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Abstract

We define an integral with respect to a class of centered Gaussian processes with

dependent increments. Furthermore, we consider stochastic differential equations

driven by such a process and discuss several examples. In the special case of a

bilinear stochastic differential equation existence and uniqueness of the solution is

proved. We derive a generalized Ornstein-Uhlenbeck process from an associated

stochastic differential equation. Finally, several applications are presented.

1 Introduction

In the last ten years fractional Brownian motion BH
t gained a lot of attention (e.g. [Be],

[GrNo], [HuOk], [HuOkSa], [So]). Opposed to Brownian motion this Gaussian process has
dependent increments. This is one of the reasons why it is interesting for applications
such as in finance (e.g. [HuOk], [Be]) and network simulations (e.g. [No]). A disadvantage
of fractional Brownian motion is that the shape of its covariance function E(BH

t BH
s ) de-

pends on a single parameter, the Hurst parameter H, only. For example, this restricted
flexibility in choosing the covariance function doesn’t allow for modelling the noise term
in a stochastic differential equations with a short range dependency by using a fractional
Brownian motion. Therefore the authors defined a larger class of Gaussian processes with
dependent increments, which contains the fractional Brownian motion, but is still capable
to serve as an integrator in a useful stochastic integral.

Several authors suggested how to define a stochastic integral driven by fractional Brow-
nian motion

∫

R
XsdBH

s . To make it useful in the setting of stochastic differential equations,
it is desirable that this stochastic integral has expectation value zero. This is property holds
true, if the integral is defined by use of the Wick product ([Be], [HuOk]). The Wick product
can be introduced by means of white noise distribution theory ([HiKuPoSt], [Ku]). This

∗This project is partially supported by the Studienstiftung des Deutschen Volkes.
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opens the possibility to differentate fractional Brownian motion in the Hida distribution
sense, which has a lot of advantages in the treatment of the Wick product. For instance,
one may define stochastic differential equations driven by the fractional Brownian motion
and may solve bilinear equation (e.g. [HuOk]).

This approach was adopted by the authors of the present paper to treat stochastic
differential equations driven by Gaussian processes with dependent increments. In the
following section the class of Gaussian processes with dependent increments, which is used
in this paper, is defined. Furthermore, useful results of white noise distribution theory
involving Wick products and the so-called S-transform are sketched. In the third section
a stochastic integral driven by a Gaussian process with dependent increments is defined,
the bilinear stochastic differential equation driven by a Gaussian process with dependent
increments is solved. In the fourth section some applications are presented. Remarks are
formulated in the fifth section.

2 Gaussian processes and white noise calculus

2.1 The construction of the Schwartz space and its dual

Let | · |0 be the norm of L2(R). We sketch the construction of the Schwartz space S(R)
with the locally convex topology and its dual S ′(R) with the weak topology. Let 〈ω, η〉
denote the bilinear pairing with ω ∈ S ′(R) and η ∈ S(R). It follows that 〈·, ·〉 is the inner
product of L2(R) if ω, η ∈ L2(R). The following construction of the Schwartz space and
its dual is presented, for instance, in [Ku], Chapter 3.2. Let A := − d2

dx2 + x2 + 1, so A is
densely defined on L2(R). With the Hermite polynomial of degree n

Hn(x) := (−1)nex2

(

d

dx

)n

e−x2

we define

en(x) :=
1

√√
π2nn!

Hn(x)e
−x2

2 .

The functions en(x) are eigenfunctions of A and the corresponding eigenvalue is 2n + 2,
n ∈ N0. The operator A−1 is bounded on L2(R), especially A−p is a Hilbert-Schmidt
Operator for any p > 1

2
. Let for each p ≥ 0, |f |p := |Apf |0. The norm is given by the

eigenvalues as

|f |p =

(

∞
∑

n=0

(2n + 2)2p〈f, en〉2
)1/2

.

We define
Sp(R) := {f ; f ∈ L2(R), |f |p < ∞}

and with these spaces we construct the Schwartz space S(R) by S(R) = ∩p≥0Sp(R). This
construction leads to the Gel’fand triple S(R) ⊂ L2(R) ⊂ S ′(R). Furthermore, we get the
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following continuous inclusion maps

S(R) ⊂ Sp(R) ⊂ L2(R) ⊂ S ′
p(R) ⊂ S ′(R).

Let B denote the Borel σ-algebra on S ′(R), i.e., the σ-algebra generated by the weak
topology. One can show by the use of the Bochner-Minlos theorem that there is a unique
Gaussian measure µ on (S ′(R),B). The space (S ′(R),B, µ) is called white noise, and the
space (L2) denotes L2(S ′(R),B, µ). The bilinear form 〈ω, f〉 with f ∈ L2(R) and ω ∈ S ′(R)
is declared by

lim
k→∞

〈ω, ηk〉 = 〈ω, f〉

with ηk → f and {ηk} ⊂ S(R). It is possible to show that 〈·, f〉 =
∫

R
f(s)dBs is a random

variable in (L2) for all f ∈ L2(R). The random variable 〈·, f〉 has expectation value zero
and variance |f |20.

2.2 A class of Gaussian processes with dependent increments

Suppose m(·, ·) : R
2 → R such that for all t ∈ R the function m(u, t) ∈ L2(R). Define

v(s, t) =
∫

R
m(u, t)m(u, s) du. Then we have the stochastic process with t ∈ R

Bv
t := 〈·, m(u, t)〉 =

∫

R

m(u, t) dBu,

with ordinary Brownian motion Bu. We choose m(u, t) such that d
dt

m(u, t) ∈ S ′
p(R) for all

t ∈ R and for some p ≥ 0. This property will be used later. The process Bv
t is a Gaussian

process; its covariance function is given by

v(s, t) =

∫

S′(R)

Bv
sB

v
t dµ =

∫

R

m(u, s)m(u, t) du.

Now we show some properties of Bv
t which follows by supposed properties of m(u, t). Let

m(u, 0) ≡ 0, hence Bv
0 = 0, and Bv

t is a centered Gaussian process. The properties
v(t, t) ≥ 0 and v(s, t) = v(t, s) are obvious. It is natural to request that Bv

t is pathwise
continuous. This is ensured by the supposed continuity of the function 〈ω, m(u, ·)〉 : R → R,
ω ∈ S ′(R). In the following we give some special instances of Bv

t .

Example 2.1 [Ordinary Brownian motion] The stochastic process Bv
t = Bt is the ordinary

Brownian motion if m(u, t) = 1([0, t])(u), where 1([0, t]) is the indicator function of the
intervall [0, t]. This process has then the covariance function v(s, t) = min(t, s). This
example is further discussed in [Ku], Chapter 3.1.

Example 2.2 [Fractional Brownian motion] We use the following operator MH
± to intro-

duce fractional Brownian motion and later on its derivative. Define MH
± with H ∈ (0, 1)

for η ∈ S(R) as

(MH
+ η)(t) :=











KH

Γ(H−1/2)

∫ t

−∞
η(s)(t − s)H−3/2 ds for H > 1/2

η(t) for H = 1/2
KH(H−1/2)
Γ(1/2−H)

limε→0

∫∞

ε
η(t)−η(t−s)

(s)3/2−H ds for H < 1/2
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and

(MH
− η)(t) :=











KH

Γ(H−1/2)

∫ t

−∞
η(s)(t − s)H−3/2 ds for H > 1/2

η(t) for H = 1/2
KH(H−1/2)
Γ(1/2−H)

limε→0

∫∞

ε
η(t)−η(t+s)

(s)3/2−H ds for H < 1/2

with

KH = Γ(H + 1/2)

(

2HΓ(3/2 − H)

Γ(H + 1/2)Γ(2 − 2H)

)1/2

The operator MH
± is essentially the Riemann-Liouville fractional integral for H > 1/2

and the Marchaud fractional derivative for H < 1/2. For further information about these
operators see [SaKiMa], Chapter 6, and [Be], Chapter 1.6. We just apply MH

± on functions
η ∈ S(R), and for indicator functions 1([0, t]) for which MH

± is defined; see Chapter 1
of [Be]. The fractional Brownian motion BH

t is a modification of
∫

R
(MH

− 1((0, t)))(s) dBs.
Another representation of the fractional Brownian motion up to modification is BH

t =
〈·, MH

− (1((0, t)))〉. The covariance function is therefore v(s, t) = 1/2(|t|2H+|s|2H−|s−t|2H).
This example is further discussed in [Be].

Example 2.3 [A Gaussian process with short range dependency] Let Bs
t , t ∈ R, be a

centered Gaussian process with covariance function v(s, t), such that v(s, ·) has a global
maximum and limt→∞ v(s, t) = 0 for all fixed s ∈ R. Then we call Bs

t a short range
Brownian motion. Let m(u, t) = t2 exp(−(u − t)2), hence v(s, t) = kt2s2 exp(−(t − s)2/2)
with a constant k. This process Bs

t is a short range Brownian motion. Later we derivate
this process and define an integral driven by this process.

Having introduced a class of Gaussian processes with dependent increments we will
define an integral

∫

R
Xs dBv

s and a stochastic differential equation

Xt =

∫ t

0

Xs ds +

∫ t

0

Xs dBv
s .

Before pursuing this goal some results of white noise analysis are summarized.

2.3 The construction of the Hida test and distribution space

In this section the construction of the Hida test and Hida distribution spaces (S) and (S)∗

are outlined. These spaces are used to derivate the Gaussian process Bv
t and to define the

stochastic integral driven by these Gaussian processes. A more detailed description can
be found e.g. in [Ku], Chapter 3.3, and in [Be], Chapter 5.3. Together with (L2) they are
also a Gel’fand triple (S) ⊂ (L2) ⊂ (S)∗. Let 〈〈Φ, ζ〉〉 denote the bilinearform of Φ ∈ (S)∗

and ζ ∈ (S). For f ∈ L2(Rn) we define the multiple Wiener Integral with respect to the
ordinary Brownian motion

In(f) := n!

∫

Rn

f(t1, t2, t3, . . . , tn) dBt1dBt2 . . . dBtn .

The following proposition is the chaos decompostion of (L2) (see [Be], Theorem 1.4.8).
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Proposition 2.4 For all F ∈ (L2) there is a unique sequence of (fn)n∈N0 such that fn ∈
L2(Rn) is symmetric and

F =
∞
∑

n=0

In(fn)

with convergence in (L2).

We define the operator Γ(A), A as above, on (L2) to be

Γ(A)F =
∞
∑

n=0

In(A⊗nfn)

with F ∈ (L2). Let (S)n = Γ(A)n((L2)) with inner product

((F, G))n := E[Γ(A)−nF · Γ(A)−nG]

with F, G ∈ (L2). Now we set similarly as above (S) := ∩n∈N(S)n. With (S)′n := (S)−n,
we get (S)∗ := ∪n∈N(S)−n. The topologies of (S) and of (S)∗ are given by the projective
limit topology and weak topology, respectively (see [Ku], Chapter 2.2). As before there
are continuous inclusion maps

(S) ⊂ (S)n ⊂ (L2) ⊂ (S)−n ⊂ (S)∗.

2.4 S-transform and Wick product

Now we introduce the S-transform from (S)∗ into the set of the functions from S(R) to R.

Remark 2.5 The image of the S-transform is discussed in [PoSt]. They proved that the
S-transform as a mapping from S(R) to R has some analytic properties.

We formulate with I(η) := I1(η) =
∫

R
η(s) dBs η ∈ S(R):

Proposition 2.6 For all η ∈ S(R) the random variable exp(I(η)− 1/2|η|20) is a Hida test
function and the set

{

eI(η)−1/2|η|20 : η ∈ S(R)
}

is total in (S).

The proof can be found in [Ku], Proposition 5.10.

Definition 2.7 The S-transform of a Hida distribution Φ ∈ (S)∗ is defined by

(SΦ)(η) := 〈〈Φ, eI(η)−1/2|η|20〉〉, η ∈ S(R).

The S-transform is an injective mapping. This follows from the preceeding proposition
(see [Ku], Proposition 5.10).
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Proposition 2.8 The S-transform of 〈·, f〉 with f ∈ S ′(R) is given by

S(〈·, f〉)(η) = 〈f, η〉

The proof is given in [Ku], Proposition 5.9. This proposition will be used to define the
stochastic integral driven by Gaussian processes with dependent increments. For further
details of the S-transform see [Ku], Chapter 5, or [PoSt].

Example 2.9 The S-transform of the ordinary Brownian motion Bt is

S(Bt)(η) = 〈〈Bt, e
I(η)−1/2|η|20〉〉

=

∫

S′(R)

Bte
I(η)−1/2|η|20 dµ

=

∫

R

1([0, t])(u)η(u) du =

∫ t

0

η(u) du

Example 2.10 We calculate the S-transform of the fractional Brownian motion BH
t .

S(BH
t )(η) = 〈〈BH

t , eI(η)−1/2|η|20〉〉

=

∫

S′(R)

BH
t eI(η)−1/2|η|20 dµ

=

∫

S′(R)

∫

R

(MH
− 1((0, t)))(s) dBs eI(η)−1/2|η|20 dµ

=

∫ t

0

(MH
+ η)(s) ds

where several steps like fractional integration by parts and the fact that the integrals are
well-defined are used (see [Be], Theorem 1.6.8).

Example 2.11 For the short range Brownian motion Bs
t we get

S(Bs
t )(η) = 〈〈Bs

t , e
I(η)−1/2|η|20〉〉

=

∫

S′(R)

Bs
t e

I(η)−1/2|η|20 dµ

=

∫

R

η(u)t2 exp(−(u − t)2) du.

An upper bound for |(SΦ)(η)| can be found in Theorem 8.2 of [Ku] as follows.

Proposition 2.12 For Φ ∈ (S)∗ numbers K, a,≥ 0 and p ∈ R exist such that for all
η ∈ S(R)

|(SΦ)(η)| ≤ K exp
(

a|η|2p
)

.

Now one can define the Wick product as follows (see [Ku], Chapter 8.4, page 92):
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Definition 2.13 The Wick product of two Hida distributions Φ and Ψ in (S)∗, denoted
by Φ �Ψ, is the unique Hida distribution in (S)∗ such that S(Φ �Ψ)(η) = S(Φ)(η)S(Ψ)(η)
for all η ∈ S(R).

The stochastic integral with dependent increments will be defined in terms of the white
noise integral by use of the Wick product. The next proposition answers the question
whether the Wick product is a continuous mapping (see [Ku], Chapter 8.4).

Proposition 2.14 The mapping · × · → · � · from (S)∗ × (S)∗ → (S)∗ is continuous in
the weak topology. The restriction to (S)−p is also Lipschitz continuous. So there exists a
c > 0 such that for all Ψ, Φ ∈ (S)−p there is a q > 0 such that:

‖ Ψ � Φ ‖−q≤ c ‖ Ψ ‖−p‖ Φ ‖−p .

Now we are prepared to calculate dBv
t /dt in the (S)∗-sense and to define the stochastic

integral
∫

R
Xt dBv

t .

3 Stochastic calculus with Gaussian processes with

dependent increments

3.1 The white noise W v

t

In this subsection we differentiate Bv
t . The following definition is taken from [Be], Chapter

5.3 and 5.4.

Definition 3.1 Let I be an interval in R. A mapping X : I → (S)∗ is called a stochastic
distribution process. A stochastic distribution process is called differentiable in the (S)∗-
sense, if

lim
h→0

Xt+h − Xt

h

exists in (S)∗.

The next theorem presents a criterion for differentiability (see [Be], Theorem 5.3.9).
Let I be as above.

Theorem 3.2 Let F : I → S ′(R) be differentiable. Then 〈·, F (t)〉 is a differentiable
stochastic distribution process and

d

dt
〈·, F (t)〉 = 〈·, d

dt
F (t)〉.

So we get a theorem for the derivative of the Gaussian process Bv
t in the (S)∗-sense.
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Theorem 3.3 (Derivative of Bv
t )

W v
t :=

d

dt
Bv

t = 〈·, d

dt
m(u, t)〉

The S-transform of W v
t is

S(W v
t )(η) = 〈 d

dt
m(u, t), η(u)〉.

Proof. The proof is given by Theorem 3.2. �

With δt denoting the Dirac distribution we get

Example 3.4 [Ordinary Brownian motion] For the derivative of the ordinary Brownian
motion Bt, we use d

dt
1([0, t]) = δt so dBt/dt =: Wt = 〈·, δt〉, further S(Wt)(η) = η(t) (see

[Ku], Chapter 3.1).

Example 3.5 [Fractional Brownian motion] For H ∈ (0, 1) the fractional Brownian mo-
tion BH

· : R → (S)∗ is differentiable in the (S)∗-sense and

W H
t :=

d

dt
BH

t = I(δt ◦ MH
+ )

and for all η ∈ S(R)
〈δt ◦ MH

+ , η〉 = (MH
+ η)(t).

The S-transform of W H
t is given by

S(W H
t )(η) = 〈〈 d

dt
BH

t , eI(η)−1/2|η|20〉〉 =
d

dt
(SBH

t )(η) = (MH
+ η)(t).

This example is presented in [Be], Chapter 5.

Example 3.6 [Short range Brownian motion] The derivative of Bs
t is obviously given by

〈·, d

dt
t2 exp(−(t − u)2)〉 = 〈·, 2t exp(−(t − u)2) + t2(−2(u − t)) exp(−(u − t)2)〉.

The stochastic distribution process W v
t is called white noise of Bv

t . With the white noise
W v

t we can define
∫

R
Xt dBv

t .
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3.2 White noise integral and stochastic differential equations
driven by Bv

t

We start with the definition of the white noise integral (see [Ku], Chapter 13). Suppose
that Xt is a mapping from R → (S)∗.

Definition 3.7 The stochastic distribution process Xt is white noise integrable, if there is
Ψ ∈ (S)∗ such that, for all η ∈ S(R), (SX·)(η) ∈ L1(R) and

(SΨ)(η) =

∫

R

(SXt)(η) dt.

This definition makes sense as the S-transform is injective. Now we formulate the definition
of
∫

R
Xt dBv

t .

Definition 3.8 The process Xt has the stochastic integral
∫

R
Xt dBv

t , if Xt � W v
t is white

noise integrable. So we have
∫

R

Xt dBv
t =

∫

R

Xt � W v
t dt

This definition coincides in the case of the fractional Brownian motion with the definition
of the fractional Ito integral (see Bender ([Be]), Øksendal and Hu [HuOk]).

The following theorem is highly inspired by Bender’s theorem for fractional Ito integrals
(see [Be], Chapter 5).

Theorem 3.9 Let a, b ∈ R and let X· : [a, b] → (S)−p be continuous for some p ∈ N.

Further let W v
· : R → (S)−q be continuous for some q ∈ N. Then

∫ b

a
Xt dBv

t exists. Further

for any sequence of tagged partitions τn = (π
(n)
k , t

(n)
k ) of [a, b] with limn→∞ max{|πk −

πk−1|; k = 1, .., n} = 0, we have

lim
n→∞

n
∑

k=0

X
t
(n)
k−1

�
(

Bv

π
(n)
k

− Bv

π
(n)
k−1

)

=

∫ b

a

Xt dBv
t

with limit in (S)∗.

Proof. For the integrability:

S

(
∫ b

a

Xs dBv
s

)

(η) =

∫ b

a

S(Xs � W v
s )(η) ds

=

∫ b

a

S(Xs)(η)S(W v
s )(η) ds

≤ max
s

{|S(Xs)(η)|}
∫ b

a

S(W v
s )(η) ds

≤ K exp(a|η|2p)
∫ b

a

S(W v
s )(η) ds < ∞

13



From the continuity of W v
t it follows by

∣

∣

∣

∣

〈 d

dt
m(u, t) − d

dt
m(u, t0), η(u)〉

∣

∣

∣

∣

≤ |η(u)
∣

∣

q

∣

∣

∣

∣

d

dt
m(u, t) − d

dt
m(u, t0)

∣

∣

∣

∣

−q

=
∣

∣η(u)
∣

∣

q

∥

∥W v
t − W v

t0

∥

∥

−q

with t, t0 ∈ [a, b], that 〈 d
dt

m(u, t), η(u)〉 is a continuous function in t. So the function
〈m(u, t), η(u)〉 is continuously differentiable on the interval [a, b]. It follows by a well-known
result in real analysis that for all η ∈ S(R) the continuous function S(Xt)(η) is Riemann-
Stieltjes integrable with respect to 〈m(u, t), η(u)〉, so the approximation is proved. �

The S-transform of
∫

R
Xt dBv

t is therefore given by

S

(
∫

R

Xt dBv
t

)

(η) =

∫

R

S(Xt � W v
t )(η) dt =

∫

R

(SXt)(η)〈 d

dt
m(u, t), η(u)〉 dt.

Corollary 3.10 Let
∫ t

0
Xs dBv

s exist and
∫ t

0
Xs dBv

s ∈ (L2) than E(
∫ t

0
Xs dBv

s ) = 0.

Proof. Let η ≡ 0, so S(Bv
t )(0) is the expectation value of Bv

t and

lim
n→∞

S

(

n
∑

k=1

X
t
(n)
k−1

� (Bv

π
(n)
k

− Bv

π
(n)
k−1

)

)

(0) = lim
n→∞

n
∑

k=1

S(X
t
(n)
k−1

)(0) S(Bv

π
(n)
k

− Bv

π
(n)
k−1

)(0)

= 0,

which proofs the claim. �

Remark 3.11 The last property is necessary in order to justify that such processes are a
sensible model for the stock price. In this case the additive stochastic part in the stochastic
differential equation has expectation value zero. Otherwise one may imagine that the
stochastic part of the stochastic differential equation has a drift and that might cause an
arbitrage opportunity.

Example 3.12 We calculate

∫ t

0

Bv
s dBv

s =

∫ t

0

Bv
s � W v

s ds =
1

2
(Bv

t )
�2 ,

where (·)�2 is the Wick square. By the Wick calculus presented in [Be], Chapter 1, or [Ku],
Chapter 8, we get

1

2
(Bv

t )
�2 =

1

2
(Bv

t )
2 − 1

2
|m(u, t)|20.

Note that this example coincides with the case of ordinary Brownian motion with the Ito-
integral and with the case of fractional Brownian motion with the fractional Ito integral.
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Now we can go on to stochastic differential equations driven by Gaussian processes with
dependent increments.

Example 3.13 We want to solve the equation

dXt = µXt dt + σXt dBv
t ,

with constants µ and σ. This expression is declared by the integral equation

Xt =

∫ t

0

µXs ds +

∫ t

0

σXs dBv
s .

=

∫ t

0

(µXs + σXs � W v
s ) ds

=

∫ t

0

Xs � (µ + σW v
s ) ds,

and the solution is given by

Xt = exp�(µt + σBv
t ) = exp(µt + σBv

t − 1

2
σ2|m(u, t)|20),

where exp�(X) =
∑∞

k=0 X�k/k! and some Wick calculus is used in the last equation, see
e.g. [Be], Chapter 1.

We consider the stochastic differential equation on [0, T ] (T > 0)

dXt = a(t, Xt) dt + b(t, Xt) dBv
t .

It is defined in terms of the corresponding integral equation with t ∈ [0, T ]

Xt = X0 +

∫ t

0

a(s, Xs) ds +

∫ t

0

b(s, Xs) dBv
s .

If this equation is regarded in the (S)∗-sense, it can be transformed to

Xt = X0 +

∫ t

0

(a(s, Xs) + b(s, Xs) � W v
s ) ds.

If we set (a(s, Xs) + b(s, Xs) � W v
s ) = f(s, Xs), we have an integral equation of the form

Xt = X0 +

∫ t

0

f(s, Xs) ds

as a white noise integral equation, where f(·, ·) is a mapping R × (S)∗ → (S)∗. So we
assume that a(·, ·) and b(·, ·) are also mappings of that kind.

We call a stochastic distribution process Xt weakly measurable if

〈〈X·, e
I(η)−1/2|η|20〉〉

is measurable for all η ∈ S(R).
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Definition 3.14 A stochastic distribution process Xt is called a weak solution of the white
noise integral equation on [0, T ], if it satisfies the following conditions:

(a) X is weakly measurable.

(b) The stochastic distribution process f(t, Xt) is white noise integrable.

(c) For each η ∈ S(R) the equality holds for almost all t ∈ [0, T ]

〈〈Xt, e
I(η)−1/2|η|20〉〉 = 〈〈X0, e

I(η)−1/2|η|20〉〉 +

∫ t

0

〈〈f(s, Xs), e
I(η)−1/2|η|20〉〉 ds.

We will need the following theorem on existence and uniqueness of solutions of white
noise integral equations ([Ku], Th. 13.43).

Theorem 3.15 Suppose f is function from [0, T ]× (S)∗ into (S)∗ satisfying the following
conditions:

(a) (Measurability condition) The function f(s, Xs) s ∈ [0, T ], is weakly measurable for
any weakly measurable function X : [0, T ] → (S)∗.

(b) (Lipschitz condition) For almost all t ∈ [0, T ],

|Sf(t, Φ)(η) − Sf(t, Ψ)(η)| ≤ L(t, η)|SΦ(η) − SΨ(η)|,

for all η ∈ S(R) and Ψ, Φ ∈ (S)∗, where L is nonnegative and
∫ T

0

L(t, η) dt ≤ K(1 + |η|2p)

for some K, p ≥ 0.

(c) (Growth condition) For almost all t ∈ [0, T ]

|Sf(t, Φ)(η)| ≤ ρ(t, η)(1 + |SΦ(η)|),

for all η ∈ S(R) and Φ ∈ (S)∗, where ρ is nonnegative and
∫ T

0

ρ(t, η) dt ≤ K exp
(

c|η|2p
)

,

where K, p are the same as above and c ≥ 0.

Then for any X0 ∈ (S)∗ the equation

Xt = X0 +

∫ t

0

f(s, Xs) ds

has a unique weak solution X such that for all η ∈ S(R)

ess sup
t∈[0,T ]

|SXt(η)| < ∞.
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The last theorem will be used to prove the following theorem on existence and unique-
ness of solutions of stochastic integral equations driven by Gaussian processes with depen-
dent increments. There we suppose that a(·, ·)+b(·, ·)�W v

· satisfies the conditions of Kuo’s
theorem.

Theorem 3.16 (Existence and Uniqueness Theorem for bilinear SDE’s) Let σ, µ ∈
C([0, T ]) and X0 ∈ (S)∗ and t ∈ [0, T ]. Further let m(u, t) such that there exist K, p > 0
satisfying

∫ T

0

∣

∣

∣

∣

〈 d

dt
m(u, t), η(u)〉

∣

∣

∣

∣

dt ≤ K(1 + |Apη|0).

Then there exists a unique solution of

Xt = X0 +

∫ t

0

(µ(s)Xs + σ(s)Xs � W v
s ) ds

which is given by

Xt = X0 exp�(

∫ t

0

µ(s) ds +

∫ t

0

σ(s) dBv
s ).

Proof. We check the conditions of the existence and uniqueness Theorem 3.15. The
measurability condition is met due to continuity of the Wick product and measurability of
dm(u, t)/dt. Now we show the Lipschitz condition, for almost all t ∈ [0, T ] and and for all
Φ, Ψ ∈ (S)∗ and η ∈ S(R)

∣

∣

∣

∣

S(µ(t)Φ)(η) + S(σ(t)Φ)(η) 〈 d

dt
m(u, t), η(u)〉

−S(µ(t)Ψ)(η) − S(σ(t)Ψ)(η) 〈 d

dt
m(u, t), η(u)〉

∣

∣

∣

∣

≤ (|µ(t)| + |σ(t) 〈 d

dt
m(u, t), η(u)〉|)|S(Φ)(η)− S(Ψ)(η)|.

So we get

(|µ(t)| + |σ(t)〈 d

dt
m(u, t), η(u)〉|) = L(t, η)

and the estimation for
∫ T

0
L(t, η) dt is

∫ T

0

(|µ(t)| + |σ(t)〈 d

dt
m(u, t), η(u)〉|) dt

≤ max{|µ(t)|}T + max{|σ(t)|}
∫ T

0

|〈 d

dt
m(u, t), η(u)〉| dt.
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This proves the Lipschitz condition. In order to check the growth condition we proceed in
a similar manner

|S(µ(t)Φ)(η) + S(σ(t)Φ)(η)〈 d

dt
m(u, t), η(u)〉|

≤
(

max
t

{|µ(t)|} + max
t

{|σt|}|〈
d

dt
m(u, t), η(u)〉|

)

|S(Φ)(η)|

≤
(

max
t

{|µ(t)|} + max
t

{|σt|}|〈
d

dt
m(u, t), η(u)〉|

)

(1 + |S(Φ)(η)|).

Then
(

maxt{|µ(t)|} + maxt{|σt|}|〈 d
dt

m(u, t), η(u)〉|
)

= ρ(t, η) and the condition for ρ(t, η)
is obviously satisfied. The solution is calculated by

Xt =

∫ t

0

(µ(s) + σ(s)W v
s ) � Xs ds

Xt = exp�(

∫ t

0

µ(s) ds +

∫ t

0

σ(s) dBv
s ).

�

Remark 3.17 It is natural to ask why the bilinear case is considered only, whereas the
existence and uniqueness theorem of Kuo is formulated even for a nonlinear situation.
In the authors’ point of view the theorem of Kuo is only applicable in the bilinear case.
Note that the function f is a function from R × (S)∗ → (S)∗. But the motivation of the
authors is to take a real vauled function g : R

2 → R with |g(t, x)|2 ≤ K(1 + |x|2), and
to define the stochastic differential equation with this function. One has to explain such
a real-valued function with elements of (S)∗. A further argument is that the Lipschitz
condition fails with a nonlinear function g. Suppose F, G ∈ (L2) and a η ∈ S(R) such that
|S(F − G)(η)| = 0 and beside |S(g(t, F ) − g(t, G))(η)| 6= 0. This is possible if F − G is
linearly independent to g(t, F ) − g(t, G). If we now demand the linear dependence above,
we get with the property of a real valued function only the linear or constant case for g in
x.

4 Special Gaussian processes with dependent incre-

ments

We introduce special Gaussian processes with dependent increments and show some prop-
erties of them. Before we state and prove

Lemma 4.1 Let Xt be a (in the (S)∗-sense) continuously differentiable stochastic distribu-
tion processes and a(t) a continuously differentiable real-valued function. Then the product
rule

d(a(t)Xt)

dt
=

da(t)

dt
Xt + a(t)

dXt

dt
holds in the (S)∗-sense.
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Proof. This obviously follows from

lim
h→0

a(t + h)Xt+h

h

= lim
h→0

(

a(t + h)Xt+h

h
− a(t)Xt+h

h
+

a(t)Xt+h

h
− a(t)Xt

h

)

.

�

Now we discuss the ordinary Ornstein-Uhlenbeck process in the (S)∗-sense and then a
generalized Ornstein-Uhlenbeck process is presented.

Example 4.2 [Ordinary Ornstein-Uhlenbeck process] We apply this to the centered Orn-
stein-Uhlenbeck process BOU

t , the centered Ornstein Uhlenbeck process is a stationary
centered Gaussian process with covariance function v(s, t) = (σ2/2α) exp(−α|t − s|) with
positiv constants α, σ, if the initial vaule has a normal BOU

0 distribution with mean zero
and variance (σ2/2α). So

BOU
t := BOU

0 exp(−αt) + 〈·, σ1([0, t]) exp(−α(t − u))〉,

so we get as derivative of the Ornstein-Uhlenbeck process

d

dt
BOU

t := BOU
0 (−α) exp(−αt) + 〈·, σ d

dt
(1([0, t]) exp(−α(t − u)))〉,

(see Karatzas and Shreve [KaSh], Chapter 5.6).
The integral and the stochastic differential equation with respect to the Ornstein Uh-

lenbeck process can be defined similarly as before. Note that now it is possible to derivate
the Ornstein-Uhlenbeck process.

Example 4.3 [Generalized Ornstein-Uhlenbeck process] Let α, σ > 0 and Bv
t be as in

Theorem 3.9. The generalized Ornstein-Uhlenbeck process is the solution of the stochastic
differential equation

dXt = −αXt dt + σ dBv
t ,

which is the same as
Xt

dt
= −αXt + σW v

t

in the (S)∗-sense. Note that by the existence and uniqueness theorem one can show with
slight modifications that the solution is unique. We solve the corresponding non-disturbed
equation dXt = −αXt dt and get the solution Xt = C exp(−αt), we assume that the C is
a stochastic distribution process and by the product rule the derivative becomes to

d(Ct exp(−αt))

dt
=

dCt

dt
exp(−αt) − αCt exp(−αt).
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Comparing this with the stochastic differential equation we deduce

dCt

dt
exp(−αt) = σW v

t

and so Ct = C0 +
∫ t

0
exp(αs)σW v

s ds = C0 + σ
∫ t

0
exp(αs) dBv

s . Thus the solution is

BGOU
t := Xt = C0 exp(−αt) + σ

∫ t

0

exp(−α(t − s)) dBv
s ,

where C0 is the initial random variable of the process BGOU
t . By corollary 3.10 the ex-

pectation value of BGOU
t is S(BGOU)(0) = E(C0) exp(−αt), and its covariance function is

equal to

E
(

(BGOU
t − E(C0) exp(−αt))(BGOU

s − E(C0) exp(−αs))
)

= exp(−α(t + s))(E(C2
0) − E(C0)

2) + E(C0 exp(−αt)σ

∫ s

0

exp(−α(s − u)) dBv
s)

+E(C0 exp(−αs)σ

∫ t

0

exp(−α(t − u)) dBv
s )

+E(σ2

∫ t

0

exp(−α(t − u)) dBv
s

∫ s

0

exp(−α(s − u)) dBv
s ).

Finally we present a process that can be considered as an extension of the Brownian
Bridge.

Example 4.4 [Brownian bridge with Bv
t ] An ordinary Brownian bridge is given for 0 <

a < b and t ∈ [0, T ] by

Ba→b
t := a

(

1 − t

T

)

+ b
t

T
+

(

Bt −
t

T
BT

)

.

This definition motivates the extension to the generalized Brownian Bridge given by

Bv,a→b
t := a

(

1 − t

T

)

+ b
t

T
+

(

Bv
t − t

T
Bv

T

)

.

The expectation value is E(Bv,a→b
t ) = E(Ba→b

t ) = a + (b− a)t/T . The covariance function
of Bv,a→b

t is equal to

E

(

(

Bv
s − s

T
Bv

t

)

(

Bv
t − t

T
Bv

T

))

= v(s, t) − t

T
v(s, T ) − s

T
v(s, T ) +

st

T
v(T, T ).

Example 4.5 [Application of short range dependency] Let S(t) be the value of a brand.
Suppose that the value of the brand is influenced by the investment rate of the current value
of the brand µ(t). It seems reasonable that, if S(t) is growing very fast, the increments
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of the value in the next few time periods change depending on what had happened just
recently. This is a realistic short range influence as people begin to talk about the brand
until they forget the advertisement. But on the other side one may imagine a long range
dependency of S(t) which stands for the long memory of the people. So, if we formulate
this in a stochastic differential equation, we may get

S(t) = S0 +

∫ t

0

µS(s) ds +

∫ t

0

σ1S(s) dBH
s +

∫ t

0

σ2S(s) dBs
s, t > 0

with solution
S(t) = C exp�(µt + σ1B

H
t + σ2B

s
t ).

One can also construct such examples for stock prices and other processes, where the
memory of the people is crucial.

5 Notes

Remark 5.1 If we use the Wick product than the stochastic integral’s expectation turns
out to be zero. There were other approachs to define the stochastic integral driven by frac-
tional Brownian motion with the ordinary product. But the expectation of these integrals
can have values nonequal to zero. Another problem with the Wick product is that the it
is not closed as an operation in (L2). Hence it can happen that for a stochastic process
in (L2) the integral with a Gaussian process with dependent increments is a stochastic
distribution. But one can restrict the class of admissible integrands such that the integral
is a random variable.

Remark 5.2 In the definition of Gaussian processes with dependent increments we started
with the function m(u, t), then the covariance function v(s, t) followed. For applications
it may be desirable to suppose a covariance function of the stochastic process, because
the covariance function can be estimated more easily, and then to compute the function
m(u, t). The authors skipped this discussion in the present paper.
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