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Hill's Potentials in
Weighted Sobolev Spaces and their
Spectral Gaps

JUORGEN POSCHEL

1 Results
In this paper we consider the Schrédinger operator
dZ
L=—-——
dx2 +d

on the interval0, 1], depending on ah2-potentialg and endowed with periodic or
anti-periodic boundary conditions. In this casejs also known a#lill's operator.

Its spectrum is pure point, and for reglconsists of an unbounded sequence of real
periodic eigenvalues

A (@ <A@ <AT@) < <A@ SAF(@ < .
Their asymptotic behaviour is
Ay =n%x? + [q] + £2(n),

where[q] denotes the mean value qf Equality may occur in every place with a
‘ <’-sign, and one speaks of tlgap lengths

@ =Af@ — A (@, n>1,

of the potentialg. If a gap length is zero, one speaks afa@lapsed gapotherwise
of anopen gap
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We recall that the gaps separate spectral bands
Bn=[A1_1. A0 ], n>1

which are dynamically characterized as the locus of thoseirefalr which all solu-
tions of Lf = Af are bounded. In other words, for anyin the interior of an open
gap as well as for all. < A7, any nontrivial solution oL f = Af is unbounded.

For complexq, the periodic eigenvalues are still well defined, but in general
not real, sincel is no longer self-adjoint. Their asymptotic behaviour is the same,
however, and we may order them lexicographically — first by their real part, then by
their imaginary part — so that

200@) <A@ KAT@) < <A@ S AF@) <o

The gap lengths are then defined as before, but may now be complex valued. They
are also no longer characterized dynamically.

We are interested in the relationship between the regularity of a potential and
the sequence of its gap lengths. Kemko & Ostrows7k[12] showed that

geHYSLR) & > nZFy2(Q) < oo

n>1

for all nonnegative integets, while Hochstadt [9] even earlier observed that
qeC®SLR) < () =0n X forallk > 0.
Trubowitz [15] then proved that
qeC?SLR) < yn(g) = O(e @) for somea > 0.

Later, due to the realization of the periodic KdV flow as an isospectral deformation
of Hill's operator, other regularity classes such as Gevrey functions were also taken
into account, as well as non-real potentials. Recent results in this direction are for
example due to Sansuc & Tkachenko [13], Kappeler & Mityagin [10, 11] and Djakov
& Mityagin [2, 3]. All this shows that within certain limits, one may think of the gap
lengths as another kind of Fourier coefficients of the potential.

It is the purpose of this paper to further extend these results and to give a
new, short, self-contained proof that applies simultaneously to all cases. This proof
does not employ any conformal mappings, trace formula, asymptotic expansions,
iterative arguments, or other convolutions. Instead, the essential ingredient is the
inverse function theorem.
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To set the stage, we introdueeighted Sobolev spacégg” as follows [10, 11].
A normalized weighis a functionw : Z — R with

wn=w_p>1

for all n, and the class of all such weights is denotedWy Thew-norm ||q||,, of a
complex 1-periodic functioq = ", an€®"™X is then defined through

g2 = wilanl?,
nez
and
H" ={q e L*S"0): lall, < oo}
is the Banach space of all such functions with finitenorm. Note that
# L) #v = L2SL 0),
wew

since all weights are assumed to be at least 1.

Here are some examples of relevant weights. The trivial weights- 1 give
rise to the underlying Banach spa#® = L2(S1). Letting (n) = 1+ |n| andr > 0,
a > 0, the polynomial weights

wn = (n)'
give rise to the usual Sobolev spadé’(Sh), and the exponential weights
wn = (n)" Nl
give rise to space#i"2(Sh) of functions in L?(S!), that are analytic on the strip
lIm z| < a/27 with traces inH" (S!) on the boundary lines. In between are, among
others, the subexponential weights

wn = (n)Fedinl” O<o <1,

giving rise to Gevrey spacds’-2° (S1), and weights of the form

ajn
Wnp = (n)r exp(#gla(n)), o> 0.

More examples are given below.
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For the most part we will be concerned with the subclass ‘W of weights
that are alssubmultiplicative That is,

Wn+m = WnWm

for all n andm. This implies in particular thaw, < wf forall n > 1, so submuilti-
plicative weights can not grow faster than exponentially. All the weights given above
are submultiplicative, and

70 LM v

weM

is the space of all entire functions of period 1. It turns out that only in the submulti-
plicative case, and more precisely in the subexponential case, there is a one-to-one
relationship between the decay rates of Fourier coefficients and spectral gap lengths.

We begin by considering the forward problem of controlling the gap lengths of
a potential in terms of its regularity, first for submultiplicative weights — see [11].

Theorem 1 If g € #¥ withw € M, then

576
2 wilm(@1® < 91 Tnally + = llally

n>N
forall N > 4lqll,,, where g = > ;>N Qne2nTiX

We note in passing that finite gap potentials are dens#&fhfor w € M.
More specifically, we caltj an N-gap potentialif y,(q) = 0 foralln > N. But we
do not insist, that the firdd gaps are all open.

Theorem 2 The union of N-gap potentials is dense# for w € M.

We now turn to the converse problem of recovering the regularity of a potential
from the asymptotic behaviour of its gap lengths. Here the situation is not as clear
cut as for the forward problem. Gasymov [5] observed #mt L2-potential of the

form
q= aneZnnix — anzn

n>1 n>1

7—@g2mix

is a 0-gap potential. In the complex case, the gap sequence therefore need not contain
any information about the regularity of the potential. But even in the real case the
situation is not completely straightforward, as there are finite gap potentials, that are
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not entire functions, but have poles. Thus, although in this gase e=@" for any
a > 0, we haveg, ~ e " only for somex > 0.

To obtain a true converse to Theorem 1 we need to ex@xpenentialveights,
that is, submultiplicative weights with

log w(n) -

liminf 0.

n—oo

We call a weighstrictly subexponentialf

logw(n)
_— =
n

0 as n— oo

in an eventuallymonotonananner, whilew (n) itself is assumed to be nondecreasing
for n > 0. — The following theorem extends results of [2].

Theorem 3 Suppose ¢ F° is real, and its gap lengths satisfy

> wilm(@)I? < oco.

n>1

If w is strictly subexponential, then g #*. On the other hand, ifv is exponential,
then q is real analytic.

This theorem does not extend to complex potentials because of Gasymov’s
observation. But Sansuc & Tkachenko [13] noted that the situation can be remedied
by taking into account additional spectral data. In particular, they considered the
quantities

dn = n — Tn,

whereun, denotes the Dirichlet eigenvalues of a potential ane: (A} + 1;,)/2 the
mid-points of its spectral gaps.

More generally, one may consider a family of continuously differentialiés-
nate gap lengths,: #° — C, characterized by the properties that

— &n vanishes whenevert = A~ has also geometric multiplicity 2, and

— there are real numbeégg such that its gradients satisfy

dan = tn + O(l/n), tn = COS Z]JT(X + g:n),

uniformly on bounded subsets 8°. Thatis,||dgdn — tall, < Cs(llqlle)/n with Cs
depending only ofiq|lo := [1Q]l o-
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For example, let, denote the eigenvalues of the operdtowith symmetric
Sturm-Liouville boundary conditions

ycosa + Y sina =0 on 4[0,1].

Dirichlet and Neumann boundary conditions correspond to the chaices0 and
a = 7 /2, respectively. Thea, € [A;, Af] in the real case, angh = o — 1 are
alternate gap lengths. — The following theorem extends results of [3, 13].

Theorem 4 Let 8, be a family of alternate gap lengths o#é°.
@) If g € #¥ withw € M, then

256
> wildn(@I? < I Twall?, + - lal

n>N

for all N sufficiently large, whereJg = Y-y Gn€"™*.
(i) Conversely, supposeq #° and

> wa(lyn(@] + 18a(@))? < oo.

n>1

If w is strictly subexponential, then g #* . On the other hand, ifv is exponential,
then g is analytic.

One may considek,, Tn + dn, Al as the vertices of apectral triangleAn,
and

In(@) = Ivn(@] + [8n(Q)]

as a measure of its size, which takes the role,pfn the complex case. We then
have the following consequence of Theorems 1 and 4.

Theorem 5 If w is strictly subexponential, then

ge #¥ <& Zw%]"nz(q) < 00,

n>1

where I, denotes the size of the n-th spectral triangle defined by the gap lepgths
and some alternate gap lengths.

We briefly look at the case of weights growing faster than exponentially, thus
characterizing classes of entire functions. One can expect the gap lengths to decay
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faster than exponentially, too, albeit not at the same rate. We note a general result to
this effect forstrictly superexponentialeights, that is, weights with

. logw(n
lim gu( ):oo
n—o00 n

We only consider the gap lengtrs. The result for alternate gap lengtsis exactly
the same, only the lower bound forhas to be augmented. See also [4].
Theorem 6 If g € #¥ with a strictly superexponential weight € ‘W, then

n
Hlally,”

[yn(@)] < 2nexp(—nyr (1)), fi =

I
forall n > 4|ql,,, wherey (r) = mi?Lw(m).
m=

For instance, fotw, = exp(|n|®) with o > 1 one has

Y (A) = ¢, logt Y7 f
with ¢, = o/(c — 1)1~ Djakov & Mityagin [4] construct an example show-
ing that as far as the order imis concerned, the resulting gap estimate can not be
improved.

We point out that the preceding theorem is not optimal for trigonometric poly-
nomials. Consider for example the Mathieu potential

g = 1 COS 2rX, w > 0.

Using the just mentioned weight, we haje||,, = cr/4 with a certain constant
forall o > 1, and lettingo tend to infinity we obtain

ny %

(@) <2n exp(—nloga) = 2n( - ) .

But Harrell [8] and Avron & Simon [1] found the better exact asymptotics

n 1
(@) = 8772(%) m(l"‘ o(n™?),

This result was later extended by Grigis [7] to more general real trigonometric poly-

nomials, and to their spectral triangles by Djakov & Mityagin [4]. These better

estimates are obtained by directly evaluating an explicit representation of some coef-

ficient — see the end of section 5. This approach is different from the one taking in

this paper and will not be reproduced here.
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2 Outline

The idea of the proof of Theorem 1 is due to Kappeler & Mityagin [11]. They
employ a Lyapunov-Schmidt reduction, calléaurier block decomposition

The aim is to determine thosenearn?z2 with n sufficiently large, for which
the equation-y” + qy = Ay admits a nontrivial 2-periodic solutiof. As g can be
considered small for large, one can expect its dominant modes to B8 . So
it makes sense to separate these modes from the other ones by a Lyapunov-Schmidt
reduction.

To this end we consider a Banach sp&’e of 2-periodicfunctions, and write

o(Bw == g)nea@n
= span{e : [k| = n} & span{ex : [k| # n},

wheree, = 71X The pertinent projections are denoted®yand Q,,, respectively.
Then we write— f” 4+ qf = Af in the form

Af T Laf =V,

whereV denotes the operator of multiplication with With
f =UuU4+v= Pnf +an,
this equation decomposes into the two equations

Au=PVUu+v),
Ay = QpV (U +v),

strangely called th®- and Q-equation, respectively.

We first solve theQ-equation by writingv as a function ofu. This will reduce
the P-equation to a two-dimensional equation with ax2 coefficient matrixS,,
which is singular precisely wheh is a periodic eigenvalue. The coefficients ®f
then provide all the data to prove Theorem 1, essentially as in [11].

To go beyond Theorem 1 — and this is the new ingredient — we regard these
coefficents as analytic functions of their potential7t?, and employ them to define,
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on any bounded ball ii¢°, a near identity diffeomorphismd that introduces Fourier
coefficients adapted to spectral gaps and preserves the regularity of potentials. That
is, p= ®(q) isin #% ifand only if q is in #¥ — which will arise as an immediate
consequence of the inverse function theorem.

Establishing the regularity of a potent@glthen amounts to showing thét(q)
isin . In the real case, this involves a geometric argument using the gap length
asymptotics and a trick to temper the resultingnorms. In the complex case, al-
ternate gap lengths are needed in those cases where the coefficient$pagrixot
close to a hermitean matrix to obtain the same conclusion.

3 Preparation
Given a weightw, we introduce the Banach space
8" = [u = Umém: ull, < OO]
meZ

of complex functions operiod 2and finite|| - ||, -norm,

2 2 2
Il =" w? ,luml?

meZ

We assume for simplicity, and without noticable loss of generality, that the weights
are also defined ofi/2 and have the same properties. Obvioudy, is an extension

of #¥. On 8" we consider operator norms that are defined in termghiffedw-
norms

Ully;i = llug ly,.

Finally, let
Up = {1 € C: |Rer — n?z?| < 12n}.

Lemmal Ifq e XY withw € M, thenfor n>1anda € Uy,
Th = VAT1Qn
is a bounded linear operator o with norm
2
ITnllw:i =< HIICIIIw

foralli € Z.
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Proof. We haveA,en = (A — m?n2)ey, for all m, and for|m| # n, one
checks that

min [z — m2z2| > [n? — m?| > 0.
reUn

Therefore, the restriction oA, to the range ofQy is boundedly invertible for all
AeUp,andforf =37 fmém,

f
1 m
jmi%n

is well defined. For the weighted!-norm 191lw.1 = >_mez wm/2/9m| of g we then
obtain, with the help of Hélder’s inequality and the preceding two lines,

w 2| fml
lgall,s < Y w2 m

2_ 2
a2 -m?
1 172
< fl ( ) -
w;i mil#:n|m2_n2|2
With
> Sy s
mizn M2 _”2‘ N =M

we thus havelge |, 1 < 2| f|,,;/n. Finally, withq = > mez Um€m,

(Vo8 =) enii Y Uni0 =) €Y Umigi=V(ga)

meZ leZ meZ leZ

and thus(T, f)g = (Vg)g = V(gq). Standard estimates for the convolution of
two sequences and the submultiplicity of the weights then give

2
o Elhyi = V@@L, < VI 19812 = lal Tl

This holds for anyf € 8% and anyi € Z, so the claim follows i

Thus, ifn > 4|q|l,, andw € M, thenT, is a%—contraction onBY in partic-
ular with respect to the shifted nornfis||,,... It is this property that we actually
need in section 5 to bound timeth gap lengths from above.
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4 Reduction
Multiplying the Q-equation from the left with/A;l we obtain
Vv =TaVu+ ThVo.

If T, is a contraction orB", then this equation has a unigue solution, namely

Vo=TaTaVu, Th=0-Tp™%
Inserted into theP-equation this gives

Au=PVu+ PaTnTaVu= PyTnVu.
So theP- and Q-equation reduce to

SU=0 S =A —PTnV.

Any nontrivial solutionu gives rise to a 2-periodic solution &, f = V f, and vice
versa. Hence, a complex numbemnearn?z2 is a periodic eigenvalue df if and
only if the determinant of, vanishes.

The matrix representation of any operatoon the two-dimensional space;,
is given by({lexn,esn)), where(f,g) = folfgdx. We find that

)\._O‘n 0 A an C-n
AL = PaThV =
* ( 0 )\,_Gn>’ nm (Cn a_n>’

with o, = n?72 and
an = (ThVen&n), ¢ = (ThVen.en).

Moreover, looking at the series expansioriigfone checks thatT,V)* = (T,V)~,
the complex conjugate of,V . Therefore,

an = (ThVen.en) = (. (ThV) "en)
= (en,(ThVen)™) = (ThVen,en) =an.

That is, the diagonal o, is homogeneous, and we have

_(A—on—an —C-n
S |
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Incidentally, at this point we may recover Gasymov’s observation for complex
potentials of the forng = 3", .. aqm&™X _ In that caseT,V &, is given by a power
series in &7 with lowest terme,2, whencea, = ¢, = 0 and

_ )\,_O'n —C_n

It follows that/\njE = op for all n > 1, which is the claim.

5 Gap Estimates
Lemma2 IfThisa %—contraction onBY¥ with respect to the shifted norms
[l 1ly:4n forall A € Uy, then

lan — dolu,,» wnlCn — Gnly, < 2l Tnllw,—nllAll,-
The same appliestog — g—n.
Proof. Considerc, = ('IA'nVen,e_n). We note thaff, = | + T, T, and thus
Ch=0n+ ('IA'nTanq,e_n). In general, from(f ,e_,) = (fe_n,e_on) We obtain
wnl(f,e-n)l < [ flly:—n-
The claim then follows withf = T, T,V &,
||-|A_nTnV9n||w;—n S 2||Tn||w;—n||V31||w;—n
by Lemma 1, andVe&l,._n = IIVe&ll, = lldll,,- The other statements are proven
analogouslyl

Remark. We have to make this somewhat roundabout argument, since com-
position and multiplication are not associative. That(ig,V &,)en is not equalto
ThV &14+m, and therefore{aneq,e_n) is not equalto (fnq,e_gn). The estimate of
the latter would be much more straightforward and would not require shifted norms.

Lemma 3 If Lemma2 applies and n> 2|ql|,,, then the determinant of,S
has exactly two complex roofs , & in Uy, which are contained in

Dn = {A: |1 —onl < 6lqll,,}

and satisfy
&4 — E-1° < 9lcnConly,-
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A more precise location of these roots is obtained in the proof of Lemma 10
below. But for now, this simpler statement suffices.

Proof. Write detS, = g g- with

0+ =A—o0n—anF ¢n, @n = A/CnC-n,

where the choice of the branch of the root is immaterial. In view of the preceding
lemma and the normalization, > 1,

12nlu, + lenlu, < 4lall, < 1h—onlly, o, -

It follows with topological degree theory that bogh andg_ have exactly one root
in Dp, while they obviously have no roots i, ~ Dy.
To estimate the distance of these rootsélete the root ofgy, and

=2lqll, =n.

def
Kn={A:IA—& <3}, < lonly,

The functionh = A — o — an (1) — ¢n(€4) vanishes ag, , thus|h| |3Kn =3rp. On
the other hand,

lh—g-lyk, < an —an(E)lk, + 2lenly, <Tn+2m = [hi[;

since|dranlk, =< lanly,/4n < 1/4 by Cauchy’s inequality. It follows again with
topological degree theory thgt has onKj, the same index with respect to 0 las
namely 1. Hence, the second raot of detS, is located inKy, which gives the
claim. 1

We now prove Theorem 1. If € #% with w € M andn > 4|q],,, then
T is a %—contraction on#* by Lemma 1 with respect to all shifted norms. So
Lemma 3 applies, giving us two roots of dgtin D, C U,. Now the union of all
stripsUn covers the right complex half plane. Sincgé ~ n?z? asymptotically, and
since there are no periodic eigenvaluquzﬂqu”w (Un ~ Dp), those two roots in
Dn must be the periodic eigenvalugs. Thus,

9
< —

9
(@)% = I = €17 < OltaCnly, = Slenldy, + Slc-nld,.

By Lemmas 1 and 2,

4
wnlCnl < wnlGnl + 2 Tallw:—nlldlly, < wnldal + HIIQIIi-
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Both estimates together then lead to

1

32
§wﬁ|yn(q)|2 < w2|Gnl? + wilg_nl? + ﬁnqni‘v.

Summing up, we arrive at

1 32
92 Walm@P = 3 whlanl® + llally, 3

n>N In|>N n>N
64
< ITnall?, + g llals.

This gives Theorem 1.
Incidentally, if we just make use abn|cn| < 2|/q]l,,, then we get the individ-
ual gap estimate

wnlyn (@] < 611qll,,-

We will use this observation in section 10. Finally, we note that Lemma 3 together
with the expansion

cn = (TaVen,en) =) (TYVen,en)

v>0

allows for an effective control ofs, for trigonometric polynomialsy, since then
some first terms in the series vanish — see [1, 4].

6 Adapted Fourier Coefficients

The 2x 2-matrix S, contains all the information we need about thth peri-
odic eigenvalues of a potential, at least in the real case. Even more to the point, the
diagonal ofS, vanishes at a unique point

A =an(Q),

and it suffices to consider its off-diagonal elements. at an(q). We will make
use of these values to define a real analgtiapted Fourier coefficient magpvhich
allows us to prove the regularity results by invoking the inverse function theorem.
We begin by observing that the coefficieatsandc, do not depend on the un-
derlying space#", but are rather defined on appropriate ballgf, with estimates
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depending on the regularity of. To make this precise, we introduce the notation

BY ={qe #":4|ql, <m}

and note thaBY C BY, GI=Ef{q € #°:4|ql, <m} Cc #°forall w e M.
We assume from now on thgthas mean value zero,

1
[al =/0 a(x)dx =qo =0,

since adding a constant to the potentjashifts its entire spectrum by this amount,
but does not affect the lengths of its gaps.

Lemma 4 For n > m, the coefficientsjaand G, are analytic functions on
Un x B, with
m2
|anlu,xBg» WnlCh — Only,xBY = n

for all weightsw € M. The same applies ta.g — g—n.

Proof. The estimates follow from Lemmas 1 and 2, the normalizatjpsa- O
and|lqll,, < m/4 onBY. The analytic dependence grthen follows from the series
expansion ofT,. 1

Lemma 5 For m > 1 and each n> m, there exists a unique real analytic
function

2
on. B%-)(C, |an—0n|B%<7

f— 4n 9
such thatwn = on + an(an, -) identically on E,.
Proof. Consider the fixed point problem for the operatar

Ta d=Ef0n + an(a, -),

on the ball of all real analytic functions: B% — C with o — anlB% < m2/4n.
Since clearlym?/4n < n by assumption, each such functienmapsB¢, into the
disc Dy = {|A» — on| < n} C Up, and so

2
ITa — onlgg < lanly, < mM/4n
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in view of Lemma 4. MoreovefT contracts by a factor

lanly, = m? 1
< — <,
2n ~ 82— 8

[35anlp, <
using Cauchy’s estimate. Hence, we find a unique fixed paint Toapn with the
properties as claimed

In the following we leta_ = ap to simplify notation. — For eacm > 1 we
now define a magmy, on B, by

Pm(@ = Y e+ Y. Calan(@). e

INl<Mm [n|>Mn

where My = 219m2. Thus, for|n| > My, the Fourier coefficients of the 1-periodic
function p = ®n(q) are pn = cq(an), and

Sil@n) = S(en, p) = (_%n e )

These new Fourier coefficients are adapted to the lengths of the corresponding spec-
tral gaps, whence we cal, theadapted Fourier coefficient magn B,.

Proposition 6 For each m> 1, &y, maps B, into #°. Its restrictions to
By are real analytic diffeomorphisms

Dm|Bl: B — Pm(Bl) C HY

for every weightw € M, such that

1
EIIQIIw < ®m@l =209l
for g € BY and||[D®y, — | gy < 1/8.

Proof. Sincean map582°m into Uy, for n > 2m, each coefficient,(en(q), q)

is well defined forg € B, and

2
m
wn|Cn(an) — Qn|B'2*r’n < wnlCh — Qn|unx35)m = n

by Lemma 4. Hence the mapn, is defined onBg, , and
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412 2 2
|®m —idlZ gy = Y whlcn(an) = tnlgy
[n|>Mmn

< =
n2 -~ My 256

n>Mm

4 4 2
<X:Zm Am m

) ) . m
by our choice ofMy,. Therefore,®&n,: By, — H™ with ||d>m—ld||w,|3§vm < —.

Cauchy’s estimate then yields 16

2 . 1
1D®@m — gy < —lI®m —idll,ey, < ¢
Now the result follows by standard arguments and the factdhg0) = 0. 1

We now proof Theorem 2. Fix any baBy, = BY,. Then-th gap ofq € B,
with n > My, is collapsed if then-th and —n-th Fourier coefficients ofb,(q)
vanish, since thels, vanishes identically at = an(q). Consequently, if

Ddm(Q) € Gn = span{ex : [K| < N},

N sufficienly large, therg € By, is an N-gap potential. The union of the spaces
gn is dense in#". Since®y, is a diffeomorphism orBy,, the family of N-gap
potentials inBy, is also dense. SincBy, was arbitrary, this proves the theorem.

7 Regularity: The Abstract Case

From an abstract point of view, establishing the regularity of a poteqtial
amounts to the following observation about its adapted Fourier coefficients.

Proposition 7 1If g € BY, for some m> 1, and

for some weightv € M, then qe Bj C #™.
Proof. The map®n, is defined onBY and a real analytic diffeomorphism
onto its image
B = ®m(BY) C H°.

At the same time, for any weight € M, ®n, is also defined oB};, C B N H"
and a real analytic diffeomorphism onto its image

BY = dm(BY) C H™.
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Moreover, this image contairﬁﬁ/2 by Proposition 6. Thus, ifbm mapsg € B, to

p= (bm(q) € B%/Zs
then we must have

q = Ppt[Bu (D) € By C HY,

thus establishing the regularity gf 1

8 Regularity: The Real Case

Proposition 8 Suppose & B2, for some n> 1, and
Dm(q) € H™.

If w is strictly subexponential, then also g #¥. If, however,w is exponential,
then ge # for all sufficiently small positive, wherev, = ell.

Note that in contrast to Proposition 7 we dot assume thatn(q) € B} /2
That is, we have na priori bound on|®mn(q)|l,,. To reduce the situation to the
former setting nonetheless, we introduce a modified weightwhich tempers a
potentially large chunk of| ®n(q)ll,, arising from finitely many modes, without
affecting the asymptotic behaviour af in the case of subexponential weights. The
crucial ingredient is the following lemma.

Lemma9 If w is either strictly subexponential or exponential, then
We d=efmin(v€, w) € M

for all sufficiently small positive.

Proof. If w is exponential, them, = v, for all sufficiently small positive,
and there is nothing to do.

So assumaey is strictly subexponential. All the required properties are readily
verified for w,, except submultiplicity. To do this, let

w = logw, we = logwe.

As w(n)/n converges eventually monotonically to zero by assumption, there exists
for each sufficiently smakt > 0 an integem\, such that
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w(i) wn)  w(m)
— Y>> —- > ——
| n m

for 1<i<Ng<n<m

It follows that
- ve  on [0, NgJ,
We =
w on (Ng, c0).

To check for the subadditivity oo, for 0 < n < m, we consider the four possible
cases
(@ n+m=N,, () n<N,<m,

(b) Mm<N, <n+m, (d) N < n.
Case (a) reduces tify, and case (d) reduces . In case (b),
we(N+ M) < U (N+ M) = 0 (N) + V(M) = we(N) + We(M).
Finally, in case (c), using the monotonicity property in the second line,

u“)(n—i—m)n u“;(n+m)m

We(n+m) = n+m n+m

<en+ w(m)
= We(N) 4+ We(M).

This establishes the subadditivity @f. for nonnegative arguments. The remaining
cases all reduce to the monotonicity®f, that is,

We(N— M) < we(N+ M) < we(N) + Wwe (M)

forO<m=<n. 1

Proof of PropositiorB. We may assume that > 32||q||,, since the assump-
tions are not affected by increasing For p = &y, (q) we have

Ipllo < 2llqllo
by Proposition 6. On the other hanp,e #* by assumption, so
Ipll, < oo.

Given thatp # 0 without loss of generality, we can therefore chobkso large that

TN Pl < Pl
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whereTnp = Z\nlzN pnen. With respect to the weighty, = min(v,, w) with
¢ < 1/2N sufficiently small, we then have
IplI2, = llp— Tnpli2, + ITnPIZ,
<lp—TnplZ + ITnplIZ
< &N plI3 + Il pll3
<4 pl3.

or

m
APl = 8lipllo = 16llgllo = -
Thus, p € By),, whence

q= o, (p) € Byr C H™e

by Proposition 7. The claim follows by noting tha&t*s = #" for strictly subexpo-
nential weights, and¢®: C #s for exponential weights and all smaill> 0. 1

To obtain Theorem 3 from Proposition 8, we now want to bound the Fourier
coefficients ofp = &, (q) in terms of the gap lengths of. For realq, this is fairly
straightforward, since then

_(A—on—an —C-n
31_( —Cn )»—Un—an>

is hermitean, and d&, is areal function of, which is close to the standard parabola
with minimum nearx, and minimal value about ppp_pn = —| pn|2. The distance
of its two roots is then aboup,|. With foresight to the complex case, however, we
want to consider a more general situation.

Lemma 10 Letqe BY forsome m>1and p= ®n(q). If

for any n> My, then

IPnP-nl < [¥n(@I? < 9 pnp-nl.
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Proof. As in the proof of Lemma 3, write d&, = g g_ with

g+ =X —0n—a F¢n, @n = /CnC_n.
The assumptions imply that

def

tn Eon(an) = VPaPn #0. 1 Zjgnl > 0,

so we may choose a fixed sign of the root locally aroapd
We comparey; with hy = A — oy — an(an) — ¢n(an) on the disc

D]T ={A: A — (an+&n)l <rn/2}.

As hy (an + &n) = &n — gn(an) = 0, we have

I'n
|h+|‘3Dn+ =75

On the other hand, we momentarily show that@h= {A : [A — an| < 2rp},

1 1
l9:8nlpg = 75 |9r¢nlpg = &

which will give

In+ — g+Ip+ <18 — an(en)lpg + I¢n — ¢nlan)lpg

frn In
<1,
-9 3

Mn
<5 = |h+”aD,¢'

It follows that the unique root of; within D, must be contained i, that is,

€+=)\.;’;€Dg_

Similarly, &= = A5y € Dy = {A: A — (en — &n)| <rn/2}. Sincelén| = rn, we

conclude that

n < Iyl = [Af — An | <3,

which is the claim.

21
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DR

| on

2rn

It remains to prove the estimates f@yra, anda; ¢n. In view of Lemma 4 and
Cauchy’s inequality,

0 0, [04C 0o < —,
1828l Dy 103.Cnlpg =< 36

since the distance dD? to the boundary otJ, is at least 8. With cy(en) = pn,
rn = /I pnP-nl and the hypotheses of the lemma, we get

'n
[Cn = Pnlpg = 76

or

Mn
— = |pnl < 2rp.

2

Hence,
33

7r—1 1r<|c|| <2+1r— r
16 " \2 16) "—"MIDR = 16) " 16 ™

and therefore
Cn

C_n

C_n

Cn

<6.

DR DY

Differentiating¢n, = ./ChC_n With respect to. we finally obtain

=

105.¢nlpe = 3(|3ACn|Dg + |3AC—n|Dg) = 6

as claimed. This completes the prodf.
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We now prove Theorem 3. Suppoges #° is real, and its gap lengths satisfy

> wilm(@)I? < oco.

n>1

Fix m > 4||q|l,, and consider the coefficients, = cn(an) for [n| > Mpy. Asq is
real, p_n = pn. So the preceding lemma applies, giving

|P—nl = IPnl < Iyn(@], n= Mm.

But this means thap = &»(q) € #", and the result follows with Proposition 8.

9 Regularity: The Complex Case

Let 8, be a family of alternate gap lengths. Since the involved con&aris
supposed to depend only dig||,, we have on any baBg, an estimate

C
||dq8n-tn”0§ Tm, tn ZCOSZ-UT(X—{—En)

with a constantC,,, depending only om.

Lemma 1l If q € BS, for some m> 1 and p= ®n(q), then

_ 1
[8n(Q) — (kPn + K P_n)| < Z(| Pnl + I P-nl)

for n > Ny := max(Mm, 16Cp,), wherex = 2"7ién /2,

Proof. Givenp =} .o Pk&x = Pm(q) andn > Mp, let

PP= ) ek 4% =ogNp0).
0<|k|#n

Then theln|-th Fourier coefficients oy, (q°) vanish, which means that,(q°) is a
double periodic eigenvalue of of geometric multiplicity 2. Therefore,

8n(@°%) = 0.

With ' = tq + (1 — t)q°, we get
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8n(@) = 8n(Q) — 8n(q°)
= /01 (dén(g"),q — q°) dt
= (t.d = q°) + (6.9 — 0°)
with 6, = fol(d8n — ty)(g") dt. Moreover,
q—09°=p—p°+Om(p—p°),
with Oy = fol(chrgl — 1) (®m(qh)) dt. Altogether we obtain

Sn(@) = (th, p — P°) + (t,Om(p — pP9)) + (6n,q — q°).

The identity (t,, p — p°) = kpn + & p—n, the estimates
m
onllo < " = 16’ 1OmllL (g0, 30) = 6
by Lemma 6, as well agtyll, < 1 and||p — p°lly < Ipnl + |p=nl then give the

claim. 1

We now prove Theorem 4. Givame BY and assuming > N, we have by
the preceding lemma

180(@)12 < (Ipnl + [P=nD)? < 2lcnl, + 2c-nl3, .

We are thus in exactly the same situation as at the end of section 5, modulo a factor
4/9. So we get

256
> whldn(@ < 41 Tnaly + = laly

n>N

for all N > Np,, as well as
wn|dn (@] < 4llqll,,

for all n > Np,. This establishes (i) of Theorem 4.
To prove the converse statement (ii), we only need to augment the proof of
Theorem 3 in the case whepg and p_,, are not about the same size. So supppse
is in #¢° with
> wi(ya(@)] + 18a(@))? < oo

n>1
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Fix m > 4|q|l,, and consider the coefficien{s = cn(an) for [n| > My. For any
suchn, for which the hypotheses of Lemma 10 are satisfied, we have

[Pnl, [P=nl < 2lyn(Q)].

Otherwise, we may assume thah| > 4| p_n|, and we can use the preceding lemma
to the effect that

_ 1
18n(@)] = [P + KP-nl = 7 ([Pl + [P-n)

v

}§| | *§||
2 3Pl T 7'
1

So in this case we get
[Pnl, IP—nl < 16l6n(Q)!.

We again conclude thgd = &, (q) € #™, and the result follows with Proposition 8.
This proves Theorem 4.

10 Superexponential Weights

We prove Theorem 6 by using the gap estimates already established for expo-
nential weights. Ifg € #* with a strictly superexponential weight, then in par-
ticular g € #2 for all a > 0, wherea stands for the exponential weight €ap |).

Given anyn > 4|qll,,, we may thus choose
. loghnw(m n
n gnw(m) -0

a=y@) =mi >0, n= >1
m=1 ~m 4lqll,,

Then éM/wr, < fi for all m > 1, and consequently

m
lalla < sup—Iiall, < dlall, = -
m>1 Wm

M| S

We may thus apply the individual gap estimate given at the end of section 5 to obtain
6 B R
(@] = ~lalla < 2ne™*" = 2ne .

This is the claim, and Theorem 6 is proven.
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Incidentally, the result is the same for alternate gap lengths, using the individ-
ual estimate given at the end of the preceding section. We only have to assume in
addition thain > Np,, a constant depending only diq||,.

11 Extensions

Subexponential weights Our definition of a strictly subexponential weight
is chosen to allow for a convenient hypothesis of Lemma 9. But we might as well
definea weightw € M to be strictly subexponential, if lag(n)/n — 0 and

min(w, v,) € M

for all sufficiently small positives. Then Theorems 3 and 4 remain valid.

LP-spaces For the sake of brevity and clarity we restricted ourselves to
spaces#" defined in terms of 2-type norms. But we may also consider the spaces

5 = o= e -l < o]
nez

for 1 <r < oo, where
Igllf,, = whlanl",  1<r <o,
nez

191l,00 = SUPWRIQn].
nez

The shifted normg|-||,, .; are defind analogously. The results remain the same,
except for some minor quantitative aspects of constants and thresholds. The only
new ingredient is an extended version of Lemma 1.

Lemmal1l-R If g € #” withw € M, thenfor n> 1andX € Uy,
Th = VA 1Qn

is a bounded linear operator o” with norm || Tp|l, ;. < %||q||w’r foralli € Z,
where g = 1 and otherwise
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Proof. Consider the case & r < co. As in the proof of Lemma 1, we may
write

_ f
nglenf = Z )\_7””:27_[2%=29mem,

|m|#n meZ

and by Holder’s inequality for—1 +s1 = 1 we get

1/s
g8 .1 < ||f||w,r;i( > |m2_n2| ) :
Imiz£n
One verifies that
I RN R
Imjzn m>

so thatligall, ;1 < ¢l fll,,.i. By standard estimates for the convolution of two
sequences and the submultiplicity of the weights, one then arrives at

ITo fllwri = IVl i < IV I r 198 1,1 < CllAlu el fllyri-

This holds for anyf e #*, so the claim follows for 1< r < co. The remaining
cases are handled analogoudly.
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