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Abstract

In this paper, we prove that each component of the Burnside ring of a finite group is the

solvable component of the Burnside ring of a Weyl subgroup of its corresponding group, and

we give some applications.

1 Preliminaries

Throughout this paper, G is a finite group. Its Burnside ring B(G) is the Grothendieck ring of
the category of finite left G-sets. This is the free abelian group on the isomorphism classes of
transitive left G-sets of the form G/H for subgroups H of G, two such subsets being identified if
their stabilizers H are conjugated in G. The addition and multiplication are given by the disjoint
union and Cartesian product, respectively.

For a subgroup H of G we write [H ] for its conjugacy class. We write V (G) for the set of
conjugacy classes of subgroups of G and we give it the partial order in which [H ] ≤ [K] if some
conjugate of H lies in K.

In general, given a finite group G to which one associates in a natural way some other algebraic
object (such as the Burnside ring B(G), or the character ring, or the cohomology with coefficients
in some fixed field, etc.), one asks whether or not one can recover the group from knowledge of the
algebraic object associated to it. The general answer to such a question is no and the Burnside
ring is no exception. For the particular case of the Burnside rings the specific question whether
two finite groups having the same Burnside ring must be isomorphic was raised by Yoshida in [9]
and the first counterexamples were found by Thévenaz in [8] (see also [1] for a counterexample
involving p-groups). If one imposes further restrictions on the groups, then the answer can become

5



affirmative, an instance of this occurring in [7] where it is shown that the answer to the above
question is yes if we further know that both groups are abelian or Hamiltonian.

Knowing that, in general, the Burnside ring does not determine the group, one tries to find
other invariants of the group which can be recovered from its Burnside ring. Very little is known
in this direction. For example, it is not even known that if G is simple and G1 is some other
group such that B(G) ∼= B(G1), then G is isomorphic with G1. A finer invariant closely related to
the Burnside ring is the so-called table of marks. This is the square matrix of order n = #V (G)
whose entries are #[(G/H)K ], where [H ] and [K] are elements of V (G) and for a G-set X and a
subgroup H of G we use XH for the G-set of fixed points of X under the action of H . It is known
that the above integer is well defined; i.e., does not depend on the particular representatives H
and K for [H ] and [K], respectively. The morphism

νK : B(G) →
∏

[H]∈V (G)

ZZ

given by νK(X) = |XK | for all G-sets X is called the mark corresponding to K.
Kimmerle (see [2, Satz 7.5]) showed that the table of marks of G determines the composition

factors for G. This result was rediscovered in [4]. In particular, if G is simple and G1 is some other
group having the same table of marks as G, then G1 is isomorphic with G. As we have just said,
this result is not known if one replaces the table of marks by the Burnside ring. It is known that
the table of marks determines the Burnside ring but there is no known method to read a table of
marks out of a Burnside ring.

In this paper, we prove a structure theorem for the Burnside ring. It is known that the
Burnside ring is a product of blocks, each block being of the form B(G)eH , where eH is an
idempotent associated to a perfect subgroup of G. Recall that H is perfect if H has no proper
normal subgroups K such that the quotient group H/K is solvable. When H = 1 the block is
called the principal block. Our main result shows (a little bit more than) that every block B(G)eH

of B(G) is isomorphic to the principal block B(WGH)e1 of the Burnside ring of the Weyl group
NGH/H of H . Such a result can be useful when dealing with isomorphisms of Burnside rings,
which we illustrate by a couple of applications.

Acknowledgments. This work started during a visit of Wolfgang Kimmerle at the Math-
ematical Institute of the UNAM in Morelia in August 2002. He thanks this Institute for its
hospitality. All authors were supported in part by the Project SEP-CONACyT 37259E.

2 Notation

Let G be a finite group and Π be a subset of all the prime numbers. We write BΠ(G) = B(G)⊗ZZΠ

for the Burnside ring with coefficients in ZZΠ, where ZZΠ is the ring of rational numbers a/b, with
a positive integer b whose prime factors lie in Π. For a subgroup H of G we write OΠ(H) for the
smallest normal subgroup K of H such that H/K is solvable of order coprime to the primes in
Π. We put PΠ(G) = {[H ] ∈ V (G) | OΠ(H) = H}. For a subgroup H of G we let eG,H be the
primitive idempotent in the ghost ring

Ω(G) =
∏

[H]∈V (G)

ZZ

of G corresponding to H ; i.e., of the form eG,H = (δHK)[K], where δHK = 1 if [H ] = [K] and 0
otherwise. Finally, for H ∈ PΠ(G) we let eΠ

G,H be the primitive idempotent of B(G) corresponding
to H , which by a result of Yoshida (see [10]) is given by

eΠ
G,H =

∑

[K]∈V (G)

OΠ(K)=H

eG,K .
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We also use the standard notation, namely that for g ∈ G and H ≤ G we write gH for gHg−1

and NGH for the normalizer of H in G. Finally, to simplify the notation, for a subgroup H of G
we denote its Weyl group NGH/H in G by WGH .

3 Blocks of the Burnside ring

Our main result is the following.

Theorem 3.1. We have

BΠ(WGH)eΠ
WGH,1

∼= BΠ(G)eΠ
G,H = ⊕ [K]≤V (G)

[OΠ(K)]=[H]

ZZΠG/KeΠ
G,H , (1)

In particular,

BΠ(G)eΠ
G,1 = ⊕ [K]∈V (G)

K Π−solvable

ZZΠG/K (2)

Proof. We first prove that that the sum in formula (1) is direct. Assume that an equation of the
form

∑

[K]∈V (G)

λKG/KeΠ
G,H = 0 (3)

holds with some coefficients λK not all zero. Let [L] ∈ V (G) be maximal with [OΠ(L)] = [H ]
and λL 6= 0. We apply the mark νL to the above equation (3) and get λLνL(G/L) = 0 because
νL(eΠ

G,H) = 1. Thus, λL = 0, which is a contradiction. Hence, the sum is direct.

We now only need to prove that the left hand side of (1) is contained in the right hand side of
it. Notice that the relation

eΠ
G,H =

∑

OΠ(K)⊆H

bKG/K,

holds with some coefficients bK , so for any subgroup T ≤ G we have

G/TeΠ
G,H =

∑

OΠ(K)⊆H

cKG/KeΠ
G,H .

with some other coefficients cK . Thus, it is enough to check that if the containment [OΠ(K)] <
[H ] holds, then G/KeΠ

G,H = 0. Assume therefore that G/KeΠ
G,H 6= 0, take L ≤ G such that

νL(G/KeΠ
G,H) 6= 0 and note that

0 6= νL(G/KeΠ
G,H) = νL(G/K)νL(eΠ

G,H).

Hence, [OΠ(L)] = [H ] and [L] ≤ [K], therefore

[H ] ≤ [OΠ(L)] ≤ [OΠ(K)] < [H ].

This contradiction proves the stated equality.

Applying the equality (1) at H = 1 we get

BΠ(G)eΠ
G,1 = ⊕ZZΠG/KeΠ

G,1.

By applying the mark νK with a solvable subgroup K to this last equality, we get G/KeΠ
G,1 = G/K.

We now consider the morphism

BΠ(WGH)eΠ
WGH,1 = ⊕[OΠ(K)]=[H]ZZΠ

WGH

K/H
f

−→BΠ(G)eΠ
G,H = ⊕ZZΠ

G

K
eΠ

G,H ,
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induced by

f

(

WGH

K/H

)

=
G

K
eΠ

G,H

and extended linearly. It is easy to see that this morphism is well defined. On the other hand, it
sends a basis into a basis since if G/KeΠ

G,H = G/LeΠ
G,H then [K] = [L]. Thus, K = aLa−1 holds

with some a ∈ G, therefore H = OΠ(K) = aOΠ(L)a−1 = aHa−1, which implies that a ∈ NGH ,
leading to the conclusion that

WGH

K/H
=

WGH

L/H
.

The above argument shows that f is an isomorphism of abelian groups. We now check that this
is a ring isomorphism as well. It clearly suffices to check it for the elements of a base. We have

f

(

WGH

K/H
×

WGH

L/H

)

=
∑

a∈K\WGH/L

f

(

WGH

K ∩a L/H

)

, (4)

where in the above formula (4) we used K and L for K/H and L/H , respectively, and the last
sum above equals

∑

a∈K\NGH/L

G

K ∩a L
eΠ

G,H . (5)

We now see that if
G

K ∩a L
eΠ

G,H 6= 0,

then there exists a subgroup T ≤ G such that OΠ(T ) = H and T ≤ K ∩a L ≤a L. In this case,
aH = H , therefore a ∈ NGH , and so

∑

a∈K\NGH/L

G

K ∩a L
eΠ

G,H =
∑

a∈K\G/L

G

K ∩a L
eΠ

G,H =
G

K
×

G

L
eΠ

G,H . (6)

Now (4)–(6) complete the proof of Theorem 3.1. ut

We will denote by BS(G) the solvable component of the Burnside ring of G.

4 Normal subgroups and the Burnside ring

Throughout this section, we assume that G and G∗ are two groups such that their Burnside rings
are isomorphic. Let σ be an isomorphism of B(G) onto B(G∗). Building on work of Nicolson [5]
and extending results of Kimmerle and Roggenkamp from [3] in which the group of automorphisms
of the Burnside ring of a finite group was analyzed, in [6] it is shown that one may assume that
this isomorphism is normalized; i.e., that σ(G/1) = G∗/1.

We give a generalization of these results for the components of the Burnside ring.
Given an isomorphism θ : BS(G) −→ BS(G′) we can extend it to an isomorphism of the

corresponding restricted ghost rings θ : ΩS(G) −→ ΩS(G′), where

ΩS(G) =
∏

[H]∈V (G)
H solvable

ZZ

Theorem 4.1. Let G and G′ be finite groups, and θ : BS(G) −→ BS(G′) a normalized isomor-

phism. For any solvable subgroup D of G, let D′ denote a subgroup of G′ such that θ(eG,D) =
eG′,D′ . Let V be a soluble subgroup of G. Then V ′ is soluble, |V ′| = |U |, |NG′(V ′)| = |NG(V )|,
and θ(G/V ) = G′/V ′ +

∑

T∈SV
aT G′/T where SV is the family of soluble subgroups T of G′ such

that |T | is a proper divisor of |U |.
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Proof. The proof is essentially the same as in [6] which is based in [3]. ut

An isomorphism σ from B(G) onto B(G∗) induces a bijection σ∗ of V (G) onto V (G∗). Note
σ∗([H ]) = [H∗] provided the extension of σ to an isomorphism of the corresponding ghost rings
maps eG,H to eG∗,H∗

. A natural question to ask is whether σ∗ preserves the ordering. In general,
the answer is no, and our first result here illustrates the obstruction to σ∗ preserving the ordering.
Throughout the following proposition and its proof p denotes a prime number.

Proposition 4.2. Let σ : B(G) −→ B(G∗) be an isomorphism of Burnside rings. Assume that

σ is normalized and let σ∗ denote the induced bijection from V (G) to V (G∗). Let U ≤ V ≤ G be

such that U is maximal in V of index p and [σ∗(U)] 6≤ [σ∗(V )]. Assume further that both U and V
sit inside the block corresponding to the same perfect group P . Then the number #{gU | gU ⊂ V }
is a multiple of p.

Proof. By Theorem 3.1 we may assume that V is solvable; i.e., that P = 1 for if not we may
replace G by WGP . We now know that

σ(eG,V ) = eG∗,V∗
. (7)

Applying σ to the well known formula

eG,V =
1

|NGV |
G/V − β(U, V )G/U +

∑

[L]<[V ]
[L]6=[U ]

aLG/L, (8)

where β(U, V ) = #{gU | gU ⊂ V } (see [10]) we arrive at

σ(eG,V ) =
1

|NGV |
σ(G/V ) − β(U, V )σ(G/U) +

∑

[L]<[V ]
[L]6=[U ]

aLσ(G/L). (9)

Using (8) with V∗ instead of V we get

eG∗,V∗
=

1

|NG∗
V∗|

G∗/V∗ +
∑

[L∗]<[V∗]

bL∗
G∗/L∗. (10)

Using 4.1 and (7)–(10) together we arrive at

σ(G/V ) = G∗/V∗ +
β(U, V )

p
G∗/U∗ +

∑

|T∗|<|V∗|
[T∗]6=[U∗]

cT∗
G∗/T∗. (11)

In this last equation we used the known fact that |NG∗
V∗/V∗| = |NGV/V |. From (11) we im-

mediately see that if [U∗] 6≤ [V∗], then the coefficient of G∗/U∗ must be an integer and therefore
p | β(U, V ). ut

An isomorphism σ from B(G) onto B(G∗) is called completely normalized if for each perfect
subgroup P the subgroup P∗ of G∗ is again perfect. We record the following corollaries.

Corollary 4.3. Suppose that σ : B(G) −→ B(G∗) is a completely normalized isomorphism.

Assume that V and N are subgroups of G sitting inside the block of the same perfect subgroup P ;

that is, P ≤ H ≤ NGP and H/P is solvable holds for H ∈ {V, N}. Assume further that N is

normal in G and N ≤ V . Then N∗ ≤ V∗.

Proof. By Theorem 3.1, it follows that we may assume that V is solvable (otherwise, we may
replace G by WGP and both V and N by V/P and N/P , respectively). Let p be some prime such
that V/N contains a normal subgroup of index p. Since V itself contains a normal subgroup of
index p, it follows that the number of maximal subgroups of index p in V is not 1 (mod p) (see [3,
Claim 2]). Hence, there exists a subgroup U of G such that N ≤ U ≤ V , the index of U in V is
p and {gU | gU ⊂ V } is not a multiple of p. Proposition 4.2 shows that U∗ ≤ V∗. Corollary 4.3
follows now by replacing V with U and by induction. ut
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Note that each isomorphism between Burnside rings maps the principal blocks in to each other.
Thus, an immediate consequence of Corollary 4.3 is the following result.

Corollary 4.4. B(G) determines the lattice of the solvable normal subgroups of G.

As final application, we describe the structure of the automorphism group of B(G) for a general
finite group G. Let B1, . . . , Bm be representatives of the isomorphism types of the blocks of B(G)
with multipicity ki. Clearly,

Aut(B(G)) =

m
∏

i=1

Aut(Bi) ×Ski
.

Denote by Pi a perfect subgroup of G coresponding to Bi. By Theorem 3.1, we know that the Bi

are the principal blocks of Ni := NG(Pi)/Pi. Hence, we can apply the results on automorphisms
of Burnside rings of finite solvable groups (see [3] and [6]). Using [5, Proof of Prop.3.4] and [3, 2.3
and 2.4], we get

Aut(Bi) = Autn(Bi) ×X,

where Autn(Bi) denotes the group of normalized automorphisms of the block Bi and X depends
on the normal subgroup structure of NG(Pi)/Pi as follows:

a) If Ni 6∼= C2 × C2 × O, where O is a group of odd order, then

X ∼= Cni

2 ,

with ni = ai + bi, where

ai is the number of odd primes p such that Ni has a unique subgroup of order p, and

bi = 1 if Ni has a central subgroup of order 2 which is contained in each subgroup of order
4 of Ni, or which is the only subgroup of Ni of order 2; otherwise, bi = 0.

b) If Ni
∼= C2 × C2 × O, then

Aut(Bi) = S4 × Aut O and Aut O = Autn(Bi) ×Cai

2 ,

where ai denotes again the number of odd primes p such that Ni has a unique subgroup of
order p.

Thus, the determination of Aut(B(G)) is reduced to the determination of normalized auto-
morphisms of the principal block of the Burnside rings of its Weyl groups. These automorphisms
induce on the other hand automorphisms of the subgroup lattice of the solvable normal subgroups
of these Weyl groups, cf. Corollary 4.4. For computational aspects of the determination of such
normalized automorphisms, we refer the reader to [3].
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