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Tight embeddings of simply connected 4-manifolds

Wolfgang Kühnel

Dedicated to Thomas F. Banchoff on the occasion of his 65th birthday1

Abstract The classification of compact and simply connected PL 4-manifolds states that the homeo-
morphism classes coincide with the homotopy classes, and that these are classified by the intersection
form. We show here that “most” of these classes with an indefinite intersection form can be represented
by a tight polyhedral embedding into some Euclidean space. It remains open which of the PL structures
can be realized in such a way.

2000 Mathematics Subject Classification: 52B70, 53C42, 57Q35
Key words: intersection form, tight polyhedra, polyhedral handles, tight surgery

Introduction and Result

An embedding M → EN of a compact manifold into Euclidean space is called tight, if for any open
half space E+ ⊂ EN the induced homomorphism

H∗(M ∩ E+) −→ H∗(M)

is injective where H∗ denotes an appropriate homology theory with coefficients in a certain field. In
the smooth case (and, with certain modifications, also in the polyhedral case) this is equivalent to the
condition that almost all height functions on M are perfect functions, i.e., have the minimum number
of critical points which coincides with the sum of the Betti numbers. For a survey on tightness see
[14] or [3].

For compact 2-manifolds without boundary this is equivalent to the Two-piece property (TPP) which
states that the intersection of M with any (open or closed) halfspace is connected. Smooth tight
surfaces were investigated by N.H.Kuiper [13] and others, the study of tight polyhedral surfaces was
initiated by T.F.Banchoff [1]. One of the results is that any given closed surface admits a tight
polyhedral embedding into some Euclidean space. For obtaining this, it is sufficient to start with the
three cases of the sphere, the real projective plane and the Klein bottle [2] and then to attach handles
tightly. For tight polyhedral immersions into 3-space the situation is the following: Any given closed
surface (except for the real projective plane and the Klein bottle) admits a tight polyhedral immersion
into 3-space. The crucial and most difficult case χ = −1 had been open for many years and was solved
only recently by D.Cervone [5]. Smooth tight immersions into 3-space exist for all surfaces except
for the real projective plane, the Klein bottle and the surface with χ = −1. The latter is again the
most crucial case and was solved by F.Haab [7]. There is a smooth tight embedding RP 2 → E4 as a
suitable linear projection of the Veronese surface. The cases of the Klein bottle and χ = −1 seem still
to be open. One approach might be to attach a handle tightly to the Veronese surface in 4-space (or
a slightly distorted version of it) but that has so far turned out to be unmanageable. In 5-space the
only smooth tight surface is the classical Veronese surface itself by a theorem of N.H.Kuiper.

1The main result of this paper was first presented at the TFB conference on this occasion

at Providence, RI, Nov. 1, 2003.
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In the case of compact 3-manifolds not too much seems to be known at all. Smooth tight examples
include the Veronese embedding RP 3 → E9, connected sums of handles S1×S2 and cartesian products
of a circle with tight surfaces as well as tubes around embedded tight surfaces in 4-space. The more
restrictive class of taut 3-manifolds was classified in [17]. In particular it includes an embedding
of the twisted product S1 ×h S2 as a “complexified 2-sphere” and the quaternion space as Cartan’s
isoparametric hypersurface in S4. There are a number of constructions for tight polyhedral embeddings
of 3-manifolds, compare [9]. However, we are far from being able to cover major parts of the class of
all 3-manifolds. It seems that we do not know a tight embedding of any Lens space (except for RP 3)
and it seems also that we do not even know a tight polyhedral embedding of RP 3. For any given tight
polyhedral 3-manifold it is easy to attach handles tightly but that procedure does not help too much if
the other building blocks are missing. Unfortunately there is no simple combinatorial condition which
implies the tightness. Instead one has to check all the homology classes in all the open halfspaces,
just by applying the definition above. This is better in the case of simply connected 4-manifolds.

For compact and simply connected 4-manifolds without boundary the tightness is equivalent to the
requirement that M∩E+ is always connected and simply connected. The only smooth tight immersions
of simply connected 4-manifolds which are known are spheres as convex hypersurfaces in 5-space, the
Veronese-type embedding of CP 2 into 8-space [13] and certain embeddings of arbitrary connected
sums of copies of S2 × S2 in 5-space [8]. G.Thorbergsson [18] found topological obstructions to the
existence of smooth tight immersions in terms of the intersection form and Stiefel-Whitney classes.
This leads to restrictions for the existence of smooth tight immersions of connected sums of copies of
CP 2 and −CP 2. In particular, it turned out that the K3 surface does not admit any smooth tight
immersion. The obstruction is that it does not admit a splitting as a connected sum of two smooth
manifolds even though the intersection form splits as a connected sum.

This is much different in the polyhedral case because the same type of topological obstruction is not
there. The polyhedral tight embedding CP 2 → E8 [10] leads to tight embeddings CP 2#k(−CP 2) →
E8 for any number k, see [9, Sect.6C], and a tight embedding of the K3 surface into 15-space was
recently found in [4]. We use them as building blocks and show in our Theorem 7 below how these –
together with attaching 2-handles of type S2 ×S2 – lead to polyhedral tight embeddings of any given
topological type of a simply connected PL 4-manifold, subject to a certain extra assumption on the
intersection form. Our proof relies on the following results from the classification of 4-manifolds. For
an outline of them see [16, Sect.5].

Definition The intersection form Q of a compact 4-manifold M is the symmetric bilinear form
Q : H2(M ; Z)×H2(M ; Z) → Z which is dual to the cup product defined on the cohomology H2(M ; Z).
It satisfies the equation Q(M1#M2) ∼= Q(M1) ⊕ Q(M2). If we represent the intersection form in a
basis over the integers then the corresponding matrix is invertible and hence unimodular, i.e., it has
determinant ±1. The rank of Q is the rank of H2(M ; Z) as a Z-module, also known as the second
Betti number, the signature is the number of negative eigenvalues minus the number of positive
eigenvalues. A quadratic form is called odd if some diagonal entry in the representing integer matrix
is odd, otherwise it is called even. It is known from algebra [15] that an indefinite quadratic form over
the integers is uniquely classified by its rank, its signature and by its type (even or odd).

Theorem 1 (S.S.Cairns 1940)
The equivalence classes of smooth 4-manifolds and PL 4-manifolds are in (1−1)-correspondence. More
precisely, every smooth 4-manifold induces precisely one PL manifold (up to PL-homeomorphism) and,
vice versa, every PL 4-manifold admits exactly one smoothing (up to diffeomorphism).

6



Theorem 2 (V.A.Rohlin 1952)
The signature of any simply connected smooth or PL 4-manifold with an even intersection form is an
integer multiple of 16.

Theorem 3 (S.Donaldson 1983)
If the intersection form of a simply connected PL 4-manifold is definite then it is diagonalizable over
the integers and, in particular, odd.

Theorem 4 (J.Milnor 1958)
The homotopy classes of simply connected 4-manifolds are uniquely classified by their intersection
forms.

The topological classification turned out to be much harder, and it took almost 25 more years until
this problem was solved by M.Freedman. The smooth (or PL) classification appears still to be open.

Theorem 5 (M.Freedman 1982)
The homeomorphism classes of simply connected PL 4-manifolds are uniquely classified by their in-
tersection forms. More precisely: Two such PL manifolds M, M̃ are homeomorphic (not necessarily

PL homeomorphic) if and only if their intersection forms Q, Q̃ are equivalent over the integers.

There is an algebraic classification of indefinite unimodular quadratic forms as follows:

Theorem 6 (see [16, Sect.5])

1. Any indefinite, odd and unimodular quadratic form over the integers is equivalent to
l(+1)⊕ k(−1).

2. Any indefinite, even and unimodular quadratic form over the integers is equivalent to
n(∓E8) ⊕ m

(
0 1

1 0

)
.

The rank is k + l or 8n+2m, respectively, the signature is k− l or ±8n, respectively. Conversely, rank
and signature of the quadratic form determine these numbers k, l, m, n uniquely. Here E8 denotes the
following unimodular and positive definite matrix:

E8 =




2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2



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Corollary

Let K3 denote the K3 surface with its intersection form (−E8)⊕ (−E8)⊕ 3
(
0 1

1 0

)
. Then the manifolds

l(CP 2)#k(−CP 2) with k, l ≥ 0

and
n(±K3)#m(S2 × S2) with m, n ≥ 0

cover all homotopy classes (and, in fact, homeomorphism classes) of simply connected PL 4-manifolds
with intersection forms

l(+1) ⊕ k(−1) or 2ν(∓E8) ⊕ µ

(
0 1

1 0

)
,

where k, l ≥ 0 and µ ≥ 3ν ≥ 0, respectively.

Remark For the intersection form of the K3 surface compare [15]. Theorem 3 together with the
11

8
-conjecture [6] implies that no other quadratic form can occur as the intersection form of any simply

connected PL 4-manifold. In more detail this conjecture states that for an even intersection form Q
the rank of Q is always at least 11

8
times the absolute value of the signature of Q. It is easily seen

that for the form Q = 2ν(∓E8) ⊕ µ
(
0 1

1 0

)
we have

rank(Q)

|sign(Q)|
=

16ν + 2µ

16ν
≥

11

8
if and only if µ ≥ 3ν.

Our main result is the following Theorem 7 which provides a construction of polyhedral tight em-
beddings for a large class of simply connected 4-manifolds. This follows the pattern in the case of
2-manifolds which was mentioned at the very beginning above: Start with certain building blocks and
then attach handles tightly.

Theorem 7 Let M be a simply connected PL 4-manifold with an indefinite intersection form Q.
Assume further that rank(Q) ≥ 11

8
|sign(Q)| + 44 in case that Q is even with |sign(Q)| ≥ 32. Then

there exists a tight polyhedral embedding M̃ → EN for some N such that M and M̃ are homeomorphic.

Since this result relies on the classification in terms of the intersection form, we cannot obtain by
this method that M and M̃ are PL homeomorphic. However, by a theorem of C.T.C.Wall 1964
there is always a number k ≥ 0 such that the manifolds M#k(S2 × S2) and M̃#k(S2 × S2) in
Theorem 7 are PL homeomorphic. So in some sense in “most” of the cases we can not only prescribe
the topological type but also the PL type. Compare Remark 2 at the end of the paper. However,
there are an infinite number of undecided cases left. In particular we do not have any example of a
tight polyhedral realization of a manifold homeomorphic to K3#K3# · · ·#K3. Such examples could
remove the number 44 from the extra assumption in Theorem 7 which then would just transform
into the hypothesis of the 11

8
-conjecture. For the case of a positive definite intersection form it would

be sufficient – by Theorem 3 – to find a tight polyhedral embedding of k(CP 2) for arbitrary k ≥ 2.
However, such an example (for any k ≥ 2) is still missing.
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The building blocks and connected sums of them

First of all, there are tight triangulations of CP 2 and of the K3 surface. This means, there is a
triangulation of CP 2 (with 9 vertices, see [10], [11]) and one of the K3 surface (with 16 vertices, see
[4]) such that any simplexwise linear embedding into any Euclidean space is tight. In particular, we can
regard CP 2

9 as a tightly embedded subcomplex of the 8-simplex 48 and (K3)16 as a tightly embedded
subcomplex of the 15-simplex 415. In each case the manifold contains the complete 2-dimensional
skeleton of the ambient 8-simplex or 15-simplex, respectively. This implies that the intersection with
any open halfspace is connected and simply connected. Compare [9] for general properties of tight
triangulations and [12] for a list of known examples.

By truncating each of these subcomplexes at a vertex and by glueing in another copy of the same
kind, one gets tight embeddings

CP 2#(−CP 2) → E
8 and K3#(−K3) → E

15,

each with signature zero. This construction is quite similar to the original version [2] of Banchoff’s
tight Klein bottle in 5-space as a geometric connected sum RP 2#RP 2. The process of truncating
and glueing in additional copies of the same combinatorial type can be repeated arbitrarily often, as
shown in [9, Sect.6C]. This implies that we can realize any quadratic form of type

(+1) ⊕ k(−1), k ≥ 1

or

2(−E8) ⊕ 2n(E8) ⊕ 3(n + 1)

(
0 1

1 0

)
∼= 2(n − 1)E8 ⊕ (3n + 19)

(
0 1

1 0

)
, n ≥ 1

by a tightly and polyhedrally embedded simply connected 4-manifold. In the latter case we have
the equations rank = 16(n − 1) + 6n + 38 = 22(n + 1) and |sign| = 16(n − 1), so in particular
rank ≥ 11

8
|sign| + 44.

In order to cover the other cases in Theorem 7, we have to attach handles, thus realizing the sum of
a previously given quadratic form Q and copies of

(
0 1

1 0

)
.

Attaching handles tightly

There is an obvious procedure to attach a handle to a tight polyhedral surface in 3-space: Pick two
faces opposite to one another (not necessarily in parallel planes), cut out a certain triangle in each of
them, and glue in a polyhedral cylinder (as the boundary of a triangular prism), see Figure 1. It is,

Figure 1: Attaching a 1-handle tightly

however, much less obvious how one can attach a 2-handle or a 3-handle tightly to a given polyhedron.
One needs to fill in something within the convex hull of its boundary without hitting the rest of the
manifold.
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In general the procedure of attaching a k-handle of type Sk × Sn−k to an n-manifold is equivalent to
cutting out a submanifold of type Sk−1 × Bn−k+1 inside a topological ball (e.g., a coordinate chart)
and replacing it by Bk×Sn−k. This is the classical surgery which we have to carry out in a polyhedral
setting. The case k = 1 corresponds to attaching an ordinary 1-handle, like a bridge between two
parts of the manifold. The case k = 2, n = 4 is crucial in the proof of our Theorem 7. For our purpose
we have to realize this surgery within the class of tight polyhedral submanifolds. Therefore, we have
to describe this process of tight surgery geometrically in the ambient space. It will always be carried
out in some Euclidean (n + 1)-space if the manifold is n-dimensional

Definition A simple polyhedral sphere Σk−1 is a triangulation of the sphere Sk−1 with k+1 vertices.
This is nothing but the boundary complex of a k-dimensional simplex. A short link of a certain
(n− k)-simplex in a triangulated n-manifold is a link which is combinatorially equivalent to a simple
polyhedral sphere Σk−1. Notice that the link of a codimension–1 face is always short, the link of
a codimension–2 face is short if and only if it has exactly 3 vertices and 3 edges. In the sequel let
∆k denote a certain k-dimensional simplex in the simplicial complex which is considered, and let 4k

denote an abstract k-simplex which is not necessarily in the complex.

Lemma Assume that Mn ⊂ EN is a simplicial submanifold containing a simplex ∆n−k with a
short link Σk−1 such that the n + 2 vertices of the star of ∆n−k are in general position. Then there
is a polyhedral “solid torus” of type Sk−1 × Bn−k+1 within the open star of ∆n−k which is a tight
submanifold-with-boundary in the affine subspace En+1 of EN which is spanned by the n + 2 vertices
of the star of ∆n−k. Moreover, it can be arranged that the convex hull of the short link does not hit M
except for its boundary. Therefore, we can choose the tight solid torus in such a way that its convex
hull does not hit M either except for the solid torus itself.

Proof. The procedure of attaching a handle will be carried out inside the open star of ∆n−k without
using any of the original vertices. Since the tightness is affinely invariant, we can assume that the
n + 2 vertices of the star of ∆n−k form a regular simplex in (n + 1)-space. In the classical case k = 1
we take the two barycenters of the two n-faces meeting at ∆n−1. These form a 0-sphere. Then the
procedure of attaching a handle tightly is suggested by Figure 1.

If k = 2 we take the three barycenters of the three (n − 1)-faces meeting at ∆n−2. Any two of them
can be joined by a straight line segment inside of one of the three n-faces of M . The union of these
three line segments is a simple polyhedral 1-sphere ∂42 in M (but not as a subcomplex) such that its
convex hull does not hit M except along exactly those three line segments. Then we construct a tight
thickening of this polyhedral 1-sphere in the n-manifold as the union of three prisms of type 41×4n−1

such that they fit mutually together in (n + 1)-space as an embedded solid handle ∂ 42 ×4n−1.

In the general case for arbitrary k we proceed similarly: Take the k+1 barycenters of all the (n−k+1)-
faces meeting at ∆n−k. These span a regular k-simplex 4k in an (n+1)-dimensional Euclidean space.
Its boundary is a simple polyhedral (k − 1)-sphere inside the star of ∆n−k in M (but not as a
subcomplex). Then take a similar n-dimensional thickening of that simple sphere inside M and inside
the same (n + 1)-space. Then again replace the interior of a “solid torus” of type ∂ 4k ×4n−k+1 by
the exterior of type 4k × ∂4n−k+1.

In order to describe this procedure in more detail we use the unique projective transformation
Φ: star(∆n−k) \ ∆n−k → En+1 which sends to infinity the hyperplane which contains ∆n−k and
the k-plane parallel to the opposite k-simplex in the star of ∆n−k. Then the rest of the open star
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Figure 2: Attaching a 2-handle tightly; the case k = 2, n = 3

becomes an orthogonal cartesian product of the link of ∆n−k with an open part of some Euclidean
En−k+1. Furthermore Φ maps the union of the k + 1 open n-faces meeting at ∆n−k to an open part
of the orthogonal cartesian product ∂ 4k ×E

n−k+1 in E
k × E

n−k+1 = E
n+1. Hence the polyhedral

thickening of ∂4k can be defined as the cartesian product ∂ 4k ×4n−k+1 where 4n−k+1 denotes
a small simplex in (n − k + 1)-space. This is tightly embedded since it is a product of two tight
subsets. The boundary is the product ∂ 4k ×∂4n−k+1 which is also a tight polyhedral embedding of
Sk−1 × Sn−k.

By applying Φ−1 we obtain the tight solid torus in the actual open star of ∆n−k. Note that projective
transformations preserve tightness. For the surgery we cut out the interior of ∂ 4k ×4n−k+1 and
replace it by the interior of 4k × ∂4n−k+1. A picture for n = 3 is shown in Figure 2. Note, however,
that this is a 3-dimensional projection of a 3-dimensional solid torus in 4-space. It is not a solid torus
in 3-space. �

Corollary Given a tight triangulation of a PL n-manifold M where some (n−k)-simplex (k ≤ n/2)
has a short link, we can tightly attach arbitrarily many handles of type Sk × Sn−k. Hence for any m
we obtain a manifold of PL type M#m(Sk × Sn−k) tightly embedded into Euclidean space.

Proof: We carry out the construction of the lemma above. It is quite clear that we can repeat it
arbitrarily often within one star since these solid tori can be chosen arbitrarily thin and disjoint. It is
not essential to use the exact barycenters in the construction. The tightness of the solid torus implies
that M minus the interior will still be tight. The same holds after the surgery. In the case of n = 4
and k = 2 which is most important for Theorem 7. We can easily see that the intersection with any
halfspace is still connected and simply connected after the surgery if it was before. The tightness in
the other cases follows similarly by considering the homology cycles created by the surgery. In any
case the original Sk−1 for starting the surgery is nullhomotopic in M , so that the topology after one
step is that of M#(Sk × Sn−k). �

Proof of Theorem 7:

In case 1 we consider a simply connected 4-manifold M with an odd intersection form which is
equivalent to l(+1) ⊕ k(−1). By assumption it is indefinite, so we can assume that the signature is
nonnegative and thus k ≥ l ≥ 1. This quadratic form is also equivalent to

(+1) ⊕ (k − l + 1)(−1)⊕ (l − 1)

(
0 1

1 0

)
.
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We can realize this by starting with the tight CP 2
9 in 8-space, by truncating vertices and by glueing

in k − l + 1 combinatorially equivalent copies of −CP 2
9 with an open vertex star removed (see [9,

Sect.6C]), and finally by attaching l − 1 handles of type S2 × S2. Here it is crucial that CP 2
9 does

contain triangles with a short link, e.g., the triangle ∆2 = 〈1, 2, 3〉 in the labeling of [10]. Hence our
lemma above is applicable.

In case 2 we consider an even intersection form with signature 0, 16 or 16m ≥ 32. If the signature is
zero we just take the standard ladder construction of tight connected sums of S2 ×S2, as described in
[3, Ex.2.6.4]. The case of the 4-sphere itself is realized by the boundary of any convex polyhedron. If
the signature is 16 we start with the tight K3 surface in 15-space and attach handles of type S2 ×S2

tightly. Here it is crucial that this triangulation contains a triangle with a short link. In the labeling
of Figure 1 in [4] this is the triangle ∆2 =

〈(
0

0

)
,
(
1

0

)
,
(
x

0

)〉
.

If the signature is 16m ≥ 32 we first build a tight (−K3)#(K3)#m(K3) by the truncation process
from [9, Sect.6C] and then attach handles of type S2 × S2 tightly. Here the extra assumption

rank(Q) ≥
11

8
sign(Q) + 44

comes in since the signature of (−K3)#(K3)#m(K3) is 16m whereas the rank is 22(m + 2), so it
is our assumption which implies that we have a nonnegative number of handles to attach. In any
case the resulting tightly embedded 4-manifold has the same intersection form as M and is, therefore,
homeomorphic to M by Theorem 5. �

Remarks:

1. The cases of 4-manifolds which are not covered by Theorem 7 are k(CP 2) where k ≥ 2 and
m(K3)#n

(
0 1

1 0

)
where m ≥ 2 and n < 22. Examples of that kind would imply that – modulo the

validity of the 11

8
-conjecture – every homotopy (or homeomorphism) class of simply connected PL

4-manifolds would be realizable by a tight embedding into some Euclidean space .

2. It seems that no example is known of any pair M, M̃ of PL manifolds which are homeomorphic
to one another but not PL homeomorphic and where each admits a tight PL embedding. One might
expect that the “standard structure” is preferred for tight polyhedral embeddings if there is any.
This is true at least for the sphere and for any homology sphere: The image of any tight polyhedral
embedding of a homology k-sphere is the boundary of a convex polyhedron in (k + 1)-space, for a
simple proof see [9, Cor.3.6].

3. The same construction of attaching handles can be applied to other classes of manifolds. In the case
of simply connected 5-manifolds we have tight connected sums of S2 × S3 on the one hand and also
a tight 13-vertex triangulation of SU(3)/SO(3) on the other, see [12, p.170]. Since the tetrahedron
∆3 = 〈0, 1, 4, 6〉 in the latter one has a short 1-dimensional link, it is possible to attach 2-handles of
type S2 × S3 tightly.

4. The construction above of attaching handles does not raise the essential codimension of the em-
bedding. In fact, reaching or estimating the maximum codimension is a different interesting problem.
Here a conjecture states that for any simply connected 4-manifold M a tight polyhedral embedding
into EN (not in any hyperplane) can exist only if the Heawood type inequality

(
N − 3

3

)
≤ 10β2(M)
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is satisfied where β2 denotes the second Betti number (similarly for (k − 1)-connected 2k-manifolds),
see [9, Sect.4]. Equality is attained for the tight triangulations of CP 2 and the K3 surface, perhaps
also in other cases. By standard arguments this conjecture would follow if the following generalized van
Kampen–Flores theorem is true: Assume that a simply connected 4-manifold M admits a polyhedral
embedding of the complete 2-skeleton of the N -dimensional simplex. Then the inequality

(
N−3

3

)
≤

10β2(M) holds. The classical van Kampen–Flores theorem is nothing but the case of the 4-sphere.
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2004/012 Pöschel, J.: Hill’s potentials in weighted Sobolev spaces and their spectral gaps.

2004/013 Dippon, J., Walk, H.: Simplified analytical proof of Blackwell’s renewal theorem.

2004/014 Kühnel, W.: Tight embeddings of simply connected 4-manifolds.


