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Stuttgart

Fachbereich
Mathematik

Hill’s potentials
in weighted Sobolev spaces

and their spectral gaps
Jürgen Pöschel
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Hill’s Potentials in
Weighted Sobolev Spaces and their
Spectral Gaps

Jürgen Pöschel

1 Results

In this paper we consider the Schrödinger operator

L = −
d2

dx2
+ q

on the interval[0,1], depending on anL2-potentialq and endowed with periodic or
anti-periodic boundary conditions. In this case,L is also known asHill’s operator.
Its spectrum is pure point, and for realq consists of an unbounded sequence of real
periodic eigenvalues

λ+

0 (q) < λ−

1 (q) ≤ λ+

1 (q) < · · · < λ−
n (q) ≤ λ+

n (q) < · · · .

Their asymptotic behaviour is

λ±
n = n2π2

+ [q] + `2(n),

where[q] denotes the mean value ofq. Equality may occur in every place with a
‘ ≤’-sign, and one speaks of thegap lengths

γn(q) = λ+
n (q)− λ−

n (q), n ≥ 1,

of the potentialq. If a gap length is zero, one speaks of acollapsed gap, otherwise
of anopen gap.



2 Section 1: Results

We recall that the gaps separate thespectral bands

Bn =
[
λ+

n−1, λ
−
n

]
, n ≥ 1,

which are dynamically characterized as the locus of those realλ, for which all solu-
tions of L f = λ f are bounded. In other words, for anyλ in the interior of an open
gap as well as for allλ < λ+

0 , any nontrivial solution ofL f = λ f is unbounded.
For complexq, the periodic eigenvalues are still well defined, but in general

not real, sinceL is no longer self-adjoint. Their asymptotic behaviour is the same,
however, and we may order them lexicographically – first by their real part, then by
their imaginary part – so that

λ0(q) ≺ λ−

1 (q) 4 λ+

1 (q) ≺ · · · ≺ λ−
n (q) 4 λ+

n (q) ≺ · · · .

The gap lengths are then defined as before, but may now be complex valued. They
are also no longer characterized dynamically.

We are interested in the relationship between the regularity of a potential and
the sequence of its gap lengths. Marčenko & Ostrowsk̆“ [12] showed that

q ∈ Hk(S1,R) ⇔

∑
n≥1

n2kγ 2
n (q) < ∞

for all nonnegative integersk, while Hochstadt [9] even earlier observed that

q ∈ C∞(S1,R) ⇔ γn(q) = O(n−k) for all k ≥ 0.

Trubowitz [15] then proved that

q ∈ Cω(S1,R) ⇔ γn(q) = O(e−an) for somea > 0.

Later, due to the realization of the periodic KdV flow as an isospectral deformation
of Hill’s operator, other regularity classes such as Gevrey functions were also taken
into account, as well as non-real potentials. Recent results in this direction are for
example due to Sansuc & Tkachenko [13], Kappeler & Mityagin [10, 11] and Djakov
& Mityagin [2, 3]. All this shows that within certain limits, one may think of the gap
lengths as another kind of Fourier coefficients of the potential.

It is the purpose of this paper to further extend these results and to give a
new, short, self-contained proof that applies simultaneously to all cases. This proof
does not employ any conformal mappings, trace formula, asymptotic expansions,
iterative arguments, or other convolutions. Instead, the essential ingredient is the
inverse function theorem.
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To set the stage, we introduceweighted Sobolev spacesHw as follows [10, 11].
A normalized weightis a functionw : Z → R with

wn = w−n ≥ 1

for all n, and the class of all such weights is denoted byW . Thew-norm‖q‖w of a
complex 1-periodic functionq =

∑
n∈Z qne2nπi x is then defined through

‖q‖
2
w =

∑
n∈Z

w2
n|qn|

2,

and

Hw
= {q ∈ L2(S1,C) : ‖q‖w < ∞}

is the Banach space of all such functions with finitew-norm. Note that

Ho def
=

⋃
w∈W

Hw
= L2(S1,C),

since all weights are assumed to be at least 1.
Here are some examples of relevant weights. The trivial weightswn = 1 give

rise to the underlying Banach spaceHo = L2(S1). Letting 〈n〉 = 1+|n| andr ≥ 0,
a ≥ 0, the polynomial weights

wn = 〈n〉
r

give rise to the usual Sobolev spacesH r (S1), and the exponential weights

wn = 〈n〉
r ea|n|

give rise to spacesH r,a(S1) of functions in L2(S1), that are analytic on the strip
|Im z| < a/2π with traces inH r (S1) on the boundary lines. In between are, among
others, the subexponential weights

wn = 〈n〉
r ea|n|

σ

, 0< σ < 1,

giving rise to Gevrey spacesH r,a,σ (S1), and weights of the form

wn = 〈n〉
r exp

( a|n|

1 + logα〈n〉

)
, α > 0.

More examples are given below.
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For the most part we will be concerned with the subclassM ⊂ W of weights
that are alsosubmultiplicative. That is,

wn+m ≤ wnwm

for all n andm. This implies in particular thatwn ≤ wn
1 for all n ≥ 1, so submulti-

plicative weights can not grow faster than exponentially. All the weights given above
are submultiplicative, and

Hω def
=

⋂
w∈M

Hw

is the space of all entire functions of period 1. It turns out that only in the submulti-
plicative case, and more precisely in the subexponential case, there is a one-to-one
relationship between the decay rates of Fourier coefficients and spectral gap lengths.

We begin by considering the forward problem of controlling the gap lengths of
a potential in terms of its regularity, first for submultiplicative weights – see [11].

Theorem 1 If q ∈ Hw with w ∈ M, then

∑
n≥N

w2
n|γn(q)|2 ≤ 9‖TNq‖

2
w +

576

N
‖q‖

4
w

for all N ≥ 4‖q‖w , where TNq =
∑

|n|≥N qne2nπi x .

We note in passing that finite gap potentials are dense inHw for w ∈ M.
More specifically, we callq anN-gap potential, if γn(q) = 0 for all n > N . But we
do not insist, that the firstN gaps are all open.

Theorem 2 The union of N-gap potentials is dense inHw for w ∈ M.

We now turn to the converse problem of recovering the regularity of a potential
from the asymptotic behaviour of its gap lengths. Here the situation is not as clear
cut as for the forward problem. Gasymov [5] observed thatany L2-potential of the
form

q =

∑
n≥1

qne2nπi x
=

∑
n≥1

qnzn
∣∣∣
z=e2πi x

is a 0-gap potential. In the complex case, the gap sequence therefore need not contain
any information about the regularity of the potential. But even in the real case the
situation is not completely straightforward, as there are finite gap potentials, that are
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not entire functions, but have poles. Thus, although in this caseγn ∼ e−an for any
a > 0, we haveqn ∼ e−αn only for someα > 0.

To obtain a true converse to Theorem 1 we need to excludeexponentialweights,
that is, submultiplicative weightsw with

lim inf
n→∞

logw(n)

n
> 0.

We call a weightstrictly subexponential, if

logw(n)

n
→ 0 as n → ∞

in an eventuallymonotonemanner, whilew(n) itself is assumed to be nondecreasing
for n ≥ 0. – The following theorem extends results of [2].

Theorem 3 Suppose q∈ Ho is real, and its gap lengths satisfy∑
n≥1

w2
n|γn(q)|2 < ∞.

If w is strictly subexponential, then q∈ Hw . On the other hand, ifw is exponential,
then q is real analytic.

This theorem does not extend to complex potentials because of Gasymov’s
observation. But Sansuc & Tkachenko [13] noted that the situation can be remedied
by taking into account additional spectral data. In particular, they considered the
quantities

δn = µn − τn,

whereµn denotes the Dirichlet eigenvalues of a potential andτn = (λ+
n +λ−

n )/2 the
mid-points of its spectral gaps.

More generally, one may consider a family of continuously differentiablealter-
nate gap lengthsδn : Ho → C, characterized by the properties that

– δn vanishes wheneverλ+
n = λ−

n has also geometric multiplicity 2, and
– there are real numbersξn such that its gradients satisfy

dδn = tn + O(1/n), tn = cos 2nπ(x + ξn),

uniformly on bounded subsets ofHo. That is,‖dqδn − tn‖o ≤ Cδ(‖q‖o)/n with Cδ
depending only on‖q‖o := ‖q‖Ho .



6 Section 1: Results

For example, letσn denote the eigenvalues of the operatorL with symmetric
Sturm-Liouville boundary conditions

y cosα + y′ sinα = 0 on ∂[0,1].

Dirichlet and Neumann boundary conditions correspond to the choicesα = 0 and
α = π/2, respectively. Thenσn ∈ [λ−

n , λ
+
n ] in the real case, andδn = σn − τn are

alternate gap lengths. – The following theorem extends results of [3, 13].

Theorem 4 Let δn be a family of alternate gap lengths onHo.
(i) If q ∈ Hw with w ∈ M, then

∑
n≥N

w2
n|δn(q)|

2
≤ 4‖TNq‖

2
w +

256

N
‖q‖

4
w

for all N sufficiently large, where TNq =
∑

|n|≥N qne2nπi x .
(ii) Conversely, suppose q∈ Ho and∑

n≥1

w2
n(|γn(q)| + |δn(q)|)2 < ∞.

If w is strictly subexponential, then q∈ Hw . On the other hand, ifw is exponential,
then q is analytic.

One may considerλ−
n , τn + δn, λ

+
n as the vertices of aspectral triangle1n ,

and

Γn(q) = |γn(q)| + |δn(q)|

as a measure of its size, which takes the role ofγn in the complex case. We then
have the following consequence of Theorems 1 and 4.

Theorem 5 If w is strictly subexponential, then

q ∈ Hw
⇔

∑
n≥1

w2
nΓ

2
n (q) < ∞,

whereΓn denotes the size of the n-th spectral triangle defined by the gap lengthsγn

and some alternate gap lengthsδn .

We briefly look at the case of weights growing faster than exponentially, thus
characterizing classes of entire functions. One can expect the gap lengths to decay
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faster than exponentially, too, albeit not at the same rate. We note a general result to
this effect forstrictly superexponentialweights, that is, weightsw with

lim
n→∞

logw(n)

n
= ∞.

We only consider the gap lengthsγn . The result for alternate gap lengthsδn is exactly
the same, only the lower bound forn has to be augmented. See also [4].

Theorem 6 If q ∈ Hw with a strictly superexponential weightw ∈ W , then

|γn(q)| ≤ 2n exp(−nψ(ñ)), ñ =
n

4‖q‖w

,

for all n ≥ 4‖q‖w , whereψ(r ) = min
m≥1

logrw(m)

m
.

For instance, forwn = exp(|n|
σ ) with σ > 1 one has

ψ(ñ) = cσ log1−1/σ ñ

with cσ = σ/(σ − 1)1−1/σ . Djakov & Mityagin [4] construct an example show-
ing that as far as the order inn is concerned, the resulting gap estimate can not be
improved.

We point out that the preceding theorem is not optimal for trigonometric poly-
nomials. Consider for example the Mathieu potential

q = µ cos 2πx, µ > 0.

Using the just mentioned weight, we have‖q‖w = cµ/4 with a certain constantc
for all σ > 1, and lettingσ tend to infinity we obtain

γn(q) ≤ 2n exp
(
−n log

n

cµ

)
= 2n

(cµ

n

)n
.

But Harrell [8] and Avron & Simon [1] found the better exact asymptotics

γn(q) = 8π2
( µ

8π2

)n 1

(n − 1)!2

(
1 + O(n−2)

)
,

This result was later extended by Grigis [7] to more general real trigonometric poly-
nomials, and to their spectral triangles by Djakov & Mityagin [4]. These better
estimates are obtained by directly evaluating an explicit representation of some coef-
ficient – see the end of section 5. This approach is different from the one taking in
this paper and will not be reproduced here.
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Acknowledgement.A crucial ingredient of this paper – section 8 – was con-
ceived during a visit to Zurich, and the author is very grateful to Thomas Kappeler
and the Department of Mathematics at the University of Zurich for their hospitality.

2 Outline

The idea of the proof of Theorem 1 is due to Kappeler & Mityagin [11]. They
employ a Lyapunov-Schmidt reduction, calledFourier block decomposition.

The aim is to determine thoseλ nearn2π2 with n sufficiently large, for which
the equation−y′′ + qy = λy admits a nontrivial 2-periodic solutionf . As q can be
considered small for largen, one can expect its dominant modes to be e±nπi x . So
it makes sense to separate these modes from the other ones by a Lyapunov-Schmidt
reduction.

To this end we consider a Banach spaceBw of 2-periodicfunctions, and write

Bw
= Pn ⊕ Qn

= span{ek : |k| = n} ⊕ span{ek : |k| 6= n},

whereek = ekπi x . The pertinent projections are denoted byPn andQn , respectively.
Then we write− f ′′ + q f = λ f in the form

Aλ f
def
= f ′′

+ λ f = V f,

whereV denotes the operator of multiplication withq. With

f = u + v = Pn f + Qn f,

this equation decomposes into the two equations

Aλu = PnV(u + v),

Aλv = QnV(u + v),

strangely called theP- andQ-equation, respectively.
We first solve theQ-equation by writingv as a function ofu. This will reduce

the P-equation to a two-dimensional equation with a 2× 2 coefficient matrixSn ,
which is singular precisely whenλ is a periodic eigenvalue. The coefficients ofSn

then provide all the data to prove Theorem 1, essentially as in [11].
To go beyond Theorem 1 – and this is the new ingredient – we regard these

coefficents as analytic functions of their potential inHo, and employ them to define,
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on any bounded ball inHo, a near identity diffeomorphism8 that introduces Fourier
coefficients adapted to spectral gaps and preserves the regularity of potentials. That
is, p = 8(q) is in Hw if and only if q is in Hw – which will arise as an immediate
consequence of the inverse function theorem.

Establishing the regularity of a potentialq then amounts to showing that8(q)
is in Hw . In the real case, this involves a geometric argument using the gap length
asymptotics and a trick to temper the resultingw-norms. In the complex case, al-
ternate gap lengths are needed in those cases where the coefficient matrixSn is not
close to a hermitean matrix to obtain the same conclusion.

3 Preparation

Given a weightw, we introduce the Banach space

Bw
=

{
u =

∑
m∈Z

umem : ‖u‖w < ∞

}
of complex functions ofperiod 2and finite‖·‖w -norm,

‖u‖
2
w =

∑
m∈Z

w2
m/2|um|

2.

We assume for simplicity, and without noticable loss of generality, that the weights
are also defined onZ/2 and have the same properties. Obviously,Bw is an extension
of Hw . On Bw we consider operator norms that are defined in terms ofshiftedw-
norms

‖u‖w;i = ‖uei ‖w.

Finally, let

Un =
{
λ ∈ C :

∣∣Reλ− n2π2
∣∣ ≤ 12n

}
.

Lemma 1 If q ∈ Hw with w ∈ M, then for n≥ 1 andλ ∈ Un ,

Tn = VA−1
λ Qn

is a bounded linear operator onBw with norm

‖Tn‖w;i ≤
2

n
‖q‖w

for all i ∈ Z.
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Proof. We haveAλem = (λ − m2π2)em for all m, and for |m| 6= n, one
checks that

min
λ∈Un

∣∣λ− m2π2
∣∣ ≥

∣∣n2
− m2

∣∣ > 0.

Therefore, the restriction ofAλ to the range ofQn is boundedly invertible for all
λ ∈ Un , and for f =

∑
m∈Z fmem,

g = A−1
λ Qn f =

∑
|m|6=n

fm
λ− m2π2

em

is well defined. For the weightedL1-norm‖g‖w,1 =
∑

m∈Zwm/2|gm| of g we then
obtain, with the help of Hölder’s inequality and the preceding two lines,

‖gei ‖w,1 ≤

∑
|m|6=n

w(m+i )/2| fm|∣∣n2 − m2
∣∣

≤ ‖ f ‖w;i

( ∑
|m|6=n

1∣∣m2 − n2
∣∣2

)1/2

.

With ∑
|m|6=n

1∣∣m2 − n2
∣∣2 ≤

2

n2

∑
m≥1

1

m2
≤

4

n2
,

we thus have‖gei ‖w,1 ≤ 2‖ f ‖w;i /n. Finally, with q =
∑

m∈Z umem,

(V g)ei =

∑
m∈Z

em+i

∑
l∈Z

um−l gl =

∑
m∈Z

em

∑
l∈Z

um−l gl−i = V(gei )

and thus(Tn f )ei = (V g)ei = V(gei ). Standard estimates for the convolution of
two sequences and the submultiplicity of the weights then give

‖Tn f ‖w;i = ‖V(gei )‖w ≤ ‖V‖w‖gei ‖w,1 ≤
2

n
‖q‖w‖ f ‖w;i .

This holds for anyf ∈ Bw and anyi ∈ Z, so the claim follows.

Thus, if n ≥ 4‖q‖w andw ∈ M, thenTn is a 1
2-contraction onBw in partic-

ular with respect to the shifted norms‖·‖w;±n . It is this property that we actually
need in section 5 to bound then-th gap lengths from above.
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4 Reduction

Multiplying the Q-equation from the left withVA−1
λ we obtain

Vv = TnV u + TnVv.

If Tn is a contraction onBw , then this equation has a unique solution, namely

Vv = T̂nTnV u, T̂n = (I − Tn)
−1.

Inserted into theP-equation this gives

Aλu = PnV u + PnT̂nTnV u = PnT̂nV u.

So theP- andQ-equation reduce to

Snu = 0, Sn = Aλ − PnT̂nV.

Any nontrivial solutionu gives rise to a 2-periodic solution ofAλ f = V f , and vice
versa. Hence, a complex numberλ nearn2π2 is a periodic eigenvalue ofq if and
only if the determinant ofSn vanishes.

The matrix representation of any operatorI on the two-dimensional spacePn

is given by(〈I e±n,e±n〉), where〈 f ,g〉 =
∫ 1

0 f ḡ dx. We find that

Aλ =

(
λ− σn 0

0 λ− σn

)
, PnT̂nV =

(
an c−n

cn a−n

)
,

with σn = n2π2 and

an = 〈T̂nV en,en〉, cn = 〈T̂nV en,e−n〉.

Moreover, looking at the series expansion ofT̂n one checks that(T̂nV)∗ = (T̂nV)− ,
the complex conjugate of̂TnV . Therefore,

an = 〈T̂nV en,en〉 = 〈en,(T̂nV)−en〉

= 〈en,(T̂nV e−n)
−
〉 = 〈T̂nV e−n,e−n〉 = a−n.

That is, the diagonal ofSn is homogeneous, and we have

Sn =

(
λ− σn − an −c−n

−cn λ− σn − an

)
.
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Incidentally, at this point we may recover Gasymov’s observation for complex
potentials of the formq =

∑
m≥1 qme2mπi x . In that case,̂TnV en is given by a power

series in e2πi x with lowest termen+2, whencean = cn = 0 and

Sn =

(
λ− σn −c−n

0 λ− σn

)
.

It follows thatλ±
n = σn for all n ≥ 1, which is the claim.

5 Gap Estimates

Lemma 2 If Tn is a 1
2-contraction onBw with respect to the shifted norms

‖·‖w;±n for all λ ∈ Un , then

|an − q0|Un
, wn|cn − qn|Un

≤ 2‖Tn‖w;−n‖q‖w.

The same applies to c−n − q−n .

Proof. Considercn = 〈T̂nV en,e−n〉. We note thatT̂n = I + T̂nTn and thus
cn = qn + 〈T̂nTnV en,e−n〉. In general, from〈 f ,e−n〉 = 〈 f e−n,e−2n〉 we obtain

wn|〈 f ,e−n〉| ≤ ‖ f ‖w;−n.

The claim then follows withf = T̂nTnV en ,

‖T̂nTnV en‖w;−n ≤ 2‖Tn‖w;−n‖V en‖w;−n

by Lemma 1, and‖V en‖w;−n = ‖V e0‖w = ‖q‖w . The other statements are proven
analogously.

Remark. We have to make this somewhat roundabout argument, since com-
position and multiplication are not associative. That is,(TnV en)em is not equalto
TnV en+m, and therefore〈T̂nV en,e−n〉 is not equalto 〈T̂nq,e−2n〉. The estimate of
the latter would be much more straightforward and would not require shifted norms.

Lemma 3 If Lemma2 applies and n≥ 2‖q‖w , then the determinant of Sn

has exactly two complex rootsξ− , ξ+ in Un , which are contained in

Dn =
{
λ : |λ− σn| ≤ 6‖q‖w

}
and satisfy

|ξ+ − ξ−|
2

≤ 9|cnc−n|Un
.
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A more precise location of these roots is obtained in the proof of Lemma 10
below. But for now, this simpler statement suffices.

Proof. Write detSn = g+g− with

g± = λ− σn − an ∓ ϕn, ϕn =
√

cnc−n,

where the choice of the branch of the root is immaterial. In view of the preceding
lemma and the normalizationwn ≥ 1,

|an|Un
+ |ϕn|Un

≤ 4‖q‖w < |λ− σn|
∣∣
UnXDn

.

It follows with topological degree theory that bothg+ andg− have exactly one root
in Dn , while they obviously have no roots inUn X Dn .

To estimate the distance of these roots, letξ+ be the root ofg+ , and

Kn = {λ : |λ− ξ+| ≤ 3rn}, rn
def
= |ϕn|Un

≤ 2‖q‖w ≤ n.

The functionh = λ−σn − an(ξ+)−ϕn(ξ+) vanishes atξ+ , thus|h|
∣∣
∂Kn

= 3rn . On
the other hand,

|h − g−|∂Kn
≤ |an − an(ξ+)|Kn

+ 2|ϕn|Un
< rn + 2rn = |h|

∣∣
∂Kn

,

since |∂λan|Kn
≤ |an|Un

/4n ≤ 1/4 by Cauchy’s inequality. It follows again with
topological degree theory thatg− has onKn the same index with respect to 0 ash,
namely 1. Hence, the second rootξ− of detSn is located inKn , which gives the
claim.

We now prove Theorem 1. Ifq ∈ Hw with w ∈ M and n ≥ 4‖q‖w , then
Tn is a 1

2-contraction onHw by Lemma 1 with respect to all shifted norms. So
Lemma 3 applies, giving us two roots of detSn in Dn ⊂ Un . Now the union of all
stripsUn covers the right complex half plane. Sinceλ±

n ∼ n2π2 asymptotically, and
since there are no periodic eigenvalues in

⋃
n≥4‖q‖w

(Un X Dn), those two roots in
Dn must be the periodic eigenvaluesλ±

n . Thus,

|γn(q)|2 = |ξ+ − ξ−|
2

≤ 9|cnc−n|Un
≤

9

2
|cn|

2
Un

+
9

2
|c−n|

2
Un
.

By Lemmas 1 and 2,

wn|cn| ≤ wn|qn| + 2‖Tn‖w;−n‖q‖w ≤ wn|qn| +
4

n
‖q‖

2
w.
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Both estimates together then lead to

1

9
w2

n|γn(q)|2 ≤ w2
n|qn|

2
+ w2

n|q−n|
2
+

32

n2
‖q‖

4
w.

Summing up, we arrive at

1

9

∑
n≥N

w2
n|γn(q)|2 ≤

∑
|n|≥N

w2
n|qn|

2
+ ‖q‖

4
w

∑
n≥N

32

n2

≤ ‖TNq‖
2
w +

64

N
‖q‖

4
w.

This gives Theorem 1.
Incidentally, if we just make use ofwn|cn| ≤ 2‖q‖w , then we get the individ-

ual gap estimate

wn|γn(q)| ≤ 6‖q‖w.

We will use this observation in section 10. Finally, we note that Lemma 3 together
with the expansion

cn = 〈T̂nV en,e−n〉 =

∑
ν≥0

〈Tνn V en,e−n〉

allows for an effective control ofγn for trigonometric polynomialsq, since then
some first terms in the series vanish – see [1, 4].

6 Adapted Fourier Coefficients

The 2× 2-matrix Sn contains all the information we need about then-th peri-
odic eigenvalues of a potential, at least in the real case. Even more to the point, the
diagonal ofSn vanishes at a unique point

λ = αn(q),

and it suffices to consider its off-diagonal elements atλ = αn(q). We will make
use of these values to define a real analyticadapted Fourier coefficient map, which
allows us to prove the regularity results by invoking the inverse function theorem.

We begin by observing that the coefficientsan andcn do not depend on the un-
derlying spaceHw , but are rather defined on appropriate balls inHo, with estimates
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depending on the regularity ofq. To make this precise, we introduce the notation

Bwm =
{
q ∈ Hw

: 4‖q‖w ≤ m
}

and note thatBwm ⊂ Bo
m

def
=

{
q ∈ Ho : 4‖q‖o ≤ m

}
⊂ Ho for all w ∈ M.

We assume from now on thatq has mean value zero,

[q] =

∫ 1

0
q(x)dx = q0 = 0,

since adding a constant to the potentialq shifts its entire spectrum by this amount,
but does not affect the lengths of its gaps.

Lemma 4 For n ≥ m, the coefficients an and cn are analytic functions on
Un × Bo

m with

|an|Un×Bo
m
, wn|cn − qn|Un×Bwm

≤
m2

4n

for all weightsw ∈ M. The same applies to c−n − q−n .

Proof. The estimates follow from Lemmas 1 and 2, the normalizationq0 = 0
and‖q‖w ≤ m/4 on Bwm . The analytic dependence onq then follows from the series
expansion ofT̂n .

Lemma 5 For m ≥ 1 and each n≥ m, there exists a unique real analytic
function

αn : Bo
m → C, |αn − σn|Bo

m
≤

m2

4n
,

such thatαn = σn + an(αn, ·) identically on Bo
m.

Proof. Consider the fixed point problem for the operatorT ,

Tα
def
= σn + an(α, ·),

on the ball of all real analytic functionsα : Bo
m → C with |α − σn|Bo

m
≤ m2/4n.

Since clearlym2/4n ≤ n by assumption, each such functionα mapsBo
m into the

disc Dn = {|λ− σn| ≤ n} ⊂ Un , and so

|Tα − σn|Bo
m

≤ |an|Un
≤ m2/4n
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in view of Lemma 4. Moreover,T contracts by a factor

|∂λan|Dn
≤

|an|Un

2n
≤

m2

8n2
≤

1

8
,

using Cauchy’s estimate. Hence, we find a unique fixed pointαn = Tαn with the
properties as claimed.

In the following we letα−n = αn to simplify notation. – For eachm ≥ 1 we
now define a map8m on Bo

m by

8m(q) =

∑
|n|<Mm

qne2n +

∑
|n|≥Mm

cn(αn(q),q)e2n,

whereMm = 210m2. Thus, for|n| ≥ Mm the Fourier coefficients of the 1-periodic
function p = 8m(q) are pn = cn(αn), and

Sn(αn) = Sn(αn, p) =

(
0 −p−n

−pn 0

)
.

These new Fourier coefficients are adapted to the lengths of the corresponding spec-
tral gaps, whence we call8m theadapted Fourier coefficient mapon Bo

m.

Proposition 6 For each m≥ 1, 8m maps Bo
m into Ho. Its restrictions to

Bwm are real analytic diffeomorphisms

8m
∣∣Bwm : Bwm → 8m(Bwm) ⊂ Hw

for every weightw ∈ M, such that

1

2
‖q‖w ≤ ‖8m(q)‖w ≤ 2‖q‖w

for q ∈ Bwm and‖D8m − I ‖Bwm
≤ 1/8.

Proof. Sinceαn mapsBo
2m into Un for n ≥ 2m, each coefficientcn(αn(q),q)

is well defined forq ∈ Bo
2m, and

wn|cn(αn)− qn|Bw2m
≤ wn|cn − qn|Un×Bw2m

≤
m2

n

by Lemma 4. Hence the map8m is defined onBo
2m, and
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‖8m − id‖
2
w,Bw2m

=

∑
|n|≥Mm

w2
n|cn(αn)− qn|

2
Bw2m

≤

∑
n≥Mm

2m4

n2
≤

4m4

Mm
=

m2

256

by our choice ofMm. Therefore,8m : Bw2m → Hw with ‖8m − id‖w,Bw2m
≤

m

16
.

Cauchy’s estimate then yields

‖D8m − I ‖w,Bwm ≤
2

m
‖8m − id‖w,Bw2m

≤
1

8

Now the result follows by standard arguments and the fact that8m(0) = 0.

We now proof Theorem 2. Fix any ballBm = Bwm . Then-th gap ofq ∈ Bm,
with n ≥ Mm, is collapsed if then-th and−n-th Fourier coefficients of8m(q)
vanish, since thenSn vanishes identically atλ = αn(q). Consequently, if

8m(q) ∈ GN = span{e2k : |k| ≤ N },

N sufficienly large, thenq ∈ Bm is an N-gap potential. The union of the spaces
GN is dense inHw . Since8m is a diffeomorphism onBm, the family of N-gap
potentials inBm is also dense. SinceBm was arbitrary, this proves the theorem.

7 Regularity: The Abstract Case

From an abstract point of view, establishing the regularity of a potentialq
amounts to the following observation about its adapted Fourier coefficients.

Proposition 7 If q ∈ Bo
m for some m≥ 1, and

8m : Bo
m 3 q 7→ p = 8m(q) ∈ Bwm/2

for some weightw ∈ M, then q∈ Bwm ⊂ Hw .

Proof. The map8m is defined onBo
m and a real analytic diffeomorphism

onto its image

B̃o
m = 8m(Bo

m) ⊂ Ho.

At the same time, for any weightw ∈ M, 8m is also defined onBwm ⊂ Bo
m ∩ Hw

and a real analytic diffeomorphism onto its image

B̃wm = 8m(Bwm) ⊂ Hw.
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Moreover, this image containsBwm/2 by Proposition 6. Thus, if8m mapsq ∈ Bo
m to

p = 8m(q) ∈ Bwm/2,

then we must have

q = 8−1
m

∣∣Bwm/2(p) ∈ Bwm ⊂ Hw,

thus establishing the regularity ofq.

8 Regularity: The Real Case

Proposition 8 Suppose q∈ Bo
m for some m≥ 1, and

8m(q) ∈ Hw.

If w is strictly subexponential, then also q∈ Hw . If, however,w is exponential,
then q∈ Hvε for all sufficiently small positiveε, wherevε = eε|·| .

Note that in contrast to Proposition 7 we donot assume that8m(q) ∈ Bwm/2.
That is, we have noa priori bound on‖8m(q)‖w . To reduce the situation to the
former setting nonetheless, we introduce a modified weightwε , which tempers a
potentially large chunk of‖8m(q)‖w arising from finitely many modes, without
affecting the asymptotic behaviour ofw in the case of subexponential weights. The
crucial ingredient is the following lemma.

Lemma 9 If w is either strictly subexponential or exponential, then

wε
def
= min(vε, w) ∈ M

for all sufficiently small positiveε.

Proof. If w is exponential, thenwε = vε for all sufficiently small positiveε,
and there is nothing to do.

So assumew is strictly subexponential. All the required properties are readily
verified forwε , except submultiplicity. To do this, let

w̃ = logw, w̃ε = logwε.

As w̃(n)/n converges eventually monotonically to zero by assumption, there exists
for each sufficiently smallε > 0 an integerNε such that
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w̃(i )

i
≥ ε >

w̃(n)

n
>
w̃(m)

m
for 1 ≤ i ≤ Nε < n < m.

It follows that

w̃ε =

{
ṽε on [0, Nε],

w̃ on (Nε,∞).

To check for the subadditivity of̃wε for 0 ≤ n ≤ m, we consider the four possible
cases

(a) n + m ≤ Nε, (c) n ≤ Nε < m,

(b) m ≤ Nε < n + m, (d) Nε < n.

Case (a) reduces tõvε , and case (d) reduces tõw. In case (b),

w̃ε(n + m) ≤ ṽε(n + m) = ṽε(n)+ ṽε(m) = w̃ε(n)+ w̃ε(m).

Finally, in case (c), using the monotonicity property in the second line,

w̃ε(n + m) =
w̃(n + m)

n + m
n +

w̃(n + m)

n + m
m

≤ εn + w̃(m)

= w̃ε(n)+ w̃ε(m).

This establishes the subadditivity ofw̃ε for nonnegative arguments. The remaining
cases all reduce to the monotonicity ofw̃ε , that is,

w̃ε(n − m) ≤ w̃ε(n + m) ≤ w̃ε(n)+ w̃ε(m)

for 0 ≤ m ≤ n.

Proof of Proposition8. We may assume thatm ≥ 32‖q‖o, since the assump-
tions are not affected by increasingm. For p = 8m(q) we have

‖p‖o ≤ 2‖q‖o

by Proposition 6. On the other hand,p ∈ Hw by assumption, so

‖p‖w < ∞.

Given thatp 6= 0 without loss of generality, we can therefore chooseN so large that

‖TN p‖w ≤ ‖p‖o,
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whereTN p =
∑

|n|≥N pne2n . With respect to the weightwε = min(vε, w) with
ε ≤ 1/2N sufficiently small, we then have

‖p‖
2
wε

= ‖p − TN p‖
2
wε

+ ‖TN p‖
2
wε

≤ ‖p − TN p‖
2
vε

+ ‖TN p‖
2
w

≤ e2Nε
‖p‖

2
o + ‖p‖

2
o

≤ 4‖p‖
2
o,

or

4‖p‖wε ≤ 8‖p‖o ≤ 16‖q‖o ≤
m

2
.

Thus, p ∈ Bwεm/2, whence

q = 8−1
m (p) ∈ Bwεm ⊂ Hwε

by Proposition 7. The claim follows by noting thatHwε = Hw for strictly subexpo-
nential weights, andHwε ⊂ Hvε for exponential weights and all smallε > 0.

To obtain Theorem 3 from Proposition 8, we now want to bound the Fourier
coefficients ofp = 8m(q) in terms of the gap lengths ofq. For realq, this is fairly
straightforward, since then

Sn =

(
λ− σn − an −c−n

−cn λ− σn − an

)
is hermitean, and detSn is a real function ofλ, which is close to the standard parabola
with minimum nearαn and minimal value about−pn p−n = −|pn|

2. The distance
of its two roots is then about|pn|. With foresight to the complex case, however, we
want to consider a more general situation.

Lemma 10 Let q ∈ Bo
m for some m≥ 1 and p= 8m(q). If

1

4
≤

∣∣∣∣ pn

p−n

∣∣∣∣ ≤ 4

for any n≥ Mm, then

|pn p−n| ≤ |γn(q)|2 ≤ 9|pn p−n|.
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Proof. As in the proof of Lemma 3, write detSn = g+g− with

g± = λ− σn − an ∓ ϕn, ϕn =
√

cnc−n.

The assumptions imply that

ξn
def
= ϕn(αn) =

√
pn p−n 6= 0, rn

def
= |ξn| > 0,

so we may choose a fixed sign of the root locally aroundαn .
We compareg+ with h+ = λ− σn − an(αn)− ϕn(αn) on the disc

D+
n = {λ : |λ− (αn + ξn)| ≤ rn/2}.

As h+(αn + ξn) = ξn − ϕn(αn) = 0, we have

|h+|
∣∣
∂D+

n
=

rn

2
.

On the other hand, we momentarily show that onDo
n = {λ : |λ− αn| ≤ 2rn},

|∂λan|Do
n

≤
1

18
, |∂λϕn|Do

n
≤

1

6
,

which will give

|h+ − g+|D+
n

≤ |an − an(αn)|Do
n
+ |ϕn − ϕn(αn)|Do

n

≤
rn

9
+

rn

3

<
rn

2
= |h+|

∣∣
∂D+

n
.

It follows that the unique root ofg+ within Dn must be contained inD+
n , that is,

ξ+ = λ+
n ∈ D+

n .

Similarly, ξ− = λ−
n ∈ D−

n = {λ : |λ− (αn − ξn)| ≤ rn/2}. Since|ξn| = rn , we
conclude that

rn ≤ |γn| =
∣∣λ+

n − λ−
n

∣∣ ≤ 3rn,

which is the claim.
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αn + ξn

αn

αn − ξn

D−
n

D+
n

Do
n

2rn

rn/2

It remains to prove the estimates for∂λan and∂λϕn . In view of Lemma 4 and
Cauchy’s inequality,

|∂λan|Do
n
, |∂λcn|Do

n
≤

1

36
,

since the distance ofDo
n to the boundary ofUn is at least 9n. With cn(αn) = pn ,

rn =
√

|pn p−n| and the hypotheses of the lemma, we get

|cn − pn|Do
n

≤
rn

16
,

or
rn

2
≤ |pn| ≤ 2rn.

Hence,
7

16
rn =

(
1

2
−

1

16

)
rn ≤ |cn|

∣∣
Do

n
≤

(
2 +

1

16

)
rn =

33

16
rn,

and therefore ∣∣∣∣ cn

c−n

∣∣∣∣
Do

n

,

∣∣∣∣c−n

cn

∣∣∣∣
Do

n

≤ 6.

Differentiatingϕn =
√

cnc−n with respect toλ we finally obtain

|∂λϕn|Do
n

≤ 3
(
|∂λcn|Do

n
+ |∂λc−n|Do

n

)
≤

1

6

as claimed. This completes the proof.



Section 9: Regularity: The Complex Case 23

We now prove Theorem 3. Supposeq ∈ Ho is real, and its gap lengths satisfy∑
n≥1

w2
n|γn(q)|2 < ∞.

Fix m ≥ 4‖q‖o, and consider the coefficientspn = cn(αn) for |n| ≥ Mm. As q is
real, p−n = p̄n . So the preceding lemma applies, giving

|p−n| = |pn| ≤ |γn(q)|, n ≥ Mm.

But this means thatp = 8m(q) ∈ Hw , and the result follows with Proposition 8.

9 Regularity: The Complex Case

Let δn be a family of alternate gap lengths. Since the involved constantCδ is
supposed to depend only on‖q‖o, we have on any ballBo

m an estimate

∥∥dqδn − tn
∥∥

o ≤
Cm

n
, tn = cos 2nπ(x + ξn).

with a constantCm depending only onm.

Lemma 11 If q ∈ Bo
m for some m≥ 1 and p= 8m(q), then

|δn(q)− (κpn + κ̄ p−n)| ≤
1

4
(|pn| + |p−n|)

for n ≥ Nm := max(Mm,16Cm), whereκ = e2nπi ξn/2.

Proof. Given p =
∑

k 6=0 pke2k = 8m(q) andn ≥ Mm, let

po
=

∑
0<|k|6=n

pke2k, qo
= 8−1

m (po).

Then the|n|-th Fourier coefficients of8m(qo) vanish, which means thatαn(qo) is a
double periodic eigenvalue ofqo of geometric multiplicity 2. Therefore,

δn(qo) = 0.

With qt = tq + (1 − t)qo, we get
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δn(q) = δn(q)− δn(qo)

=

∫ 1

0
〈dδn(qt ),q − qo

〉 dt

= 〈tn,q − qo
〉 + 〈θn,q − qo

〉

with θn =
∫ 1

0 (dδn − tn)(qt )dt . Moreover,

q − qo
= p − po

+2m(p − po),

with 2m =
∫ 1

0 (D8
−1
m − I )(8m(qt ))dt . Altogether we obtain

δn(q) = 〈tn,p − po
〉 + 〈tn,2m(p − po)〉 + 〈θn,q − qo

〉.

The identity〈tn,p − po〉 = κpn + κ̄ p−n , the estimates

‖θn‖o ≤
Cm

n
≤

1

16
, ‖2m‖L(Ho,Ho) ≤

1

6

by Lemma 6, as well as‖tn‖o ≤ 1 and‖p − po‖o ≤ |pn| + |p−n| then give the
claim.

We now prove Theorem 4. Givenq ∈ Bwm and assumingn ≥ Nm, we have by
the preceding lemma

|δn(q)|2 ≤ (|pn| + |p−n|)
2

≤ 2|cn|
2
Un

+ 2|c−n|
2
Un
.

We are thus in exactly the same situation as at the end of section 5, modulo a factor
4/9. So we get ∑

n≥N

w2
n|δn(q)|

2
≤ 4‖TNq‖

2
w +

256

N
‖q‖

4
w

for all N ≥ Nm, as well as

wn|δn(q)| ≤ 4‖q‖w

for all n ≥ Nm. This establishes (i) of Theorem 4.
To prove the converse statement (ii), we only need to augment the proof of

Theorem 3 in the case wherepn and p−n are not about the same size. So supposeq
is in Ho with ∑

n≥1

w2
n(|γn(q)| + |δn(q)|)2 < ∞.
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Fix m ≥ 4‖q‖o, and consider the coefficientspn = cn(αn) for |n| ≥ Mm. For any
suchn, for which the hypotheses of Lemma 10 are satisfied, we have

|pn|, |p−n| ≤ 2|γn(q)|.

Otherwise, we may assume that|pn| ≥ 4|p−n|, and we can use the preceding lemma
to the effect that

|δn(q)| ≥ |κpn + κ̄ p−n| −
1

4
(|pn| + |p−n|)

≥
1

2
·

3

4
|pn| −

1

4
·

5

4
|pn|

=
1

16
|pn|.

So in this case we get

|pn|, |p−n| ≤ 16|δn(q)|.

We again conclude thatp = 8m(q) ∈ Hw , and the result follows with Proposition 8.
This proves Theorem 4.

10 Superexponential Weights

We prove Theorem 6 by using the gap estimates already established for expo-
nential weights. Ifq ∈ Hw with a strictly superexponential weightw, then in par-
ticular q ∈ Ha for all a ≥ 0, wherea stands for the exponential weight exp(a|·|).
Given anyn ≥ 4‖q‖w , we may thus choose

a = ψ(ñ) = min
m≥1

log ñw(m)

m
≥ 0, ñ =

n

4‖q‖w

≥ 1.

Then eam/wm ≤ ñ for all m ≥ 1, and consequently

‖q‖a ≤ sup
m≥1

eam

wm
‖q‖w ≤ ñ‖q‖w =

n

4
.

We may thus apply the individual gap estimate given at the end of section 5 to obtain

|γn(q)| ≤
6

an
‖q‖a ≤ 2n e−an

= 2n e−nψ(ñ).

This is the claim, and Theorem 6 is proven.
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Incidentally, the result is the same for alternate gap lengths, using the individ-
ual estimate given at the end of the preceding section. We only have to assume in
addition thatn ≥ Nm, a constant depending only on‖q‖o.

11 Extensions

Subexponential weights. Our definition of a strictly subexponential weight
is chosen to allow for a convenient hypothesis of Lemma 9. But we might as well
definea weightw ∈ M to be strictly subexponential, if logw(n)/n → 0 and

min(w, vε) ∈ M

for all sufficiently small positiveε. Then Theorems 3 and 4 remain valid.

L p-spaces. For the sake of brevity and clarity we restricted ourselves to
spacesHw defined in terms ofL2-type norms. But we may also consider the spaces

Hw
r =

{
q =

∑
n∈Z

qne2n : ‖q‖w,r < ∞

}
for 1 ≤ r ≤ ∞, where

‖q‖
r
w,r =

∑
n∈Z

wr
n|qn|

r , 1 ≤ r < ∞,

‖q‖w,∞ = sup
n∈Z

wn|qn|.

The shifted norms‖·‖w,r ;i are defind analogously. The results remain the same,
except for some minor quantitative aspects of constants and thresholds. The only
new ingredient is an extended version of Lemma 1.

Lemma 1-R If q ∈ Hw
r with w ∈ M, then for n≥ 1 andλ ∈ Un ,

Tn = VA−1
λ Qn

is a bounded linear operator onBw
r with norm‖Tn‖w,r ;i ≤

cr

n
‖q‖w,r for all i ∈ Z,

where c1 = 1 and otherwise

cs
r =

∑
m≥1

2

ms
, s =

r

r − 1
.
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Proof. Consider the case 1< r < ∞. As in the proof of Lemma 1, we may
write

g = A−1
λ Qn f =

∑
|m|6=n

fm
λ− m2π2

em =

∑
m∈Z

gmem,

and by Hölder’s inequality forr −1 + s−1 = 1 we get

‖gei ‖w,1 ≤ ‖ f ‖w,r ;i

( ∑
|m|6=n

1∣∣m2 − n2
∣∣s

)1/s

.

One verifies that ∑
|m|6=n

1∣∣m2 − n2
∣∣s ≤

1

ns

∑
m≥1

2

ms
≤ cs

r ,

so that‖gei ‖w,1 ≤ cr ‖ f ‖w,r ;i . By standard estimates for the convolution of two
sequences and the submultiplicity of the weights, one then arrives at

‖Tn f ‖w,r ;i = ‖V g‖w,r ;i ≤ ‖V‖w,r ‖gei ‖w,1 ≤ cr ‖q‖w,r ‖ f ‖w,r ;i .

This holds for anyf ∈ Hw
r , so the claim follows for 1< r < ∞. The remaining

cases are handled analogously.
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