
Universität
Stuttgart

Fachbereich
Mathematik

Option Pricing in a Black-Scholes Market with Memory
Jürgen Dippon, Daniel Schiemert

Preprint 2006/003





Universität Stuttgart
Fachbereich Mathematik

Option Pricing in a Black-Scholes Market with Memory
Jürgen Dippon, Daniel Schiemert

Preprint 2006/003



Fachbereich Mathematik
Fakultät Mathematik und Physik
Universität Stuttgart
Pfaffenwaldring 57
D-70 569 Stuttgart

E-Mail: preprints@mathematik.uni-stuttgart.de

WWW: http://www.mathematik/uni-stuttgart.de/preprints

ISSN 1613-8309

c© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.
LATEX-Style: Winfried Geis, Thomas Merkle



Option Pricing in a Black-Scholes Market with

Memory ∗

Jürgen Dippon and Daniel Schiemert

May 5, 2006

Abstract

We price contingent claims by a replicating portfolio in a Black-Scholes market

with memory. The Black-Scholes market is given by a Gaussian process with depen-

dent increments. The wealth process of the replicating portfolio will be formulated

by the use of the Wick product, which has its interpretation by the existence of an

equal classical portfolio. Further a chain rule for stochastic distribution processes is

proved.

1 Introduction

In the last five years several approaches to price options in markets with stock prices
have been driven by a fractional Brownian motion has been published (see e.g. [HuOk],
[HuOkSa]). The most interesting feature of these markets is that the stock price process
has dependent increments. There the construction of a stochastic integral and a replicating
portfolio uses a product for Hida distributions called Wick product. Several problems of
the interpretation of these models especially of the Wick product are discussed in [BjHu]
and [Be]. These arguments would normally force to deny these economic models.

In [DiSc] an integral calculus for a large class of Gaussian processes with dependent
increments is formulated, which contains the fractional Brownian motion as a special case.
In order to define the stochastic integral and the replicating portfolio the Wick product is
employed, too. In the present paper we suggest how to interpretate this Wick portfolio.
In the second and third section of this paper results on the white noise calculus and the
stochastic integral developped in [DiSc] are sketched. In the fourth section a chain rule for
stochastic distribution processes is proved, and it is shown that in special cases it is identical
with Itô’s rule. In the fifth section we formulate the Black-Scholes market with memory
and price a path-independent contingent claim in a Black-Scholes market with memory. It
turns out that the value of such an options is the solution of a partial differential equation,
namely a weighted heat equation with boundary condition given by the pay-off profile of
the option.

∗This project is partially supported by the Studienstiftung des Deutschen Volkes.
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2 Gaussian processes and white noise calculus

2.1 The construction of the Schwartz space and its dual

Let | · |0 be the norm of L2(R). We sketch the construction of the Schwartz space S(R)
with the locally convex topology and its dual S ′(R) with the weak topology. Let 〈ω, η〉
denote the bilinear pairing with ω ∈ S ′(R) and η ∈ S(R). It follows that 〈·, ·〉 is the inner
product of L2(R) if ω, η ∈ L2(R). The following construction of the Schwartz space and
its dual is presented, for instance, in [Ku], Chapter 3.2. Let A := − d2

dx2 + x2 + 1, so A is
densely defined on L2(R). With the Hermite polynomial of degree n

Hn(x) := (−1)nex2

(

d

dx

)n

e−x2

we define

en(x) :=
1

√√
π2nn!

Hn(x)e
−x

2

2 .

The functions en(x) are eigenfunctions of A and the corresponding eigenvalue is 2n + 2,
n ∈ N0. The operator A−1 is bounded on L2(R), especially A−p is a Hilbert-Schmidt
operator for any p > 1

2
. Let for each p ≥ 0, |f |p := |Apf |0. The norm is given by the

eigenvalues as

|f |p =

(

∞
∑

n=0

(2n + 2)2p〈f, en〉2
)1/2

.

We define
Sp(R) := {f ; f ∈ L2(R), |f |p < ∞}

and with these spaces the Schwartz space S(R) can be represented by S(R) = ∩p≥0Sp(R).
This construction leads to the Gel’fand triple S(R) ⊂ L2(R) ⊂ S ′(R). Furthermore, we
get the following continuous inclusion maps

S(R) ⊂ Sp(R) ⊂ L2(R) ⊂ S ′
p(R) ⊂ S ′(R).

Let B denote the Borel σ-algebra on S ′(R), i.e., the σ-algebra generated by the weak
topology. One can show by the use of the Bochner-Minlos theorem that there is a unique
Gaussian measure µ on (S ′(R),B). The space (S ′(R),B, µ) is called white noise, and the
space (L2) denotes L2(S ′(R),B, µ). The bilinear form 〈ω, f〉 with f ∈ L2(R) and ω ∈ S ′(R)
is declared by

lim
k→∞

〈ω, ηk〉 = 〈ω, f〉

with ηk → f and {ηk} ⊂ S(R). It is possible to show that 〈·, f〉 =
∫

R
f(s) dBs is a random

variable in (L2) for all f ∈ L2(R). The random variable 〈·, f〉 has expectation value zero
and variance |f |20.
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2.2 A class of Gaussian processes with dependent increments

Suppose m(·, ·) : R
2 → R such that for all t ∈ R the function m(u, t) ∈ L2(R). Define

v(s, t) =
∫

R
m(u, t)m(u, s) du. Then we have the stochastic process

Bv
t := 〈·, m(u, t)〉 =

∫

R

m(u, t) dBu, t ∈ R,

with ordinary Brownian motion Bu. We choose m(u, t) such that d
dt

m(u, t) ∈ S ′
p(R) for all

t ∈ R and for some p ≥ 0. The process Bv
t is a Gaussian process. Its covariance function

is given by

v(s, t) =

∫

S′(R)

Bv
sB

v
t dµ =

∫

R

m(u, s)m(u, t) du.

Now we show some properties of Bv
t which follows by assumed properties of m(u, t). Let

m(u, 0) ≡ 0, hence Bv
0 = 0, and Bv

t is a centered Gaussian process. The properties
v(t, t) ≥ 0 and v(s, t) = v(t, s) are obvious. It is natural to request that Bv

t is pathwise
continuous. This is ensured by the supposed continuity of the function 〈ω, m(u, ·)〉 : R →
R, ω ∈ S ′(R). In Section 5 we will additionally require that the function |m(·, t)|20 is
continuously differentiable and strictly monotone increasing in t with t > 0 and that for
T > 0

lim
t→T

(T − t)
√

|m(u, T )|20 − |m(u, t)|20
< ∞.

Further we suppose that there is a η ∈ S(R) such that for all t ∈ [0, T ] , T > 0

〈dm(u, t)

dt
, η(u)〉 = 1([0, T ])(t) (1)

holds, where 1([0, T ]) is the indicator function of the intervall [0, T ]. In the following we
give some special instances of Bv

t .

Example 2.1 [Ordinary Brownian motion] The stochastic process Bv
t = Bt is the ordinary

Brownian motion if m(u, t) = 1([0, t])(u). Its covariance function is v(s, t) = min(t, s). This
example is further discussed in [Ku], Chapter 3.1.

Example 2.2 [A Gaussian process with short range dependency] Let Bs
t , t ∈ R, be a

centered Gaussian process with covariance function v(s, t), such that v(s, ·) has a global
maximum and limt→∞ v(s, t) = 0 for all fixed s ∈ R. Then we call Bs

t a short range
Brownian motion. As an example consider m(u, t) = t2 exp(−(u − t)2), hence v(s, t) =
kt2s2 exp(−(t − s)2/2) with a constant k.

The fractional Brownian motion BH
t can be formulated in this framework, too (see

[DiSc] or [Be]).
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2.3 The construction of the Hida test and distribution space

In this section the construction of the Hida test and Hida distribution spaces (S) and (S)∗

are outlined. These spaces are used to derivate the Gaussian process Bv
t and to define a

stochastic integral driven by these Gaussian processes. A more detailed description can be
found e.g. in [Ku], Chapter 3.3, and in [Be], Chapter 5.3. Together with (L2) they form also
a Gel’fand triple (S) ⊂ (L2) ⊂ (S)∗. Let 〈〈Φ, ζ〉〉 denote the bilinearform of Φ ∈ (S)∗ and
ζ ∈ (S). For f ∈ L2(Rn) the multiple Wiener integral with respect to ordinary Brownian
motion is defined by

In(f) := n!

∫

Rn

f(t1, t2, t3, . . . , tn) dBt1dBt2 . . . dBtn .

The following proposition is the chaos decompostion of (L2) (see [Be], Theorem 1.4.8).

Proposition 2.3 For all F ∈ (L2) there is a unique sequence (fn)n∈N0 such that fn ∈
L2(Rn) is symmetric and

F =

∞
∑

n=0

In(fn)

with convergence in (L2).

For A as above the operator Γ(A) on (L2) is defined by

Γ(A)F =

∞
∑

n=0

In(A⊗nfn)

with F ∈ (L2). Let (S)n = Γ(A)n((L2)) with inner product

((F, G))n := E[Γ(A)−nF · Γ(A)−nG]

with F, G ∈ (L2). Now we set similarly as above (S) := ∩n∈N(S)n. With (S)′n := (S)−n,
we get (S)∗ := ∪n∈N(S)−n. The topologies of (S) and of (S)∗ are given by the projective
limit topology and weak topology, respectively (see [Ku], Chapter 2.2). As before there
are continuous inclusion maps

(S) ⊂ (S)n ⊂ (L2) ⊂ (S)−n ⊂ (S)∗.

2.4 S-transform and Wick product

Now we introduce the S-transform from (S)∗ into the set of the functions from S(R) to R.
For η ∈ S(R) set I(η) := I1(η) =

∫

R
η(s) dBs.

Proposition 2.4 For all η ∈ S(R) the random variable exp(I(η)− 1/2|η|20) is a Hida test
function and the set

{

eI(η)−1/2|η|20 : η ∈ S(R)
}

is total in (S).
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The proof can be found in [Ku], Proposition 5.10.

Definition 2.5 The S-transform of a Hida distribution Φ ∈ (S)∗ is defined by

(SΦ)(η) := 〈〈Φ, eI(η)−1/2|η|20〉〉, η ∈ S(R).

Remark 2.6 The image of the S-transform is discussed in [PoSt]. There it is proved
that the S-transform as a mapping from S(R) to R has some analytic properties. The
S-transform is an injective mapping.

This follows from the preceeding proposition (see [Ku], Proposition 5.10).

Proposition 2.7 The S-transform of 〈·, f〉 with f ∈ S ′(R) is given by

S(〈·, f〉)(η) = 〈f, η〉

For further explanation about the notation and the properties of the term 〈·, f〉 with
f ∈ S ′(R) see [Ku], Chapter 3.4. The proof is given in [Ku], Proposition 5.9. This
proposition will be used to define the stochastic integral driven by Gaussian processes
with dependent increments. For further details of the S-transform see [Ku], Chapter 5, or
[PoSt].

Example 2.8 The S-transform of the ordinary Brownian motion Bt is

S(Bt)(η) = 〈〈Bt, e
I(η)−1/2|η|20〉〉

=

∫

S′(R)

Bte
I(η)−1/2|η|20 dµ

=

∫

R

1([0, t])(u)η(u) du =

∫ t

0

η(u) du,

by the use of proposition 2.7.

Example 2.9 For the short range Brownian motion Bs
t we get

S(Bs
t )(η) = 〈〈Bs

t , e
I(η)−1/2|η|20〉〉

=

∫

S′(R)

Bs
t e

I(η)−1/2|η|20 dµ

=

∫

R

η(u)t2 exp(−(u − t)2) du,

by the use of proposition 2.7.

Now one can define the Wick product as follows (see [Ku], Chapter 8.4, page 92):

Definition 2.10 The Wick product of two Hida distributions Φ and Ψ in (S)∗, denoted
by Φ �Ψ, is the unique Hida distribution in (S)∗ such that S(Φ �Ψ)(η) = S(Φ)(η)S(Ψ)(η)
for all η ∈ S(R).
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3 Stochastic calculus for Gaussian processes with de-

pendent increments

3.1 The white noise Wv
t

In this subsection we differentiate Bv
t . The following definition is taken from [Be], Chapters

5.3 and 5.4.

Definition 3.1 Let I be an interval in R. A mapping X : I → (S)∗ is called a stochastic
distribution process. A stochastic distribution process is called differentiable in the (S)∗-
sense, if

lim
h→0

Xt+h − Xt

h
exists in (S)∗.

Now we are prepared to compute dBv
t /dt in the (S)∗-sense and to define the stochastic

integral
∫

R
Xt dBv

t as a white noise integral by use of the Wick product.
The next theorem presents a criterion for differentiability (see [Be], Theorem 5.3.9).

Let I be as above.

Theorem 3.2 Let F : I → S ′(R) be differentiable in the sense of the weak topology of
S ′(R). Then 〈·, F (t)〉 is a differentiable stochastic distribution process and

d

dt
〈·, F (t)〉 = 〈·, d

dt
F (t)〉.

So we obtain a theorem for the derivative of the Gaussian process Bv
t in the (S)∗-sense.

Theorem 3.3 (Derivative of Bv
t )

W v
t :=

d

dt
Bv

t = 〈·, d

dt
m(u, t)〉

The S-transform of W v
t is

S(W v
t )(η) = 〈 d

dt
m(u, t), η(u)〉.

Proof. The proof is given by Theorem 3.2. �

With δt denoting the Dirac distribution we get

Example 3.4 [Ordinary Brownian motion] For the derivative of the ordinary Brownian
motion Bt, we use d

dt
1([0, t]) = δt so dBt/dt =: Wt = 〈·, δt〉, further S(Wt)(η) = η(t) (see

[Ku], Chapter 3.1).

Example 3.5 [Short range Brownian motion] The derivative of Bs
t is obviously given by

〈·, d

dt
t2 exp(−(t − u)2)〉 = 〈·, 2t exp(−(t − u)2) + t2(−2(u − t)) exp(−(u − t)2)〉.

In this way one can also get the derivative of the fractional Brownian motion W H
t (see [Be]

or [DiSc]). The stochastic distribution process W v
t is called white noise of Bv

t . With the
white noise W v

t we can define
∫

R
Xt dBv

t .
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3.2 White noise integral and stochastic differential equations
driven by Bv

t

We start with the definition of the white noise integral (see [Ku], Chapter 13).

Definition 3.6 The stochastic distribution process X· : R → (S)∗ is white noise integrable,
if there is a Ψ ∈ (S)∗ such that, for all η ∈ S(R), (SX·)(η) ∈ L1(R) and

(SΨ)(η) =

∫

R

(SXt)(η) dt.

This definition makes sense as the S-transform is injective.

Definition 3.7 If Xt�W v
t is white noise integrable, the stochastic integral of the stochastic

distribution process Xt is given by

∫

R

Xt dBv
t :=

∫

R

Xt � W v
t dt.

This definition coincides in the case of the fractional Brownian motion with the defini-
tion of the fractional Itô integral (see Bender ([Be]), Øksendal and Hu [HuOk]). Further
consider a continuously differentiable stochastic distribution process Zt.

Definition 3.8 If Xt � (dZt)/(dt) is white noise integrable, then the stochastic distribution
process Xt has a stochastic integral

∫

R
Xt dZt :=

∫

R
Xt � (dZt)/(dt)dt .

The following theorem is inspired by Bender’s theorem for fractional Itô integrals (see [Be],
Chapter 5) and proved in [DiSc].

Theorem 3.9 Let a, b ∈ R, X· : [a, b] → (S)−p be continuous for some p ∈ N, and W v
· :

R → (S)−q be continuous for some q ∈ N. Then
∫ b

a
Xt dBv

t exists. Further for any sequence

of tagged partitions τn = (π
(n)
k , t

(n)
k ) of [a, b] with limn→∞ max{|πk − πk−1|; k = 1, .., n} = 0,

we have

lim
n→∞

n
∑

k=0

X
t
(n)
k−1

�
(

Bv

π
(n)
k

− Bv

π
(n)
k−1

)

=

∫ b

a

Xt dBv
t

with limit in (S)∗. Let
∫ t

0
Xs dBv

s exist and
∫ t

0
Xs dBv

s ∈ (L2). Then E(
∫ t

0
Xs dBv

s ) = 0.

The S-transform of
∫

R
Xt dBv

t is therefore given by

S

(
∫

R

Xt dBv
t

)

(η) =

∫

R

S(Xt � W v
t )(η) dt =

∫

R

(SXt)(η)〈 d

dt
m(u, t), η(u)〉 dt.
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Example 3.10 We calculate

∫ t

0

Bv
s dBv

s =

∫ t

0

Bv
s � W v

s ds =
1

2
(Bv

t )
�2 ,

where (·)�2 is the Wick square. By the Wick calculus presented in [Be], Chapter 1, or [Ku],
Chapter 8, we get

1

2
(Bv

t )
�2 =

1

2
(Bv

t )
2 − 1

2
|m(u, t)|20.

Note that this example coincides with the case of ordinary Brownian motion with the Itô-
integral and with the case of fractional Brownian motion with the fractional Itô integral.

Example 3.11 Consider the stochastic differential equation

dXt = µXt dt + σXt dBv
t ,

with constants µ ∈ R and σ > 0, which is declared by the integral equation

Xt =

∫ t

0

µXs ds +

∫ t

0

σXs dBv
s

=

∫ t

0

(µXs + σXs � W v
s ) ds

=

∫ t

0

Xs � (µ + σW v
s ) ds,

Its solution is given by

Xt = exp�(µt + σBv
t ) = exp(µt + σBv

t − 1

2
σ2|m(u, t)|20),

where exp�(〈·, f〉) =
∑∞

k=0(〈·, f〉)�k/k!, and some Wick calculus is used in the last equation,
see e.g. [Be], Chapter 1.

4 A Chain Formula for stochastic distribution pro-

cesses

In this section we deduce a chain formula for a certain class of stochastic distribution
processes. It will be proved, that this chain formula includes Itô’s rule in the case of the
Brownian motion. For its proof we will need the following characterization of convergence
in (S)∗ (see [Ku], Theorem 8.6, page 86, or [PoSt]).

Theorem 4.1 Let (Φn) be a sequence in (S)∗ and Fn(η) = S(Φn)(η). Then (Φn) converges
in (S)∗ if and only if the following conditions are satisfied:

12



(i) limn→∞ Fn(η) exists for all η ∈ S(R).

(ii) There are positive constants K, a and p such that for all n ∈ N and η ∈ S(R)

|Fn(η)| ≤ K exp(a|η|2p) (2)

In [Ku], Chapter 5.3, an identity between Wick powers and powers with ordinary product
is given, which will be used several times in the following proofs. For f ∈ L2(R) and n ∈ N0

it holds

(〈·, f〉)n =

n/2
∑

k=0

(

n

2k

)

(2k − 1)!! |f |2k
0 (〈·, f〉)�(n−2k),

where by convention (2k − 1)!! = (2k − 1)(2k − 3) · · · 3 · 1 and (−1)!! = 1. Further, the
upper limit of the index is to be understood as the integer part of n/2.

Theorem 4.2 Let f(·, ·) : R × (S)∗ → (S)∗, such that f(t, X) =
∑n

k=0 ak(t)X
�k with

continuously differentiable functions ak(t). Then the chain formula

f(b, Bv
b ) − f(a, Bv

a) =

∫ b

a

(

∂

∂t
f(t, Bv

t ) +
∂

∂x
f(t, Bv

t ) � W v
t

)

dt

=

∫ b

a

∂

∂t
f(t, Bv

t ) dt +

∫ b

a

∂

∂x
f(t, Bv

t ) dBv
t

holds.

Proof. The S-transform of f(t, Bv
t ) is given by g(t; η) :=

∑n
k=0 ak(t)(S(Bv

t )(η))k. It follows
that the derivative of the function g(t; η) equals

dg(t; η)

dt
=

n
∑

k=0

(

dak(t)

dt
(S(Bv

t )(η))k + ak(t)k(S(Bv
t )(η))k−1S(W v

t )(η)

)

,

by use of Theorems 3.2 and 3.3. After integrating both sides with respect to t, the S-
transform of the assertion follows. �

Theorem 4.3 Let f be as in Theorem 4.2. If Bv
t is the ordinary Brownian motion Bt,

then the chain rule as given above and Itô’s rule coincide.

Proof. Due to the Wick calculus the function f(t, Bt) has two representations, one with
Wick product, and the other with ordinary product. The chain rule is declared with respect
to the representation with the Wick product and Itô’s rule ist declared with respect to the
representation with the ordinary product. Both will be calculated and by comparing the
summands it will be shown, that they are equal. As the chain rule and Itô’s rule are
linear mappings, it is sufficient to check the assertion for a(t)(Bt)

n with any continuously

13



differentiable a(t) and any n ∈ N. First we show the representation with the Wick product
of a(t)(Bt)

n by use of the Wick calculus and the chain rule

a(t)(Bt)
n = a(t)

n/2
∑

k=0

(

n

2k

)

(2k − 1)!! tk(Bt)
�(n−2k)

=

∫ t

0

da(u)

du

n/2
∑

k=0

(

n

2k

)

(2k − 1)!! uk(Bu)
�(n−2k) du

+

∫ t

0

a(u)

n/2
∑

k=0

(

n

2k

)

(2k − 1)!! kuk−1(Bu)
�(n−2k) du

+

∫ t

0

a(u)

n/2
∑

k=0

(

n

2k

)

(2k − 1)!! uk(n − 2k)(Bu)
�(n−2k−1) dBu

=: I1 + I2 + I3

Applying Itô’s rule to a(t)(Bt)
n and then using the Wick representation it follows

a(t)(Bt)
n =

∫ t

0

da(u)

du
(Bu)

n du +

∫ t

0

a(u)n(Bu)
n−1 dBu +

1

2

∫ t

0

a(u)n(n − 1)(Bu)
n−2 du

=

∫ t

0

da(u)

du

n/2
∑

k=0

(

n

2k

)

(2k − 1)!! uk(Bu)
�(n−2k) du

+

∫ t

0

a(u)n

(n−1)/2
∑

k=0

(

(n − 1)

2k

)

(2k − 1)!! uk(Bu)
�(n−2k−1) dBu

+
1

2

∫ t

0

a(u)n(n − 1)

(n−2)/2
∑

k=0

(

(n − 2)

2k

)

(2k − 1)!! uk(Bu)
�(n−2k−2) du

=: I4 + I5 + I6.

The term I1 is equal to I4. The integral I2 is equal to I6, because with k + 1 =: m in I6

we get

I6 =
1

2

∫ t

0

a(u)n(n − 1)

(n−2)/2
∑

k=0

(

(n − 2)

2k

)

(2k − 1)!! uk(Bu)
�(n−2k−2) du

=

∫ t

0

a(u)

n/2
∑

m=1

(n − 2)! n (n − 1) 2m (2m − 1)

2(n − 2m)!(2m)!
(2m − 3)!! um−1(Bu)

�(n−2m) du

=

∫ t

0

a(u)

n/2
∑

m=1

(

n

2m

)

(2m − 1)!! mum−1(Bu)
�(n−2m) du

= I2.
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The integral I3 is equal to I5, note that both sums have the same largest k if n is odd, and
if n is even, then the last term in I3 vanishes because of the factor (n − 2k), hence both
sums end again at the same k. In order to show that both integrals are equal, we calculate

I5 =

∫ t

0

a(u)n

(n−1)/2
∑

k=0

(

(n − 1)

2k

)

(2k − 1)!! uk(Bu)
�(n−2k−1) dBu

=

∫ t

0

a(u)

(n−1)/2
∑

k=0

n!

(n − 1 − 2k)!(2k)!
(2k − 1)!! uk(Bu)

�(n−2k−1) dBu

=

∫ t

0

a(u)

n/2
∑

k=0

(

n

2k

)

(2k − 1)!!(n − 2k) uk(Bu)
�(n−2k−1) dBu

= I3.

�

In the next step the chain rule for limn→∞

∑n
k=0 a(t)(Bv

t )
�k will be considered. The idea

is to approximate functions by these Wick polynomials and to define a class of functions to
which the chain rule applies. One of these functions is the already known Wick exponential
exp�(〈·, f〉) =

∑∞
k=0(〈·, f〉)�k/k! with f ∈ S ′(R).

Definition 4.4 Let D be a subset of (S)∗. A function f : R × D → (S)∗ admits a Wick
representation in D, if there exists a sequence of Wick polynomials {ak(t)X

�k}∞k=0 with
continuously differentiable ak(t), such that for all X ∈ D

f(t, X) = lim
n→∞

n
∑

k=0

ak(t)X
�k

with convergence in (S)∗.

Now the question arises which functions f have this property. A sufficent condition for
this is given in the following corollary.

Corollary 4.5 Suppose that g : R → R has a power series representation with g(x) =
∑∞

k=0 gkx
k for all x ∈ R, and that there exist positive constants C, p and a such that for

X ∈ (S)∗ and for all η ∈ S(R)

|g(S(X)(η))| ≤ C exp(a|η|2p). (3)

Then

g�(X) :=

(

∞
∑

k=0

gkX
�k

)

∈ (S)∗.
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Proof. We have to check the first condition of Theorem 4.1. The convergence of Fn(η) :=
∑n

k=0 gk(S(X)(η))k is follows from the convergence of
∑n

k=0 gkx
k for all x ∈ R. �

In order to show where condition (3) may fail, we give the following example.

Example 4.6 Let h ∈ L2(R). Then exp�(〈·, h〉�k) /∈ (S)∗ for k > 2. We calculate the
S-transform and get

S

(

∞
∑

n=0

(〈·, h〉)�(kn)

n!

)

(η) =

∞
∑

n=0

(〈h, η〉k)n

n!
= exp(〈h, η〉k).

Now choose h = η, so condition (3) fails.

Theorem 4.7 Let D := {〈·, h〉, h ∈ S ′(R)}. Suppose that f : R × D → (S)∗ admits a
Wick representation in D, then the chain rule for f holds with b > a

f(b, Bv
b ) − f(a, Bv

a) =

∫ b

a

(

∂f(t, Bv
t )

∂t
+

∂f(t, Bv
t )

∂x
� W v

t

)

dt.

Proof. Observe that f(t, Bv
t ) = limn→∞

∑n
k=0 ak(t)(B

v
t )

�k and

n
∑

k=0

(

ak(b)(B
v
b )�k − ak(a)(Bv

a)
�k
)

=

∫ b

a

n
∑

k=0

(

dak(u)

du
(Bv

u)
�k + ak(u)k(Bv

u)
�(k−1) � W v

u

)

du

Taking limits n → ∞ on both sides proves the assertion. �

As with Itô’s chain rule it is helpful to have a chain rule which applies on functions of
solutions of stochastic differential equations, too.

Theorem 4.8 Suppose f : R × D → (S)∗ admits a Wick representation, and let the
stochastic distribution process X· : R → D be given by

X(t) − X(0) =

∫ t

0

(µ(u) + σ(u) � W v
u ) du

with two stochastic distribution processes µ and σ such that the integral exists. Then the
chain rule for f(t, Xt) holds with b > a

f(b, Xb) − f(a, Xa) =

∫ b

a

(

∂f(u, Xu)

∂t
+

∂f(u, Xu)

∂x
� (µ(u) + σ(u) � W v

u )

)

du.

Proof. The proof is obvious by taking the S-transform on both sides, and using the Wick
representation of f and the integral representation of Xt. Fubini’s theorem is applied to
change the order of integration and S-transformation. �
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Theorem 4.9 (Chain rule) Suppose f : R × D → (S)∗ admits a Wick representation
and let X· : R → D be a continuously differentiable stochastic distribution process. Then
for b > a it holds

f(b, Xb) − f(a, Xa) =

∫ b

a

∂f(u, Xu)

∂t
+

∂f(u, Xu)

∂x
� dXu

du
du.

Proof. The proof is given by calculating the S-transform as above. �

Remark 4.10 The chain rule can be generalized without effort to vector-valued stochas-
tic distribution processes f : R × ((S)∗)⊗n → (S)∗, which admit a corresponding Wick
representation.

5 Pricing in a Black-Scholes market with memory

The aim of this section is to derive a pricing formula for options. To begin with we discuss
the properties of our market model. Its formulation is similar to [HuOk].

5.1 Market assumptions

Suppose the market offers two types of investment assets. Fix some T > 0. Firstly, a bond
A(t) with constant interest rate r follows

dA(t)

dt
= r A(t) (4)

with t ∈ [0, T ] and A(0) = 1. Secondly, consider a stock whose price process S(t) is the
solution of the stochastic differential equation

dS(t)

dt
= µS(t) + σS(t) � W v

t , (5)

with the constants µ ∈ R and σ > 0 and t ∈ [0, T ]. Its unique solution is given by

S(t) = S(0) exp(µt + σBv
t − 1/2σ2|m(u, t)|20)

(for details see [DiSc]). A portfolio or a trading strategy is given by a two dimensional
process θ(t, S(t)) = (g(t, S(t)), h(t, S(t))), where g and h are the quantities of bonds and
stocks held at time t, respectively. In preceeding papers about fractional Brownian motion
in finance at least two possibilities to model the value of a portfolio are suggested (see
[BjHu]). One of them says that the wealth process of the Wick portfolio is

V w(t, θ) = gw(t, S(t)) � A(t) + hw(t, S(t)) � S(t) = gw(t, S(t)) · A(t) + hw(t, S(t)) � S(t).
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Here the Wick product at A(t) is changed to the ordinary product because A(t) is deter-
ministic, and the second possibility is the wealth process of the portfolio with ordinary
product in both investment possibilities such that

V o(t, θ) = go(t, S(t)) · A(t) + ho(t, S(t)) · S(t).

In [BjHu] there were several critical comments on the wealth process of the Wick portfolio.
These arguments would normally force to deny the Wick portfolio. But we will show that
under certain circumstances one can deduce from a given portfolio with ordinary products
a Wick portfolio, such that both portfolios are equal in (L2). Let

D := {S(0) exp(µt + σBv
t − 1/2σ2|m(u, t)|20) : t ∈ [0, T ]}. (6)

So here D is the set of random variables describing the stock prices, which can occur
in [0, T ]. Let go, ho : [0, T ] × R → R, such that go(t, x) =

∑∞
k=0 go

k(t)x
k and ho(t, x) =

∑∞
k=0 ho

k(t)x
k for all x ∈ R and continuously differentiable go

k(t) and ho
k(t) and suppose

go(t, X), ho(t, X) ∈ (L2) for all X ∈ D and for all t ∈ [0, T ].

Theorem 5.1 Let D, go and ho be as above. Then there exists a unique Wick portfolio
wealth process V w(t, θ) such that for all t ∈ [0, T ] it holds a.s. that

V o(t, θ) = go(t, S(t)) · A(t) + ho(t, S(t)) · S(t)

= V w(t, θ) = gw(t, S(t)) � A(t) + hw(t, S(t)) � S(t),

where gw, hw admit a Wick representation in D. For a Wick portfolio wealth process
V w(t, θ), where gw and hw admit a Wick representation in D, there is a unique wealth
process of a portfolio with ordinary products V o(t, θ), such that V o(t, θ) = V w(t, θ) a.s.
and for all t ∈ [0, T ].

Proof. We calculate for n ∈ N0, where X�0 := 1 with X ∈ D,

(S(t))�n = (S(0))n(exp�(µt + σBv
t ))

�n

= (S(0))n exp(nµt)(exp�(〈·, σm(u, t)〉))�n
= (S(0))n exp(nµt) exp�(〈·, nσm(u, t)〉)

= (S(0))n exp(nµt + nσBv
t − 1

2
n2σ2|m(u, t)|20)

= (S(0))n exp(nµt + nσBv
t − 1

2
nσ2|m(u, t)|20) exp(

1

2
(n − n2)σ2|m(u, t)|20)

= (S(0))n(exp(µt + σBv
t − 1

2
σ2|m(u, t)|20))n exp(

1

2
(n − n2)σ2|m(u, t)|20)

= (S(t))n exp(
1

2
(n − n2)σ2|m(u, t)|20).
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Applying this identity to the portfolio with ordinary products

V o(t, θ) = go(t, S(t)) · A(t) + ho(t, S(t)) · S(t)

=
∞
∑

k=0

A(t)go
k(t)(S(t))k +

∞
∑

k=0

ho
k(t)(S(t))k+1

=

∞
∑

k=0

A(t)go
k(t) exp(

1

2
(k2 − k)σ2|m(u, t)|20)(S(t))�k

+

∞
∑

k=0

ho
k(t) exp(

1

2
((k + 1)2 − (k + 1))σ2|m(u, t)|20)(S(t))�(k+1)

=

(

∞
∑

k=0

gw
k (t)(S(t))�k

)

A(t) +

(

∞
∑

k=0

hw
k (t)(S(t))�k

)

� S(t)

= gw(t, S(t)) � A(t) + hw(t, S(t)) � S(t) = V w(t, θ),

where

gw
k (t) := go

k(t) exp

(

1

2
(k2 − k)σ2|m(u, t)|20

)

and

hw
k (t) := ho

k(t) exp

(

1

2
((k + 1)2 − (k + 1))σ2|m(u, t)|20

)

.

The uniqueness of the Wick representation follows by the fact that the Wick product of
two Hida distributions is unique. �

This justifies the use of the Wick portfolio and we assume the wealth process V (t, θ) :=
V w(t, θ) to have the representation of the Wick portfolio, where g, h admit a Wick repre-
sentation in D.

Definition 5.2 A trading strategy is self-financing if

V (t, θ) − V (0, θ) =

∫ t

0

g(t, S(t)) dA(t) +

∫ t

0

h(t, S(t)) dS(t)

where integrals are defined in the (S)∗-sense.

Definition 5.3 The portfolio θ is called an arbitrage for the market given by (4) and (5),
if it is self-financing and V (0, θ) = 0, V (T, θ) ≥ 0 and µ({ω; V (T, θ)(ω) > 0}) > 0, where µ
is the probability measure introduced in Subsection 2.1. Let Θ be the class of self-financing
trading strategies in this market.

Theorem 5.4 There is no arbitrage in the class of self-financing trading strategies Θ.
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Proof. The wealth process V (t, θ) of a self-financing trading strategy θ satisfies with
v(t, S(t)) = g(t, S(t))A(t) + h(t, S(t)) � S(t)

V (T, θ) = V (0, θ) +

∫ T

0

g(u, S(u))rA(u) du (7)

+

∫ T

0

µ h(u, S(u)) � S(u) du +

∫ T

0

σ h(u, S(u)) � S(u) dBv
u (8)

= V (0, θ) +

∫ T

0

v(u, S(u))r du (9)

+

∫ T

0

(µ − r)h(u, S(u)) � S(u) du +

∫ T

0

σ h(u, S(u)) � S(u) dBv
u. (10)

According to (1) there exists a η̃ ∈ S(R) such that

〈dm(u, t)

dt
, η̃(u)〉 =

r − µ

σ
1([0, T ])(t).

Evaluating the S-transform of (7) with η̃ we get

S(V (T, θ))(η̃) = V (0, θ) +

∫ T

0

rS(V (u, θ))(η̃) du.

The solution of this integral equation is

S(V (T, θ))(η̃) = V (0, θ) exp(rT ).

Suppose that V (0, θ) = 0, then S(V (T, θ))(η̃) = 0. Because the measures µ and µη(·) :=
S(1(·))(η), the latter induced by the S-transform, are equivalent (for further details see
[Be], Chapters 2 and 6), it follows that V (T, θ) = 0 with respect to the measure µ. �

Now we specify the class of contingent claims which will be priced in the next subsection.

Definition 5.5 The class of path independent contingent claims X with expiry date T
consists of those contingent claims X(T ), whose payoff functions admit a representation
p(T, S(T )) =

∑∞
k=0 pk(S(T ))�k and satisfy p(T, S(T )) ∈ (L2).

Due to arguments above one can also deduce a power series representation of p(T, S(T ))
in S(T ) with ordinary products. We call this market the Black-Scholes market with mem-
ory, where the memory is given by covariance function v(s, t). The challenge of pricing
these contingent claims at time 0 is to determine the value of the replicating portfolio at
time 0, which we present in the next subsection.
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5.2 Pricing of contingent claims in the Black-Scholes market
with memory

We call a contingent claim in the market attainable, if there exists a self-financing trading
strategy θ that replicates the contingent claim X.

Theorem 5.6 (Pricing of contingent claims) The contingent claim X ∈ X is attain-
able in the Black-Scholes market with memory. The value process v(t, S(t)) = V (t, θ) of
the portfolio θ replicating the contingent claim X satisfies the following stochastic partial
differential equation

rvs(t, S(t)) � S(t) − rv(t, S(t)) + vt(t, S(t)) = 0 (11)

with boundary condition v(T, S(T )) = p(T, S(T )).

Proof. The wealth process is defined by v(t, S(t)) = g(t, S(t))A(t) + h(t, S(t)) � S(t). We
apply the chain rule from Theorem 4.9 with D as in (6) to the wealth process and get

v(t, S(t)) − v(0, S(0)) =

∫ t

0

vt(u, S(u))du +

∫ t

0

vs(u, S(u)) � S(u) � (µ + σW v
u )du.

Because the replicating portfolio is self-financing it follows

v(t, S(t)) − v(0, S(0)) =

∫ t

0

g(u, S(u))rA(u) du +

∫ t

0

h(u, S(u)) � S(u) � (µ + σW v
u ) du.

Comparing both results we get

∫ t

0

vt(u, S(u)) du +

∫ t

0

vs(u, S(u)) � S(u) � (µ + σW v
u ) du

=

∫ t

0

g(u, S(u))rA(u) du +

∫ t

0

h(u, S(u)) � S(u) � (µ + σW v
u ) du

and this becomes to
∫ t

0

(vt(u, S(u)) + µvs(u, S(u)) � S(u) − g(u, S(u))rA(u)− µh(u, S(u)) � S(u)) du

+

∫ t

0

σ(vs(u, S(u)) � S(u) − h(u, S(u)) � S(u)) dBv
t = 0.

By regarding the S-transform one can deduce that a.s. and for each u ∈ [0, T ]

vs(u, S(u)) − h(u, S(u)) = 0 (12)

and

vt(u, S(u)) + µvs(u, S(u)) � S(u) − g(u, S(u))rA(u)− µh(u, S(u)) � S(u) = 0.
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By applying −rv(t, S(t)) + rh(t, S(t)) � S(t) = −rg(t, S(t))A(t) we get

vt(u, S(u))− rv(t, S(t)) + rvs(u, S(u)) � S(t) = 0,

thus the pricing formula holds. In order to show that the contingent claim is attainable
we investigate the payoff function p(T, S(T )) =

∑∞
k=0 pk(S(T ))�k. The wealth process

v(t, S(t)) also admits a Wick representation
∑∞

k=0 vk(t)(S(t))�k. Therefore it follows

∞
∑

k=0

vk(T )(S(T ))�k =

∞
∑

k=0

pk(S(T ))�k,

hence vk(T ) = pk. If we plug
∑∞

k=0 vk(t)(S(t))�k in the pricing formula and compare the
coefficients of (S(t))�k, the equation for k ∈ N0

dvk(t)

dt
= (r − rk)vk(t)

follows. So vk(t) = ck exp((r−rk)t) and pk = ck exp((r−rk)T ) with the constants ck. This
shows that the contingent claim can be replicated. The self-financing replicating portfolio
is given by (12) and by

g(t, S(t)) =
v(t, S(t)) − vs(t, S(t)) � S(t)

A(t)
.

�

Due to considerations above this stochastic partial differential equation (11) admits a
representation with ordinary products.

Theorem 5.7 (The pricing partial differential equation) The stochastic partial dif-
ferential equation with boundary condition in Theorem 5.6 can be transformed into the
deterministic partial differential equation

vo
t (t, s) + rsvo

s(t, s) +
1

2
σ2d|m(u, t)|20

dt
s2vo

ss(t, s) = rvo(t, s), (13)

where vo(T, s) = p(T, s) and vo(t, S(t)) denotes the representation of the wealth process
with ordinary product.

Proof. The wealth process admits a Wick representation, so

v(t, S(t)) =
∞
∑

k=0

ak(t)(S(t))�k.
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Now we regard the partial derivatives in the stochastic partial differential equation involv-
ing the Wick representation

vt(t, S(t)) =

∞
∑

k=0

dak(t)

dt
(S(t))�k

vs(t, S(t)) =

∞
∑

k=0

ak(t)k(S(t))�(k−1).

The derivative with respect to t of the representation with ordinary product as in the proof
of Theorem 5.1

vo(t, S(t)) =
∞
∑

k=0

ak(t) exp(1/2(k − k2)σ2|m(u, t)|20)(S(t))k

is

vo
t (t, S(t)) =

∞
∑

k=0

dak(t)

dt
exp(1/2(k − k2)σ2|m(u, t)|20)(S(t))k

−
∞
∑

k=0

ak(t)
1

2
(k − 1)kσ2d|m(u, t)|20

dt
exp(1/2(k − k2)σ2|m(u, t)|20)(S(t))k

=

∞
∑

k=0

dak(t)

dt
exp(1/2(k − k2)σ2|m(u, t)|20)(S(t))k

− (S(t))2σ2

2

d|m(u, t)|20
dt

∞
∑

k=0

ak(t)(k − 1)k exp(1/2(k − k2)σ2|m(u, t)|20)(S(t))k−2

= vt(t, S(t)) − (S(t))2σ2

2

d|m(u, t)|20
dt

vo
ss(t, S(t)).

The partial derivatives with respect to S(t)) are equal with the coefficients S(t)·vo
s(t, S(t)) =

S(t)�vs(t, S(t)). By substituting all terms we get the partial differential equation with the
same boundary condition. �

Remark 5.8 This pricing equation involves the classical case with ordinary Brownian
motion, because

d|1([0, t])|20
dt

=
d t

dt
= 1.

Remark 5.9 Some contingent claims have a payoff function p(T, S(T )) which is not
smooth with respect to the stock price S(T ). On first view this may be in conflict with
smoothness requirements on the wealth process. However this problem can be overcome
as in the classical case, where the partial differential equation is solved on [0, T ) having
the solution v(t, S(t)), if limt→T v(t, S(t)) = p(T, S(T )), which is met in many cases, the
boundary condition can be satisfied. So the payoff function p(T, S(T )) does not need to
satisfy smoothness properties.
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An European call option ECK is a contingent claim, whose payoff function is p(T, S(T )) =
max{(S(T ) − K), 0}. Instead of trying to investigate whether ECK belongs to the set of
admissible contingent claims X , one can price the European call option by solving the par-
tial differential equation. But it is necessary that the wealth process vo

ECK
(t, S(t)) admits

a Wick representation in S(t), so the stochastic partial differential equation (11) can be
satisfied, too. We get the wealth process of the European call by solving the deterministic
partial differential equation. Let N(x) := (2π)−1/2

∫ x

−∞
exp(−z2/2)dz.

Theorem 5.10 The value process of the European call option in the Black-Scholes market
with memory is

vo(t, s) = sN(d1(t, s)) − K exp(−r(T − t))N(d2(t, s)),

where

d1(t, S(t)) :=
ln(S(t)/K) + r(T − t) + 1/2σ2(|m(u, T )|20 − |m(u, t)|20)

σ
√

(|m(u, T )|20 − |m(u, t)|20)
and

d2(t, S(t)) :=
ln(S(t)/K) + r(T − t) − 1/2σ2(|m(u, T )|20 − |m(u, t)|20)

σ
√

(|m(u, T )|20 − |m(u, t)|20)

Proof. The solution satisfies the partial differential equation with the boundary condition.
Note that

rvo(t, S(t)) = rsN(d1(t, s)) − rK exp(−r(T − t))N(d2(t, s)) =: D1 + D2,

With (dN(t))/(dt) =: φ(t) and β(t) := σ
√

|m(u, T )|20 − |m(u, t)|20 the derivatives turn out
to be

vo
t (t, s)

= sφ(d1(t, s))
∂d1(t, s)

∂t
− rK exp(−r(T − t))N(d2(t, s)) − K exp(−r(T − t))φ(d2(t, s))

∂d2(t, s)

∂t

= sφ(d1(t, s))

(

−r − 1
2
σ2 d|m(u,t)|20

dt

β(t)
+ σ2 (ln(s/k) + r(T − t) + 1

2
(β(t))2)1

2

d|m(u,t)|20
dt

(β(t))3

)

− rK exp(−r(T − t))N(d2(t, s))

− K exp(−r(T − t))φ(d2(t, s))·

·
(

−r + 1
2
σ2 d|m(u,t)|20

dt

β(t)
+ σ2 (ln(s/k) + r(T − t) − 1

2
(β(t))2)1

2

d|m(u,t)|20
dt

(β(t))3

)

=: D3 + D4 + D5 + D6 + D7 + D8 + D9,
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where D3 = sφ(d1(t, s))(−r)/(β(t)) and the same way for D7. The term in (13) including
the partial derivative with respect to s can be computed as follows

rsvo
s(t, s)

= rsN(d1(t, s)) + rs2φ(d1(t, s))
1

sβ(t)
− rsK exp(−r(T − t))φ(d2(t, s))

1

sβ(t)

=: D10 + D11 + D12.

The term in (13) including the second partial derivative with respect to s equals

1

2
σ2s2 d|m(u, t)|20

dt
vo

ss(t, s)

= σ2s2d|m(u, t)|20
dt

φ(d1(t, s))
1

sβ(t)

− 1

2
σ2s3d|m(u, t)|20

dt
φ(d1(t, s))d1(t, s)

1

s2(β(t))2

− 1

2
σ2s3d|m(u, t)|20

dt
φ(d1(t, s))

1

s2β(t)

+
1

2
σ2s2 d|m(u, t)|20

dt
K exp(−r(T − t))φ(d2(t, s))d2(t, s)

1

s2(β(t))2

+
1

2
σ2s2 d|m(u, t)|20

dt
K exp(−r(T − t))φ(d2(t, s))

1

s2β(t)

=: D13 + D14 + D15 + D16 + D17.

Now we compare the summands and notice that D1 = D10, D2 = D6, D3 = D11, D4+D15 =
D13, D5 = D14, D7 = D12, D8 = D17 and D9 = D16.

The wealth process vo admits a Wick representation, because it has a representation
with power series in s with convergence radius equal to infinity with each t ∈ [0, T ) and the
process satisfies v(t, S(t)) ∈ (L2), so the Wick representation of the wealth process solves
the stochastic partial differential equation in Theorem 5.6. Therefore it is the wealth
process of the replicating portfolio. �

Remark 5.11 We assumed that µ, σ and r are constants. But without effort one can
formulate the results with deterministic and continuously differentiable µ(t), σ(t) and r(t),
where σ(t) > c with a positiv constant c.
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