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Abstract

We derive Lieb-Thirring inequalities for the Riesz means of eigenvalues of order γ≥3/4 for a fourth
order operator in arbitrary dimensions. We also consider some extensions to polyharmonic operators,
and to systems of such operators, in dimensions greater than one. For the critical case γ=1−1/(2l) in
dimension d=1 with l≥2 we prove the inequality L0

l,γ,d < Ll,γ,d, which holds in contrast to current
conjectures.

0. INTRODUCTION

0.1. Known facts. Consider for l ≥ 1 and d ∈ N the polyharmonic operator (−∆)l + V in L2(Rd),
where V is a real-valued function. For suitable V the negative spectrum of this operator is discrete.
The Lieb-Thirring inequalities are estimates on the negative eigenvalues of the form 1

(0.1) tr ((−∆)l + V)
γ
− ≤ Ll,γ,d

∫

Rd

V
γ+κ
− (x)dx, V ∈ Lγ+κ(Rd),

which holds for certain γ ≥ 0 with a constant Ll,γ,d, depending only on l, d and γ. Here and in the
following we use the abbreviations

κ = κ(d, l) :=
d

2l
, ν = ν(d, l) := 1 −

d

2l
.

This type of inequalities was introduced by Lieb and Thirring in [15]. They proved that (0.1) holds
in the case l = 1 for all γ > max(0, ν) with a finite constant Ll,γ,d. Their argument can easily be
extended to all l ≥ 1. On the other hand it is known that (0.1) fails for γ = 0 if d = 2l and for
0 ≤ γ < ν if d < 2l. In the critical case γ = 0, d > 2l the bound (0.1) exists and is for l = 1 known
as the Cwikel-Lieb-Rosenblum inequality, see [4, 14, 20] and also [3, 13]. The existence of Ll,γ,d in
the remaining critical case d < 2l, γ = ν was verified by Netrusov and Weidl for integer values of l

in [21, 19]. Hence, the cases of existence for bounds of type (0.1) with γ ≥ 0 are completely settled
for integer l, while for non-integer l only the case 2l > d, γ = ν is still open.

For sufficiently regular potentials V ∈ Lγ+κ(Rd) the inequalities (0.1) are accompanied by the
Weyl type asymptotic formula

lim
α→+∞

1

αγ+κ
tr ((−∆)l + αV)

γ
− = lim

α→+∞

1

αγ+κ

∫∫

Rd×Rd

(|ξ|2l + αV)
γ
−

dxdξ

(2π)d

= Lcl
l,γ,d

∫

Rd

V
γ+κ
− dx ,(0.2)

where the so-called classical constant Lcl
l,γ,d is defined by

(0.3) Lcl
l,γ,d =

Γ(γ + 1)Γ(κ + 1)

2dπd/2Γ(lκ + 1)Γ(κ + γ + 1)
, γ ≥ 0 .

Formula (0.2) can be closed to all potentials V ∈ Lγ+κ(Rd) if the bound (0.1) holds.
Furthermore we consider the Lieb-Thirring constant for the ground state, that is the smallest con-

stant L0
l,γ,d which fulfils

(0.4) κ
γ
0 ≤ L0

l,γ,d

∫

Rd

V
γ+κ
− dx

1Here and below we use the notion 2x− := |x| − x for the negative part of variables, functions, Hermitian matrices or
self-adjoint operators.
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for all V ∈ Lγ+κ(Rd), where −κ0 is the ground state of (−∆)l + V . In the case d < 2l with γ = ν

the value of L0
l,ν,d is given by

(0.5) L0
l,ν,d =

πκ

sin(πκ)
Lcl

l,0,d =
1

ν
Lcl

l,ν,d,

see [19]. It is interesting to compare the value of the sharp constant Ll,γ,d in (0.1) with the values of
Lcl

l,γ,d and L0
l,γ,d. In view of (0.2) and (0.4) we immediately obtain that

(0.6) max(Lcl
l,γ,d, L0

l,γ,d) ≤ Ll,γ,d

for all l, d and γ. One of the sparse results on exact values of Ll,γ,d is due to Lieb and Thirring. In
[15] they obtained for d=l=1, using the Buslaev-Faddeev-Zakharov trace formulae [2, 5], that

(0.7) Ll,γ,d = Lcl
l,γ,d

for γ = 3/2 + n with n ∈ N0. In [1] Aizenman and Lieb found an argument, how to prove (0.7) in
d = 1 for all γ ≥ 3/2. Applying a “lifting” argument with respect to dimension, Laptev and Weidl
finally succeeded in [11] to prove (0.7) for all d ∈ N and γ ≥ 3/2 in the case l = 1. In fact, their
result is even more general, and is obtained for infinite-dimensional systems of Schrödinger operators.

However, in the case l > 1 no sharp constants are known, not even in dimension d = 1. In the
paper [17] an attempt was made to prove, that (0.7) holds for d = 1, l = 2 and γ ≥ 7/4. The constant
appearing in [17], in the trace formula for the Riesz mean of order 7/4, is precisely the classical, but
whether the equality (0.7) holds true or not in that case is still open.

The only other case where the sharp value of Ll,γ,d is presently known, is d=l=1 with critical
γ = 1/2, for which in [9] it was proven by Hundertmark, Lieb and Thomas that

(0.8) L1,1/2,1 = L0
1,1/2,1 = 2 Lcl

1,1/2,1 = 1/2 .

For the remaining cases the values of the Lieb-Thirring constants constitute an interesting open prob-
lem.

It shall be mentioned, that at least for the case l = 1 there exists a conjecture about the value of
Ll,γ,d, which is due to Lieb and Thirring [15]. The conjecture is, that for each dimension d there
exists a unique γc(d) so that

L1,γ,d = Lcl
1,γ,d for γ ≥ γc(d) and(0.9)

L1,γ,d = L0
1,γ,d for γ ≤ γc(d).(0.10)

Comparing this with the results above one sees, that (0.9) is proven to hold with γc(d) ≤ 3/2 for all
d ∈ N, where (0.10) is still open, but supported by (0.8).

0.2. Main results of this paper. In section 1 we follow the idea of [10] and extend the argumentation
in dimension one to the case l > 1, which leads to (non-sharp) inequalities for this case. See Theorem
1.1 for the special case of the biharmonic operator ∂4 + V , and Theorem 1.6 for the general case. Our
results also apply to systems of operators of the above kind, an issue raised in the paper [12], as well
as to non-integer l. We also discuss an extension of [21] to the case l = 2, see subsection 1.3. In
section 2 we prove the inequality

L0
l,ν,1 < Ll,ν,1

for integer l ≥ 2, which holds in contrast to equality (0.8). This answers a question posed in section
2.8 of [19] and, in particular, shows that the conjecture (0.10) does not apply to higher order operators.
In section 3 we lift the results from section 1 to higher dimensions, see especially Theorem 3.3.
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1. LIEB-THIRRING INEQUALITIES FOR RIESZ MEANS OF EIGENVALUES FOR POLYHARMONIC

OPERATORS IN DIMENSION ONE

1.1. Notation and auxiliary material. Let G be a separable Hilbert space with norm || · ||G and scalar
product 〈·, ·〉G . Further, let 0G respectively 1G be the zero respectively identity operator on G, and
B (G) be the Banach space of bounded operators on G. The Hilbert space H := L2

(

Rd,G
)

is the
space of all measurable functions u : R

d → G such that

||u||2H :=

∫

Rd

||u(x)||2G dx < ∞.

The scalar product in H is given by

〈u, v〉H :=

∫

Rd

〈u(x), v(x)〉G dx, for u, v ∈ H.

The space L2
(

R
d,G

)

is naturally isomorphic to L2
(

R
d
)

⊗G, and we will make no distinction between
them. We shall denote by Φ the Fourier transform unitary on L2

(

R
d
)

. For simplicity of notation,
whenever u ∈ L2

(

R
d,G

)

we further let û := (Φ ⊗ 1G)u. The Sobolev space Hl
(

R
d,G

)

, for l > 0,
is the subset of L2

(

R
d,G

)

defined by

Hl
(

R
d,G

)

:=

{

u ∈ L2(Rd,G) :
(

1 + |ξ|2
)l/2

û(ξ) ∈ L2
(

R
d,G

)

}

.

The space Hl
(

R
d,G

)

, equipped with the scalar product

〈u, v〉Hl(Rd,G) :=

∫

Rd

(

1 + |ξ|2
)l

〈û(ξ), v̂(ξ)〉G dξ,

is a Hilbert space. As in the scalar case G = C one sees that if l ∈ N, then

Hl
(

R
d,G

)

=
{

u ∈ L2(Rd,G) : ∂α u ∈ L2
(

R
d,G

)

, |α| ≤ l
}

.

Obviously, for l > 0, the quadratic form

h[u, u] :=

∫

Rd

|ξ|2l ||û(ξ)||2G dξ

is semibounded from below and closed on the form-domain Hl
(

R
d,G

)

⊂ L2
(

R
d,G

)

. It is associated

with the self-adjoint operator (−∆)l ⊗ 1G on H2l
(

R
d,G

)

.
Let V : R

d → B (G) be an operator-valued function, for which V(x) = (V(x))∗ for a.e. x ∈ R
d,

satisfying:

(1.1) ||V(·)||B(G) ∈ Lp
(

R
d
)

with some finite p with
p ≥ 1 if d < 2l,

p > 1 if d = 2l,

p ≥ d/2l if d > 2l.

Then the form

ν[u, u] :=

∫

Rd

〈V u, u〉G dx
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is well-defined on Hl
(

R
d,G

)

and

(1.2) |ν[u, u]| ≤ C

(∫

Rd

||V ||
p

B(G)
dx

)1/p

||u||2
Hl(Rd,G).

This follows from analogs of the standard Sobolev imbedding theorems which hold in the scalar case.
For instance, in case d > 2l, this follows from Hölder’s inequality and the imbedding Hl

(

R
d,G

)

↪→

Lq
(

R
d,G

)

, q ≤ q∗ := 2d
d−2l

. Moreover, for all ε > 0 there exists a constant C(ε, V) such that

(1.3) |ν[u, u]| ≤ εh[u, u] + C(ε, V)

∫

Rd

||u||2G dx, u ∈ Hl
(

R
d,G

)

.

This is also a version of the corresponding inequality which is well-known in the scalar case, when
G = C. It follows that the form

h[u, u] + ν[u, u]

is semibounded from below and closed on Hl
(

R
d,G

)

. It induces a self-adjoint operator

(1.4) Q := (−∆)l ⊗ 1G + V

in H = L2
(

R
d,G

)

.
More precise conditions guaranteeing V to be a weak Hardy weight, stated in terms of capacities, are
given in [16].

If V satisfies the condition (1.1) and if V(x) ∈ S∞ (G) for a.e. x ∈ R
d, the negative spectrum

of the operator Q is discrete and might accumulate only to 0. In other words, the operator Q− is
compact in H = L2

(

R
d,G

)

. This can be proven as follows. We clearly may assume V ≤ 0, by the
minimax principle, and put W :=

√
−V . By the Birman-Schwinger principle, for κ > 0, the number

N− (−κ, Q) of eigenvalues of Q less than −κ equals the number N+ (1, BW (κ)) of eigenvalues
greater than 1 of the Birman-Schwinger operator

BW(κ) := W
(

(−∆)l ⊗ 1G + κ

)−1

W

on L2
(

R
d,G

)

. One sees that BW(κ) = SW S∗
W , where

SW := W (Φ∗ ⊗ 1G)
(

|ξ|2l + κ

)−1/2

.

Thus the claim follows by compactness of SW on L2
(

R
d,G

)

.

1.2. Estimates of Riesz means for the biharmonic operator in d = 1. In this section we obtain the
following:

Theorem 1.1. Let V : R → B (G) be an operator-valued function satisfying V(x) = (V(x))∗ and
V(x) ∈ S1 (G) for a.e. x ∈ R and such that tr V−(·) ∈ L1 (R). Then the following inequality holds
true:

(1.5) tr
(

∂4 ⊗ 1G + V
)3/4

−
≤ 33/4

4

∫

R

tr V−(x)dx.

The original proof of the analog of Theorem 1.1 for Schrödinger operators −∂2 + V was given in
the paper by Hundertmark, Lieb and Thomas [9]. Here we follow closely the argument in the proof
of the same statement given by Hundertmark, Laptev and Weidl in [10].
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For the proof of the theorem we need to introduce some auxiliary results on the notion of “ma-
jorization”. Let A be a compact operator on a separable Hilbert space H. Let us denote

(1.6) ||A||n :=

n∑

j=1

√

λj(A∗A),

where (λj(A
∗A))j is the sequence of the eigenvalues of A∗A in non-increasing order according to

their multiplicities. Then by Ky-Fan’s inequality (see for instance [8]) the functionals || · ||n are norms
on S∞(H), and for any unitary operator U in H we have

||U∗AU ||n = ||A||n.

We shall need the following definition and lemma, which were stated in [10].

Definition 1.2. Let A, B be any two compact operators on H. We say that A majorizes B, written
B ≺ A, if

||B||n ≤ ||A||n for all n ∈ N.

Lemma 1.3. Let A be a non-negative compact operator on H, {U(ω)}ω∈Ω a weakly measurable
family of unitary operators on H, and µ a probability measure on Ω. Then the operator

B :=

∫

Ω

U∗(ω)AU(ω)dµ(ω)

is majorized by the operator A.

Proof. This follows immediately from Ky-Fan’s inequality:

||B||n ≤
∫

Ω

||U∗(ω)AU(ω)||n dµ(ω) = µ(Ω)||A||n = ||A||n, n ∈ N.

�

By the minimax principle we may assume V non-positive and put W :=
√

−V . We shall have use
of the following family of operators on H = L2(R,G):

Lε := W

[

ε3
(

∂4 + ε4
)−1

⊗ 1G

]

W,

L̃ε := W

[

aε
(

−∂2 + ε2b
)−1

⊗ 1G

]

W,

for 0 < ε < ∞. Furthermore, let us define L̃0 := A, where A is the non-negative compact operator
having integral-kernel A(x, y) := a

2
√

b
W(x)W(y). The positive constants a and b will be specified

later. The following result is almost identical to a lemma proven in [10].

Lemma 1.4. The operator L̃ε is majorized by L̃ε ′ ,

L̃ε ≺ L̃ε ′

for all 0 ≤ ε ′ < ε.

Proof. We shall use the majorization Lemma 1.3. Introduce a family of probability measures µε on
R by µ0 := δ0, the Dirac measure, and

dµε

dξ
=

ε
√

b

π

1

ξ2 + ε2b
=: gε(ξ), ε > 0,
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where dξ denotes the Lebesgue measure. Furthermore, let {U(ξ)}ξ∈R be the unitary multiplication
operators in L2(R,G) defined by (U(ξ)u)(x) = e−iξx u(x). We then see that

(1.7) L̃ε =

∫

R

U∗(ξ)AU(ξ)dµε,

for any 0 ≤ ε < ∞. It follows from Lemma 1.3 and (1.7) that L̃ε ≺ L̃0. Since the Fourier transform
of gε is given by

Φgε(ξ) =
1√
2π

e−ε
√

b |ξ|, for ε > 0,

it follows that for any 0 < ε ′ < ε

(1.8) gε = gε ′ ∗ gε−ε ′ .

Using the relation (1.8) in (1.7) as well as the group property of the unitary operators U(ξ) it is now
seen that

(1.9) L̃ε =

∫

R

U∗(η)L̃ε ′ U(η)gε−ε ′(η)dη ≺ L̃ε ′ ,

where the last subordination follows from Lemma 1.3. This completes the proof. �

We are now in the position of proving the above theorem.

Proof of Theorem 1.1. First note that if we put a := b+
√

b2+1
2

, then for any b > 0

(1.10) Lε ≤ L̃ε.

This follows immediately from the computation

〈Lε u, u〉H =

∫

R

ε3

ξ4 + ε4
||(Φ ⊗ 1G)W u (ξ)||2G dξ

≤
∫

R

aε

ξ2 + ε2b
||(Φ ⊗ 1G)W u (ξ)||2G dξ

= 〈L̃ε u, u〉H, u ∈ L2 (R,G) ,

which holds in view of the scalar inequality

ε2

ξ4 + ε4
≤ a

ξ2 + ε2b
.

Here Φ denotes the Fourier transform on L2(R). For E > 0 let us define

(1.11) KE :=
1

E3/4
LE1/4 = W

[

(∂4 + E)−1 ⊗ 1G
]

W.

Denote by (−Ej)j the negative eigenvalues of the operator ∂4 + V , and by (λj(T))j the eigenvalues
of a non-negative compact operator T , enumerated according to their multiplicities in non-decreasing
respectively non-increasing order. By the Birman-Schwinger principle

(1.12) 1 = λj(KEj
).

Multiplying the identity (1.12) by E
3/4

j and summing over j we get from (1.10) and the minimax
principle

(1.13)
∑

j

E
3/4

j =
∑

j

λj(LE
1/4

j

) ≤
∑

j

λj(L̃E
1/4

j

).
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The interesting point now is that although the trace of L̃ε is independent of ε, by Lemma 1.4 the
partial traces

∑
j≤n λj(L̃ε) are monotone decreasing in ε for any n ∈ N. It follows that

(1.14)
∑

j≤n

λj(L̃E
1/4

j

) ≤
∑

j≤n

λj(L̃E
1/4
n

) ≤
∑

j≤n

λj(L̃0), for all n ∈ N.

The first inequality above follows from this monotonicity by induction over n ∈ N, the second from
the monotonicity directly. Combining (1.13) and (1.14) gives

∑

j

E
3/4

j ≤ tr L̃0,

where

(1.15) tr L̃0 =
a

2
√

b

∫

tr V−(x)dx =
b +

√
b2 + 1

4
√

b

∫

tr V−(x)dx.

Minimizing the right hand side of (1.15) with respect to b leads to the choice b := 1/
√

3, and an
evaluation of the expression completes the proof. �

Applying the Aizenman-Lieb argument from [1], we obtain the following corollary:

Corollary 1.5. Let V : R → B (G) be an operator-valued function satisfying V(x) = (V(x))∗ and

V(x) ∈ S1 (G) for a.e. x ∈ R and such that tr V−(·) ∈ Lγ+ 1
4 (R), for some γ ≥ 3/4. Then the

following inequality holds true:

(1.16) tr
(

∂4 ⊗ 1G + V
)γ

−
≤ 4

31/4
√

2
Lcl

2,γ,1

∫

R

tr (V−(x))γ+ 1
4 dx.

Remark. A numerical calculation yields 4

31/4
√

2
≈ 2.149.

Proof. First note that for γ > 3/4

∫∞

0

tγ− 7
4 (t + λ)

3/4
− dt = λ

γ
− B

(

γ −
3

4
,
7

4

)

,

where B(x, y) =
Γ(x)Γ(y)
Γ(x+y)

is the Beta-function. Let EQ be the spectral measure associated with the

self-adjoint operator Q = ∂4 ⊗ 1G + V and denote by (−µj(x))j the negative eigenvalues of the
operator V(x). Since

tr Q
γ
− = tr

∫

R

λ
γ
− dEQ(λ)
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we obtain

B

(

γ −
3

4
,
7

4

)

tr Q
γ
− = tr

{∫

R

dEQ(λ)

∫∞

0

tγ− 7
4 (t + λ)

3/4
− dt

}

= tr

{∫∞

0

dt tγ− 7
4

∫

R

dEQ(λ)(t + λ)
3/4
−

}

=

∫∞

0

tγ− 7
4 tr (t + Q)

3/4
− dt

≤ 33/4

4

∫∞

0

tγ− 7
4

∫

R

tr (t + V(x))− dxdt

=
33/4

4

∫

R

dx

∫∞

0

tγ− 7
4

∞∑

j=1

(t − µj(x))
−

dt

=
33/4

4
B

(

γ −
3

4
, 2

) ∫

R

tr (V−(x))γ+ 1
4 dx.

It follows that

tr
(

∂4 ⊗ 1G + V
)γ

−
≤ 33/4

4

B
(

γ − 3
4
, 2
)

B
(

γ − 3
4
, 7

4

)

∫

R

tr (V−(x))γ+ 1
4 dx.

The proof ends by noting that

Lcl
2,γ,1 =

Γ(γ + 1) Γ(5/4)

2
√

π Γ(3/2) Γ(γ + 5/4)
=

Γ(7/4) Γ(5/4)

2
√

π Γ(3/2) Γ(2)
· Γ(γ + 1) Γ(2)

Γ(γ + 5/4) Γ(7/4)

=
3
√

2

16
· Γ(γ + 1) Γ(2)

Γ(γ + 5/4) Γ(7/4)
=

3
√

2

16
· B
(

γ − 3
4
, 2
)

B
(

γ − 3
4
, 7

4

) .

�

1.3. Results by the method from Netrusov and Weidl [21, 19]. This method is based on a special
Neumann-bracketing technique which together with the Birman-Schwinger principle leads to rather
implicit bounds for the Lieb-Thirring constants in the case 2l > d with critical γ = 1 − d

2l
. In [6] a

detailed analysis of the case l = 2, d = 1 was done, which yields for the corresponding Lieb-Thirring
constant L2,3/4,1 the estimate

(1.17) L2,3/4,1 < 2.129.

This estimate is much worse than (1.5). Its value is mainly, that it is also an upper estimate on the
Lieb-Thirring constant L+

2, 3
4
,1

for the operator ∂4+V in L2
(

(0,∞)
)

with Neumann conditions in zero.

Notice, that Neumann conditions mean here, that the second and third derivative vanish at zero.
We remark furthermore that the unique negative eigenvalue −κ+ of the Neumann operator ∂4 − δ0

in L2
(

(0,∞)
)

, associated with the quadratic form

h+[u, u] := ‖∂2u‖2 − |u(0)|2, u ∈ H2
(

(0,∞)
)

,

fulfils
κ

3/4
+ =

√
2.

So for the half space problem the inequality

(1.18)
√

2 ≤ L+

2, 3
4
,1

< 2.129.

holds.



13

1.4. Estimates of Riesz means for polyharmonic operators in d = 1. It is not difficult to adapt the
proof of Theorem 1.1 to polyharmonic operators of the form

(1.19)
(

−∂2
)l

⊗ 1G + V, l > 1.

We obtain the following theorem:

Theorem 1.6. Let V : R → B (G) be an operator-valued function satisfying V(x) = (V(x))∗ and
V(x) ∈ S1 (G) for a.e. x ∈ R and such that tr V−(·) ∈ L1 (R). Then the Riesz mean for the critical

power ν = 1 − 1/2l of the polyharmonic operator
(

−∂2
)l

+ V , l > 1, satisfies the bound

(1.20) tr

(

(

−∂2
)l

⊗ 1G + V

)1−1/2l

−

≤ cl

∫

tr V−(x)dx.

Here the constant cl is defined as

(1.21) cl :=
1

2l
ζl−1

l ,

where ζl is the unique positive root of the equation

(1.22) (l − 1) + lz − zl = 0.

Proof. Define the following family of operators on L2 (R,G):

Lε := W

[

ε2l−1

(

(

−∂2
)l

+ ε2l

)−1

⊗ 1G

]

W,

L̃ε := c̃l W

[

ε
(

−∂2 + ε2
)−1

⊗ 1G

]

W,

for 0 < ε < ∞. Here the constant c̃l is defined as

(1.23) c̃l := sup
x,y>0

y2l−2
(

x2 + y2
)

x2l + y2l
.

As before we may assume V non-positive and put W :=
√

−V . In view of the scalar inequality

(1.24)
ε2l−1

ξ2l + ε2l
≤ c̃l

ε

ξ2 + ε2
,

we then see that
Lε ≤ L̃ε.

We may therefore proceed similarly as in the proof above, to obtain

tr

(

(

−∂2
)l

⊗ 1G + V

)1−1/2l

−

≤ 1

2
c̃l

∫

tr V− dx.

It remains only to prove that

(1.25) c̃l =
1

l
ζl−1

l .

But a glance at the function fl defined by

(1.26) fl(x, y) :=
y2l−2

(

x2 + y2
)

x2l + y2l
, x, y > 0,
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reveals that it attains constant values on the lines y = ρx, ρ > 0. In fact,

(1.27) fl(x, ρx) =
ρ2l−2 + ρ2l

1 + ρ2l
=: g(ρ), ρ > 0.

A simple computation gives that

(1.28) g ′(ρ) =
2ρ2l−3

(1 + ρ2l)2

(

(l − 1) − ρ2l + lρ2
)

.

We see that g attains its maximal value in the critical points ρl given as the solution of

(l − 1) + lρ2 − ρ2l = 0.

The maximal value of the function g attained at the critical points ρl is seen to be

g(ρl) =
1

l
ρ

2(l−1)
l .

The theorem follows by putting ζl := ρ2
l . �

The Aizenman-Lieb [1] argument gives:

Corollary 1.7. Let V : R → B (G) be an operator-valued function satisfying V(x) = (V(x))∗ and

V(x) ∈ S1 (G) for a.e. x ∈ R and such that tr V−(·) ∈ Lγ+ 1
2l (R), for some γ ≥ 1 − 1/2l, l > 1.

Then the following inequality holds true:

(1.29) tr
(

(−∂2)l ⊗ 1G + V
)γ

−
≤ cl

Lcl
l,1−1/2l,1

Lcl
l,γ,1

∫

R

tr (V−(x))γ+ 1
2l dx.

Here the constant cl is the same as in the above theorem.

Proof. The proof is almost identical to that for the biharmonic operator. We put ν := 1 − 1/2l and
note that ∫∞

0

tγ−(1+ν) (t + λ)ν
− dt = λ

γ
− B (γ − ν, 1 + ν) .

We use this similarly as above to verify

tr
(

(−∂2)l ⊗ 1G + V
)γ

−
≤ cl

B (γ − ν, 2)

B (γ − ν, 1 + ν)

∫

R

tr (V−(x))γ+ 1
2l dx.

Finally we verify that

Lcl
l,γ,1 = Lcl

l,ν,1 ·
B (γ − ν, 2)

B (γ − ν, 1 + ν)
.

�

2. ESTIMATES OF LIEB-THIRRING CONSTANTS FROM BELOW IN DIMENSION ONE

In this section we prove the following result, where the emphasis is on the strict inequality (2.1).

Theorem 2.1. For l ∈ N with l ≥ 2 and ν = 1 − 1
2l

the inequality

(2.1) L0
l,ν,1 < Ll,ν,1

holds true.
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We point out the difference to the case l = 1, where one has equality in (2.1). This difference
originates in the fact, that the eigenfunction corresponding to the ground state of (−∂2)l − δ0 has no
zeros for l = 1, whereas it has zeros for all l ≥ 2. The idea of the counterexample is to ”hide” in such
a zero a second δ-potential, which does not influence the previous ground state but produces a new
eigenvalue, which can be chosen to imply the above inequality.

For the proof of the above theorem we consider at first the operator

Hl(cδ0) = (−∂2)l − cδ0

with l ∈ N and c ∈ (0,∞), generated by the closure of the quadratic form

hl(cδ0)[u, u] :=

∫

R

|∂lu|2 dx − c|u(0)|2 for u ∈ C∞
0 (R).

Let us mention without proof, that the domain of Hl(cδ0) consists of all functions u ∈ W2,2l−1(R)∩
W2,2l(R\{0}) for which

∂2l−1u(0+) − ∂2l−1u(0−) = (−1)l cu(0).

As the computation in Appendix A shows, the operator Hl(cδ0) has exactly one negative eigenvalue
−κ which satisfies

(2.2) κ
ν = L0

l,ν,1 c.

Lemma 2.2. For l ∈ N with l ≥ 2 the eigenfunction u corresponding to the eigenvalue −κ of
Hl(cδ0) has at least one zero x0 6= 0.

Proof. Let us assume that u has no zero. Then (−∂2)lu has, on the strength of the eigenvalue equation

(−∂2)lu(x) = −κu(x) for x ∈ (−∞, 0),

no zero in (−∞, 0) either. Because of

∂2l−1u(x) =

∫x

−∞
∂2lu(t) dt for x ∈ (−∞, 0)

the same holds for the function ∂2l−1u, and so on for all lower derivatives up to the second derivative
u ′′. It therefore follows from continuity of u ′′ that

(2.3) u ′(0) =

∫ 0

−∞
u ′′(x)dx 6= 0.

On the other hand u is symmetric, which follows from the symmetry of the eigenvalue problem and
the uniqueness (modulo a factor) of the eigenfunction. This together with the continuity of u ′ implies
u ′(0) = 0 in contradiction to (2.3). So u has a zero in (−∞, 0). �

One can indeed prove that u has countably many zeros, by computing u explicitly. But with the
existence of one zero we are already able to prove Theorem 2.1:

Proof. Let x0 6= 0 be a zero of the eigenfunction u1 corresponding to the unique negative eigenvalue
−κ1 of Hl(δ0) = (−∂2)l − δ0. Because of (2.2) we have

(2.4) κ
ν
1 = L0

l,ν,1.

For α > 1 we consider the operator

Hα
l = (−∂2)l − δ0 − αδx0

,
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given by an appropriate quadratic form, which has exactly two negative eigenvalues. The latter follows
from a standard variational argument. Obviously, u1 is an eigenfunction of Hα

l corresponding to the
eigenvalue −κ1. For the ground state of Hα

l , which we refer to as −κ0, the inequality

(2.5) κ
ν
0 ≥ L0

l,ν,1 α

must hold. This is a consequence of the variational principle: If φ with ‖φ‖ = 1 is the eigenfunction
corresponding to the unique negative eigenvalue −τ of the operator Hl(αδx0

) = (−∂2)l − αδx0
and

if hl(αδx0
) and hα

l are the quadratic forms associated with Hl(αδx0
) and Hα

l , then we have

−τ = hl(αδx0
)[φ,φ] = ‖∂lφ‖2 − α|φ(x0)|

2

≥ ‖∂lφ‖2 − |φ(0)|2 − α|φ(x0)|
2 = hα

l [φ,φ].
(2.6)

By the variational principle the lowest eigenvalue of Hα
l is lower or equal −τ. Because of (2.2) we

have τν = L0
l,ν,1 α. Therefore (2.5) holds. Notice that −κ1 cannot be the ground state of the operator

Hα
l if α > 1.
Furthermore we get

(2.7) κ
ν
0 > L0

l,ν,1 α

if we choose α > 1 in such a way, that φ(0) 6= 0 holds. This is possible since φ(x) =

cu1

(

α
1

2l−1 (x − x0)
)

, for x ∈ R and some c ∈ C. So for a proper α > 1 we have φ(0) =

cu1

(

−α
1

2l−1 x0

)

6= 0, since u1 has only a countable set of zeros.

Thus, Hα
l has two negative eigenvalues −κ0 and −κ1, which fulfil the inequality

(2.8) κ
ν
0 + κ

ν
1 > L0

l,ν,1(1 + α).

Because of the Lieb-Thirring inequality, extended by a standard argument to δ-potentials, we have

(2.9) κ
ν
0 + κ

ν
1 ≤ Ll,ν,1(1 + α)

and therefore Ll,ν,1 > L0
l,ν,1. �

3. LIEB-THIRRING INEQUALITIES FOR RIESZ MEANS OF EIGENVALUES FOR POLYHARMONIC

OPERATORS IN HIGHER DIMENSIONS

In this section we apply the ideas of Laptev and Weidl from [11] to obtain results valid in dimen-
sions greater than one.

Consider the following Weyl type asymptotics:

lim
α→+∞

1

αγ+ d
2l

tr

(∑d

j=1

(

−∂2
j

)l

+ αV

)γ

−

=

=

∫∫

Rd×Rd

(∑d

j=1
ξ2l

j + V

)γ

−

dxdξ

(2π)d
= Cl,γ,d

∫

Rd

V
γ+ d

2l
− dx.

We shall need the following lemma concerning the constants Cl,γ,d; the proof is basically a lengthy
computation which shall not be presented here.

Lemma 3.1. The constants Cl,γ,d appearing in the above semi-classical limit obey the following
identity

(3.1) Cl,γ,d = C
l,γ+ 1

2l
,d−1

· Cl,γ,1.
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Furthermore, the constants Cl,γ,d are explicitly given by

(3.2) Cl,γ,d =
1

2(2πl)d
B

(

γ + 1,
d

2l

)

(

2π
d−1

2 Γ
(

1
2l

)

Γ
(

ld+1−l
2l

)

)d

,

where B is the Beta-function.

For the operator (−∆)l the ideas of Laptev and Weidl cannot be used directly, because there
is no simple way to separate the variables in this case. Therefore we consider first the operator
∑d

j=1

(

−∂2
j

)l

.

Theorem 3.2. Let V : Rd → B (G) be an operator-valued function satisfying V(x) = (V(x))∗ and

V(x) ∈ S1 (G) for a.e. x ∈ R
d and such that tr (V−(·))γ+ d

2l ∈ L1
(

R
d
)

, for some γ ≥ 1 − 1
2l

, l > 1.
Then the following inequality holds true:

(3.3) tr





d∑

j=1

(

−∂2
j

)l

⊗ 1G + V





γ

−

≤





cl

Lcl
l,1− 1

2l
,1





d

Cl,γ,d

∫

Rd

tr (V−(x))γ+ d
2l dx.

In the case l = 2 the constant on the right hand side can be replaced by
(

4

31/4
√

2

)d

C2,γ,d.

Proof. Using Corollary 1.5 and Corollary 1.7 the result follows directly by applying the technique
from [11], section 3. �

Because

(3.4)
d∑

j=1

(

−∂2
j

)l

⊗ 1G ≤ (−∆)l ⊗ 1G

in quadratic form sense, estimate (3.3) is also valid for the polyharmonic operator case with
∑d

j=1

(

−∂2
j

)l

replaced by (−∆)l. This follows from the minimax principle. Consequently we

achieve

Theorem 3.3. Let V and γ be as in Theorem 3.2. Then the following inequality holds true:

(3.5) tr ((−∆)l ⊗ 1G + V)
γ
− ≤





cl

Lcl
l,1− 1

2l
,1





d

Cl,γ,d

∫

Rd

tr (V−(x))γ+ d
2l dx.

Again, for the biharmonic operator the constant on the right hand side can be replaced by
(

4

31/4
√

2

)d

C2,γ,d.

Remark. It is interesting to note that the proofs above may be modified as to include the case
when the operator 1G is replaced by some other operator A acting in G. More precisely, let A be any
self-adjoint operator acting in G which is positive, i.e.

〈Ax, x〉G > 0, for all 0 6= x ∈ G.

Then the inequality

(3.6) tr ((−∆)l ⊗ A + V)
γ
− ≤

(

cl

Lcl
l,1−1/2l,1

)d

Cl,γ,d

∫

Rd

tr A− 1
2l (V−(x))γ+ d

2l dx
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is valid whenever the right-hand side is finite, for γ > 1 − 1/2l, l > 1. Note that if A is positive
definite, i.e.

0 < mA := inf
||x||=1

〈Ax, x〉G ,

then the bound (3.6) is valid for any V satisfying the criteria listed in Theorem 3.3. The proof of
(3.6) is basically the same as that of (3.5). In the estimate from above, the scalar inequality (1.24) is
replaced by the operator-inequality

ε2l−1

B2l + ε2l
≤ c̃l

ε

B2 + ε2
,

valid for any positive self-adjoint operator B acting on G. The majorization as well as the Aizenman-
Lieb argument works out similar as before, as does the “lifting” to dimensions greater than one.
Note that the same technique, applied to the special case of the operator

(3.7) −
d2

dx2
⊗ A + V

acting in L2 (R,G), implies that

(3.8) tr

(

−
d2

dx2
⊗ A + V

)γ

−

≤ 2 Lcl
1,γ,1

∫

R

tr A− 1
2 (V−(x))γ+ 1

2 dx,

for any γ ≥ 1/2. It is tantalizing to ask for the smallest bound in (3.8). Does it, as in case A = 1G (see
[11]), hold with the classical constant if we consider Riesz means of order γ ≥ 3/2? This problem is
still open.

APPENDIX A

Lemma A.1. The unique negative eigenvalue −κ of the operator Hl(cδ0) = (−∂2)l − cδ0 satisfies
the identity

(A.1) κ
ν = L0

l,ν,1c.

Proof. At first we notice, that (−∂2)lu = −κu has the basic solutions

gk(x) := exp(rk
2l
√

κ x) for k = 0, . . . , 2l − 1.

Here the rk’s are the 2l complex roots of the equation r2l
k = (−1)l+1. It holds

rk = exp

(

2k + 1 − l

2l
iπ

)

for k = 0, . . . , 2l − 1.

Notice that the roots are ordered so that r0 to rl−1 have positive and rl to r2l−1 have negative real parts.
Therefore the functions g0 to gl−1 are not square integrable on (0,∞), and neither are gl to g2l−1

on (−∞, 0). Let us write g(x) =
(

g0(x), . . . , g2l−1(x)
)

and ∂kg(x) =
(

∂kg0(x), . . . , ∂kg2l−1(x)
)

.
Further let

G(x) :=











g(x)

∂g(x)
...

∂2l−1g(x)











and E(x) :=











0
...
0

g(x)











.

Then we can formulate the conditions on the eigenfunction, which on each of the intervals
(−∞, 0), (0,∞) is a linear combination of the basic solutions, at the point 0 as follows:

G(0)h − G(0)v = (−1)lcE(0)v.
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Here v, h ∈ C
2l are the coefficients of the basic solutions on the left and right interval. Note, that the

matrix G(0) is invertible, because its determinant, the so called Wronskian determinant, is non-zero.
Therefore the latter equation takes the form

(A.2)
(

I + (−1)lcG−1(0) E(0)
)

v = h,

where I is the identity matrix. The inverse of the matrix

G(0) =
[

g
(n)
k (x)

]

n=0,...,2l−1
k=0,...,2l−1

=

[

(r0
2l
√

κ)n exp

(

nk

l
iπ

)]

n=0,...,2l−1
k=0,...,2l−1

is given by

G−1(0) =
1

2l





exp
(

(2l−n)k
l

iπ
)

(r0
2l
√

κ)k





n=0,...,2l−1
k=0,...,2l−1

.

We furthermore get, with τ := (−1)lc(2l)−1(r0
2l
√

κ)1−2l, that

(−1)lcG−1(0) E(0) = τ
[

exp
(n

l
iπ
)]

n=0,...,2l−1
k=0,...,2l−1

= τ

[

yeT yeT

−yeT −yeT

]

,

where y, e ∈ C
l with y := (exp( 0

l
iπ), . . . , exp( l−1

l
iπ))T and e := (1, . . . , 1)T . Notice now, that

we have vl = · · · = v2l−1 = 0 and h0 = · · · = hl−1 = 0, since the eigenfunction must be square
integrable. Therefore, writing v =

(

ṽ
0

)

, h =
(

0
h̃

)

, where ṽ, h̃ ∈ C
l we see that equation (A.2) has a

non-trivial solution if and only if
(I + τyeT )ṽ = 0

has a non-trivial solution. But it is not difficult to see, that the latter holds if and only if

τeTy + 1 = 0,

that is if

κ
ν =

(

(−1)(l+1)

2lr
(2l−1)
0

l−1∑

k=0

exp

(

k

l
iπ

)

)

c =
1

2l sin(π/(2l))
c = L0

l,ν,1c.

This completes the proof. �
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Jörgen Östensson
Department of Mathematics
Courant Institute of Mathematical Sciences
New York University
251 Mercer St.
New York, NY 10012
USA
E-Mail: ostensson@cims.nyu.edu





Erschienene Preprints ab Nummer 2004/001
Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints

2004/001 Walk, H.: Strong Laws of Large Numbers by Elementary Tauberian Arguments.
2004/002 Hesse, C.H., Meister, A.: Optimal Iterative Density Deconvolution: Upper and Lower

Bounds.
2004/003 Meister, A.: On the effect of misspecifying the error density in a deconvolution problem.
2004/004 Meister, A.: Deconvolution Density Estimation with a Testing Procedure for the Error

Distribution.
2004/005 Efendiev, M.A., Wendland, W.L.: On the degree of quasiruled Fredholm maps and

nonlinear Riemann-Hilbert problems.
2004/006 Dippon, J., Walk, H.: An elementary analytical proof of Blackwell’s renewal theorem.
2004/007 Mielke, A., Zelik, S.: Infinite-dimensional hyperbolic sets and spatio-temporal chaos in

reaction-diffusion systems in Rn.
2004/008 Exner, P., Linde, H., Weidl T.: Lieb-Thirring inequalities for geometrically induced bound

states.
2004/009 Ekholm, T., Kovarik, H.: Stability of the magnetic Schrödinger operator in a waveguide.
2004/010 Dillen, F., Kühnel, W.: Total curvature of complete submanifolds of Euclidean space.
2004/011 Afendikov, A.L., Mielke, A.: Dynamical properties of spatially non-decaying 2D Navier-

Stokes flows with Kolmogorov forcing in an infinite strip.
2004/012 Pöschel, J.: Hill’s potentials in weighted Sobolev spaces and their spectral gaps.
2004/013 Dippon, J., Walk, H.: Simplified analytical proof of Blackwell’s renewal theorem.
2004/014 Kühnel, W.: Tight embeddings of simply connected 4-manifolds.
2004/015 Kühnel, W., Steller, M.: On closed Weingarten surfaces.
2004/016 Leitner, F.: On pseudo-Hermitian Einstein spaces.
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