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1. Introduction

The one dimensional inverse Sturm-Liouville problem and methods for its numerical
solution are very well studied [9, 12, 2]. Still there is no general purpose algorithm, which
efficiently satisfies all needs.

Recently Brown and Weikard [3] proved, that an integrable potential on a simply con-
nected finite tree is uniquely determined by the generalized Dirichlet-to-Neumann map.
Numerical studies by Schapotschnikow [13] suggest that a variational approach is most
suited for solving the inverse problem numerically. He successfully applied the approach
of Brown et al. [2], but found the convergence speed not to be satisfactory in this case.

We present a variational algorithm which proves to be very robust under noisy input,
does not require any special tuning or additional input besides the partial spectra, and is
quite efficient in the class of variational methods. In section 2 we will define the functional
and prove the absence of true local minima, which could trap our minimization procedure.
Numerical examples, the optimal choice of the weights and the performance under noisy
input will be discussed in section 3. Section 4 is concerned with implementation details
and compares this algorithm to related approaches, and section 5 finally contains the proof
of the linear independence of the squares of eigenfunctions.

2. Definition and Properties of the Functional

We consider the Sturm-Liouville equation

(SL) −u′′ + q(x)u = λu

on [0, 1] with q(x) ∈ L2([0, 1], R) real, and separated boundary conditions

(αβ) u(0) cosα + u′(0) sinα = 0, u(1) cosβ + u′(1) sin β = 0 .

For the asymptotics of the eigenvalues (λn)∞n=0 w.r.t. boundary conditions (αβ) there are
three cases (see eg. [14, 5, 4, 10]):
(2.3)

λn =











π2n2 − 2 sin(β−α)
sin α sinβ

+
∫ 1

0
q ds + an if sin α sin β 6= 0

π2(n + 1/2)2 + 2 cos α cos β

sin(β−α)
+
∫ 1

0
q ds + an if sin α sin β = 0 ∧ sin(β − α) 6= 0

π2(n + 1)2 +
∫ 1

0
q ds + an if sin α = sin β = 0

where (an) ∈ l2.
It is a classical result, that two spectra determine the potential uniquely. Fix three

angles α, β, and γ with sin(β − γ) 6= 0. Let λq,i,n, gq,i,n, i ∈ {1, 2} denote the eigenvalues
and eigenfunctions of L2-norm 1 with respect to the boundary conditions (αβ) resp. (αγ).

Theorem 2.1 (Borg [1], Levinson [6]). Given potentials Q, q ∈ L1[0, 1] with

λQ,i,n = λq,i,n for all n ∈ N, i = 1, 2 ,

then Q = q.
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Suppose we are given (partial) spectral data λQ,i,n with (i, n) in I ⊆ {1, 2} × N of an
unknown potential Q. For a trial potential q and positive weights ωi,n, we define the
functional

(2.4) G(q) =
∑

(n,i)∈I

ωi,n(λq,i,n − λQ,i,n)
2 .

If I is infinite and the sequence (ωn,i) is summable, this converges because of the asymp-
totics of the eigenvalues (2.3)

G(q) =
∑

(n,i)∈I

ωn,i

(
∫ 1

0

Q −

∫ 1

0

q + ai,n

)2

< ∞ ,

where ai,n ∈ l2, i = 1, 2.
If moreover I = {1, 2} × N, the functional is zero if and only if q = Q (by theorem 2.1).

In the case of partial knowledge of the spectrum, a solution of G(q) = 0 includes all
information given about the unknown potential Q. A recent result of Marletta and Weikard
[8] guarantees that increasing the number of eigenvalues and minimizing G(q) brings us (in
a certain weak sense) arbitrarily close to Q. With sufficiently strong a-priori conditions on
the boundedness of q − q0, even Hn convergence for a fixed n holds.

An important question is now, for which sequences (λQ,i,n) there is a q with G(q) = 0,
i.e. λq,i,n = λQ,i,n. It is easy to see with the classical methods [14], that it is necessary for
the eigenvalues to interlace

λQ,1,n < λQ,2,n < λQ,1,n+1 .

It is also known that if we choose either

(i) sin α, sin β, sin γ 6= 0 (Levitan [7]) or
(ii) α = β = 0, sin γ 6= 0 (Dahlberg Trubowitz [4]),

then the interlacing property in connection with the correct asymptotics is sufficient for
the existence of a potential q with G(q) = 0.

The most interesting feature of this functional is, that all its critical points are at global
minima. To prove this, we first compute the derivative of G. The derivative of λq,i,n w.r.t. q
in direction h is

λ̇q,i,n[h] =

∫ 1

0

hg2
q,i,n

(see [10] for a nice proof). Thus the derivative of G is given by

Ġ[h](q) = 2
∑

(n,i)∈I

∫ 1

0

ωn,i (λq,i,n − λQ,i,n) g2
q,i,nh dx .

We note that if nωn,i is summable, then the function

2
∑

(n,i)∈I

(n + 1)ωn,i (λq,i,n − λQ,i,n)
1

n + 1
g2

q,i,n

is in H1 because ‖g2
q,i,n‖H1 = O(n) [14] and λq,i,n − λQ,i,n = O(1).
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Theorem 5.1 below shows that the eigenfunctions g2
q,i,n are linearly independent in H1.

This immediately implies the essential convexity of the functional:

Theorem 2.2. The functional G has no local minima at q with G(q) > 0, i.e.

Ġ[h](q) = 0 ∀h ⇐⇒ G(q) = 0 .

Thus a conjugate gradient algorithm is an effective method to compute zeros of G, as
we will also observe in the examples.

Finally, we want to address the question, which of the infinitely many q with G(q) = 0
our algorithm will select. Let us first look at a related functional, which actually was also
our first try. It is given by

G̃(q) =
∑

(n,i)∈I

(λq,i,n − λQ,i,n +

∫ 1

0

(Q − q) dx)2 ,

with derivative

˙̃G[h](q) = 2
∑

(n,i)∈I

∫ 1

0

(λq,i,n − λQ,i,n) (g2
q,i,n − 1)h dx .

In case the mean of Q is known, this functional works as well as the other. Its gradient
flow leaves the mean of q constant by construction. The function g2

q,i,n − 1 is the gradient

of λq,i,n−
∫ 1

0
q dx and the direction of strongest increase of λq,i,n which leaves

∫ 1

0
q dx fixed.

Choosing α = β = 0 and γ = π/2, the asymptotics of the squared eigenfunctions are
given by

(2.5) g2
q,i,n =

{

1 − cos
(

(2n + 2)πx
)

+ O(n−1) , i = 1
1 − cos

(

(2n + 1)πx
)

+ O(n−1) , i = 2
.

Hence the functions {g2
q,i,n − 1|n ∈ N, i = 1, 2} ∪ {1} are almost orthogonal for large n.

Now, the derivative of our functional (2.4) can be written as

Ġ[h](q) = 2
∑

(n,i)∈I

∫ 1

0

ωn,i (λq,i,n − λQ,i,n)
(

(g2
q,i,n − 1) + 1

)

h dx ,

and the difference λq+c,i,n−
∫

(q+c) dx = λq,i,n−
∫

q dx is invariant under adding a constant

function c to q. It follows that a gradient flow of our functional G leaves λq,i,n −
∫ 1

0
q dx

with (i, n) 6∈ I almost invariant for n large enough.
Since also a conjugate gradient descent is just an approximation of the gradient flow, in

practice we do get some little changes in the higher eigenvalues. A similar argument holds
for the case sin α, sin β, sin γ 6= 0, but there the asymptotics for i = 1, 2 are equal. So we
still have asymptotic orthogonality in n, but can not separate i = 1 and i = 2.
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Figure 1. Plot using ωn,i = 1. The right two graphs show G(q) and ∆2

over the number of iterations.
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Figure 2. Plot using ωn,i = (n + 1)−2.

3. Numerical Examples

The first natural question is the optimal choice of the constants ωn,i. A short look at
the asymptotics (2.3) may suggest something like ωn,i = (n + 1)−2. But on the other hand
we have λq+c,i,n = λq,i,n + c for all n. This observation corresponds to choosing ωn,i = 1
and yields the fastest convergence in all examples.

Figures 1 and 2 were computed with ωn,i = 1 resp. ωn,i = (n + 1)−2. For all plots
(except 2, 3) we chose the lowest number of iterations after which the plot stabilizes, while
usually already the second iteration reveals the global structure of the potential. By default
we use 30 pairs of eigenvalues, ωn,i = 1, and the boundary conditions α = β = 0, γ = π/2.
We give the current value of the functional G(q) as well as the L2 error ∆2 = ‖q − Q‖2,
and the maximum of the difference of the eigenvalues ∆λ = max(n,i)∈I{|λq,i,n − λQ,i,n|}. In
addition if there is a visible difference, we also plot the original potential Q using a dashed
line.

We see that both G(q) and ∆2 converge much faster for ωn,i = 1. With ωn,i = (n + 1)−2

on the other hand, q moves through smoother functions (as in figure 2). In contrast to
the optical impression these are in general worse approximations w.r.t. G(q) and ∆2. But
finally q, after around 100 iterations, will also converge to the function shown in figure 1.
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Figure 3. Plot with bounday conditions α = β = π/4, γ = −π/4. The
light graph shows the 620th iteration, where the iteration stabilizes.
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G(q) = 4.4185 · 10−5
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G(q) = 8.1974 · 10−5
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∆λ = 2.7322 · 10−3

iter# = 5

Figure 4. Plots with added white noise of absolute value smaller or equal
0.01 resp. 0.1.

From the good average convergence of G(q) in both cases, we can tell, that our algorithm
also in practice does not get near a local minimum, as proved in theorem 2.2.

The optimal choice of boundary conditions can already be guessed from the asymptotics
of the squared eigenfunctions (2.5). Choosing α = β = 0 and γ = π/2, the functions
g2

q,i,n − 1 are almost orthogonal for large n and i = 1, 2 (c.f. (2.5)). In contrast, if sin α,

sin β, and sin γ are all non zero, g2
q,1,n−1 and g2

q,2,n−1 will get close for large n. Therefore, in
the latter case, the algorithm will converge much slower. This can also clearly be observed
in numerical examples, like in figure 3. But also there, after approximately 620 iterations,
we finally will get a solution which is close to figure 1.

Another important aspect for applications is stability against noise in the given spectral
data. In figure 4 we computed two examples with random noise |λ̃Q,i,n − λQ,i,n| ≤ r, with
r = 0.01 and r = 0.1, respectively. It is remarkable, that the convergence speed in G(q)
is not significantly affected by the random noise; both examples reach G(q) ∼ 10−18 in 30
iterations.
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iter# = 3
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∆λ = 1.8182 · 10−4 iter# = 4

Figure 5. Continuous examples.

For testing the robustness, we also fed the functional with the following random sequence

9.99742, 11.6265, 14.4527, 23.9247, 26.2413, 31.091, 40.6658, 48.1088, 53.5093, 60.9088,

which is far from the generic asymptotics. Convergence of G(q) is slow but steady. In log
scale the graph of G(q) over the number of iteration looks similar to those given above.
From G(q) = 36287 initially, we get down to G(q) = 3.56528 · 10−9 in 450 iterations.

Finally figure 5 shows the results for the other examples of [2, 12].

4. Implementation and Comparison

The implementation of the conjugate gradient minimization algorithm is straight forward
(see eg. [11]), but our application crucially depends on a reliable eigenvalue problem solver.
After some trial and error we settled for d02kdf from the Numerical Algorithms Group
(NAG). For standard numerical routines we used the GNU Scientific Library.

Another important point is the internal representation of the functions. We used cubic
splines on 2000 intervals of equal length. Since all high level routines, like the eigenvalue
solver, only sample these functions on some points, the details of the representation are
not so important. But since very many values are needed, this is the part in the algorithm,
where speed optimizations are most valuable.

Compared to the variational algorithm by Brown et al. [2], which uses other spectral
data, our functional is more expensive to compute, because they only have to solve initial
value problems. On the other hand they often need about 10-100 times as many iterations
to get similar results. Another plus on our side is, that even in presence of noise, we know
to get closer to our goal each step and do not have to regularize the process by limiting
the number of iterations.

The method of Rundell and Sacks [12] uses the same spectral data as our algorithm and

is without any doubt much faster, but needs the mean
∫ 1

0
Q dx as additional input, which

has to be guessed from the (partial) spectral data. Our method does this automatically.
In the case of figure 1 for example, the error of the mean is 2 · 10−3% and using 5 pairs
of eigenvalues we still only get an error of about 0.2%. This is probably better than an
independent algorithm for computing the mean value from spectral data could do.
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5. Linear Independence of Squared Eigenfunctions

Define the Wronskian [f, g] = fg′ − f ′g and the bilinear form

Γ : H1([0, 1], R)2 −→ R

(f, g) 7→
∫ 1

0
[f, g] dx

which is bounded by

|Γ(f, g)| ≤ ‖f‖H1
‖g‖H1

, i.e. ‖Γ(f, ·)‖ = ‖f‖H1
.

(We use the definition ‖f‖H1 =
√

‖f‖2
L2 + ‖f ′‖2

L2 with distributional derivatives.) In
particular Γ is continuous on H1. We have the following rules for the Wronskian:

(i) [fg, hj] = gj[f, h] + fh[g, j] = fj[g, h] + gh[f, j]
(ii) If the functions f1 and f2 fulfill the condition

fi(a) cos α + f ′

i(a) sin α = 0 i = 1, 2 ,

then [f1, f2](a) = 0.
(iii) For two arbitrary solutions f1 and f2 of the equation (SL) with eigenvalue param-

eters λ1 and λ2 we have

[f1, f2]
′ = f1f

′′

2 − f2f
′′

1 = (λ1 − λ2)f1f2 .

In this section we are only talking about a single q and therefore drop it from the index. Let
si,n and ci,n be the solutions of the differential equation (SL) for the eigenvalue parameter
λi,n and initial values

si,n(1) = sin β , ci,n(1) = sin γ ,
s′i,n(1) = − cos β , c′i,n(1) = − cos γ .

It is well known and easy to see that the Wronskian of these solutions is constant and we
can compute its value at 1:

[si,n, ci,n] = − sin β cos γ + cos β sin γ = sin(γ − β).

The normalized eigenfunctions are g1,n = s1,n/‖s1,n‖2 and g2,n = c2,n/‖c2,n‖2. Now we
prove the central lemma, which builds on the ideas of a similar result for the Dirichlet case
in the book of Pöschel and Trubowitz[10]. A result in the same spirit can also already be
found in the paper of Borg [1].

Lemma 5.1. Given three angles α, β, and γ with sin(β − γ) 6= 0 and denote the L2-

normalized eigenfunctions of the Sturm-Liouville equation with boundary conditions (αβ)
and (αγ) by gi,n, i = 1, 2. With si,n, ci,n as defined above we have the following relations

for the squared eigenfunctions for all i, j ∈ {1, 2} and m, n ∈ N:

(i) Γ(g2
i,n, g

2
i,m) = 0

(ii) Γ(ci,nsi,n, g2
j,m) = (−1)i sin(γ − β)δn,mδi,j

Proof. i)

Γ(g2
i,n, g

2
i,m) = 2

∫ 1

0

gi,ngi,m[gi,n, gi,m] dx
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If n = m, the term clearly vanishes. If n 6= m, we get

Γ(g2
i,n, g

2
i,m) =

2

λi,n − λi,m

∫ 1

0

[gi,n, gi,m]′[gi,n, gi,m] dx =
1

λi,n − λi,m

[gi,n, gi,m]2
∣

∣

1

0
= 0 ,

because gi,n and gi,m satisfy the same boundary conditions (rule ii).
ii)

Γ(ci,nsi,n, g2
j,m) =

∫ 1

0

(

ci,ngj,m[si,n, gj,m] + si,ngj,m[ci,n, gj,m]
)

dx

If i = j = 1, m = n, the first term vanishes and we are left with
∫ 1

0

s1,mg1,m[c1,m, g1,m] =

∫ 1

0

g2
1,m[c1,m, s1,m] = − sin(γ − β) ,

and if i = j = 2, m = n, the second term vanishes and we get
∫ 1

0

c2,mg2,m[s2,m, g2,m] =

∫ 1

0

g2
2,m[s2,m, c2,m] = + sin(γ − β) .

If (i, n) 6= (j, m) we compute

Γ(ci,nsi,n, g2
j,m) = 1

λi,n−λj,m

∫ 1

0

(

[ci,n, gj,m]′[si,n, gj,m] + [si,n, gj,m]′[ci,n, gj,m]
)

dx =

1
λi,n−λj,m

[si,n, gj,m][ci,n, gj,m]
∣

∣

1

0
= 0

We note that λi,n − λj,m 6= 0 in this case, because the eigenfunctions satisfy the same
boundary conditions at 0 and different boundary conditions at 1. �

Theorem 5.2. With the notations of the above lemma, the set of squared eigenfunctions
{

g2
i,n|(i, n) ∈ {1, 2} × N

}

is linearly independent in H1.

Proof. Suppose for some fixed (i, n) we have

g2
i,n =

∑

k∈
�

akg
2
k

in H1, where ak ∈ R and gk = gjk,mk
with (jk, mk) 6= (i, n). But this would imply

(−1)i sin(γ − β) = Γ(ci,nsi,n, g2
i,n) = Γ

(

ci,nsi,n,
∑

k∈
�

akg
2
k

)

=
∑

k∈
�

Γ(ci,nsi,n, akg
2
k) = 0

�
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