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as a rate-independent model

Florian Schmid and Alexander Mielke∗

22 December 2004

1 Introduction

For superconductors of type II the phenomenon of vortex pinning plays an important
role in technological applications. Several models have been proposed for this effect, see
[Bos94, KHS63, Bea64]. In [QGL99, Pri96] some of these models are analysed. In this
work we want to add to these analytical studies for the particular two-dimensional model
proposed in [Cha00].

For this model Ω ⊂ R
2 be a bounded Lipschitz domain and denote by H̃ : Ω → R the

magnetic field perpendicular to the plane. The vortex tube density ω : Ω → R is related
to H̃ via the constitutive relation

ω = Ã(H̃) := αH̃ − div(β∇H̃),

where α and β are material parameters and λ =
√

β/α is called the penetration depth.
The modelling assumption in [Cha00] is now that the vortex tubes will not move if the
modulus of the induced current J = ∇H̃ ∈ R

2 is smaller than a critical value Jc and
that they move immediately if |J | = Jc. The movement is then described by a mobility
function m : Ω → R which plays the role of a Lagrange multiplier. The full problem has
then the following form:

∂tω = div(m∇H̃) with ω = Ã(H̃),

m ≥ 0, Jc − |∇H̃| ≥ 0, (Jc − |∇H̃|)m = 0

}

in [0, T ] × Ω,

H̃(0, ·) = H0 on Ω and H̃(t, x) = Hext(t) on [0, T ] × ∂Ω.

(1.1)

The first equation expresses the conservation of the vortex-tube density which is driven
by the current J . The second line contains the variational inequalities which model the
pinning as an activated process.

The aim of this work is to rewrite the problem in an energetic formulation which
provides a much easier approach to the existence and uniqueness theory. As the main
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unknown, we use H = H̃ − GHext(t), where G : Ω → R is defined in (2.1), choose the
state space X = H1

0(Ω). We define the energy functional E : [0, T ] × X → R via

E(t, H) =

∫

Ω

1

2
A(H)(x)H(x) − αHext(t)H(x) dx

and a dissipation functional for v = ∂tH via

Ψ(v) = sup

{
∫

Ω

A(Ĥ)(x)v(x)dx

∣

∣

∣

∣

Ĥ ∈ H1
0(Ω), |∇Ĥ| ≤ Jc

}

. (1.2)

Here A denotes the self-adjoint operator A : H1
0(Ω) → H−1(Ω), H 7→ Ã(H). By definition

Ψ is 1-homogeneous, i.e.,

∀λ ≥ 0 ∀ v ∈ X : Ψ(λv) = λΨ(v), (1.3)

and convex. This implies the triangle inequality

∀ v1, v2 ∈ X : Ψ(v1 + v2) ≤ Ψ(v1) + Ψ(v2). (1.4)

Note that Ψ(H1 − H0) has the physical dimension of an energy and can be interpreted
as the minimal amount of energy dissipated due to vortex movement when changing the
state from H0 to H1.

We show that (1.1) is formally equivalent to the differential inclusion

0 ∈ ∂Ψ(∂tH) + DE(t, H) ⊂ X∗, (1.5)

where ∂Ψ(v) is the set-valued subdifferential defined in (2.6). Moreover, the differential
inclusion is equivalent to the following energetic formulation:

For all t ∈ [0, T ] we have

(S) E(t, H(t)) ≤ E(t, Ĥ) + Ψ(Ĥ − H(t)) for all Ĥ ∈ X (1.6)

(E) E(t, H(t)) +

∫ t

0

Ψ(∂tH(t))dt = E(0, H(0))−

∫ t

0

∫

Ω

∂τHext(τ)H(τ, x) dx dτ.

Under the simple assumption Hext ∈ C1([0, T ], R) we show that (1.5) and (1.6) have,
for each H(0) = H0 ∈ H1

0(Ω) which satisfy (S) at time 0, a unique solution H ∈
CLip([0, T ], X).

The reformulation of problem (1.1) into (1.5) and (1.6) will be discussed in Section
2. In Section 3 we provide a self-contained existence and uniqueness proof which is a
slight generalization of the theory in [MT04]. It is based on time-discretization and the
incremental minimization problem

E(tk, H) + Ψ(H − Hk−1) → minimal
H∈X

.

We believe that the simplicity of the approach will allow for several generalizations such
that more general models in super-conductivity can be studied.
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2 Reformulation of the model

We denote by ∗〈·, ·〉X the duality between the dual X∗ = H−1(Ω) and X = H1
0(Ω). By the

general assumption that α, β ∈ (0,∞) are fixed, we see that Ã(H) = αH − ∇ · (β∇H)
defines a self-adjoint operator

A :

{

X → X∗,

H 7→ Ã(H),

i.e. ∗〈A(H2), H1〉X = ∗〈A(H1), H2〉X . In fact, we may also assume α ∈ L∞(Ω) and
β ∈ L∞(Ω, R2×2

sym) with α, β ≥ δ > 0 for some δ > 0. We also define the auxiliary function
G ∈ H1(Ω) via

Ã(G) = 0 in Ω and G|∂Ω ≡ 1. (2.1)

The choice was done such that for H = H̃ − GHext with H̃(t, x) = Hext(t) for x ∈ ∂Ω we
have

H(t, x) = 0 for (t, x) ∈ [0, T ] × ∂Ω and Ã(∂tH̃) = Ã(∂tH).

With this definition the first equation in (1.1) can be written in weak form as

−∗〈A(∂tH), Ĥ〉X =

∫

Ω

m∇(H + GHext) · ∇Ĥdx for all Ĥ ∈ X (2.2)

The conditions involving the Lagrange multiplier (or mobility factor) can be written more
precisely in terms of convex analysis. For this introduce the set

C = { Ĥ ∈ X | |∇Ĥ| ≤ Jc a.e. in Ω } ⊂ X. (2.3)

Obviously, C is closed, convex and bounded. Note that 0 ∈ C, but C has empty interior
in X. We define the set-valued normal cone NC via

NC(H) :=

{

{ v∗ ∈ X∗ | ∗〈v
∗, H − Ĥ〉X ≥ 0 for all Ĥ ∈ C } for H ∈ C,

∅ for H 6∈ C.

With this we postulate the following differential inclusion:

−A(∂tH) ∈ NC

(

H + (G − 1)Hext(t)
)

⊂ X∗ for a.e. t ∈ [0, T ]. (2.4)

Proposition 2.1 If H̃ ∈ W1,1([0, T ], H1(Ω)) is a solution of (1.1), then H = H̃ −GHext

solves (2.4).

Proof: We first rewrite (1.1) by eliminating the Lagrange multiplicator m . For H̃ ∈
H1(Ω) we set

M(H̃) :=

{

v∗ ∈ H−1(Ω)

∣

∣

∣

∣

∣

∃m ∈ L∞(Ω) : m ≥ 0 and m(Jc − |∇H̃|) = 0 a.e.,

∗〈v
∗, ϕ〉X =

∫

Ω
m∇H̃ · ∇ϕdx for all ϕ ∈ X

}

(2.5)

if |∇H̃| ≤ Jc a.e. and M(H̃) := ∅ else. Note that for each constant h we have M(H̃) =
M(H̃ − h). With this definition (1.1) takes the form −Ã(∂tH̃) ∈ M(H̃ − Hext(t)).
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Using H̃ = H + GHext and Ã(G) = 0, we see that the assertion holds if we are able
to show that M(H) ⊂ NC(H) for all H ∈ X. For H /∈ C we have M(H) = NC(H) = ∅.
Thus, assume H ∈ C and take v∗ ∈ M(H), we then have to show

∗〈v
∗, H − Ĥ〉X ≥ 0 for all Ĥ ∈ C.

By the definition of M(H) there exists m ∈ L∞(Ω) with m ≥ 0 and m(Jc − |∇H|) ≥ 0
a.e. and

∗〈v
∗, H − Ĥ〉X =

∫

Ω

m∇H · (∇H −∇Ĥ)dx.

In the last integral the integrand is in fact pointwise nonnegative a.e.. In fact, if m(x) = 0
this is obvious, and if m(x) > 0 then |∇H| = Jc which implies

∇H · (∇H −∇Ĥ) = |∇H|2 −∇H · ∇Ĥ ≥ (Jc)
2 − Jc|∇Ĥ| ≥ 0,

since Ĥ ∈ C. Thus, we have ∗〈v
∗, H − Ĥ〉X ≥ 0 as desired.

In fact, we believe that the problems (1.1) and (2.4) are equivalent. However, so far
we were unable to prove M(H) = NC(H) in general.

It is now easy to reformulate (2.4) in several ways by using the Legendre transform, see
[Vis94, Mon93, MT04]. Introduce the convex characteristic function XC via XC(H) = 0
for H ∈ C and ∞ else and its Legendre-Fenchel transform X ∗

C = LXC via

(LXC)(v
∗) = sup{ ∗〈v

∗, ϕ〉X −XC(ϕ) | ϕ ∈ X }.

Moreover, define the subdifferential ∂f for any convex function f : Y → R ∪ {∞} via

∂f(y) = { v∗ ∈ Y ∗ | ∀ŷ ∈ Y : f(ŷ) ≥ f(y) + 〈v∗, ŷ − y〉 }, (2.6)

where Y will be either X or X∗. Then, the following standard relations hold:

(a) NC(H) = ∂XC(H),

(b) v∗ ∈ ∂XC(H) ⇔ H ∈ ∂X ∗

C (v∗).

Using (a) and (b) we see that (2.4) is equivalent to H + (G − 1)Hext ∈ ∂X ∗
C (−A∂tH):

Exploiting the symmetry C = −C and applying A we arrive at

−(AH − αHext) ∈ A
(

∂X ∗

C (A∂tH)
)

⊂ X∗, (2.7)

where we have used ÃG = 0 and Ã1 = α.

Lemma 2.2 Let Ψ : X → [0,∞) be defined via Ψ(v) = sup{ ∗〈AH, v〉X | H ∈ C }, then
Ψ(v) = X ∗

C (Av) and ∂Ψ(v) = A∂X ∗
C (Av) for all v ∈ X.

Proof: By this definition we easily find X ∗
C (v∗) = sup{ ∗〈v

∗, H〉X | H ∈ C }. Thus we
have Ψ(v) = X ∗

C (Av) and the result for the subdifferential follows from the chainrule and
A = A∗.

Finally we define the energy functional

E(t, H) =
1

2
∗〈AH, H〉X −

∫

Ω

αH(x)Hext(t)dx

and obtain the main result of this section, since DE(t, H) = AH − αHext.
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Proposition 2.3 Equation (2.7) is equivalent to

0 ∈ ∂Ψ(∂tH) + DE(t, H) for a.e. t ∈ [0, T ]. (2.8)

Using the rate-independence, which is the same as the 1-homogeneity of Ψ (see (1.3)),
and the triangle inequality for Ψ in (1.4) it is easy to see that (2.8) is equivalent to the
two conditions

(S)loc 〈DE(t, H), v〉+ Ψ(v) ≥ 0 for all v ∈ X,

(E)loc 〈DE(t, H), ∂tH〉 + Ψ(∂tH) = 0.

}

(2.9)

Since E(t, ·) : X → R is also convex, we arrive at the energetic formulation

(S) E(t, H(t)) ≤ E(t, Ĥ) + Ψ(Ĥ − H(t)) for all Ĥ ∈ X,

(E) E(t, H(t)) +
∫ t

0
Ψ(∂tH(τ)) dτ = E(0, H(0))−

∫ t

0

∫

Ω
∂tHext(τ)αH(τ, x) dx dτ

The stability condition (S) has the obvious interpretation, that a state H(t) can only
occur if for no other state Ĥ we can release more energy than is dissipated by the moving
vortices. Obviously, (S)loc is the same as 0 ∈ ∂Ψ(0) + DE(t, H(t)). Using Lemma 2.2 we
find

∂Ψ(0) = AC = {AH | H ∈ C } ⊂ X∗ (2.10)

and thus, (S)loc, and hence (S), is equivalent to A−1DE(t, H(t)) = A−1(AH − αHext) =
H + (G − 1)Hext ∈ C. This is of course the condition |∇H̃| ≤ Jc.

The energy balance (E) just states that the total stored energy E(t, H(t)) at time t
is the initial energy plus the work of the boundary conditions through the external field
Hext minus the dissipated energy.

For more exact proofs of these equivalences we refer to [MT04].

3 Existence and Uniqueness

To formulate the main result most conveniently we recall ∂Ψ(0) = AC.

Theorem 3.1 Let Hext ∈ C1([0, T ]) and H0 be given with H0+(G−1)Hext(0) ∈ C. Then,
(2.8) has a unique solution H ∈ CLip([0, T ], X) with H(0) = H0.

This result is a special case of several well-established theories. In fact, we simplified the
problem by assuming C1 smoothness of Hext which would not be necessary. However, in
rate-independent systems we may always rescale time to gain smoothness. For instance,
combining Thm 3.1 and Prop. 3.5 in [Kre99] proves our result. Moreover, in [Vis94]
or [Mon93] corresponding results can be found. Nevertheless, we find it worthwhile to
provide an independent short proof which is based on the energetic formulation (S) and
(E), and thus is closer to the underlying physics. We follow the more general approach in
[MT99, MT04], however we have to work around their hypothesis Ψ(v) ≥ c‖v‖ which is
not true in our situation.

We introduce the set S(t) of stable states at time t via

S(t) = {H ∈ X | E(t, H) ≤ E(t, Ĥ) + Ψ(Ĥ − H) for all Ĥ ∈ X }.
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The condition (S) is equivalent to H(t) ∈ S(t). As seen at the end of Section 2 we have

S(t) = (1 − G)Hext(t) + C,

which shows that S(t) is a closed, convex, bounded set, which depends smoothly on
t ∈ [0, T ].
Proof: [of Theorem 3.1] The proof relies on time discretization. For n ∈ N subdivide
[0, T ] equidistantly into 2n intervals via tnk = kT/2n for k = 0, 1, . . . , 2n. We let Hn

0 = H0

and define Hn
k iteratively via

Hn
k+1 = argmin

{

E(tnk+1, H) + Ψ(H − Hn
k )

∣

∣

∣
H ∈ X

}

.

Since E is strictly convex, the minimizer exists and is unique. Moreover, we have

(A) Hn
k ∈ S(tnk) for n ∈ N and k ∈ {0, 1, . . . , 2n},

(B) E(tnk , Hn
k ) + Ψ(Hn

k − Hn
k−1) ≤ E(tnk−1, H

n
k−1) +

∫ tn
k

tn
k−1

∂sE(s, Hn
k−1) ds

To see (A) simply use that (i) Hn
k is a minimizer and that (ii) Ψ satisfies the triangle

inequality:

E(tnk , Ĥ) + Ψ(Ĥ−Hn
k )

= E(tnk , Ĥ) + Ψ(Ĥ−Hn
k−1) + Ψ(Ĥ−Hn

k ) − Ψ(Ĥ−Hn
k.1)

(i)

≥ E(tnk , Hn
k ) + Ψ(Hn

k−Hn
k−1) + Ψ(Ĥ−Hn

k ) − Ψ(Ĥ−Hn
k−1)

(ii)

≥ E(tnk , Hn
k ).

For (B) we again use that Hn
k is a minimizer

E(tnk , H
n
k ) + Ψ(Hn

k−Hn
k−1) ≤ E(tnk , H

n
k−1) = E(tnk−1, H

n
k−1) +

∫ tn
k

tn
k−1

∂sE(s, Hn
k−1) ds.

The stability in (A) is equivalent to

∗〈DE(tnk, H
n
k ), v〉X + Ψ(v) ≥ 0 for all v ∈ X, (3.1)

and the minimization property shows that for v = Hn
k − Hn

k−1 equality holds. Thus, we
have

∗〈A(Hn
k−Hn

k−1), H
n
k−Hn

k−1〉X

= ∗〈DE(tnk , H
n
k )−DE(tnk , Hn

k−1), H
n
k−Hn

k−1〉X
(3.1)
= −Ψ(Hn

k−Hn
k−1) − ∗〈DE(tnk−1, H

n
k−1), H

n
k−Hn

k−1〉X

−
∫ tn

k

tn
k−1

∗〈∂sDE(s, Hn
k−1), H

n
k−Hn

k−1〉X ds

(3.1)

≤ 0 + ‖Hn
k −Hn

k−1‖X‖∂tHext‖C0‖α‖X∗(tnk−tnk−1).

Since the operator A is positive definite, we obtain the a priori Lipschitz bound

‖Hn
k − Hn

k−1‖X ≤ C1|t
n
k − tnk−1|.
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We now define the piecewise linear interpolants Hn : [0, T ] → X with Hn(tnk) = Hn
k ,

then we know ‖ ∂tH
n(t)‖X ≤ C1 for a.a. t ∈ [0, T ]. Thus, the Arzelà-Ascoli theorem for

C0([0, T ], X) yields a subsequence (not renumbered) and a limit function H : [0, T ] → X
such that for all t ∈ [0, T ] we have Hn(t) ⇀ H(t) in X as n → ∞, where ⇀ denotes weak
convergence. Moreover H is Lipschitz continuous with ‖∂tH(t)‖ ≤ C1 a.e. in [0,T].

Keeping t∗ = k∗T/2n∗ fixed, then for all n ≥ n∗ we have Hn(t∗) ∈ S(t∗). Since S(t∗) is
closed and convex we conclude H(t∗) ∈ S(t∗). Since

{

k∗T/2n∗ ∈ [0, T ]
∣

∣ n∗ ∈ N and k∗ ∈
{0, . . . , 2n∗}

}

is dense in [0, T ] and since H : [0, T ] is Lipschitz continuous, we conclude
H(t) ∈ S(t) for all t ∈ [0, T ].

Finally we consider the energy equation. Let t∗ be as above and add the discrete
energy estimates (B) for n = n∗ over k = 1, . . . , k∗. Note that in the case k = 1 we use
the fact that H0 = Hn

0 lies in S(0). We find

E(t∗, Hn∗(t∗)) +

∫ t∗

0

Ψ(∂tH
n∗(τ))dτ ≤ E(0, H0) −

∫ t∗

0

∂tHext(τ)

∫

Ω

α H
n∗

(τ)dxdτ (3.2)

where Hn∗ is the piecewise linear interpolant from above while H
n∗

is the piecewise
constant interpolant with H

n∗

(t) = Hn
k−1 for t ∈ [tnk−1, t

n
k). The right-hand side is weakly

continuous and on the left-hand side E(t, ·) is convex and continuous and hence weakly
lower semicontinuous. It remains us to show the following lemma.

Lemma 3.2 Assume the sequence (Hn)n∈N as above, then

∫ t

0

Ψ(∂tH(τ)) dτ ≤ lim inf
n→∞

∫ t

0

Ψ(∂tH
n(τ))dτ .

Proof: The sequence (Hn)n∈N is bounded in CLip([0, T ], X) = W1,∞([0, T ], H1(Ω)), which
is continuously embedded into the Hilbert space H = H1([0, T ], X). Thus, the sequnce
converges weakly in H to the limit H cocnstructed above. For this note, that the sequence
is aalso bounded in H and hence it has a weakly converging subsequence. Since H is
compactly embedded in Y = L2([0, T ], L2(Ω)) = L2([0, T ]×Ω) this subsequence converges
strongly in Y. However, the convergence invoked from the Arzelà-Ascoli theorem also
implies strong converge in Y. Thus, the weak limit in H is unique and equal to H.

We now define the functional I : H → R via I(H) :=
∫ t

0
Ψ(∂tH(τ)) dτ . Since

Ψ : H1 → [0,∞) is convex we get immediately the convexity of I. Further the upper
estimate Ψ(v) ≤ C‖v‖H1 implies the strong continuity of I. Together with convexity this
implies sequential weak lower semicontinuity of I on H, which is the desired result.

Hence we can go to the limit in (3.2) and find

0 ≥ m(t) where

m(t) := E(t, H(t)) +
∫ t

0
Ψ(∂tH(τ)) dτ − E(0, H0) +

∫ t∗

0
∂tHext(τ)

∫

Ω
αH(τ, x) dx dτ.

This provides one side of the energy balance.
As H is Lipschitz, we can differentiate m and obtain, after a cancellation, ṁ(t) =

∗〈DE(t, H(t)), ∂tH〉X + Ψ(∂tH(t)) which is nonnegative by the stability of H(t). Thus,
m(t) ≤ 0, m(0) = 0 and ṁ(t) ≥ 0 imply m ≡ 0. Thus, we have established (E) as well.
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Finally we have to show uniqueness which follows again from the variational inequali-
ties (2.9). Let Hj, j = 1, 2 be two solutions, then for each v we have by subtracting (S)loc

from (E)loc

∗〈DE(t, Hj), ∂tHj − v〉X + Ψ(∂tHj) − Ψ(v) ≤ 0.

Testing with v = ∂tH3−j and adding both inequalities gives

1

2

d

dt
∗〈A(H1−H2), H1−H2〉X = ∗〈DE(t, H1)−DE(t, H2), ∂t(H1−H2)〉X ≤ 0.

If H1(0) = H2(0), this implies H1(t) = H2(t) and uniqueness is established.

It should be noted that the theory in Section 7 of [MT04] can be generalized to prove
strong convergence with

‖Hn(t) − H(t)‖X ≤ C(τn)1/2 with τn =
1

2n
.

It might be also possible to establish convergence of the order (τn)1, see in [Mie04, Section
4.4] and the references there.
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2004/012 Pöschel, J.: Hill’s potentials in weighted Sobolev spaces and their spectral gaps.

2004/013 Dippon, J., Walk, H.: Simplified analytical proof of Blackwell’s renewal theorem.

2004/014 Kühnel, W.: Tight embeddings of simply connected 4-manifolds.

2004/015 Kühnel, W., Steller, M.: On closed Weingarten surfaces.

2004/016 Leitner, F.: On pseudo-Hermitian Einstein spaces.

2004/017 Förster, C., Östensson, J.: Lieb-Thirring Inequalities for Higher Order Differential Operators.

2005/001 Mielke, A.; Schmid, F.: Vortex pinning in super-conductivity as a rate-independent model


