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TRAPPED MODES FOR AN ELASTIC STRIP WITH PERTURBATION OF

THE MATERIAL PROPERTIES

Abstract. Consider the elasticity operator for zero Poisson coefficient with stress-free bound-
ary conditions on a two-dimensional strip with local perturbation of the material properties.
We discuss conditions, which imply the existence of embedded eigenvalues and we describe the
asymptotical behaviour of these eigenvalues.

1. Introduction

Let Γ = {x ∈ R2 : |x2| < 2−1π} be a two-dimensional strip. Let
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dx, u ∈ H1(Γ,C2), (1.1)

be the quadratic form of the elasticity operator

A0 = − (∆ + grad div) , (1.2)

for zero Poisson coefficient with stress-free boundary conditions on Γ. The operator A0 has
absolutely continuous spectrum. Let f ∈ L∞(R; (−∞, 1]) be a function of compact support,
extended to Γ by f(x1, x2) = f(x1) for x ∈ Γ. For α ∈ (0, 1) we consider the perturbed operator
Aα corresponding to the quadratic form

aα[u, u] =

∫
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)

dx, u ∈ H1(Γ,C2).
(1.3)

We shall discuss the existence of embedded eigenvalues of Aα for α ∈ (0, 1), and we describe the
asymptotical behaviour of these eigenvalues as α→ 0.

The topic of this paper is closely related to a series of works on trapped modes for perturbed
quantum and acoustic waveguides, see among others [6], [3], [4], [5], [7], [8] and the references
therein. These papers study the operator −∆ on some infinite domain and discuss the existence
and the asymptotics of eigenvalues, appearing for certain perturbations of the domain, such as a
bending of the domain, a local deformation of the boundary, an inclusion of an obstacle or a local
change of the boundary conditions.

In contrast to the Laplacian with Dirichlet boundary conditions (quantum waveguides), the
essential spectrum of the Laplacian with Neumann boundary conditions (acoustic waveguides) on
a strip-like domain fills the non-negative semi-axes. Therefore, any eigenvalue is embedded into
essential spectrum, and it is not possible to apply variational techniques directly. However, if the
perturbed domain satisfies a certain spatial symmetry, the Laplacian splits into the orthogonal
sum of two operators. Eventually the essential spectrum of the first operator is separated from
zero, and the lower discrete portion of its spectrum can be studied in the usual way [6]. It is not
difficult to extend the results of [3] to the case of Neumann boundary conditions, if one considers
the Laplacian being reduced to antisymmetric functions on a symmetric domain; the results on
the Dirichlet Laplacian in [3], [8] do not require such a symmetry.

Passing to elliptic systems of equations one finds new effects. For instance it has been shown in
[16], that in contrast to the Neumann Laplacian, the elasticity operator with stress-free boundary
conditions on a semi-strip has at least one positive eigenvalue. This effect is related to the so-
called edge-resonance, and it is due to an interaction between the spatial and the internal degrees
of freedom of the operator.

1991 Mathematics Subject Classification. 35P20.
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6 TRAPPED MODES

However, beside the assumption on the spatial symmetry of the domain, one has to restrict
oneself to the operator given by the differential expression (1.2). From the physical point of view
this means that Poisson’s coefficient equals zero. This new assumption induces an additional
hidden symmetry. Only taking both the spatial and the hidden symmetry into account it is
possible to find a strictly positive reduced operator. The importance of this internal symmetry
for similar problems has already been pointed out in [11].

Besides applying these symmetries, the proof of the existence of the edge resonance exploits
another interesting fact. Note that the separation of variables for the Laplacian on Γ leads to
parabolic eigenvalue branches, which achieve their minima at zero frequency. In contrast to this,
separating variables in x1-direction for the reduced operator A0 on Γ one finds, that the branch of
the lowest eigenvalues of the respective reduced fiber operators achieves its minimal value at two
different points ξ = ±κ of the Fourier coordinate ξ, corresponding to two opposite elastic waves
with non-zero frequencies, see Lemma 3.2. This fact also implies edge resonances for the elasticity
operator on three-dimensional semi-rods with appropriate cross sections [13].

In some sense this paper can be considered as a continuation of [16]. It is also closely related
to [17]. The proof of the existence of trapped modes applies arguments of [18], where the appear-
ance of virtual bound states has been discussed in the general case. After the existence and the
number of the trapped modes have been established, we use variational methods to calculate the
asymptotical behaviour of these bound states. In the given case this seems to be easier than to
deduce the number of trapped modes and their asymptotics at once.

1.1. Acknowledgements. The authors are grateful to D. Vassiliev, who brought the specific
properties of the elasticity operator, which are exploited in this paper, to their attention. The
authors are also grateful to M. Birman, A. Holst, A. Laptev, H. Siedentop and C. Tix for valuable
discussions.

1.2. Notation. Statements or formulae containing the index ± have to be read independently
with the index “+” and “-”.

2. Statement of the problem

We put Γ = R × J with J = (−π/2, π/2) and consider the quadratic form

ã[u, u] =

∫
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dx, (2.1)

which is well defined on functions u = (u1, u2)
T ∈ d[a] = H1(Γ,C2). The form (2.1) appears, for

instance, in three-dimensional elasticity theory after a separation of variables, or in plate theory.
In both models the positive constants cl and ct depend upon the density of the material, the Young
modulus and the Poisson coefficient, see [10], [15].

In this paper we stress on the special case of zero Poisson coefficient. Then both physical models
yield c2l = 2c2t , and choosing a suitable set of units, we shall study the form

a0[u, u] =

∫

Γ
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)

dx, (2.2)

which is (2.1) for cl =
√

2, ct = 1.
The inequality

a0[u, u] ≤ 2‖u‖2
H1(Γ,C2), u ∈ H1(Γ,C2), (2.3)

is obvious. On the other hand the class of functions u ∈ L2(Γ,C
2), for which the integral (2.2) is

well defined and finite, coincides with H1(Γ,C2). Moreover, the reverse estimate

a0[u, u] + ‖u‖2
L2(Γ,C2) ≥ c(Γ)‖u‖2

H1(Γ,C2), u ∈ H1(Γ,C2), c(Γ) > 0. (2.4)

holds, which is an extension of the well-known Korn inequality [9].
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Considering now the form aα for α ∈ (0, 1), as given in (1.3), we see, that this form is also
closed on the domain d[aα] = d[a0] = H1(Γ,C2) in H = L2(Γ,C

2), where it induces a positive
self-adjoint operator Aα in H .

The spectrum of the operator A0 is absolutely continuous and fills the non-negative semi-axis. It
is well-known [2], that a local change of the boundary conditions or a local change of the quadratic
form leads to a trace class perturbation of the resolvent of the second order elliptic operator A0.
Hence we are in the setting of trace class scattering theory, and the absolute continuous part of
the spectrum of Aα fills the non-negative semi-axes. In this paper we shall discuss the existence
of positive eigenvalues of the operator Aα which are embedded into its continuous spectrum.

3. Auxiliary material

3.1. Spatial and internal symmetries. For H = L2(Γ,C
2) let Hj be the subspaces of vector

functions

Hj :=
{

u ∈ H : ul(x1,−x2) = (−1)l+jul(x1, x2), l = 1, 2
}

, j = 1, 2 .

Then H = H1 ⊕H2. Further let H3 be the set

H3 = {u ∈ H : u = (u1(x1), 0)} .
It forms a subspace in H1. The orthogonal complement H4 to H3 in H1 consists of all functions
w = (w1, w2) ∈ H1, for which

∫

J

w1(x1, x2)dx2 = 0

for a.e. x1. Let Pj be the orthogonal projections onto Hj , j = 1, . . . , 4. Then PjP1 = P1Pj = Pj

for j = 3, 4. A simple calculation shows, that

d[a(j)
α ] := Pjd[aα] ⊂ d[aα] , j = 1, . . . , 4

and
aα[u,w] = 0 for all u ∈ d[a(l)

α ], w ∈ d[a(j)
α ] if l, j = 2, 3, 4 and l 6= j.

Hence, these subspaces are reducing for the operator Aα and

Aα = A(3)
α ⊕A(4)

α ⊕A(2)
α on H = H3 ⊕H4 ⊕H2 , (3.1)

where the operators A
(j)
α are the restrictions of Aα to Dom A

(j)
α = Dom Aα ∩Hj and correspond

to the closed forms a
(j)
α , given by the differential expression (2.2) on d[a

(j)
α ], j = 2, 3, 4. Put

A(1)
α = A(3)

α ⊕A(4)
α on H1 = H3 ⊕H4 , (3.2)

being the restriction of Aα to Dom Aα ∩H1. Then it holds

Aα = A(1)
α ⊕A(2)

α on H = H1 ⊕H2 . (3.3)

The decomposition (3.3) reflects the spatial symmetry of the operator Aα, while the decomposition
(3.2) exploits the specific internal structure of Aα. We point out, that the latter symmetry fails
for elasticity operators with non-zero Poisson coefficients.

3.2. Separation of variables for A0. Note that Γ = R × J and

Dom A0 =

{

u ∈ H2(Γ,C2) :
∂u2

∂x2

∣

∣

∣

∣

x2=±π
2

=
∂u1

∂x2
+
∂u2

∂x1

∣

∣

∣

∣

x2=±π
2

= 0

}

.

Applying the unitary Fourier transform Φ in x1-direction and its inverse Φ∗, one finds that ΦA0Φ
∗

permits the orthogonal decomposition

ΦA0Φ
∗ =

∫ ⊕

R

A(ξ)dξ on H =

∫ ⊕

R

hdξ, h = L2(J,C
2).

The self-adjoint operators A(ξ) are given by the differential expressions

A(ξ) =

(

2ξ2 − ∂2

∂x2

2

−iξ ∂
∂x2

−iξ ∂
∂x2

ξ2 − 2 ∂2

∂x2

2

)

(3.4)
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on the domains

Dom A(ξ) =

{

w ∈ H2(J,C2) :
∂w2

∂x2

∣

∣

∣

∣

x2=±π
2

=
∂w1

∂x2
+ iξw2

∣

∣

∣

∣

x2=±π
2

= 0

}

. (3.5)

The symmetry (3.1) extends to the operators A(ξ). Indeed, put

hj := {h ∈ w : wl(x2) = (−1)j+lwl(−x2), l = 1, 2}, j = 1, 2.

Let h3 be the one-dimensional subspace, spanned by the constant vector function (1, 0), and set
h4 := h1 	 h3 w.r.t. the scalar product in h. Then we have

Hj =

∫ ⊕

R

hjdξ and ΦA
(j)
0 Φ∗ =

∫ ⊕

R

A(j)(ξ)dξ, j = 1, . . . , 4, (3.6)

where the operatorsA(j)(ξ) are the restrictions of A(ξ) to Dom A(j)(ξ) = Dom A(ξ)∩hj . Moreover,
it holds

A(ξ) = A(1)(ξ) ⊕A(2)(ξ) on h = h1 ⊕ h2 ,

A(ξ) = A(3)(ξ) ⊕A(4)(ξ) ⊕A(2)(ξ) on h = h3 ⊕ h4 ⊕ h2 .
(3.7)

The operators A(j)(ξ) correspond to the quadratic forms

a(j)(ξ)[w,w] =

∫ π/2

−π/2

(

2ξ2|w1|2 + 2

∣

∣

∣

∣

∂w2

∂x2

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂w1

∂x2
+ iξw2

∣

∣

∣

∣

2
)

dx2 , (3.8)

being closed on the domains d[a(j)(ξ)] = H1(J,C2) ∩ hj , j = 1, . . . , 4.

3.3. The spectral analysis of the operator A
(4)
0 . During this paper the spectral decomposition

of the operator A
(4)
0 shall be of particular interest. Because of the decomposition (3.6) we have

in fact to carry out the spectral analysis of the operators A(4)(ξ). Being the restrictions of the
non-negative second order Sturm-Liouville systems (3.4) to Dom A(ξ) ∩ h4, the operators A(4)(ξ)
have a non-negative discrete spectrum, which accumulates to infinity only. Let {λj(ξ)}∞j=1 be the

non-decreasing sequence of the eigenvalues of A(4)(ξ). The quantities λj(ξ) are the solutions of
the well-known Rayleigh-Lamb dispersion equation

β−1
j sin

(

πβj

2

)

γ2
j cos

(πγj

2

)

+ ξ2 cos

(

πβj

2

)

γ−1
j sin

(πγj

2

)

= 0, (3.9)

where

βj = βj(ξ) :=
√

λj(ξ) − ξ2, γj = γj(ξ) :=

√

λj(ξ)

2
− ξ2 , (3.10)

cf. [12] p. 117. The functions βj and γj take either real or purely imaginary values. It is easy to
see, that the actual choice of the branch of the square root is of no importance.

An elementary but careful analysis of the boundary problem (3.4) on Dom A(ξ) ∩ h4 shows,
that these eigenvalues are simple for any fixed ξ ∈ R. 1 The form a(4)(ξ) is a holomorphic family
of the Kato type (a), hence the operators A(4)(ξ) form a holomorphic family of the Kato type (B),
see [14] p. 395. Thus the even functions λj(ξ) are real analytic in ξ. We shall need the following
simple assertion, the proof of which we attach to the Appendix of this paper.

Lemma 3.1. For all w ∈ P4H
1(J,C2) and ξ ∈ R the following estimate holds

a(ξ)[w,w] ≥ max{(8
√

3 − 12), 2−1ξ2}‖w‖2
L2(J,C2). (3.11)

Hence the lowest eigenvalue λ1(ξ) of A(4)(ξ) satisfies the bound

λ1(ξ) ≥ max{8
√

3 − 12, 2−1ξ2} , ξ ∈ R . (3.12)

1In particular, the trivial eigenfunction u = (1, 0) with the eigenvalue 2ξ2 of (3.4), (3.5) does not belong to h4

and has to be excluded.
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The constants in (3.11), (3.12) are not sharp but suffice for our purposes. In particular we

conclude that the spectrum σ(A
(4)
0 ), which by (3.6) coincides with the union of the images of the

spectral branches λj(ξ) over all j ∈ N and ξ ∈ R, is absolutely continuous and given by

σ(A(4)) = [Λ,∞), Λ = min
ξ∈R

λ1(ξ) ≥ 8
√

3 − 12 > 1.856 .

The following Lemma describes the structure of the global minima of the function λ1(ξ). Its proof
uses entirely elementary tools, but since this statement is crucial for what follows, we shall provide
a sketch of the proof at the end of the paper.

Lemma 3.2. The eigenfunction λ1(ξ) achieves its minimal value Λ at exactly two points ξ = ±κ,

κ > 0, and there exists a value q > 0 such, that

λ1(ε± κ) = Λ + q2ε2 +O(ε3) as ε→ 0 . (3.13)

Being solutions of transcendent equations, κ, Λ and q do not have explicit analytic expressions.
A numerical evaluation for these values gives

κ = 0.632138± 10−6 ,

Λ = 1.887837± 10−6 ,

q = 0.849748± 10−6.

(3.14)

The eigenfunction corresponding to λj can be given by ψj = ψ̃j/‖ψ̃j‖L2(J,C2), where

ψ̃j = ψ̃j(ξ, x2) =





iξ cos
(

βjπ
2

)

cos(γjx2) +
iξγ2

j

ξ2 cos
(γjπ

2

)

cos(βjx2)

−γj cos
(

βjπ
2

)

sin(γjx2) +
γ2

j

βj
cos
(γjπ

2

)

sin(βjx2)



 (3.15)

if γj 6= 0, or

ψ̃j = ψ̃(ξ, x2) =

(

i cos((2l − 1)x2) + 2(−1)l

π(2l−1)

sin((2l − 1)x2)

)

, j =

∣

∣

∣

∣

l − 1

2

∣

∣

∣

∣

+
1

2
, (3.16)

in the case γj = 0, which occurs for ξ = (2l− 1) and λj(ξ) = 2ξ2 = 2(2l− 1)2, l ∈ Z.

4. Statement of the main result

Let φ = (φ(1), φ(2)) = ψ1(κ, ·) be the normalized eigenfunction (3.15) of A(4)(κ) corresponding
to the eigenvalue Λ. Put

θ =

∫ π/2

−π/2

(

2κ
2
∣

∣

∣φ
(1)
1

∣

∣

∣

2

+ 2

∣

∣

∣

∣

∂φ(2)

∂x2

∣

∣

∣

∣

2

−
∣

∣

∣

∣

∂φ(1)

∂x2
+ iκφ(2)

∣

∣

∣

∣

2
)

dx2.

A numerical evaluation with the values for κ and Λ as in (3.14) gives

θ = 1.816478± 10−6 . (4.1)

Moreover, for a given function f ∈ L∞(R; (−∞, 1]) of bounded support put

µj = Λ

∫

R

f(x1)dx1 + (−1)jθ

∣

∣

∣

∣

∫

R

e2iκx1f(x1)dx1

∣

∣

∣

∣

, j = 1, 2. (4.2)

Let q be the respective parameter in (3.13).

Theorem 4.1. If

µ1 > 0 and µ2 > 0 , (4.3)

then for all sufficiently small positive α the spectrum of A
(4)
α below Λ consists of two eigenvalues

νj(α) = Λ − α2π2

q2
µj + o(α2) , (4.4)
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where j = 1, 2. If

µ1 > 0 and µ2 < 0 , (4.5)

then for all sufficiently small positive α the spectrum of A
(4)
α below Λ consists of one eigenvalue

ν1(α), satisfying (4.4) for j = 1. If

µ1 < 0 and µ2 < 0 , (4.6)

then A
(4)
α does not have spectrum below Λ for all sufficiently small positive α.

Obviously the eigenvalues νj(α) of A
(4)
α are embedded eigenvalues for the complete elasticity

operator Aα.

5. On the existence of discrete spectrum

5.1. Preliminary estimates I. We recall that Φ is the Fourier transform in x1-direction and
Φ∗ is its inverse. Let χ+ be the characteristic function of the interval (0, 2κ) and let χ− be the
characteristic function of the interval (−2κ, 0). For u ∈ L2(Γ,C

2) and j ∈ N we define

û(j)(ξ) = 〈(Φu)(ξ, ·), ψj(ξ, ·)〉L2(J,C2) and û±(ξ) = χ±(ξ)û(1)(ξ) .

Moreover put

u(j) = (Πju) = Φ∗(û(j)ψj) and u± = (Π±u) = Φ∗(û±ψ1) .

The operators Πj and Π± are orthogonal projections onto invariant subspaces for A
(4)
0 in H4,

Π+Π− = 0 and ΠjΠk = 0 for j 6= k.

Moreover it holds P4 =
∑∞

j=1 Πj . Since Π− + Π+ ≤ Π1, the operator

Π = P4 − Π+ − Π−

is also an orthogonal projection onto an invariant subspace of A
(4)
0 in H4, and we set ũ = Πu.

Hence for u ∈ P4H
1(Γ,C2) we have ũ, u± ∈ P4H

1(Γ,C2) ⊂ H1(Γ,C2), and the form a0 can be
written as

a0[u, u] = a0[ũ, ũ] + a0[u
−, u−] + a0[u

+, u+]

=
∑

j≥2

∫

R

λj(ξ)|û(j)(ξ)|2dξ +

∫

|ξ|≥2κ

λ1(ξ)|û(1)(ξ)|2dξ +

+

∫ 0

−2κ

λ1(ξ)|û−(ξ)|2dξ +

∫ 2κ

0

λ1(ξ)|û+(ξ)|2dξ .

(5.1)

Since λj(ξ) is separated from Λ for all ξ if j ≥ 2 or for |ξ| ≥ 2κ if j = 1, we have a two-sided
estimate

a0[ũ, ũ] − Λ

∫

Γ

|ũ|2dx �
∑

j≥2

∫

R

(1 + λj(ξ))|û(j)|2dξ +

∫

|ξ|≥2κ

(1 + λ1(ξ))|û(1)|2dξ

� a0[ũ, ũ] + ‖ũ‖2
L2(Γ,C2) � ‖ũ‖2

H1(Γ,C2) .
(5.2)

On the last line we made use of Korn’s inequality. Moreover, since λ1(ξ) −Λ � (ξ ∓κ)2 with the
sign “-” if ξ ∈ (0, 2κ) and the sign “+” if ξ ∈ (−2κ, 0), we have

a0[u
±, u±] − Λ

∫

Γ

|u±|2dx �
∫

R

(ξ ∓ κ)2|û±|2dξ �
∫

Γ

∣

∣

∣

∣

∂e∓iκx1u±

∂x1

∣

∣

∣

∣

2

dx . (5.3)

Combining (5.1) and (5.3) we obtain

a0[u, u] − Λ

∫

Γ

|u|2dx � ‖ũ‖2
H1(Γ,C2) +

∫

Γ

{

∣

∣

∣

∣

∂e−iκx1u+

∂x1

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂eiκx1u−

∂x1

∣

∣

∣

∣

2
}

dx (5.4)

for all u ∈ P4H
1(Γ,C2).
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5.2. Preliminary estimates II. Put

b[u, u] :=

∫

Γ

(

∣

∣

∣

∣

∂u

∂x1

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂u

∂x2

∣

∣

∣

∣

2

+ |u|2
)

dx

1 + x2
1

, u ∈ P4H
1(Γ,C2) . (5.5)

In view of (5.4) we have obviously

b[ũ, ũ] ≤ c
(

a0 [ũ, ũ] − Λ‖ũ‖2
L2(Γ,C2)

)

, u ∈ P4H
1(Γ,C2). (5.6)

The analogous bound fails for the components u±, but it can be replaced by the following state-
ment.

Lemma 5.1. Assume u ∈ P4H
1(Γ,C2) and

∫

R

û±(ξ)dξ = 0 . (5.7)

Then

b[u±, u±] ≤ c
(

a0[u
±, u±] − Λ‖u±‖2

L2(Γ,C2)

)

. (5.8)

Proof. First note that u± ∈ P4H
1(Γ,C2) ⊆ H1(Γ,C2) implies

∫

Γ

(

|u±|2 +

∣

∣

∣

∣

∂u±

∂x1

∣

∣

∣

∣

2
)

dx =

∫

R

dξ(1 + ξ2)|û±(ξ)|2
∫

J

dx2|ψ1(ξ, x2)|2

=

∫

R

(1 + ξ2)|û±(ξ)|2dξ <∞ ,

and by Hölder’s inequality û± ∈ L1(R,C). Thus condition (5.7) is justified. Put ζ(x) = (1 +
x2

1)
−1/2. Since

∥

∥

∥

∥

ζ
∂u±

∂x1

∥

∥

∥

∥

L2(Γ,C2)

≤ |κ|
∥

∥ζu±
∥

∥

L2(Γ,C2)
+

∥

∥

∥

∥

∂e∓iκx1u±

∂x1

∥

∥

∥

∥

L2(Γ,C2)

,

in view of (5.3) it is sufficient to proof that

∥

∥ζu±
∥

∥

2

L2(Γ,C2)
+

∥

∥

∥

∥

ζ
∂u±

∂x2

∥

∥

∥

∥

2

L2(Γ,C2)

≤ c

∥

∥

∥

∥

∂e∓iκx1u±

∂x1

∥

∥

∥

∥

2

L2(Γ,C2)

. (5.9)

Let Q± : L2(R,C) → L2(Γ,C
2) be the integral operators

(Q±h)(x1, x2) :=
e±iκx1

√
2π

∫ κ

−κ

eitx1ψ1(t± κ, x2)|t|−1h(t)dt ,

being defined on all appropriate functions h. Set ŵ±(t) = |t|û±(t± κ). Then we have

u± = Q±ŵ
± and

∥

∥∂(e∓iκx1u±)/∂x1

∥

∥

L2(Γ,C2)
= ‖ŵ±‖L2(R,C) . (5.10)

Developing the eigenfunction ψ1(ξ, x2), given in (3.15), (3.16) in a Taylor series near ±κ, we find

ψ1(t± κ, x2) = ψ1(±κ, x2) + tτ±(t, x2) for t ∈ [−κ,κ]

where

ψ1,
∂

∂x2
ψ1, τ

±,
∂

∂x2
τ± ∈ L∞([−κ,κ] × J,C2). (5.11)

Moreover it holds

ζQ± =
e±iκx1

√
2π

ψ1(±κ, x2)Q0 +
e±iκx1

√
2π

Q1τ
± ,

ζ
∂

∂x2
Q± =

e±iκx1

√
2π

∂ψ1(±κ, x2)

∂x2
Q0 +

e±iκx1

√
2π

Q1
∂τ±

∂x2
,

(5.12)
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where Q0 and Q1 are the integral operators

(Q0h0)(x1) := ζ

∫ κ

−κ

eitx1h0(t)
dt

|t| and (Q1h1)(x) := ζ

∫ κ

−κ

eitx1h1(t, x2)
tdt

|t| .

The operator Q1 is obviously bounded in L2(Γ,C
2). Next note that for functions h2 ∈ H1(R,C)

with h2(0) = 0 Hardy’s inequality

‖ζh2‖L2(R,C) ≤ 2‖∂h2/∂x1‖L2(R,C)

holds. Because of (5.7) we can apply this to h2 = e∓iκx1Φ∗û±, what leads to

‖Q0ŵ
±‖L2(R,C) ≤ 2‖ŵ±‖L2(R,C) .

Combining this with (5.11) and (5.12), we conclude

max

{

‖ζQ±ŵ
±‖L2(Γ,C2),

∥

∥

∥

∥

ζ
∂

∂x2
Q±ŵ

±
∥

∥

∥

∥

L2(Γ,C2)

}

≤ c‖ŵ±‖L2(R,C) .

Then (5.10) implies (5.9). 2

5.3. On the domain d[m] = P4H
1(Γ,C2) we define the quadratic form

m[u, u] := a0[u, u] − Λ‖u‖2
L2(Γ,C2) + b[u, u] . (5.13)

Then P4H
1(Γ,C2) is a pre-Hilbert space with respect to the scalar product m. Let the Hilbert

space H be the completion of P4H
1(Γ,C2) with respect to m. Since a0[u, u] − Λ‖u‖2

L2(Γ,C2) ≥ 0

for u ∈ P4H
1(Γ,C2), the form b extends to a bounded form on H, where it induces a non-negative

operator B. The operator norm of B does not exceed one. In fact it holds

Lemma 5.2. The point one is an isolated eigenvalue of multiplicity 2 of the operator B. The

respective eigenspace can be represented by the two-dimensional linear set of fundamental sequences

ũς = {uς
k}∞k=1,

uς
k = ϑ(k−1x1)

(

ς+e
iκx1ψ1(κ, x2) + ς−e

−iκx1ψ1(−κ, x2)
)

, (5.14)

where ς = (ς+, ς−) ∈ C2, ϑ ∈ C∞
0 (R,C) and ϑ(x1) = 1 in some neighbourhood of x1 = 0.

Proof. The spectrum of B is a subset of the interval [0, 1]. By (5.6) and (5.8) there exists a
δ > 0, such that

b[u, u] ≤ (1 − δ)m[u, u] (5.15)

for all functions u ∈ P4H
1(Γ,C2) satisfying (5.7). Since this set of functions is of codimension two

in P4H
1(Γ,C2), and the latter set is dense in H, the total multiplicity of the spectrum of B above

1 − δ does not exceed 2.
Obviously uς

k ∈ P4H
1(Γ,C2). Using the two-sided bound (5.4) it is easy to verify that ũς is

fundamental w.r.t. m, and

aΛ[uς
k, u

ς
k] := a0[u

ς
k, u

ς
k] − Λ‖uς

k‖2
L2(Γ,C2) → 0 as k → ∞ . (5.16)

By continuity the form aΛ extends to a bounded non-negative form on H. The union of the
representative sequences (5.14) over ς ∈ C2 form a two-dimensional subspace H1 in H, on which
aΛ vanishes. But then it holds

m[ũς , w̃] − b[ũς , w̃] = aΛ[ũς , w̃] = 0

for all ũς ∈ H1 and w ∈ H, or equivalently Bũς = ũς . Hence the point one is an isolated eigenvalue
of multiplicity two for B. 2



TRAPPED MODES 13

5.4. The Birman-Schwinger principle. Below χ[0,Λ) and χ(1,∞) are the characteristic func-
tions for the respective intervals and

v[u, u] :=

∫

Γ

f

(

2

∣

∣

∣

∣

∂u1

∂x1

∣

∣

∣

∣

2

+ 2

∣

∣

∣

∣

∂u2

∂x2

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂u2

∂x1
+
∂u1

∂x2

∣

∣

∣

∣

2
)

dx, u ∈ H1(Γ,C2). (5.17)

Glazmann’s Lemma and (1.3) imply

rank χ[0,Λ)(A
(4)
α ) = max dimL ,

where the supremum shall be taken over all linear sets L ⊂ P4H
1(Γ,C2), such that

a0[u, u] − αv[u, u] < Λ‖u‖2
L2(Γ,C2) for all u ∈ L, u 6≡ 0. (5.18)

Because of the boundedness of f the form v can be extended to a bounded hermitian form on H,
where it induces the bounded self-adjoint operator V. Put B(α) := B+αV. Applying Glazmann’s
Lemma to this operator, one finds

rank χ(1,∞)(B(α)) = max dim L,

where the supremum shall be taken over all linear sets L from the subset P4H
1(Γ,C2) being dense

in H, such that

m[u, u] < b[u, u] + αv[u, u] for all u ∈ L, u 6≡ 0 . (5.19)

Comparing (5.18) and (5.19), one obtains the following variation of the Birman-Schwinger principle

rank χ[0,Λ)(A
(4)
α ) = rank χ(1,+∞)(B(α)) , 0 < α < 1 . (5.20)

5.5. Proof of Theorem 4.1 - Existence of eigenvalues. According to Lemma 5.2 the point
1 is an isolated eigenvalue of multiplicity 2 of B = B(0) and B has no spectrum above 1. The
perturbation family B(α) is analytic of the Kato type (A) in α [14]. Thus for small α > 0 the
spectrum of B(α) near or above 1 will consist of two eigenvalues, which form two analytic branches

κj(α) = 1 + ακ
(1)
j +O(α2) , j = 1, 2 .

Hence by (5.20) the value limα→+0 rank χ[0,Λ)(A
(4)
α ) coincides with the quantity of the branches

κj(α), satisfying κj(α) > 1 for all sufficiently small α > 0.

Obviously κ
(1)
j > 0 implies κj(α) > 1 and κ

(1)
j < 0 implies κj(α) < 1 for small α. From

standard analytic perturbation theory we know [14], that the values κ
(1)
j are the eigenvalues of the

form v, being reduced to the two-dimensional eigenspace H1 of B at 1. Since we are interested in
the signs of these values only, according to (5.14) we have to calculate the signs of the eigenvalues
of the matrix

M = lim
k→∞

(

v[u
(1,0)
k , u

(1,0)
k ] v[u

(1,0)
k , u

(0,1)
k ]

v[u
(0,1)
k , u

(1,0)
k ] v[u

(0,1)
k , u

(0,1)
k ]

)

=

(

Λ
∫

f(x1)dx1 θ
∫

e2iκx1f(x1)dx1

θ
∫

e−2iκx1f(x1)dx1 Λ
∫

f(x1)dx1.

)

.

(5.21)

The eigenvalues ofM are µ1 and µ2 from (4.2). Then the conditions (4.3), (4.5), or (4.6) correspond

to κ
(1)
1 > 0 and κ

(1)
2 > 0, κ

(1)
1 > 0 and κ

(1)
2 < 0, or κ

(1)
1 < 0 and κ

(1)
2 < 0, respectively. This

concludes the proof. 2

6. The asymptotical behavior of trapped modes

We have shown that in the setting of Theorem 4.1 the spectrum of the operator A
(4)
α below Λ

consists of exactly two eigenvalues ν1(α) ≤ ν2(α) in the case (4.3), or exactly one eigenvalue ν1(α)
in the case (4.5), if the positive parameter α is sufficiently small. In this section we shall calculate
the asymptotical behavior of these eigenvalues in the cases (4.3) and (4.5) as α→ 0.
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6.1. Preliminary estimates III. We take a finite interval I such that supp f ⊂ I , and let χI

be the characteristic function for I . For ν < Λ we consider on H4 the two rank one operators

(T±
ν w)(x) = ψ1(±κ, x2)e

±iκx1χI(x1)

∫

Γ

ψ1(±κ, x′2)w(ξ, x′2)dξdx
′
2

√

q2(ξ ∓ κ)2 + Λ − ν
.

Put Tν = T+
ν + T−

ν . Then the form

yν [w,w] = v[Tνw, Tνw]

is well-defined and bounded on L2(Γ,C
2). Let Yν be the associated self-adjoint operator of rank

two.

Lemma 6.1. Let q be the respective parameter in (3.13) and let µj be the eigenvalues of M in

(5.21). The eigenvalues µj(ν), corresponding to the non-trivial part of Yν , satisfy the asymptotical

equation

µj(ν) =
π

q
√

Λ − ν
µj + o

(

1√
Λ − ν

)

as ν → Λ − 0 , j = 1, 2.

Proof. Let Wδ be the unitary scaling operator

(Wδw)(x) =
√
δw(δx1, x2), δ > 0.

Put

η±δ (ξ, x2) =

√

q

π

ψ1(±κ, x2)
√

q2(ξ ∓ δ−1κ)2 + 1
.

These functions are normed in L2(Γ,C
2). Let T̃±

ν be the rank one operators

(T̃±
ν w)(x) = ψ1(±κ, x2)e

±iκx1χI(x1)
〈

w, η±δ
〉

L2(Γ,C2)
, δ =

√
Λ − ν .

Then it holds
√

π−1qδT±
ν = T̃±

ν Wδ , δ =
√

Λ − ν . (6.1)

Let Ỹν be the rank two self-adjoint operator, corresponding to the quadratic form

ỹν [w,w] = v[T̃νw, T̃νw], T̃ν = T̃+
ν + T̃−

ν .

Further set

η̃δ =
η−δ − η+

δ

〈

η−δ , η
+
δ

〉

L2(Γ,C2)

‖η−δ − η+
δ

〈

η−δ , η
+
δ

〉

L2(Γ,C2)
‖L2(Γ,C2)

.

Let Sν , S̃ν : H4 7→ C
2 be the operators

Sν =

(
〈

·, η+
δ

〉

L2(Γ,C2)
〈

·, η−δ
〉

L2(Γ,C2)

)

and S̃ν =

(

〈

·, η+
δ

〉

L2(Γ,C2)

〈·, η̃δ〉L2(Γ,C2)

)

, δ =
√

Λ − ν .

The operator S̃ν is a partial isometric mapping from the linear span of η±δ onto C
2. The identity

ỹν [w,w] = 〈MSνw, Sνw〉C2 implies Ỹν = S∗
νMSν . The eigenvalues of the non-trivial part of

S̃∗
νMS̃ν are µj . Since

〈

η+
δ , η

−
δ

〉

L2(Γ,C2)
→ 0 as δ → 0, we have

S̃∗
νMS̃ν − Ỹν = S̃∗

νMS̃ν − S∗
νMSν → 0 as ν → Λ − 0 .

By (6.1) the eigenvalues µj(ν) of Yν coincide with the eigenvalues of the non-trivial part of the

operator πq−1δ−1Ỹν , δ =
√

Λ − ν. But then

qπ−1µj(ν)
√

Λ − ν → µj as ν → Λ − 0 , j = 1, 2 . 2
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6.2. Preliminary estimates IV. Let Rν = (A
(4)
0 −ν)−1 be the resolvent of A

(4)
0 at the spectral

point ν. For ν < Λ the operator R
1/2
ν is a bounded mapping from H4 to d[a(4)] = P4H

1(Γ,C2) ⊆
H1(Γ,C2). Hence the form

xν [w,w] = v[R1/2
ν w,R1/2

ν w]

is well defined and bounded on H4. Let Xν be the associated bounded self-adjoint operator on
H4.

Lemma 6.2. There exist a positive constant C such that the estimate

‖Xν − Yν‖ ≤ C
(

1 + 1/ 4
√

Λ − ν
)

, (6.2)

holds for all ν < Λ.

Proof. Put δ =
√

Λ − ν. By Korn’s inequality the operator ∇R1/2
ν is bounded on H4 for fixed

ν < Λ. Since R
1/2
ν Π is uniformly bounded for all ν ≤ Λ, it is then easy to see that the operator

∇R1/2
ν Π is uniformly bounded for all ν ≤ Λ. Moreover, for ν < Λ the operators χI∇R1/2

ν Π± are
Hilbert-Schmidt, and

‖χI∇R1/2
ν Π±u‖2

L2(Γ,C2) ≤ c1‖u‖2
L2(Γ,C2)

∫

0<±ξ<κ

ξ2dξ

λ1(ξ) − ν

≤ c2‖u‖2
L2(Γ,C2)

∫

dξ

q2(ξ ∓ κ)2 + δ2
≤ c3δ

−1‖u‖2
L2(Γ,C2)

(6.3)

for all u ∈ H4. The same type of estimate shows that

‖χI∇T±
ν u‖2 ≤ c4δ

−1‖u‖2
L2(Γ,C2) , u ∈ H4 . (6.4)

Computing the corresponding Taylor series with remainder estimates we see, that

eiξx1ψ1(ξ, x2)ψ1(ξ, x′2)
√

λ1(ξ) − ν
=
e±iκx1ψ1(±κ, x2)ψ1(±κ, x′2)

√

q2(ξ ∓ κ)2 + δ2
(1 + (ξ ∓ κ)R±(ξ, x, x′)) ,

where the functions R± are uniformly bounded on (0,±κ) × (I × J)2. But then

‖χI∇(R1/2
ν (Π+ + Π−) − Tν)u‖2

L2(Γ,C2) ≤ c5‖u‖2
L2(Γ,C2)

∫ κ

0

(ξ − κ)2dξ

q2(ξ − κ)2 + δ2

≤ c6‖u‖2
L2(Γ,C2) .

(6.5)

Recall that it holds

v[u, u] ≤ c‖χI∇u‖2
L2(Γ,C2) (6.6)

for u ∈ P4H
1(Γ,C2). We decompose the form xν as follows

xν [u, u] = v[R1/2
ν (Π+ + Π−)u,R1/2

ν (Π+ + Π−)u] + r[u, u],

where by (6.3) , (6.6) the form

r[u, u] = v[R1/2
ν Πu,R1/2

ν Πu] + 2<v[R1/2
ν Πu,R1/2

ν (Π+ + Π−)u]

satisfies the estimate

|r[u,w]| ≤ C(1 + δ−1/2)‖u‖L2(Γ,C2)‖w‖L2(Γ,C2) .

The identity

xν [u, u] − yν [u, u] = 2<v[(R1/2
ν (Π+ + Π−) − Tν)u,R1/2

ν (Π+ + Π−)u]

+ v[(R1/2
ν (Π+ + Π−) − Tν)u, (R1/2

ν (Π+ + Π−) − Tν)u] + r[u, u]

implies together with (6.4), (6.5) and (6.6) that
∣

∣

∣〈(Xν − Yν)u, u〉L2(Γ,C2)

∣

∣

∣ ≤ C
(

1 + δ−1/2
)

‖u‖2
L2(Γ,C2)

as u ∈ H4. This completes the proof. 2
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6.3. The proof of Theorem 4.1 - Formula (4.4). For t ∈ R let χ{t} be the characteristic
function for the point t. The operator αXν is the Birman-Schwinger operator for the perturbed

operator family A
(4)
α ,

rank χ{1}αXν = rank χ{ν}(Aα) (6.7)

and

rank χ[1,∞)αXν = rank χ[0,ν](Aα) (6.8)

for all ν < Λ and 0 < α < 1, see [1]. By (6.3) and (6.6) we see that
∣

∣

∣〈Xνu, u〉L2(Γ,C2)

∣

∣

∣ ≤ cδ−1‖u‖2
L2(Γ,C2). (6.9)

Put δj(α) =
√

Λ − νj(α). Then (6.7) and (6.9) imply

δj(α) = O(α) as α→ +0.

The estimate (6.2) transforms into

∥

∥δj(α)Xνj (α) − δj(α)Yνj (α)

∥

∥ ≤ C

(

δj(α) +
√

δj(α)

)

= O(
√
α)

as α→ 0. The operators δj(α)Yνj (α) are of rank two, and by Lemma 6.1 their nontrivial eigenvalues

δj(α)µj(νj(α)) satisfy δj(α)µj(νj(α)) → q−1πµj , j = 1, 2. By standard perturbation theory we
conclude, that if µj 6= 0, j = 1, 2, the operators δj(α)Xνj (α) have all spectrum in a O(

√
α)-

neighbourhood of zero, except two eigenvalues %j(α) → q−1πµj for j = 1, 2, respectively. In the
cases (4.5), (4.3) µj > 0 implies now that the point %j(α) becomes the jth largest eigenvalue

of δj(α)Xνj (α) for sufficiently small α > 0. That means α%j(α)δ−1
j (α) becomes the jth largest

eigenvalue of αXνj (α), which on its turn by (6.7), (6.8) equals 1. Hence

α−1δj(α) = %j(α) → q−1πµj

as α→ 0. This concludes the proof. 2

7. Appendix

7.1. Sketch of the Proof of Lemma 3.1. For brevity we shall write w′
j instead of ∂wj/∂x2.

The functions wj are continuous. Since w1 is symmetric and orthogonal to the constant function,
it is easy to see that

4‖w1‖2
L2(J,C) ≤ ‖w′

1‖2
L2(J,C) and ‖w1‖2

C(J,C) ≤ ‖w′
1‖L2(J,C)‖w1‖L2(J,C) . (7.1)

On the other hand, for w2 being antisymmic it holds

‖w2‖2
L2(J,C) ≤ ‖w′

2‖2
L2(J,C) and ‖w2‖2

C(J,C) ≤ ‖w′
2‖L2(J,C)‖w2‖L2(J,C) . (7.2)

Minimizing the expression for a(ξ)[w,w] in ξ and using the first bound in (7.1), (7.2), respectively,
one obtains

a(ξ)[w,w] ≥ ‖w′
1‖2

L2(J,C) + 2‖w′
2‖2

L2(J,C) −
‖w′

1‖2
L2(J,C)‖w2‖2

L2(J,C)

2‖w1‖2
L2(J,C) + ‖w2‖2

L2(J,C)

≥ 2
4‖w1‖4

L2(J,C) + ‖w2‖4
L2(J,C) + 2‖w1‖2

L2(J,C)‖w2‖2
L2(J,C)

2‖w1‖2
L2(J,C) + ‖w2‖2

L2(J,C)

.

Minimizing the r.h.s. under the restriction ‖w‖2
L2(J,C2) = ‖w1‖2

L2(J,C) + ‖w1‖2
L2(J,C) we arrive at

a(ξ)[w,w] ≥
(

8
√

3 − 12
)

‖w‖2
L2(J,C) . (7.3)

For the second estimate we shall use the fact that
∣

∣< w′
1, w2 >L2(J,C)

∣

∣ ≤ 2‖w1‖C(J,C)‖w2‖C(J,C) + ‖w1‖L2(J,C)‖w′
2‖L2(J,C) .
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Then in view of the second of the bounds in (7.1), (7.2), respectively, we have

a(ξ)[w,w] ≥ 2ξ2‖w1‖2
L2(J,C) + ξ2‖w2‖2

L2(J,C) + ‖w′
1‖2

L2(J,C) + 2‖w′
2‖2

L2(J,C)

− ξ‖w′
1‖L2(J,C)‖w2‖L2(J,C) − ξ‖w1‖L2(J,C)‖w′

2‖L2(J,C)

− 2ξ
√

‖w1‖L2(J,C)‖w′
1‖L2(J,C)‖w2‖L2(J,C)‖w′

2‖L2(J,C) .

This chain of inequalities can be continued as follows

a(ξ)[w,w] ≥ 2ξ2‖w1‖2
L2(J,C) + ξ2‖w2‖2

L2(J,C) + ‖w′
1‖2

L2(J,C) + 2‖w′
2‖2

L2(J,C)

− (1 + δ)ξ‖w′
1‖L2(J,C)‖w2‖L2(J,C) − (1 + δ−1)ξ‖w1‖L2(J,C)‖w′

2‖L2(J,C)

≥ ξ2
(

2 − (1 + δ−1)2

8

)

‖w1‖2
L2(J,C) + ξ2

(

1 − (1 + δ)2

4

)

‖w2‖2
L2(J,C)

for all δ > 0. In particular, for δ =
√

2 − 1 we conclude

a(ξ)[w,w] ≥ 23− 16
√

2

4(
√

2 − 1)2
ξ2‖w1‖2

L2(J,C) +
1

2
ξ2‖w2‖2

L2(J,C) ≥
1

2
ξ2‖w‖2

L2(J,C2) . (7.4)

It remains to combine (7.3), (7.4) and to apply this to

λ1(ξ) = min
w∈P4H1(J,C2)

‖w‖−2
L2(J,C2)a(ξ)[w,w] . 2

7.2. Proof of Lemma 3.2. First note, that by (7.1) and (7.2) it holds

a(ξ)[w,w] ≥ 2 min{ξ2, 1}‖w‖2
L2(J,C2) and a(0)[w,w] ≥ 2‖w‖2

L2(J,C2)

for all w ∈ P4H
1(J,C2), w 6≡ 0. Moreover, if

w(x2) =

(

−
√

7
8 cos

(

3x
4

)

+ 9
√

7
56 cos

(

5x
4

)

+ 4
√

7
105π

√

2 +
√

2
3
8 sin

(

3x
4

)

+ 9
40 sin

(

5x
4

)

)

,

then w ∈ P4H
1(J,C2) and

a
(

4−1
√

7
)

[w,w]

‖w‖2
L2(J,C2)

=
21468

√
2π − 30330π2 + 1120 + 560

√
2

9384
√

2π − 15165π2 + 1280 + 640
√

2
< 1.91 . (7.5)

Hence

λu = 8
√

3 − 12 ≤ Λ < 1.91 = λo, (7.6)

and the non-constant analytic function λ1(ξ) achieves its global minima Λ at a finite number of
points ξn such that 0 < ξ2n < λo/2. In a neighbourhood εn of these points ξn we have λ1(ξ) < 2
and hence 0 ≤ γ1 < 1, β1 > 0. Now it is easy to see, that the equation (3.9) has no solution with
γ1 = 0 or β1 ≤ 1 as ξ ∈ εn. Hence 1 − λ1(ξ)/2 < γ2

1(ξ) < λ1(ξ)/2 and

γ2
1(ξ)Υ(β1(ξ)) + ξ2Υ(γ1(ξ)) = 0 for ξ ∈ εn , (7.7)

where Υ(x) = x−1 tan(πx/2). Differentiating (7.7) with respect to z = ξ2 and applying (7.7),
(3.10), we claim that

Υ̃(γ) :=
(

(2γ2 − Λ)Υ(γ) + 8π−1
) (

(2γ2 + Λ)Υ(γ) − 4π−1
)

− 2Λ + 32π−2 = 0 (7.8)

at the points γ =
√

Λ/2− ξ2n. Note that 2Λ − 32π−2 > 0. Consider (7.8) as an equation in

γ ∈ (
√

1 − λo/2,
√

λo/2). The second factor on the l.h.s. is positive and increasing in γ. Using
(7.6) it is not difficult to see, that the first factor is increasing in γ as well, hence the product
is increasing where it is non-negative, and the equation(7.8) has not more than one solution

γ ∈ (
√

1 − λo,
√

λo/2). We conclude that λ1(ξ) achieves its minimal value at exactly two points
ξ = ±ξ0 6= 0.

Next we sharpen the estimate on γ =
√

Λ/2− ξ20 . By (7.6) we see that

Υ̃(γ̃) ≤
(

(2γ̃2 − λu)Υ(γ̃) + 8π−1
) (

(2γ̃2 + λo)Υ(γ̃) − 4π−1
)

− 2λu + 32π−2 (7.9)
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if (2γ̃2 − λ)Υ(γ̃) + 8π−1 ≥ 0 and

Υ̃(γ̃) ≥
(

(2γ̃2 − λo)Υ(γ̃) + 8π−1
) (

(2γ̃2 + λu)Υ(γ̃) − 4π−1
)

− 2λo + 32π−2

(7.10)

if (2γ̃2 − λo)Υ(γ̃) + 8π−1 ≥ 0. By the same monotonicity argument as above the functions on the
r.h.s. of (7.9), (7.10) have only one root γ̃u, γ̃o, respectively, within (1 − λo/2, λo/2). But then
γ̃u ≤ γ ≤ γ̃o. Evaluating (7.9), (7.10) at the points γ̃ = γu = 11/16 and γ̃ = γo = 25/32, where
Υ(γ̃) can be calculated explicitly, one claims γu < γ̃u ≤ γ ≤ γ̃o < γo.

Differentiating (7.7) twice w.r.t. z = ξ2, we see that d2λ1(ξ)/dξ
2|ξ=±ξ0

= 0 would imply

0 =

(

6λ2γ2 − 3

4
π2λ4 + 16γ6 + 44λγ4 − 28γ8π2 − 6γ6π2λ+ 10π2λ2γ4+

+
3

2
π2λ3γ2

)

sin
(πγ

2

)

+

(

16γ6 + 6λ2γ2 − 2π2λ2γ4 +
1

4
π2λ4 + 2a6π2λ

−1

2
π2λ3γ2 + 44λγ4 + 4γ8π2

)

sin

(

3πγ

2

)

+
(

10πγ5λ+ 4πγ7 + 3πλ2γ3

−2πλ3γ
)

cos

(

3πγ

2

)

+
(

−15πλ2γ3 − 66πa5λ− 20πγ7 + 2πλ3γ
)

cos
(πγ

2

)

for λ = Λ and γ =
√

Λ/2− ξ20 . However, the function on the r.h.s. is negative for all pairs
(γ, λ) ∈ (γu, γo) × (λu, λo) and thus d2λ1(ξ)/dξ

2|ξ=±ξ0
6= 0. A respective numerical calculation

can be made rigorous by estimating the sin and cos by appropriate finite Taylor series, inserting
these estimates into the r.h.s. of the equation above, estimating the derivatives of the resulting
polynomial and evaluating the polynomial on a sufficiently dense finite set of test points. 2
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