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Abstract

We describe and construct here pseudo-Hermitian structures θ without torsion (i.e. with
transversal symmetry) whose Webster-Ricci curvature tensor is a constant multiple of the
exterior differential dθ. We call these structures pseudo-Hermitian Einstein. We show that any
pseudo-Hermitian Einstein structure can locally be derived from a Kähler-Einstein manifold.

1 Introduction

CR-geometry is a |2|-graded parabolic geometry on a smooth manifold Mn. Its underlying Weyl-
structures are the pseudo-Hermitian forms θ. CR-geometry is closely related to conformal ge-
ometry via the Fefferman construction. For conformal structures, there is the notion of being
conformally Einstein, that means there is a Riemannian metric in the conformal class which is
Einstein. In terms of tractors the conformal Einstein condition can be expressed through the exis-
tence of a parallel standard tractor (cf. [Gov04], [Lei05]). The concept of parallel standard tractors
works for CR-geometry as well. One can define in this case that a pseudo-Hermitian structure
with parallel standard CR-tractor, whose first ’slot’ is a constant real function, is Einstein.

However, we do not use here tractor calculus to define the Einstein condition for a pseudo-
Hermitian structure. Instead, we say a pseudo-Hermitian structure θ is Einstein if and only if its
torsion vanishes and the Webster-Ricci curvature is a constant multiple of the exterior differential
dθ. The two definitions of pseudo-Hermitian Einstein spaces coincide.

We will proceed as follows. In section 2 we introduce the notions that we use here for pseudo-
Hermitian geometry, in particular, Webster curvature. In section 3 we consider pseudo-Hermitian
structures with transversal symmetry and define the Einstein condition. In section 4 we compare
the pseudo-Hermitian geometry of θ with the Riemannian geometry of the induced metric gθ.
In section 5 we derive the natural Riemannian submersion of a transversally symmetric pseudo-
Hermitian space. We will see that the Ricci tensor of the base space of the Riemannian submersion
determines the Webster-Ricci tensor of the transversally symmetric pseudo-Hermitian space. Fi-
nally, in section 6 we find construction principles for pseudo-Hermitian Einstein spaces taking off
with a Kähler-Einstein space. We will see that these construction principles generate locally all
pseudo-Hermitian Einstein structures.

2 Pseudo-Hermitian structures

We fix here in brief some notations for pseudo-Hermitian structures. Threreby, we follow mainly
the notations of [Bau99]. More material on pseudo-Hermitian geometry can be found e.g. in
[Lee86], [Lee88], [CS00] [Cap01] and [CG02].

With a CR-structure on a smooth manifold Mn of odd dimension n = 2m + 1 we mean here
a pair (H, J), which consists of

1. a contact distribution H in TM of codimension 1 and

2. a complex structure J on H , i.e. J2 = −id|H , subject to the integrability conditions
[JX, Y ] + [X, JY ] ∈ Γ(H) and

J([JX, Y ] + [X, JY ]) − [JX, JY ] + [X, Y ] = 0

for all X, Y ∈ Γ(H).

The conditions that the distribution H is contact and the complex structure J is integrable ensures
that (H, J) determines a |2|-graded parabolic geometry on M (cf. e.g. [CS00]). In particular, the
(infinitesimal) automorphism group of (M, H, J) is finite dimensional.

A nowhere vanishing 1-form θ ∈ Ω(M) is called a pseudo-Hermitian structure on the CR-
manifold (M, H, J) if

θ|H ≡ 0 .
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Then we call (M, H, J, θ) a pseudo-Hermitian space. Since the distribution H is contact, the 1-
form θ is necessarily a contact form. Such a contact form θ exist on (M, H, J) if and only if M

is orientable. Furthermore, two pseudo-Hermitian structures θ and θ̃ on (M, H, J) differ only by
multiplication with a real nowhere vanishing function f ∈ C∞(M):

θ̃ = f · θ .

We consider now the exterior differential dθ of a pseudo-Hermitian structure. This 2-form is
non-degenerate on H , i.e.

(dθ)m|H 6= 0

and the 2-tensor
Lθ(·, ·) := dθ(·, J ·)

is symmetric and non-degenerate on H . If Lθ is positive definite the pseudo-Hermitian structure
θ is called strictly pseudoconvex. In general, the 2-tensor Lθ has signature (p, q) on H . The
conditions

T − θ ≡ 1 and T − dθ ≡ 0

uniquely determine a vector field T on M . This T is called a Reeb vector field. For convenience,
we set J(T ) = 0.

To a pseudo-Hermitian structure θ on (M, H, J) (with arbitrary signature for Lθ) belongs a
canonical covariant derivative

∇W : Γ(TM) −→ Γ(T ∗M ⊗ TM) ,

which is called the Tanaka-Webster connection. It is uniquely determined by the following condi-
tions:

1. The connection ∇W is metric with respect to the non-degenerate symmetric 2-tensor

gθ := Lθ + θ ◦ θ

on M , i.e.
∇W gθ = 0 ,

and

2. its torsion TorW (X, Y ) := ∇W
X Y −∇W

Y X − [X, Y ] satisfies

TorW (X, Y ) = Lθ(JX, Y ) · T for all X, Y ∈ Γ(H) and

TorW (T, X) = − 1
2 ([T, X ] + J [T, JX ]) for all X ∈ Γ(H) .

In addition, for this connection it holds

∇W θ = 0 and ∇W ◦ J = J ◦ ∇W .

The curvature operator of the connection ∇W is defined in the usual manner:

R∇
W

(X, Y ) = [∇W
X ,∇W

Y ] −∇W
[X,Y ] .

The (4, 0)-curvature tensor RW is given for X, Y, Z, V ∈ TM by

RW (X, Y, Z, V ) := gθ(R
∇

W

(X, Y )Z, V ) .

This curvature tensor has the symmetry properties

1. RW (X, Y, Z, V ) = −RW (Y, X, Z, V ) = −RW (X, Y, V, Z),
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2. RW (X, Y, JZ, V ) = −RW (X, Y, Z, JV ).

We have not listed here the Bianchi type identities. We just note that the Bianchi identities for

R∇
W

do not (formally) look like those for the Riemannian curvature tensor. We will come back
to this point later.

There is also the notion of Ricci curvature for a pseudo-Hermitian structure. It is called the
Webster-Ricci curvature tensor and can be defined as follows. Let

(eα, Jeα)α=1,...,m

be a local orthonormal frame of Lθ on H and εα := gθ(eα, eα). Then it is defined

RicW (X, Y ) :=
i

2

m∑

α=1

εαRW (X, Y, eα, Jeα) .

The Webster-Ricci curvature is skew-symmetric with values in the purely imaginary numbers iR.
And the Webster scalar curvature is

scalW :=
i

2

m∑

α=1

εαRicW (eα, Jeα) .

The function scalW on (M, H, J, θ) is real.

3 Transversal symmetry

Let (M, H, J) be a CR-manifold. A vector field T 6= 0 is called a transversal symmetry of (H, J)
if it is not tangential to the subbundle H (i.e. it is transversal to H) and if the flow of T consists
(at least locally for small parameters) of CR-automorphisms, i.e. the distribution H is preserved
and LT J = 0, or equivalently

[T, X ] + J [T, JX ] = 0 for all X ∈ Γ(H) .

Now let θ be a non-degenerate pseudo-Hermitian structure on (M, H, J) and let T be the
corresponding Reeb vector field determined by

θ(T ) ≡ 1 and T − dθ ≡ 0 .

Obviously, the Reeb vector field to θ is a transversal symmetry of (H, J) if and only if the torsion
part TorW (T, X) of the Tanaka-Webster connection ∇W vanishes for all vector fields X ∈ Γ(H).
Equivalently, it is true to say that T is a transversal symmetry if and only if T is a Killing vector
field for the metric gθ, i.e.

LT gθ = 0 .

This uses the fact that
LT J = 0 and LT θ = 0

for the case when T is a transversal symmetry.
The above observations suggest the following notation. We say that a non-degenerate pseudo-

Hermitian structure θ on a CR-manifold (M, H, J) is transversally symmetric if its Reeb vector
field T is a transversal symmetry of (H, J). In short, we say θ is a (TSPH)-structure on (M, H, J).

We extend our notations here further and say that θ is a pseudo-Hermitian Einstein structure
on (M, H, J) if and only if θ is transversally symmetric and the Webster-Ricci curvature RicW is
a constant multiple of dθ, i.e.

RicW = −i
scalW

2m
· dθ and TorW (T, X) = 0

for all X ∈ Γ(H). In this case (M, H, J, θ) is called a pseudo-Hermitian Einstein space (cf. [Lee88]).
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4 Comparision between ∇W and ∇gθ and their curvature

tensors

We calculate in this section the endomorphism

Dθ := ∇W −∇gθ ,

where ∇gθ denotes the Levi-Civita connection of gθ, and derive comparision formulas for the
Riemannian and the Webster curvature tensors. We will restrict this discussion to the transversally
symmetric case. So let θ be a (TSPH)-structure on (M, H, J). A straightforward calculation shows
that the covariant derivative

∇W −
1

2
dθ · T +

1

2
(θ ⊗ J + J ⊗ θ)

is metric and has no torsion with respect to gθ. We conclude that it is the Levi-Civita connection
of gθ and we have as comparision tensor

Dθ := ∇W −∇gθ =
1

2
(dθ · T − (θ ⊗ J + J ⊗ θ)) .

Another straightforward calculation shows that

R∇
W

(X, Y )Z = Rgθ (X, Y )Z −
1

2
∇gθ

Z dθ(X, Y ) · T −
1

2
dθ(X, Y ) · J(Z)

+
1

4
dθ(Y, Z) · J(X) −

1

4
dθ(X, Z) · J(Y )

+
1

4
θ(Z) · θ(X) · Y −

1

4
θ(Z) · θ(Y ) · X .

This is the comparision of the curvature tensors. The formula immediately shows that (in the

transversally symmetric case!) the Webster curvature R∇
W

resp. RW satisfies the first Bianchi
identity of the style of a Riemannian curvature tensor, i.e. it holds

R∇
W

(X, Y )Z + R∇
W

(Y, Z)X + R∇
W

(Z, X)Y = 0 .

This is our main observation for all future considerations here to come.

Lemma 1. Let θ be a (TSPH)-structure on (M, H, J). Then the Webster curvature tensor RW

satisfies
RW (X, Y, Z, V ) + RW (Y, Z, X, V ) + RW (Z, X, Y, V ) = 0

for all X, Y, Z, V ∈ TM . In particular, it holds

RW (X, Y, Z, V ) = RW (Z, V, X, Y ) and

RW (X, JY, JZ, V ) = RW (JX, Y, Z, JV ) .

Using these derived symmetry properties of the Webster curvature for the particular case of
transversal symmetry, we obtain the following comparision between the Riemannian Ricci tensor
and the Webster-Ricci tensor. Let

(eα, Jα)α=1,...,m = (ei)i=1,...,2m

denote a local orthonormal frame of H in TM . It is

Ricgθ(X, Y ) =

2m∑

i=1

εiR
gθ (X, ei, ei, Y ) + Rgθ (X, T, T, Y )

=

m∑

α=1

εαRgθ (X, eα, eα, Y ) +

m∑

α=1

Rgθ (X, Jeα, Jeα, Y ) + Rgθ (X, T, T, Y )
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and

RicW (X, Y ) =
i

2

∑

α

εαRW (X, Y, eα, Jeα)

=
i

2

∑

α

εαRW (X, eα, eα, JY ) +
i

2

∑

α

εαRW (JY, Jeα, Jeα, X)

=
i

2

∑

i

εiR
W (X, ei, ei, JY )

These formulas combined and the fact that Rgθ (X, T )T = − 1
4X for X ∈ H gives

Ricgθ (X, Y ) = 2iRicW (X, JY ) − 1
2gθ(X, Y ),

RicW (T, X) = 0, RicW (T, T ) = 0

and
Ricgθ(T, X) = 0 , Ricgθ (T, T ) =

m

2
gθ(T, T ) ,

whereby X, Y ∈ H .

5 The natural Riemannian submersion of a (TSPH)-
structure

We assume here that θ is a (TSPH)-structure on the CR-manifold (M, H, J) of dimension n =
2m+1. This implies that the Reeb vector field T to θ is Killing for the induced metric gθ. At least
locally, we can factorise through the integral curves of T on M and obtain a semi-Riemannian
metric hθ on a factor space, which has dimension 2m. We describe this process here in more detail.
In particular, we calculate the relation for the Ricci curvatures of the induced metric gθ and the
factorised metric hθ.

Let θ be a (TSPH)-structure on (M, H, J) of signature (p, q). To every point in p ∈ M exists
a neigborhood (e.g. some small ball) U ⊂ M and a map φU such that φU is a diffeomorphism
between M and the R

n, and moreover, it holds dφU (T ) = ∂
∂x1

, that is the first standard coordinate
vector in R

n. This implies that there exists a smooth submersion

πU : U ⊂ M → N ⊂ R
2m

such that for all v ∈ N the inverse image π−1
U (v) consists of an entire integral curve of T through

some point in U . Since T is a Killing vector field, the expression

hθ(X, Y ) := gθ(π
−1
U X, π−1

U Y )

is uniquely defined for any X, Y ∈ TN and gives rise to a smooth metric tensor on N of dimension
2m of signature (p, q). In particular, the map

πU : (U, gθ) → (N, hθ)

is a smooth Riemannian submersion. The construction is naturally derived from θ only (and
some chosen neighborhood U). The distribution H in TU is horizontal for this submersion (i.e.
orthogonal to the vertical).

For simplicity, we assume now that

π : (M, gθ) → (N, hθ)

is globally a smooth Riemannian submersion, whereby the inverse images are the integral curves
of the Reeb vector field T to a (TSPH)-structure θ on M with CR-structure (H, J). Since the
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complex structure J acts on H and T is an infinitesimal automorphism of J , the complex structure
can be uniquley projected to a smooth endomorphism on N , which we also denote by J and which
satisfies J2 = −id|N . Since J is integrable on H , the endomorphism J is integrable on N as well,
i.e. J is a complex structure on N . In fact, J is a Kähler structure on (N, hθ), i.e.

∇hθJ = 0 .

The latter fact can be seen with the comparision tensor Dθ. It is

(∇gθ

X J)(Y ) = ∇gθ

X (J(Y )) − J∇gθ

X Y

= ∇W
X (JY ) − J∇W

X Y −
1

2
dθ(X, J(Y )) · T

= −
1

2
gθ(X, Y ) · T

and

V ertπ∇
gθ

X (J(Y )) = −
1

2
gθ(Y, X) · T .

This implies
∇hθJ = 0

on N .
Altogether, we know yet that a (TSPH)-space (M, H, J, θ) gives rise (locally) in a natural

manner to a (2m)-dimensional Kähler space (N, hθ, J). We use now the well known formulas for
the Ricci tensor of a Riemannian submersion to calculate Richθ (cf. [ONe66]). The application of
the standard formulas results to

Ricgθ (T, T ) = m
2 gθ(T, T ), Ricgθ (T, X) = 0 and

Richθ = Ricgθ + 1
2gθ(X, Y ) .

Now using the above result for the Ricci tensor of gθ with respect to the Webster-Ricci curva-
ture, we obtain

Richθ(X, Y ) = 2iRicW (X, JY )

for all X, Y ∈ TN ∼= H . In words, this result basically says that the Ricci-Webster curvature of a
(TSPH)-structure is the Ricci curvature of the base of the natural submersion.

6 Description and construction of pseudo-Hermitian Ein-

stein spaces

We give here explicit constructions of pseudo-Hermitian Einstein spaces with arbitrary Webster
scalar curvature. On the other side, we show that locally these construction principles generate
all pseudo-Hermitian Einstein structures. So we gain a locally complete description.

Let (M, H, J, θ) be a pseudo-Hermitian Einstein space with arbitrary signature (p, q), i.e. it
holds

RicW = −i
scalW

2m
· dθ and TorW (T, X) = 0

for all X ∈ Γ(H). Moreover, we assume for simplicity that θ generates globally a smooth Rieman-
nian submersion

π : (M, gθ) → (N, hθ) .

With the relation for the Ricci tensors from the end of the last section we obtain

Richθ =
scalW

m
dθ(·, J ·) =

scalW

m
hθ .
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This shows that the base space of the natural submersion to the (TSPH)-structure θ is a Kähler-
Einstein space of scalar curvature

scalhθ = 2 · scalW .

We conclude that a pseudo-Hermitian Einstein space (M, H, J, θ) of dimension n = 2m + 1 de-
termines uniquely (at least locally) a Kähler-Einstein manifold (N, hθ, J) of dimension 2m and
signature (p, q).

We want to show now that there is a unique way back (up to gauge transformations) to
obtain a pseudo-Hermitian Einstein space from any (simply connected) Kähler-Einstein space
(with signature (p, q)). To start with, let (N, h, J) be a Kähler-Einstein space with scalh > 0 and
let P (N) be the U(n)-reduction of the orthonormal frame bundle to (N, h). Then it is

S(−1) := P (N) ×det S1

the principal S1-fibre bundle over N , which is associated to the anti-canonical line bundle O(−1)
of the Kähler manifold (N, J). The Levi-Civita connection to hθ induces a connection form ρ on
the anti-canonical S1-bundle S(−1) with values in iR. For its curvature we have

Ωρ(π−1
S(−1)X, π−1

S(−1)Y ) = iRich(X, JY ), X, Y ∈ TN .

At first, we see from this formula that the horizontal spaces of (S(−1), ρ) generate a contact
distribution H of codimension 1 in TS(−1) and the horizontal lift of the complex structure J to
H produces a non-degenerate (integrable) CR-structure (H, J) on S(−1). Secondly, we see that

θ := i
2m

scalh
ρ

is a pseudo-Hermitian structure on M := S(−1) furnished with the CR-structure (H, J). The
Reeb vector field T on the pseudo-Hermitian space

(S(−1), H, J, θ)

is by construction transversally symmetric. And, since dθ = π∗

S(−1)h(J ·, ·) on H , the base space of

the corresponding submersion is again the Kähler-Einstein space (N, h, J) that we started with.
For that reason, we know that the Webster-Ricci curvature to θ must be given by

2iRicW (X, JY ) = π∗

S(−1)Rich(X, Y ), X, Y ∈ H .

Since h is Einstein, we can conclude that the pseudo-Hermitian space

(S(−1), H, J, θ)

is Einstein as well with Webster-Ricci curvature

RicW = −i
scalh

4m
· dθ .

For the inverse construction on the Kähler-Einstein space (N, h, J), the choice of θ = i 2m
scalh

ρ

as pseudo-Hermitian 1-form is not unique. One might replace θ by θ̂ := θ + df for some smooth
function f on S(−1). We obtain again a pseudo-Hermitian Einstein structure on S(−1). However,
it is straightforward to prove that there is a diffeomorphism (gauge transformation) on S(−1),
which transforms θ + df to θ, i.e. there is an isomorphism of pseudo-Hermitian structures. Since
(locally) θ+df is the most general choice of a 1-form whose exterior differential projects to h(J ·, ·)
on N , we see that our construction exhaust locally all pseudo-Hermitian Einstein structures with
positive Webster scalar curvature.

For the case of negative Webster scalar curvature note that if (M, H, J, θ) with signature (p, q)
has positive Webster scalar curvature scalW > 0 then (M, H, J,−θ) has negative Webster scalar

11



curvature −scalW and the base space of the natural submersion is (N,−hθ, J), which is Kähler-
Einstein with reversed signature (q, p). We conclude that any pseudo-Hermitian Einstein structure
with scalW 6= 0 can be realised locally on (S(−1), H, J) either by θ = i 2m

scalh
ρ or −θ.

As we have seen above a Webster-Ricci flat pseudo-Hermitian space (M, H, J, θ) gives rise to
a Ricci-flat Kähler space. Again we aim to find an inverse construction. So let (N, h, J) be a
simply connected Ricci-flat Kähler space. We set ω := h(·, J ·), This is the Kähler form. Since N

is simply connected, there exists a potential 1-form γ on N with dγ = ω. The S1-principal fibre
bundle S(−1) has a Levi-Civita connection form ρ with values in iR which is flat, i.e. dρ = 0. We
set

θ := ρ − γ

on S(−1). Obviously, it holds
πS(−1)∗dθ = −ω ,

i.e. θ is a contact form on S(−1) and the distribution H in TS(−1), which is given by θ|H ≡ 0
is contact as well. We denote the lift of J to the distribution H again by J and find that (H, J)
is an integrable CR-structure on M := S(−1). Moreover, θ is a pseudo-Hermitian structer on
(S(−1), H, J). As the construction of (S(−1), H, J, θ) is done, it becomes clear that locally around
every point of (S(−1), gθ), the base of the natural Riemannian submersion is a subset of the
Ricci-flat space (N, h, J). We conclude that

2iRicW (X, Y ) = Rich(X, Y ) = 0

for all X, Y ∈ H , i.e. the pseudo-Hermitian space

(S(−1), H, J, θ)

over a simply connected and Ricci-flat Kähler space (N, h, J), where θ = ρ − γ and dγ = ω is the
Kähler form, is Webster-Ricci flat.

In the Webster Ricci-flat construction, the pseudo-Hermitian form θ can be replaced by θ̂ =
ρ − γ + df , where f is some smooth function on S(−1). This is the most general 1-form on

S(−1) with πS(−1)∗dθ̂ = −ω. However, again it is not difficult to see that θ and θ̂ = θ + df

are ’gauge equivalent’ on S(−1), i.e. they are isomorphic as pseudo-Hermitian structures. We
conclude that with our construction we found (locally) the most general form of a Webster-Ricci
flat pseudo-Hermitian space. We summarise our results.

Theorem 1. Let (N, h, J) be a Kähler-Einstein space of dimension 2m and signature (p, q) with
scalar curvature scalh.

1. If scalh > 0 then the anti-canonical S1-principal bundle

S(−1) = P (N) ×det S1

with induced CR-structure (H, J) and connection 1-form

θ := i
2m

scalh
ρ ,

where ρ is the Levi-Civita connection to h, is a pseudo-Hermitian Einstein space of signature
(p, q) with scalW = 1

2scalh > 0.

2. If scalh < 0 then S(−1) with induced CR-structure (H, J) and connection 1-form θ :=
−i 2m

scalh
ρ is a pseudo-Hermitian Einstein space of signature (p, q) with scalW = 1

2scalh < 0.

3. If scalh = 0 and N is simply connected with Kähler form ω = dγ then (S(−1), H, J) with
pseudo-Hermitian structure θ = ρ − γ of signature (p, q) is Webster-Ricci flat.

Locally, any pseudo-Hermitian Einstein space (M, H, J, θ) is isomorphic to one of these three
models according to the sign of the Webster scalar curvature scalW .
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