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Abstract

Blackwell’s renewal theorem in probability theory deals with the asymptotic be-

havior of an expected number of renewals. A proof is given which combines the

measure theoretic and the Fourier analytic access with considerably simpler single

steps.
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1 Introduction

In classical renewal theory the partial sum sequence (X1 + . . . + Xn) for independent

indentically distributed (i.i.d.) nonnegative random variables X1, X2, . . . is called renewal

process and is interpreted as the sequence of random renewal epochs (random arrival times

of customers) in a technical system (at a server). The trivial case P [X1 = 0] = 1 is

excluded, i.e., 0 < EX1 ≤ ∞ is assumed. The renewal function V on R defined by

V (a) :=





1 + E sup{k ∈ N : X1 + . . .+Xk ≤ a}, a ≥ 0

0, a < 0

satisfies

V =

∞∑

n=0

F n∗ <∞

where F n∗ is the n-fold convolution of the distribution function F of X1, and F 0∗ := F0 :=

IR+
(I denoting an indicator function). There is of central importance in renewal theory the

asymptotic behaviour of V (a)−V (a−h), the mean number of renewals in the time interval

(a − h, a], for a → ∞ with arbitrary fixed h > 0. The case of an arithmetic distribution

of X1, i.e., concentration of the distribution on {0, λ, 2λ, . . .} for some λ > 0, has been

treated by Erdös, Feller and Pollard (1949), see also Feller (1968), Ch. XIII. The case of a

nonarithmetic distribution of X1 has been treated by Blackwell (1948, 1953). Especially in

the this case different proofs, also for the extension to i.i.d. real random variables Xn with

EX1 > 0 have been given, partially with restriction to the case EX1 <∞. Among others,

Smith (1954) used Wiener’s theory of Tauberian theorems in summability theory, Feller

and Orey (1961) used Fourier analysis, Walk (1975) used Laplace transforms. Feller (1971),

in Section XI.2, mainly used measure theory together with selection principles, Lindvall

(1977) used the probabilistic coupling method. Besides the monographs of Feller (1968,
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1971), we mention Breiman (1968), Woodroofe (1982), Alsmeyer (1991) and Asmussen

(2003) with further references.

In this paper we combine the measure theoretic and the Fourier analytic access and con-

siderably simplify the single steps. We use the selection principle only once (Arzelà-Ascoli

theorem), avoid Feller’s (1971) intermediate argument leading from Blackwell’s renewal

theorem to the key renewal theorem, and use (and prove) only a weakened version of a

uniqueness theorem of Beurling (1945) and Choquet and Deny (1960). The Fourier analytic

part consists, according to Kac (1965), of “a few lines”. We first show Blackwell’s renewal

theorem for the case EX3
1 < ∞ and then obtain asymptotic denseness of the support of

the renewal measure and Blackwell’s renwal theorem in the general case 0 < EX1 ≤ ∞.

2 Blackwell’s Renewal Theorem

For a distribution function (or difference of distribution functions) H and a measurable

function z : R → R bounded on bounded intervals we shall use the notation

(H ∗ z)(x) :=

∫

R

z(x− t)H(dt), x ∈ R.

Assume a nonnegative real random variable X1 with 0 < EX1 ≤ ∞. In other words, its

distribution function F : R → [0, 1] satisfies F (x) = 0 for x < 0 and F (0) < 1. Then the

renewal function V : R → R is given by V =
∑∞

n=0 F
n∗ where F n∗ is the n-fold convolution

of F (F n∗ = F (n−1)∗ ∗ F ), and F 0∗ := F0. Assume further that the distribution Q of X1 is

nonarithmetic, i.e., that Q is not concentrated on {0, λ, 2λ, . . .} for any λ > 0. This means,

for its Fourier-Stieltjes transform,

Q̂(u) :=
1√
2π

∫

R

e−iuxQ(dx) 6= 1 for all u 6= 0.(1)
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Theorem 1 (Blackwell’s Renewal Theorem) For any fixed h > 0 the renewal func-

tion fulfills

V (a) − V (a− h) → h

EX1
(a→ ∞),(2)

where 1/EX1 := 0 in the case EX1 = ∞.

Proof of Theorem 1 in the special case EX3

1
<∞.

1st step. Let h = 1 without loss of generality. For fixed c ∈ (0, 1) set

z(t) :=





0, t ≤ −c

t+c

c
, −c ≤ t ≤ 0

1, 0 ≤ t ≤ 1

−t+1+c

c
, 1 ≤ t ≤ 1 + c

0, t ≥ 1 + c

and w := V ∗ z ≥ V ∗ I[0,1) = V − V (· − 1). Then

(F0 − F ) ∗ w = (F0 − F ) ∗ V ∗ z = z on R(3)

and thus

∀
x∈R+

∫

R+

w(x− t)(1 − F (t)) dt =

∫

[0,x]

z(s) ds.(4)

For each h′ > 0 the function V − V (· − h′) is bounded because of V ∗ (F0 − F ) = IR+
and

F0 − F ≥ (1 − F (h′′))I[0,h′′) with 1 − F (h′′) > 0 for h′′ > 0 sufficiently small. Therefore

and because z is Lipschitz continuous with bounded support, one obtains boundedness of

w and

|w(x′) − w(x)| ≤
∫

|z(x′ − t) − z(x − t)|V (dt) ≤ c∗|x′ − x|



5

for some constant c∗ < ∞ and all x, x′ ∈ R with |x− x′| ≤ 1, thus Lipschitz continuity of

w.

Let (τn′) be an arbitrary sequence in R with τn′ → ∞ such that

w(τn′) → lim sup
s→∞

w(s) =: α.

Then the sequence w(·+τn′) is equibounded and equicontinuous, thus by the Arzelà-Ascoli

theorem (see, e.g., Feller (1971), p. 270, or Yosida (1968), Section III.3, as references)

a subsequence (τn) and a bounded continuous function g exist such that w(· + τn) → g

uniformly on bounded intervals, where 0 ≤ g ≤ g(0). g is even Lipschitz continuous, by

Lipschitz continuity of w. By the dominated convergence theorem one has

∀
x∈R

∫

R

w(x+ τn − t) d(F0 − F )(t) →
∫

R

g(x− t) d(F0 − F )(t) (n→ ∞).

On the other hand, by (3),

∀
x∈R

∫

R

w(x+ τ − t) d(F0 − F )(t) = z(x + τ) → 0 (τ → ∞).

Thus

∀
x∈R

∫

R

g(x− t) d(F0 − F )(t) = 0, i.e., (F0 − F ) ∗ g = 0,(5)

which is equivalent to F ∗ g = g on R.

2nd step. It will be shown that (5) has no other solution than a constant (special

version of a uniqueness theorem of Beurling (1945) and Choquet and Deny (1960)), thus

g(x) = g(0) = α, x ∈ R.(6)

Because of
∫

R+
(1 − F (t)) dt = EX1 <∞, from (5) one obtains

∀
x∈R

∫

R

g(x− t)(F0(t) − F (t)) dt = const <∞.(7)
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It remains to show uniqueness of the solution g(x) = EX1/ const of (7). It suffices to

show that for a given integrable function p : R → R with Fourier transform p̂(u) :=

1√
2π

∫
R
e−iutp(t) dt 6= 0 for all u ∈ R and additionally

∫
t2|p(t)| dt <∞, the equation

∀
x∈R

∫

R

m(x− t)p(t) dt = 0

for continuous bounded real-valued m has only the solution m(x) ≡ 0. The function

p = F0 − F satisfies both conditions, because Q is non-arithmetic and thus, by partial

integration,
∫
e−iutp(t) dt = (1− Q̂(u))/(iu) 6= 0 and because EX3

1 <∞. A simple Fourier

analytic argument from Tauberian theory, due to Kac (1965), is used. Let ϕ ∈ C2(R), not

vanishing identically, with compact support, and let ψ := ϕ/p̂. By the second condition

on p, one has p̂ ∈ C2(R), thus ψ ∈ C2(R) with compact support. Then ϕ̂ and ψ̂ are

integrable (see, e.g., Hewitt and Stromberg (1965), Exercise (21.61)). One has (with classic

convolution ? for functions)

ϕ̂(t) = (p ? ψ̂(−·))(−t), t ∈ R,

and

∫

R

ϕ̂(t)m(t) dt =

∫

R

∫

R

ψ̂(t+ s)p(s) dsm(t) dt

=

∫

R

ψ̂(x)

∫

R

m(x− s)p(s) ds dx = 0.

Replacing ϕ by ϕ(· − α), α ∈ R, one obtains

∀
α∈R

∫
m(t)ϕ̂(t)e−iαt dt = 0,

thus, by uniqueness of the Fourier transform,

∀
t∈R

m(t)ϕ̂(t) = 0.

Because ϕ̂ is an entire function not vanishing identically and thus with at most a countable

number of zeros, the continuous function m vanishes identically.
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3rd step. Using (4) and w(· + τn) → g (pointwise) one obtains, by Fatou’s lemma,

∫

R+

g(x− t)(1 − F (t))dt ≤ lim
n→∞

∫

R+

w(x+ τn − t)(1 − F (t)) dt

=

∫

R+

z(s) ds = 1 + c, x ∈ R.

Then, by (6), or only by

g(x) → g(0) = α (x→ −∞)(8)

and thus g(x− t) → α (x→ −∞) for each t ∈ R together with Fatou’s lemma once more,

one has

α

∫

R+

(1 − F (t)) dt

(
≤ lim inf

x→−∞

∫
g(x− t)(1 − F (t)) dt

)
≤ 1 + c,

i.e.,

α ≤ 1 + c

EX1
.

Thus, for c→ 0,

lim sup
a→∞

(V (a) − V (a− 1)) ≤ 1

EX1.

4th step. Analogously to steps 1–3, for the case EX1 <∞, instead of the majorant z

of I[0,1) using a corresponding minorant, one obtains

lim inf
a→∞

(V (a) − V (a− 1)) ≥ 1

EX1
.

Thus the assertion V (a) − V (a− 1) → 1/EX1 is obtained. �

Proof of Theorem 1 in the general case EX1 ≤ ∞. The proof differs from the proof

in the special case only in the 2nd step and in use only of (8) instead of (6) in the 3rd step.

2nd step. The aim is to show (8). (5) implies F n∗ ∗ g = g (n ∈ N) and

g =

(
∞∑

n=1

F n∗

2n

)
∗ g.
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Noticing max
x∈R

g(x) = g(0) and continuity of g, one now obtains

g(−x) = g(0) for all x ∈ supp
∞∑

n=1

Qn∗

2n
= supp

∞∑

n=1

Qn∗.(9)

Choose a continuous strictly increasing function q : [0, 1] → R+ such that q(0) = 0, q(1) ≤

1 and
∫

R+
t2q(1 − F (t)) dt <∞ and define a distribution function F̃ : R → R by F̃ (t) = 0

for t < 0 and q(1 − F (t)) = 1 − F̃ (t) for t ≥ 0. Then the probability distributions Q and

Q̃ (the latter belonging to F̃ ) are equivalent, where
∫

R+
t3 dF̃ (t) <∞. Further the renewal

measures
∑∞

n=0Q
n∗ and

∑∞
n=0 Q̃

n∗ (the latter with renewal function Ṽ ) are equivalent and

have the same support. By Theorem 1 in the special case EX3
1 < ∞, for each h′ > 0 one

has

Ṽ (a) − Ṽ (a− h′) → h′∫
R+
t dF̃ (t)

> 0 (a→ ∞).

Thus supp
∑∞

n=1Q
n∗ = supp

∑∞
n=1 Q̃

n∗ is asymptotically dense, i.e.,

dist

(
x, supp

∞∑

n=1

Qn∗

)
→ 0 (x→ ∞).

This together with (9) and uniform continuity of g yields (8). �
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