

(a) for a.e. η ∈ ω̂ the function Ψ(·, η) is differentiable in the sense of distributions in ξ-direction on R

and ∂Ψ
∂ξ ∈ L2(Ω̂),

(b) for a.e. η ∈ ω̂ the function Ψ(·, η) satisfies the Dirichlet condition in the ξ-direction at points of
∂Ω \ Γ.

Because the projection of the set Γ onto the η-coordinate plane has by assumption zero measure, the
functions Ψ(·, η) : R → C given by some Ψ ∈ M̂(Ω, Γ) are smooth in ξ-direction for a.e. η ∈ ω̂ and vanish

at ∂Ω \ Γ. Hence Q(h̃) contains the subset M̂(Ω, Γ) which is a core10 in the form domain of ĥ. Since

ĥ[Ψ, Ψ] ≥ h̃[Ψ, Ψ] holds for all Ψ ∈ M̂(Ω, Γ) and the norms | · |ĥ and | · |h̃ are topologically compatible,

it follows that Q(h̃) ⊃ Q(ĥ). From this we infer that the inequality ĥ ≥ h̃ is valid. This further means
that the operator

H̃ = −∆R ⊗ 1L2(ω̂) − W−(ξ), ξ ∈ R,

associated with h̃ is strictly bounded by that related to ĥ, i.e.

H̃ < Ĥ . (11)

Now we are in position to apply the operator-valued Lieb-Thirring inequalities (1) for d = 1 and σ ≥ 1/2.
In view of (11) and the observed fact that spectra of H and Ĥ coincide in the negative part we get

tr Hσ
− = tr Ĥσ

−

≤ tr H̃σ
−

≤ r(σ, 1)Lcl
σ,1

∫

R

dξ tr W
σ+1/2
−

= r(σ, 1)Lcl
σ,1

∫

R

dξ tr
(

−∆
ω(ξ)
γ(ξ) − λ1(ω0)

)σ+1/2

−
;

this completes the proof of Theorem 1.

Acknowledgments

The research has been partially supported by Royal Swedish Academy of Sciences and Academy of
Sciences of the Czech Republic within the exchange program “Bound states and Resonances in Quantum
Systems and Wave Guides” and by ASCR within the project K1010104. The authors acknowledge
support by the ESF program SPECT.

10The functions Ψ ∈ M̂(Ω, Γ) can have a jump at Γ only in η-direction.

12



References

[1] D. Borisov, P. Exner, R. Gadyl’shin: Geometric coupling thresholds in a two-dimensional strip, J.
Math. Phys. 43 (2002), 6265-6278

[2] W. Bulla, F. Gesztesy, W. Renger, B. Simon: Weakly coupled bound states in qantum waveguides,
Proc. Amer. Math. Soc. 125, no. 5 (1997), 1487-1495

[3] M. Cwikel: Weak type estimates for singular values and the number of bound states of Schrödinger

operators, Trans. AMS 224 (1977), 93-100

[4] P. Duclos P, P. Exner: Curvature-induced bound states in quantum waveguides in two and three

dimensions, Rev. Math. Phys. 7, no. 1 (1995), 73-102
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