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1. Introduction

The general problem of estimating a density function based on data, which are corrupted
by additive measurement error, has stimulated great research activity for both theoretical and
practical matters. In literature, this topic has become known as density deconvolution. In the
mathematical model, one observes the data Y1, . . . , Yn where Yj = Xj + εj . The contamination of
the data is represented by the random variables εj ’s with density g; while our goal is estimating the
density f of the Xj ’s. All X1, ε1, . . . , Xn, εn are assumed to be independent. Density deconvolution
can be classified as an inverse problem in the field of nonparametric statistics.

As a standard procedure, kernel methods, combined with Fourier inversion, have been proposed
in Carroll & Hall (1988), Devroye (1989), Stefanski & Carroll (1990), for example. Alternative
techniques involving wavelet approaches are studied in e.g. Pensky & Vidakovic (1999). For recent
contributions, see e.g. Delaigle & Gijbels (2002, 2004a, 2004b), Hall & Qiu (2005), Butucea &
Matias (2005), Meister (2004, 2006a, 2006b), Hall & Meister (2005).

Despite those scientific interests, density deconvolution is often criticized, firstly for the essen-
tial assumption of a known error density g, which is used in the construction of deconvolution
estimators and, in addition, the Fourier transform of density g, denoted by gft, which is equiva-
lent with the characteristic function of the corresponding random variable, is assumed to vanish
nowhere; secondly, for slow rates of convergence for very smooth g.

The framework of Efromovich (1997) and Neumann (1997) is a concession to the ignorance of
g, which occurs frequently in practice; but those approaches assume the availability of additional
direct observations from g; that restricts the applicability to some cases where the system of
measurement can be calibrated somehow. Meister (2004) shows that misspecifying g may have
fatal consequences for the asymptotic quality of the deconvolution kernel estimator. The condition
of perfectly known g can be relaxed, see Butucea & Matias (2005) and Meister (2006a), where
semiparametric models allow only a scaling parameter or the variance of the error density to be
unknown; however, in order to keep f identifiable, an additional lower bound on |f ft| is required.
Also, the condition gft(t) 6= 0, which rules out important densities such as uniform densities, can
be relaxed for the case where gft has isolated zeros (see Devroye (1989), Hall & Meister (2005)).
But, if gft vanishes on an open and non-empty interval, then the estimation problem becomes
non-identifiable, in general.

In Goldenshluger (2002), faster rates of convergence are derived for a bivariate circular decon-
volution model where the density of an angle is to be estimated and gft is assumed to be exactly
known and non-vanishing.

In the current note, we focus on univariate densities f which are compactly supported. That
condition seems realistic in many practical applications; we refer to problems where the probability
mass of the Xj ’s is restricted to some bounded region, due to some a-priori knowledge. Combined
with usual smoothness conditions, that assumption allows us to improve the asymptotic quality
of the estimation of f , with respect to both major items of criticism against deconvolution, as
mentioned above. In particular, we are able to construct an estimator when only the restriction
of gft to a compact interval around zero is known. Hence, unlike the semiparametric approaches
to unknown g, as studied in Butucea & Matias (2005) and Meister (2006a), we are considering
a comprehensive nonparametric class of densities competing to be g, without assuming that the
shape of g is known up to a scaling parameter. Also, we are able to estimate f although gft may
vanish on an open, non-empty set. Furthermore, our framework allows us to derive faster rates than
those whose optimality has been established in Fan (1991a, 1993) for smooth f with unbounded
support; and, in a special case, our rates are in the line with those derived in Goldenshluger (2002)
for circular densities with known g.

We mention that the results of this paper may also have applications beyond density estima-
tion, e.g. in the related field of image reconstruction when an image with bounded domain is to
be deblurred from noise and some point-spread effects with imperfectly known distribution.
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2. Methodology

In order to describe our estimation method, we need to specify the exact conditions on f and
on g. With respect to the error density g, we assume knowledge of gft(t) for t ∈ [−ν, ν] only, and
the membership of g in the density class

Gµ,ν :=
{

g density : |gft(t)| ≥ µ , ∀|t| ≤ ν
}

(1)

for some µ, ν > 0. Note that, whenever g is perfectly known, there are always some appropriate
µ, ν so that G = {g}. On the other hand, that framework allows us to consider a nonparametric
class of error densities, what can be seen as follows: if gft is positive, convex and decreases on
[−ν, ν] monotonously, then Polya’s criterion (see Lukacs (1970), p. 83, Theorem 4.3.1) allows gft

to be continued on [ν,∞) in lots of different ways.
Concerning the target density f , we consider densities whose support is included into a compact

interval [−S, S], which, in addition, satisfy some common smoothness assumptions, given by a
uniform bound on a Sobolev norm. The densities are collected into the set

FS;C,β :=
{

f density :

∫ S

−S

f(x)dx = 1 and

∫

|fft(t)|2(1 + t2)βdt ≤ C
}

(2)

with S, C, β > 0. Note that, for integer β, any density f supported on [−S, S] which is β-fold
continuously differentiable on the whole real line is contained in FS;C,β for C sufficiently large.

Now we focus on constructing an appropriate estimator for f , motivated by the reconstructabil-
ity of fft from the data. Due to (1), the direct empirical access to f ft(t), obtained by Fourier
inversion, is restricted to t ∈ [−ν, ν]. For a bandlimiting sequence (ωn)n tending to infinity, the
integral of |fft(t)|2 on |t| > ωn converges to zero with specific rates, due to our smoothness
assumptions. Therefore, we have a gap for |t| ∈ (ν, ωn) where fft(t) needs to be determined.
However, condition (2) implies the existence of all moments of f or X and, hence, we may employ
the Taylor expansion around 0 for characteristic functions for all t and integers m > 0,

fft(t) =

m
∑

j=0

ij

j!

(

EXj
)

tj + Rm(t), (3)

where Rm denotes the residual term (see e.g. Lukacs (1970), Theorem 2.3.1). To get an upper
bound on |Rm(t)|, we apply Lagrange’s representation, leading to

|Rm(t)| ≤ |t|m+1 · E|X |m+1/(m + 1)! ≤ |S t|m+1/(m + 1)!

under condition (2). Via Stirling’s formula, we obtain

|Rm(t)| ≤ O(1) ·
∣

∣

∣

S e t

m + 1

∣

∣

∣

m+1

· m−1/2 , (4)

where O(1) does not depend on t. Since Rm(t) → 0, for any t, as m → ∞, the function f ft(t)
may be represented by the pointwise limit of its (complex-valued) Taylor series for all t. Hence,
fft(t), for all t ∈ R, is uniquely determined by its restriction to |t| ≤ ν, from what follows that the
empirically gained information about f ft(t) on the domain t ∈ [−ν, ν] makes f ft(t) accessible even
on the whole interval t ∈ [−ωn, ωn]. That ensures identifiability of f in the underlying estimation
problem.

That essential representability of f ft(t) by its Taylor expansion, for all t, inspires us to employ
a polynomial approach to estimate f ft. The projection of the empirical Fourier transform of f
onto the space of all polynomials with degree ≤ mn on the domain [−ν, ν] is given by

Ψ̂n(t) =
1

n

n
∑

j=1

mn
∑

k=0

Pk(t)

∫ ν

−ν

Pk(s) exp(isYj)/gft(s)ds, (5)
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where mn is a positive integer, Pk(t) =
(

(2k+1)/(2ν)
)1/2

P̃k(t/ν) and P̃k denotes the kth Legendre
polynomial on [−1, 1]. We refer to a widely-used equality for Legendre polynomials

∫ 1

−1

|P̃k(x)|2dx = 2/(2k + 1) . (6)

Therefore, Pk, integer k ≥ 0, are orthonormal with respect to the inner product of L2([−ν, ν]).
Considering that Ψ̂n(t) is a polynomial on t ∈ [−ν, ν], its domain may easily be continued onto
the whole real line in a natural way. So Ψ̂n(t) is well-defined by (5) for all real t. Fourier inversion
of (5) leads to the following density estimator of f ,

f̂n(x) = Re
1

2π

∫

L(t/ωn) exp(−itx)Ψ̂n(t)dt, (7)

where Re denotes the real part. Throughout this note, we assume that the function L(s) is sup-
ported on [−1, 1]; also, |L(s)| ≤ 1, for all s; L(0) = 1 and L(s) is continuous at s = 0. So L can
be viewed at as the Fourier transform of an appropriate kernel function. The parameters mn and
ωn remain to be selected with respect to the sample size n.

3. Asymptotic properties

In this section, we focus on the asymptotic behavior of the MISE (mean integrated squared
error) of our estimator (7), given by

MISEn(g, f) := E‖f̂n − f‖2,

where ‖ ·‖ denotes the L2(R)-norm throughout this paper. For the sake of generality, we allow the
endpoint S to increase in the sample size n. That relaxes the condition of a strict concentration of
the probability mass and will have some effects on the rates. Therefore, we have to assume that,
at least, some S̃n is known with

1 ≤ S̃n/Sn ≤ O(1) . (8)

The following Theorem 1(a) gives the rates of convergence when considering MISEn(g, f) uniformly
on the classes defined for g and f in (1) and (2), respectively. Part (b) of the theorem establishes
consistency in a general setting; more concretely, in absence of smoothness assumptions.

Theorem 1 The restriction of gft(t) to t ∈ [−ν, ν] as well as S̃n ≤ O
(

(ln n)δ
)

, δ ∈ [0, 1), as in

(2) are assumed to be known. We select mn = bC1 ln n/(ln ln n)c and ωn = C2S̃
−1
n ·mn with some

constants C1 ∈
(

0, 1/2
)

and C2 ∈
(

0, 1/(2 e)
)

. Then,
(a) if L satisfies |L(s) − 1| = O(|s|β), in addition, we obtain

sup
g∈Gµ,ν

sup
f∈FSn;C,β

MISEn(g, f) = O
(

(

ln n
)−2β(1−δ)

(ln ln n)2β
)

,

(b) for any density f supported on fixed [−S, S], we have

MISEn(g, f)
n→∞
−→ 0 , ∀g ∈ Gµ,ν .

Note that the condition on L in (a), along with the previously assumed restrictions for L, are
satisfied by e.g. L(s) = χ[−1,1](s), where χI denotes the indicator function of a set I . As an
example, we consider the case where g is a known normal density. Then we may consider the
SDDKE (standard deconvolution density kernel estimator) as a competing method. We recall its
definition (e.g. Carroll & Hall (1988), Stefanski & Carroll (1990)),
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f̂n,K =
1

2πn

∫

Kft(t/ωn)

n
∑

j=1

exp
(

it(Yj − x)
)

/ gft(t) dt ,

with a kernel function K; as usual, we restrict our consideration to those kernels whose Fourier
transforms Kft are compactly supported and bounded away from zero in a neighborhood of t = 0.
So Kft corresponds to function L in estimator (7). The SDDKE has been considered for smooth f
with unbounded support; i.e., corresponding to (2) when the assumed restriction of the probability
mass to [−Sn, Sn] is removed and only the Sobolev condition involving parameter β is required.
Then, the SDDKE achieves the optimal rate O

(

(ln n)−β
)

, what has been derived in Fan (1991a,
1993) for Hölder classes and extended to Sobolev classes (see Neumann (1997), Hesse & Meister
(2004)). However, we notice the surprising fact that the rate derived in Theorem 1(a) is faster
if δ < 1/2. Obviously, in that case, the additional condition of a compact support allows us to
improve the rate. The rates in the case of fixed support, i.e. δ = 0, correspond to those derived in
Goldenshluger (2002) for circular densities of an angle (so also with fixed support (0, 2π)), where
g is known. We see that we have to pay for S̃n → ∞ with respect to the rates. Nevertheless, the
following proposition shows that, unlike estimator (7), the SDDKE is unable to take advantage
of the bounded support of f and provides slower rates, compared to estimator (7) in the case
δ < 1/2.

Proposition 1 Assume that g is a normal density; Sn = S; and C sufficiently large. Then, there
is a constant c > 0 so that

sup
f∈FS;C,β

E ‖f̂n,K − f‖2 ≥ c · (ln n)−β .

Furthermore, if only g ∈ Gµ,ν is known, we still obtain the rate given in Theorem 1(a) for
estimator (7); while the SDDKE cannot be used as it requires full knowledge of g in its construction.
That refers to the case where g is imperfectly known, i.e. we only have the information g ∈ Gµ,ν , as
well as to those g, where gft vanishes outside a compact interval around zero. An example for such
a density is given in Section 4. Therefore, similar to Goldenshluger (2002), we are able to keep
those rates even for error densities which are smoother than supersmooth, in the terminology of
Fan (1991a, 1993). Also, the SDDKE is very sensitive when plugging-in an incorrect error density;
in particular, with respect to the decay of gft, see Meister (2004). On the other hand, estimator (7)
does not care about some misspecification of gft(t) as long as t ∈ R\[−ν, ν]. Therefore, estimator
(7) is more robust with respect to g.

In the case where g is known, we learn from Theorem 1(b) that one is able to estimate any
compactly supported density consistently, if bounds on the support boundaries are known, but
without any conditions on g. On the other hand, in the case of densities with unbounded support,
at least some conditions referring to the set {t : gft(t) = 0} are required, see Devroye (1989)
and Meister (2006b). Also, note that, as we are considering densities with a uniformly bounded
support, the L2(R)-distance of densities dominates the L1(R)-distance. So if we truncate estimator
(7) to a bounded set [−S ′, S′] with S′ ≥ S, consistency of that truncated estimator, with respect
to L1(R), follows immediately from the convergence of the MISE.

Also, we mention that the choice of ωn and mn in Theorem 1 does not require any information
about the smoothness of f ; nor about the exact endpoints Sn, only (8) has to be satisfied.

Now we aim to establish a lower bound for the rates of convergence under the assumptions
of Theorem 1(a), referring to any estimator. The proof requires a new concept for densities with
bounded support.

Theorem 2 Under the conditions of Theorem 1(a), let f̃n be an arbitrary estimator of f based
on knowledge of gft(t) , t ∈ [−ν, ν], of c2 ≥ Sn(ln n)−δ ≥ c1 for some c2 ≥ c1 > 0; and the data
Y1, . . . , Yn. Suppose C to be large enough; gft(t) shall be piecewise differentiable on t ∈ [−ν, ν]
and gft′(t) shall be bounded on t ∈ [−ν, ν]; β > (δ + 1/2)/(1− δ); and µ ∈ (0, 1). Then, there is a
constant c > 0 so that, for n sufficiently large, we have
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sup
g∈Gµ,ν

sup
f∈FSn;C,β

E‖f̃n − f‖2 ≥ c ·
(

ln n
)−2β(1−δ)

· (ln ln n)2β .

Hence, we have shown that, under slight additional technical assumptions, estimator (7) enjoys
optimal rates of convergence with respect to its MISE in the underlying statistical experiment.

Finally, we mention that estimator (7) still achieves the rates given in Theorem 1(a) when the
restriction of the support to [−S, S] in (2) is replaced by conditions on the decay of fX while the
support of fX may be unbounded. For example, consider densities

fX(x) ≤ C exp(−d|x|1/δ) , ∀|x| > 1 , (9)

combined with the Sobolev condition. Then, we have E|X |l ≤ (const. · l)δl, for all integers l > 0.
Considering the specific choice of mn and S̃n in Theorem 1(a), we receive (4) where only constant
C2 needs to be adapted; and that is all needed for the proof of the upper bound. Hence, we obtain
the same rates for (9) as in Theorem 1(a). A paricularly interesting case is δ = 1/2, as normal
densities are included. There, we notice that the SDDKE and estimator (7) provide identical rates
(while use of the SDDKE necessitates full knowledge of g – as said before).

4. Simulations

In this section, we simulate data sets for our estimation problems and examinate the practical
performance of our estimator (7). As the optimal rates are still logarithmic (with improved power
of the logarithm), large sample sizes are required to have the estimator work well. We base our
estimators on the observation of n = 1000 independent data.

Another difficult question concerns the selection of ωn and mn for finite sample sizes. In
Theorem 1, the parameter choice is motivated by the asymptotic quality of the estimator. However,
we can derive some guidelines for the rough locations of the parameters from the theorem. For
the simulations, we choose mn = 2, ωn = 1.1. We plot three replications for each simulation. The
target density f is shown as a dashed curve. Figure 1,3,5,6 are based on a unimodal density f
with support [−4, 4]; while we have a bimodal density f on [−6, 6] in Figure 2,4.

As function L in (7), we utilize L(s) =
[

1 − exp(1 − s−2)
]

· χ[−1,1](s), which satisfies the
conditions on L in Theorem 1(a). In the light of that theoretical aspect, we could also choose the
rather simple function L = χ[−1,1]; however, in practice, it is not favorable since the jump of L(s)
at |s| = 1 may cause the estimator to oscillate too heavily; that problem is also referred to as
Gibbs phenomenon.

In Figure 1 and 2, we consider the case where the error density is equal to g1 = g0 ∗
N(0, 1); where ∗ denotes convolution; N(0, 1) is the standard normal density; and g0(x) =
[

1−cos(x)
]

/(πx2), having the compactly supported Fourier transform gft
0 (t) = (1−|t|) ·χ[−1,1](t).

So there is a necessity to select ν < 1; we choose ν = 1/2, i.e. we assume knowledge of gft
1 (t) only

on its restriction to t ∈ [−ν, ν].
In Figure 3 and 4, we consider the discrete distribution G of a random variable Z with P (Z =

0) = 1/2, P (Z = (2k − 1)π) = 2/[(2k − 1)2π2], for any integer k. As error density, we take

g2 = G ∗ N(0, 1). Note that gft
2 (t) and gft

1 (t) are equal to each other on their restriction to
t ∈ [−1, 1]. Hence, we do not change the construction of estimator (7), with respect to the case
considered in Figure 1 and 2. That emphasizes the applicability of our estimator for problems
with imperfectly known error distributions.

In Figure 5, we employ estimator (7) in the case of standard normal noise. There, estimator
(7) faces the competition with the SDDKE (with Kft = L, ωn = 1.1), whose outcome is shown in
Figure 6.
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5. Lemmas and Proofs

Proof of Theorem 1: By using the Parseval identity, Fubini’s theorem and the usual splitting
into variance and bias term, we see that MISEn(g, f) is bounded above by the sum of

Vn :=
1

2π

∫ ωn

−ωn

|L(t/ωn)|2 var Ψ̂n(t) dt ,

Bn,1 :=
1

π

∫ ωn

−ωn

|L(t/ωn)|2
∣

∣EΨ̂n(t) − fft(t)
∣

∣

2
dt ,

Bn,2 :=
1

π

∫

|L(t/ωn) − 1|2|fft(t)|2 dt .

Except for term Bn,2, the following consideration refers to part (a) as well as part (b) of the
theorem. In the view of (a), the results are to be considered uniform on the classes Gµ,ν and
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FSn;C,β while we can take an arbitrary f supported on some fixed [−Sn, Sn] (so Sn = S) and
g ∈ Gµ,ν for part (b).

With respect to Vn, we obtain

var Ψ̂n(t) ≤ n−1 E
∣

∣

∣

mn
∑

k

Pk(t)

∫ ν

−ν

Pk(s) exp(isY1)/gft(s) ds
∣

∣

∣

2

≤ (2ν/n) ·

∫ ν

−ν

∣

∣

∣

mn
∑

k

Pk(t)Pk(s)
∣

∣

∣

2

|gft(s)|−2ds , (10)

where we have employed Jensen’s inequality with respect to (2ν)−1
∫ ν

−ν · · · ds. Due to (1), we have

|gft(s)|−2 ≤ µ−2 for all s ∈ [−ν, ν]. So (10) has the upper bound

O
(

n−1
)

∫ ν

−ν

∣

∣

∣

mn
∑

k

Pk(t)Pk(s)
∣

∣

∣

2

ds = O(n−1) ·

mn
∑

k,k′

Pk(t)Pk′ (t)

∫ ν

−ν

Pk(s)Pk′ (s)ds

≤ O
(

n−1
)

·

mn
∑

k

|Pk(t)|2 ,

due to the orthonormality of the Pk. So, for Vn, we derive

Vn ≤ O
(

n−1
)

·

mn
∑

k

∫ ωn

−ωn

|Pk(t)|2dt , (11)

considering that |L(t/ωn)| ≤ 1, ∀t. Based on the following inequality for Legendre polynomials,

|P̃k(t)| ≤ 2−k
k

∑

l=0

(

k

l

)2

|t − 1|k−l|t + 1|l ≤ 2−k

(

2k

k

)

· (|t| + 1)k ≤ (2|t| + 2)k ,

for all real t (see Koepf (1998)), we derive

∫ ωn

−ωn

|Pk(t)|2dt = O
(

(

2 + 2ωn/ν
)2k+1

)

. (12)

Inserting that into (11) gives us

Vn = O
(

n−1
(

2 + 2ωn/ν
)2mn+1

)

. (13)

We focus on term Bn,1. By calculating the expectation, we obtain

Bn,1 =
1

π

∫ ωn

−ωn

|L(t/ωn)|2
∣

∣

∣

mn
∑

k

Pk(t)

∫ ν

−ν

fft(s)Pk(s)ds − fft(t)
∣

∣

∣

2

dt . (14)

We replace fft by the representation (3) with m = mn. Since Pk, k = 0, . . . , mn, is an orthonormal
base of the space Pmn

consisting of all polynomials with domain [−ν, ν], degree ≤ mn and complex
coefficients, we have, for any p ∈ Pmn

,

mn
∑

k

Pk(t)

∫ ν

−ν

p(s)Pk(s)ds = p(t) (15)

on t ∈ [−ν, ν]. As we have polynomials on the left as well as on the right side in (15), this equality
even holds for all t ∈ R. We learn from there that the polynomial part of f ft(t) in (3) annuls itself
in (14) and we obtain (again considering that |L(t/ωn)| ≤ 1, ∀t)
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Bn,1 ≤
2

π

∫ ωn

−ωn

∣

∣Rmn
(t)

∣

∣

2
dt +

2

π

∫ ωn

−ωn

∣

∣

∣

mn
∑

k

Pk(t)

∫ ν

−ν

Rmn
(s)Pk(s)ds

∣

∣

∣

2

dt

≤ O(1) ·

∫ ωn

−ωn

∣

∣Rmn
(t)

∣

∣

2
dt + O(1) ·

mn
∑

k,k′

(

∫ ωn

−ωn

Pk(t)Pk′ (t)dt
)

·
(

∫ ν

−ν

Rmn
(s)Pk(s)ds

)

·
(

∫ ν

−ν

Rmn
(s)Pk′ (s)ds

)

.

(16)

We apply the Cauchy-Schwarz-inequality and the orthonormality of the Pk to the second addend
in (16); then we use (12) again. That gives us the inequality

Bn,1 ≤ O(1) ·

∫ ωn

−ωn

∣

∣Rmn
(t)

∣

∣

2
dt + O(1) ·

∫ ν

−ν

|Rmn
(s)|2ds ·

[

mn
∑

k

(

∫ ωn

−ωn

|Pk(t)|2dt
)1/2]2

≤ O(1) ·

∫ ωn

−ωn

∣

∣Rmn
(t)

∣

∣

2
dt + O

(

m2
n ·

(

2 + 2ωn/ν
)2mn+1

)

·

∫ ν

−ν

|Rmn
(s)|2ds . (17)

Applying (4) gives us

Bn,1 = O
(

ω3
nm−3

n (Sn e ωn/mn)2mn , ωnm−1
n · [2Sn e (ν + ωn)/mn]2mn

)

. (18)

Due to ωn/mn = C2/Sn, following from the selection rules in the theorem, the latter term in (18)
dominates the first one, implying

Bn,1 = O
(

[

2 Sn e (ν + ωn)/mn

]2mn

)

. (19)

Term Bn,2 remains to be studied. In part (b), we use the fact that any density with a bounded
support has a finite L2(R)-norm, from what follows Bn,2 → 0 by the Parseval identity, the bound-
edness of L(s) and its continuity at s = 0, since ωn → ∞. However, the rates are unspecified in
that framework. The specific choice of ωn and mn as stated guarantees convergence of both (13)
and (19) to zero, which proves Theorem 1(b). In part (a), the Sobolev condition contained in (2)
gives us Bn,2 = O

(

ω−2β
n

)

, due to the additional assumption on L in (a); note that this term is
the same as in common density estimation in Sobolev classes. We summarise all terms which are
significant for the upper bound,

sup
g∈Gµ,ν

sup
f∈FSn;C,β

MISEn(g, f)

= O
(

ω−2β
n , n−1

(

2 + 2ωn/ν
)2mn+1

,
[

2Sn e (ν + ωn) / mn

]2mn

)

,

Inserting mn and ωn as in the theorem gives the rate of convergence as stated. �

Proof of Proposition 1: Take ϕb from the proof of Theorem 2. We consider the density

κn(x) = δn · ϕγn
(x) + (1 − δn) · ϕS(x) ,

where we set δn = const.·γ
−β−1/2
n with an appropriate constant; where γn ↑ ∞. Then, κn ∈ FS;C,β

is guaranteed for C large enough. The variance of the SDDKE is equal to

12



[ωn/(2πn)] ·

∫ 1

−1

∣

∣Kft(s)
∣

∣

2
(

∣

∣gft(sωn)
∣

∣

−2
− |fft(sωn)|2

)

ds ;

so it has the lower bound const. · n−1ωn exp(dω2
n) for some d > 0.

The bias term is as
∫ ∞

ωn

∣

∣κft
n (t)

∣

∣

2
dt due to the compact support of Kft. As we can neglect the

term involving ϕft
S , based on (26), we may set γn = const. · ωn, and we obtain const. · ω−2β

n as a
lower bound for the bias.

Hence, the optimal choice of ωn within that framework is ωn = const. · (ln n)1/2, leading to the
rate given in the proposition. �

As an important tool for the proof of Theorem 2, we need some technical properties of Legendre
polynomials, which are given in the following lemma.

Lemma 1 There are constants c0, c1, c2 > 0, τ ∈ (0, 1) so that we have more than c1k disjoint
intervals with the length ≥ c0k

−1, which are included into (−τ, τ), and |P̃k(x)|2 > c2k
−1 holds for

all x contained in one of those intervals, for all k ≥ K with K sufficiently large.

Proof of Lemma 1: We utilize the following important inequality for Legendre polynomials

|P̃k(cos θ)|2 ≤ 2/(π k sin θ) , θ ∈ [0, π] . (20)

From there, we derive

∫ −τ

−1

|P̃k(x)|2dx ≤ 2[π − arccos(−τ)]/(πk) ,

∫ 1

τ

|P̃k(x)|2dx ≤ 2 arccos τ/(πk) ,

where arccosx ∈ [0, π], for any x ∈ [−1, 1]. Therefore, considering (6), one is able to select τ < 1
sufficiently close to 1 so that

∫ τ

−τ

|P̃k(x)|2dx ≥ c0k
−1 , constant c0 > 0 . (21)

Now we consider the set

Gk(c) =
{

x ∈ (−τ, τ) : |P̃k(x)|2 > ck−1
}

.

For all x ∈ [−τ, τ ], we may establish

|P̃k(x)|2 ≤ c3k
−1 , constant c3 > 0 , (22)

following from (20). We derive by (21) and (22),

c0k
−1 ≤

∫

Gk(c)

|P̃k(x)|2dx +

∫

[−τ,τ ]\Gk(c)

|P̃k(x)|2dx

≤ c3k
−1µ(Gk(c)) + ck−1µ

(

[−τ, τ ]\Gk(c)
)

≤ c3k
−1µ(Gk(c)) + 2τck−1 ,

where µ denotes the Lebesgue measure. Therefore, we have µ(Gk(c)) ≥ (c0 − 2τc)/c3. Under
suitable selection of c, we obtain

µ(Gk(c)) ≥ const. > 0 , ∀k . (23)

We set c2, as it occurs in the lemma, equal to that c > 0 satisfying (23). Furthermore, we use
some results about the zeros of the Legendre polynomials: P̃k possesses k different zeros, which

13



all lie in (−1, 1); so they are representable by xj = cos θj , 0 < θ1 < · · · < θk < π. We use the
inequality of Bruns (see Szegö (1936)), saying that

(j − 1/2)π/(k + 1/2) < θj < jπ/(k + 1/2) , ∀1 ≤ j ≤ k .

It follows from there that those zeros xj which are contained in (−τ, τ), τ < 1, satisfy

c4k
−1 < xj − xj+1 < c5k

−1 . (24)

Also, for large k, we notice that there are zeros xl, xl′ with xl < −τ < τ < xl′ . Since |P̃k| has at
most k− 1 local maxima (with P̃ ′

k(x) = 0) and, on the other hand, there is at least one maximum

of |P̃k| between each xj+1 and xj , we have exactly one maximum in (xj+1, xj), denoted by yj ;

and we notice that |P̃k| increases on (xj+1, yj) and decreases on (yj , xj). From there, we receive
representability of Gk(c) by the union of finitely many disjoint intervals denoted by Ij,k(c),

Gk(c) =
⋃

j∈Jk

Ij,k(c) , Ij,k(c) ⊆ (xj+1, xj) ⊆ (−τ, τ) ,

with an appropriate set Jk of integers, which contains less than k elements. So we have

∑

j∈Jk

µ
(

Ij,k(c)
)

= µ
(

Gk(c)
)

≥ const. > 0 ,

due to (23). For further consideration, we introduce the collection

J ′
k(c, d) =

{

j ∈ Jk : µ(Ij,k(c)) ≥ dk−1
}

,

and we derive the inequality

0 < const. ≤
∑

j∈J′

k
(c,d)

µ(Ij,k(c)) +
∑

j∈Jk\J′

k
(c,d)

µ(Ij,k(c))

≤ dk−1k + c5k
−1 · #J ′

k(c, d) ,

due to (24). Therefore, we have

#J ′
k(c, d) ≥ (const. − d)c−1

5 · k ,

so we see that, by choosing d > 0 suitably, we obtain #J ′
k(c, d) > c1 · k with a constant c1 > 0;

furthermore we set c0 = d so that all constants c1, c0, c2 occurring in the lemma have been defined.
�

Proof of Theorem 2: We introduce the stretched and truncated Legendre polynomials Qk(x) =
P̃k(2x/Sn) ·χ[−Sn/2,Sn/2](x). Also, we specify the density ϕ(x) = a · exp

(

− 1/(1−x2)
)

·χ[−1,1](x)
with the appropriate constant a > 0. We set ϕb(x) = bϕ(bx) and f = ϕ1/Sn

. Furthermore, we
define

fn(x) = f(x) + αn ·
(

QKn
∗ ϕbn

)

(x) ,

where ∗ denotes convolution; αn ↓ 0, bn ↑ ∞, Kn ↑ ∞ are still to be selected. That choice of
the parameters, combined with β > (δ + 1/2)/(1 − δ), guarantees that f , fn are densities which
are supported on [−Sn, Sn], for n sufficiently large. In order to verify the membership of f, fn

in FSn;C,β, we have to check the Sobolev condition. Function f , which does not depend on n, is
differentiable infinitely often where f along with all of its derivatives is compactly supported; this
implies

∫

|fft(t)|2(1 + t2)β dt ≤ C ,

14



for C large enough. Concerning fn, we need to check, in addition,

α2
n

∫

|Qft
Kn

(t)|2|ϕft(t/bn)|2(1 + t2)β dt ≤ O
(

α2
nb2β+1

n

)

∫

|Qft
Kn

(bns)|2|ϕft(s)|2(1 + s2)β ds

≤ O
(

α2
nb2β

n

)

∫

|Qft
Kn

(t)|2 dt · sup
s

|ϕft(s)|2 (1 + s2)β

≤ O
(

α2
nb2β

n

)

∫ Sn/2

−Sn/2

|QKn
(t)|2 dt ≤ O

(

α2
nb2β

n Sn

)

∫ 1

−1

|P̃Kn
(t)|2 dt

≤ O
(

α2
nb2β

n K−1
n Sn

)

, (25)

where we have used that |ϕft(s)sm|, for any integer m > 0, can be bounded above by partial
integration, as follows,

|ϕft(s)sm| =
∣

∣

∣

∫

( dm

dtm
exp(its)

)

ϕ(t)dt
∣

∣

∣
=

∣

∣

∣

∫

exp(its)ϕ(m)(t)dt
∣

∣

∣
≤

∫

|ϕ(m)(t)|dt , (26)

from what we obtain |ϕft(s)| ≤ Cm · |s|−m , ∀s, for some Cm > 0; combined with |ϕft(s)| ≤ 1, as
ϕ is a density, we choose m > β and, therefore, we have a uniform bound for |ϕft(s)|2(1 + s2)β

on s ∈ R. Also, (6) has been employed in (25). The Sobolev norm is bounded with respect to n
when setting

αn = const. · b−β
n K1/2

n S−1/2
n . (27)

with an appropriate positive constant. Under this selection, we get f, fn ∈ FSn;C,β for C large
enough.

We choose the error density

g̃(x) =
[

1 − cos(ν′x)
]

/(πν′x2) , ν′ > 0 ,

having the Fourier transform g̃ft(t) = (1 − |t/ν′|) · χ[−ν′,ν′](t). By choosing ν′ sufficiently large
with respect to some arbitrary µ < 1, ν > 0, we may verify g̃ ∈ Gµ,ν .

Now, suppose an arbitrary estimator f̃n. Then, we have

sup
g∈Gµ,ν

sup
f∈FSn;C,β

Eg̃,f‖f̃n − f‖2 ≥ (1/2) · Eg̃,f‖f̃n − f‖2 + (1/2) · Eg̃,fn
‖f̃n − fn‖

2

≥ (1/4) · ‖f − fn‖
2 ·

∫

· · ·

∫ n
∏

j=1

min
{

(f ∗ g̃)(xj), (fn ∗ g̃)(xj)
}

dx1 · · · dxn

≥ (1/4) · ‖f − fn‖
2 ·

[

1 −

∫

∣

∣(f ∗ g̃)(x) − (fn ∗ g̃)(x)
∣

∣dx
]n

.

Hence, the supremum of the MISE is bounded below by c · ‖f − fn‖
2, constant c > 0, if

∫

∣

∣(f ∗ g̃)(x) − (fn ∗ g̃)(x)
∣

∣dx ≤ O(1/n) (28)

is valid. In order to verify (28), we introduce the Cauchy density f0(x) =
[

π(1+x2)
]−1

; employing
the Cauchy-Schwarz-inequality leads to
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∫

∣

∣(f ∗ g̃)(x) − (fn ∗ g̃)(x)
∣

∣dx ≤
(

∫

∣

∣[(f − fn) ∗ g̃](x)
∣

∣

2
/ f0(x) dx

)1/2

≤ O(1) ·
(

∫

∣

∣[(f − fn) ∗ g̃](x)
∣

∣

2
· (1 + x2)dx

)1/2

≤ O(1) ·
(

∫

∣

∣fft(t) − fft
n (t)

∣

∣

2
·
∣

∣g̃ft(t)
∣

∣

2
dt +

∫

∣

∣fft′(t) − fft
n

′(t)
∣

∣

2
·
∣

∣g̃ft(t)
∣

∣

2
dt

+

∫

∣

∣fft(t) − fft
n (t)

∣

∣

2
·
∣

∣g̃ft′(t)
∣

∣

2
dt

)1/2

,

(29)

where we have used the Fourier representation of the Sobolev norm,
∫

|hft′(t)|2dt = 2π·
∫

|x h(x)|2dx,
and the Parseval identity. As both g̃ft and its (weak) derivative are supported on [−ν ′, ν′], the
terms occurring in (29) have the upper bounds

(

α2
n ·

∫ ν′

−ν′

∣

∣ϕft(t/bn)
∣

∣

2∣
∣Qft

Kn
(t)

∣

∣

2
dt

)1/2

,
(

α2
nb−2

n ·
∫ ν′

−ν′

∣

∣ϕft′(t/bn)
∣

∣

2∣
∣Qft

Kn
(t)

∣

∣

2
dt

)1/2

,
(

α2
n ·

∫ ν′

−ν′

∣

∣ϕft(t/bn)
∣

∣

2∣
∣Qft

Kn

′(t)
∣

∣

2
dt

)1/2

.
(30)

As we have
∣

∣ϕft(t/bn)
∣

∣ ≤ 1 and
∣

∣ϕft′(t)
∣

∣ ≤
∫ 1

−1 |xϕ(x)|dx ≤ 1, for all t, the terms in (30) are
bounded above by

O(αn) ·
(

∫ ν′

−ν′

∣

∣Qft
Kn

(t)
∣

∣

2
dt +

∫ ν′

−ν′

∣

∣Qft
Kn

′(t)
∣

∣

2
dt

)1/2

. (31)

We use the Taylor expansion of Qft
Kn

as in (3). Due to

∫ Sn/2

−Sn/2

xlP̃n(2x/Sn)dx = 0 ,

for all non-negative integers l < Kn, the Taylor polynomial of Qft
Kn

with degree Kn − 1 vanishes.
According to (4), we have

∣

∣Qft
Kn

(t)
∣

∣ ≤ O(1) ·
∣

∣Sn e t / Kn

∣

∣

Kn
,

and, by considering the derivative of the residual term, we obtain

∣

∣Qft
Kn

′(t)
∣

∣ ≤ O(1) ·
∣

∣Sn e t / (Kn − 1)
∣

∣

Kn−1
.

Therefore, (31) is bounded above by

O
(∣

∣Sn e ν′ / (Kn − 1)
∣

∣

(Kn−1))
= O

(

exp
{

(Kn − 1) ·
[

ln(Sneν′) − ln(Kn − 1)
]}

)

.

Finally we see that (28) is satisfied by the selection

Kn = 1 + c · ln n/ ln ln n , (32)

with c > 1 suitably large. Hence, the optimal rate of convergence is not faster than

‖f − fn‖
2 = α2

n ·

∫

∣

∣

∣

∫

bnϕ(bny)QKn
(x − y)dy

∣

∣

∣

2

dx

≥ const. · b−2β
n Kn ·

∫

∣

∣

∣

∫

b′nϕ(b′ny)P̃Kn
(x − y) · χ[−1,1](x − y)dy

∣

∣

∣

2

dx , (33)
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when writing b′n = Snbn/2 and inserting (27). We introduce some disjoint intervals [sj , tj ], j =
1, . . . , ln, which satisfy the properties given in Lemma 1. Therefore, we have ln > c1Kn and
∣

∣P̃Kn
(x)

∣

∣

2
≥ c2K

−1
n , ∀x ∈ [sj , tj ], ∀j. We set

bn = 8Kn/(c0Sn) ,

referred to c0 in Lemma 1. Writing s′j = sj + 1/b′n and t′j = tj − 1/b′n, we construct the interval

[s′j , t
′
j ] having the length ≥ (c0/2)K−1

n . As the sign of P̃Kn
(x) does not change on x ∈ [sj , tj ], we

may derive the following lower bound on (33),

const. · b−2β
n Kn ·

ln
∑

j=1

∫

[s′

j ,t′j ]

∣

∣

∣

∫

b′nϕ(b′ny)P̃Kn
(x − y) · χ[−1,1](x − y)dy

∣

∣

∣

2

dx

≥ const. · b−2β
n Kn ·

ln
∑

j=1

(t′j − s′j)
(

∫

b′nϕ(b′ny)dy
)2

· inf
ξ∈[s′

j−1/b′

n,t′j+1/b′

n]

∣

∣P̃Kn
(ξ)

∣

∣

2

≥ const. · b−2β
n Kn ·

ln
∑

j=1

(c0/2)K−1
n · inf

ξ∈[sj ,tj ]

∣

∣P̃Kn
(ξ)

∣

∣

2

≥ const. · b−2β
n · c1Kn · c2K

−1
n ≥ const. · b−2β

n ≥ const. · (Kn/Sn)−2β .

Inserting (32) gives us the lower bound as stated in the theorem. �
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