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Tight polyhedral models of isoparametric families,

and PL-taut submanifolds

Thomas F. Banchoff and Wolfgang Kühnel

Abstract: We present polyhedral models for isoparametric families in the sphere with at most three
principal curvatures. Each member of the family (including the analogues of the focal sets) is tight in
the boundary complex of an ambient convex polytope. In particular, the tube around the real (complex)
Veronese surface is represented as a tight polyhedron in 5-space (8-space). The examples are based on a
certain Bier sphere triangulation of S4 or S7, respectively. In the 4-dimensional case there are simplicial
branched coverings of these triangulations in the complex projective plane and in S2 × S2 which are
branched precisely along the polyhedral analogues of the Veronese surface. Moreover, we introduce a
notion of PL-tautness and discuss its relationship with tightness of polyhedra. In particular, each member
of our polyhedral isoparametric family is PL-taut.

2000 MSC classification: 52B70, 53C42, 57Q35

1. Introduction and Result

By a theorem of E.Cartan [11] all isoparametric families of hypersurfaces in the sphere with at most three
principal curvatures are given by the following list:

1. tubes around a point in Sn

2. tubes around a great sphere Sk ⊂ Sn where 1 ≤ k ≤ n − 2

3. tubes around any of the Veronese-type standard embeddings of the projective planes RP 2 → S4,
CP 2 → S7, HP 2 → S13, or OP 2 → S25.

In these three cases we have 1, 2 or 3 constant principal curvatures, respectively. Topologically, the
hypersurfaces in Case 3 are total spaces of Sk-bundles over the projective plane over F(k) where the
real dimension of F is k. In particular, the dimension of the total space is 3k in each of the cases. In
addition isoparametric hypersurfaces have the geometric property of tightness and tautness, see [13]. Recall
that in homogeneous coordinates the standard embeddings of RP 2, CP 2, HP 2 are given by [z0, z1, z2] 7→
(z0z0, z1z1, z2z2,

√
2z0z1,

√
2z1z2,

√
2z2z0) with the normalization z0z0 + z1z1 + z2z2 = 1.

Definition An embedding M → E
N of a compact manifold is called tight, if for any open half space

E+ ⊂ E
N the induced homomorphism

H∗(M ∩ E+) −→ H∗(M)

is injective where H∗ denotes an appropriate homology theory with coefficients in a certain field. The
notion of k-tightness refers to the injectivity in the low dimensions Hi(M ∩ E+) → Hi(M), i = 0, . . . , k.
The notion of tightness is projectively invariant. Tightness of a subset means that it is embedded as
convexly as possible. In the smooth case (and, with certain modifications, also in the polyhedral case)
this is equivalent to the condition that almost all height functions on M are perfect functions, i.e., have
the minimum number of critical points, see [6]. The similar notion of tautness refers to the condition that
almost all distance functions are perfect functions, see [13]. A polyhedral analogue of tautness will be
discussed in Section 4 below.

It is well known that the ε-tube around any taut submanifold or around any embedded tight submanifold
is again taut or tight, respectively. The reason is that the cohomology ring of the total space of the unit
normal bundle is isomorphic to the tensor product of the cohomology rings of the base and the fibre,
compare [10].

Even though it is not obvious what constant principal curvatures would mean for polyhedral hypersurfaces
in general, the tightness condition can be carried over easily. Tightness for polyhedra was first introduced
by the first author in [3], for the further development see [21], [15], [6]. A polyhedral model for Cartan’s
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isoparametric hypersurface in the 4-sphere was given in [7], combinatorially as an 8-fold quotient of the
600-cell, but that was not tight. In this paper we present polyhedral versions of the whole family in all
of the cases mentioned above (and such that each member of the polyhedral family has the tightness
property) except for the last one which is still open. In fact, a tight polyhedral octonion projective plane
itself is still missing. In the quaternionic case a polyhedral model is available but it seems to be beyond
reach to give a complete proof. Our main result is the following:

Theorem 1 In each of the cases of an isoparametric hypersurface of Sn mentioned above (except possibly
for the octonion case) there is a simplicial n-sphere in Euclidean space such that the following conditions
are satisfied:

1. It contains two disjoint simplicial subcomplexes triangulating the two focal sets of the isoparametric
family as a kind of “top” and “bottom” of the simplicial n-sphere (for the case of HP 2 see below),

2. each member of the isoparametric family corresponds to a slice through this n-sphere between top
and bottom,

3. each member of the family (including the focal sets) is a tight polyhedral submanifold in the boundary
complex of a certain convex (n + 1)-polytope. So in particular the real Cartan hypersurface is tight
in the boundary complex of a 5-polytope, the complex Cartan hypersurface is tight in the boundary
complex of an 8-polytope.

In the case of the quaternionic Cartan hypersurface these polyhedral models exist, but a complete proof of
their topological properties is not available. In the case of the octonion Cartan hypersurface an appropriate
triangulation of the focal set is still missing. If there exists a tight 27-vertex triangulation of OP 2 then the
theorem includes this case as well.

One reason for the missing proof in the quaternionic case is that a combinatorial calculation of Pontrjagin
classes seems to be extremely difficult. A combinatorial analogue of the focal set is available [9] which
leads to the whole isoparametric family. However, so far the topology of the polyhedral focal set cannot
be determined. In the octonion case the problem is that such a triangulation of the focal set OP 2 would
have a huge number of simplices. In particular, it would have 100386 top-dimensional simplices, see [15,
Sect.4C].

The proof will make use of the following three ingredients:

1. Higher-dimensional octahedra,

2. Tight triangulations of the projective planes over R and C,

3. Sarkaria’s deleted join of a simplicial complex with itself, and the Bier sphere.

2. Proof: Subcomplexes and slices of cross polytopes

In order to give a unified description for all cases, we will use the (n + 1)-dimensional cross polytope βn+1

(also called (n + 1)-dimensional octahedron) which is defined as the convex hull of the points

(0, . . . , 0, ±1
|{z}

i

, 0, . . . , 0), i = 0, 1, . . . , n

in (n + 1)-space.

Case 1: In the first case we pick two antipodal vertices, say, (±1, 0, . . . , 0). Then the polyhedral model
of the isoparametric family with one principal curvature is just given by all the slices through ∂βn+1 by
hyperplanes orthogonal to (1, 0, . . . , 0). Combinatorially each member of the family is a ∂βn, except for
the two degenerate cases which are just two points. Each member of the family is a convex polyhedron in
n-space and is therefore tight.

Case 2: In the case of two principal curvatures we start with a βk+1 as the subcomplex of βn+1 given by
all vertices above where 0 ≤ i ≤ k and a complementary βn−k given by all vertices with k + 1 ≤ i ≤ n.
As a matter of fact, the boundary ∂βn+1 is just the join complex ∂βk+1 ∗ ∂βn−k where, as usual, the
join 4k ∗ 4n−k−1 of two simplices 4k = 〈v0, v1, . . . , vk〉 and 4n−k−1 = 〈vk+1, . . . , vn〉 is defined as the
simplex 4n = 〈v0, v1, . . . , vk, vk+1, . . . , vn〉. Since each of the vertices of βn+1 is either in βk+1 or in the
complementary βn−k, we can define a simplexwise linear function f on the boundary complex of βn+1
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which is 0 on ∂βk+1 and 1 on ∂βn−k. More precisely, f is assumed to be affine linear in the barycentric
coordinates on each simplex, i.e., f(

P

i
λivi) =

P

i
λif(vi) where

P

i
λi = 1.

Now the polyhedral analogue of the isoparametric family is given by the levels of the function f . Clearly
each level set f−1(t) defines a polyhedral manifold, for 0 < t < 1 the level set is a polyhedral decomposition
of Sk ×Sn−k−1 als a subset of ∂βn+1

∼= Sn. Similarly, f−1([0, t]) and f−1([t, 1]) are polyhedral “solid tori”
as tubes around the k-sphere or (n − k − 1)-sphere, respectively. Note that this family is also given by
the level sets of the intrinsic distance function in ∂βn+1 from each of the two “focal sets”. This function
is nothing but f or 1 − f .

We show that each of these level sets f−1(t) is tightly embedded into (n+1)-space. Recall that the original

isoparametric family is given by all points
“

sin tx, cos ty
”

∈ Sn where 0 < t < 1, x ∈ Sk, y ∈ Sn−k−1.

Each t-level set is a cartesian product of a k-sphere and an (n − k − 1)-sphere, like the Clifford torus.

Similarly, the polyhedral version is given by all points
“

tx, (1 − t)y
”

where 0 < t < 1, x ∈ ∂βk+1, y ∈
∂βn−k. Again this is a cartesian product of two tight polyhedral spheres and is therefore tight. Case 1
may be considered as the special case k = 0 in Case 2.

Case 3: In the third case of three principal curvature we have to consider the tubes around two antipodal
real or complex Veronese-type embeddings RP 2 → S4 or CP 2 → S7, respectively. The quaternionic case
will be discussed at the end.

First of all, there are tight polyhedral analogues of these Veronese-type embeddings themselves. These
are the canonical embeddings of the unique 6-vertex triangulation RP 2

6 of RP 2 into the 5-simplex and of
the unique 9-vertex triangulation CP 2

9 of CP 2 into the 8-simplex, see [16],[17].
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Figure 1: The 6-vertex triangulation of RP 2

For our purpose we have to find an appropriate triangulation of the 4-sphere or 7-sphere, respectively,
which contains two antipodal copies of them, linking one another as required by the Cartan decomposition.

Definition
(1) The deleted join K∗∆K of a simplicial complex K with itself is a part of the ordinary join of two disjoint
copies K1 and K2 of K where we take the join of only those two simplices in K1 and K2, respectively,
which are disjoint in K. So in particular, each vertex of K leads to a missing edge (a diagonal) in K ∗∆ K.

(2) Similarly we have the deleted join K ∗∆ K∗ of an n-vertex simplicial complex K with its combinatorial
Alexander dual K∗ where the combinatorial Alexander dual is defined as the set of the complements of the
non-faces of K. Here we think of a face as a subset of {1, 2, . . . , n} and its complement as the set-theoretic
complement. Accordingly, a non-face is a subset that does not correspond to a face in the complex. The
vertex set of the deleted join will be denoted by {1, 2, . . . , n, 1, 2, . . . , n} with diagonals 11, 22, . . . , nn.

The notion of the deleted join is due to K.Sarkaria [29]. Sarkaria also pointed out to the second author
that the deleted join of RP 2

6 with itself is a triangulated 4-sphere. In fact, from Figure 1 it is easily seen
that (RP 2

6 )∗ = RP 2
6 . Similarly, we have (CP 2

9 )∗ = CP 2
9 . Together with this observation our main result is

based on the following very general theorem:
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Theorem 2 [28, p.112],[22] For any given simplicial complex K with n vertices the deleted join of K
with its combinatorial Alexander dual K∗ is a triangulated (n − 2)-sphere with at most 2n vertices. It is
called the Bier sphere Biern(K) because it was discovered by Thomas Bier in 1992. After subdivision, the
Bier sphere coincides with the first barycentric subdivision of an (n − 1)-simplex [22].

In the case of K = RP 2
6 = (RP 2

6 )∗ a direct verification of this theorem is not hard to obtain: Since the
combinatorial automorphism group acts transitively on vertices of RP 2

6 , it also acts transitively on vertices
of RP 2

6 ∗∆ RP 2
6 . So if one can show that the link of each vertex is a 3-sphere, then this triangulation is a

combinatorial 4-manifold. Moreover, since 〈456〉 is a triangle of RP 2
6 (see Figure 1) then by construction

the span of {1, 2, 3, 4̄, 5̄, 6̄} in RP 2
6 ∗∆ RP 2

6 is nothing but the join ∂〈123〉 ∗ 〈4̄5̄6̄〉 which is a polyhedral ball.
By symmetry the span of {1̄, 2̄, 3̄, 4, 5, 6} is a polyhedral ball as well. Then it follows that RP 2

6 ∗∆ RP 2
6

is a 4-sphere, since it is represented as the union of two polyhedral 4-balls glued together along their
boundaries. In fact RP 2

6 ∗∆ RP 2
6 is the only triangulation of the 4-sphere with 12 vertices admitting a

vertex transitive automorphism group, see [23, p.52].

Let us recall the following facts about triangulations of projective planes with the minimum number of
vertices.

Theorem 3

1. [8] Any simplicial n-vertex triangulation of a combinatorial 2k-manifold M satisfies n ≥ 3k + 3
unless M is a sphere. In case of equality n = 3k+3 we have necessarily k = 0, 1, 2, 4, 8, and for k ≥ 1
M has the same cohomology ring as the projective plane over R, C, H, O, respectively. Moreover, for
k = 1, 2 the triangulation is combinatorially isomorphic with RP 2

6 or CP 2
9 , respectively.

2. [2] Any combinatorial 2k-manifold with n = 3k + 3 vertices (which is not a sphere) satisfies the
following combinatorial complementarity condition:

• Any subset of vertices spans a simplex in the triangulation if and only if the complementary subset

does not.

In particular, if K denotes the simplicial complex triangulating the manifold, then we have K∗ = K,
and K is (k + 1)-neighborly which means that any (k + 1)-tuple of vertices spans a simplex in K.

3. [9] In the cases k = 0, 1, 2, 4 there exists such a combinatorial manifold with 3, 6, 9, 15 vertices,
respectively. It is unique for k = 0, 1, 2 and not unique for k = 4. For k = 8 the existence is still
open.

Corollary 4 If K denotes any simplicial complex triangulating a combinatorial 2k-manifold with
n = 3k + 3 vertices which is not a sphere, then the deleted join Biern(K) = K ∗∆ K is a combinatorial
sphere of dimension n − 2 with 2n vertices. It can be regarded as a subcomplex of the cross polytope βn.

In particular, this applies to the triangulations K = RP 2
6 and K = CP 2

9 . In these cases the deleted join
coincides with the Bier sphere Bier6(RP 2

6 ) or Bier9(CP 2
9 ), respectively. Recall that the Veronese-type

standard embedding maps each of the four projectives planes into the (n − 2)-sphere where n = 3k + 3.
Compare [27] for the topological significance of these embeddings and their normal bundles or tubes
around them.

Exercise: It might be instructive to study the trivial case k = 0 first. In this case the Bier sphere is
the deleted join of a discrete 3-point space with itself. In fact, a 3-point space satisfies the combinatorial
complementarity condition. If we realize the two sets of points as the vertex sets of the top and bottom
triangles in an ordinary octahedron in 3-space, then the Bier sphere is a skew hexagon going up and down
in the edge graph of the octahedron. Then the “isoparametric family” is the set of all levels in between.
Each member of the family consits of six points as the intersection of the skew hexagon with a plane
parallel to top and bottom of the octahedron. These fix points degenerate to three points in two different
ways, corresponding to the two “focal sets”. In the sequel we are going to generalize this construction to
the cases k = 1 and k = 2.
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Proposition 5 RP 2
6 ∗∆ RP 2

6 is a triangulated 4-sphere and CP 2
9 ∗∆ CP 2

9 is a triangulated 7-sphere. By
construction we can regard the former one as a subcomplex of β6 and the latter one as a subcomplex of
β9, respectively. If we triangulate the two antipodal Veronese-type embeddings RP 2 into S4 and of CP 2

into S7 by two copies of RP 2
6 or CP 2

9 , respectively, then this extends to a PL homeomorphism between
the standard PL structure on the ordinary sphere and the Bier sphere triangulation. Moreover, the two
antipodal Veronese-type embeddings of RP 2 into S4 and of CP 2 into S7 are isotopic to the two canonical
embeddings of RP 2

6 into RP 2
6 ∗∆ RP 2

6 and of CP 2
9 into CP 2

9 ∗∆ CP 2
9 , respectively.
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Figure 2: The link of the edge 〈12〉 in RP 2
6 ∗∆ RP 2

6

The first claim of Proposition 5 is contained in Theorem 2. See Figure 2 for a picture of the link of a
typical edge. One easily recognizes a subdivided cube. Observe the two disjoint zigzags given by the
diagonals in the cube. The middle claim is obvious from the construction. In order to prove the last
twp claims we first observe that the embedding of RP 2

6 into the boundary complex of the 5-simplex is
isotopic to the Veronese surface in the 4-sphere. If we think of the 10 triangles of RP 2

6 as a pattern on
the Veronese surface then the process of pulling each of them straight into a planar triangle by a kind of
convex combination can be realized by a homeomorphism of the ambient 4-sphere. The linking behavior
of the two antipodal copies is the same for the Veronese-type models and for the polyhedral models: The
complement of each of the focal sets retracts (or collapses) onto the other, and the complement itself
is an open ball bundle over the oppositive focal set. Therefore, the same procedure can be carried out
for the pair of two disjoint antipodal Veronese surfaces and the 20 triangles of them. It remains to find
the simplices of the Bier sphere in the round 4-sphere. For carrying this out we can think of a distorted
4-sphere as the boundary of the convex hull of the two antipodal Veronese surfaces. In the boundary of
this convex hull we find certain flat parts which correspond to the union of the interiors of the simplices
of the Bier sphere. Then it remains to deform the boundary of that convex hull into the round sphere by
central projection. The same procedure can be carried out in the complex case.

A particular consequence of Proposition 5 is that the tubes around the classical Veronese models and
around the embeddings RP 2

6 ∗∆ RP 2
6 → β6 and CP 2

9 ∗∆ CP 2
9 → β9 within the Bier sphere are topologically

equivalent. By considering any smoothing of the polyhedral embeddings of the projective planes in the
same isotopy class, this topological uniqueness of the tubes follows also from a much more general result
in [27]. In our case the two polyhedral focal sets are represented as the canonical embedding of RP 2

6

into one 5-dimensional facet of β6 spanned by vertices 1,2,3,4,5,6 and into its antipodal facet spanned by
vertices 1̄, . . . , 6̄. Moreover, the polyhedral analogue of the isoparametric family can be defined by the
levels of the simplexwise linear function f attaining the value 0 at the vertices 1, . . . , 6 (the bottom of
the cross polytope) and the value 1 at the vertices 1̄, . . . , 6̄ (the top). Each level consists of 60 prisms
which are slices through 4-simplices, for a typical case see Figure 3. Similarly, in the complex case we
have the two antipodal copies of CP 2

9 in 8-dimensional facets spanned by vertices 1, 2, . . . , 9 and 1̄, . . . , 9̄,
respectively, and the analogues levels of the function f . Observe that the link of a typical vertex in the
slice is combinatorially equivalent to the link of the corresponding edge in the Bier sphere itself, see Figure
4 and Figure 2.

The proof of our main Theorem 1 will be completed by the following lemma:
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Lemma 6 For any 0 ≤ t ≤ 1 the two embeddings

f−1(t) ∩ RP 2
6 ∗∆ RP 2

6 −→ f−1(t) ∩ ∂β6 −→ E
5

f−1(t) ∩ CP 2
9 ∗∆ CP 2

9 −→ f−1(t) ∩ ∂β9 −→ E
8

are tight with respect to Z2. These are polyhedral analogues of the family of isoparametric tubes around
the real or complex Veronese-type surface, respectively.

Proof. First of all, the two polyhedral focal sets are given by the 0-level and the 1-level, i.e., by the
tight triangulations of RP 2

6 or CP 2
9 , respectively. Since the tight polyhedral focal sets are 2-neighborly

or 3-neighborly, respectively, it follows that each t-level between them contains the complete 1-skeleton
or 2-skeleton of the boundary of its convex hull, respectively. Therefore, the embedding is 0-tight in the
real case and 1-tight in the complex case. By duality, for the tightness of a 3-manifold or 6-manifold it is
sufficient to prove in addition the 1-tightness or 2-tightness, respectively.

Here we need an explicit description of the Z2-homology of the spaces. It is well known that the cohomology
ring of the tube around a submanifold is the tensor product of the cohomology rings of the base and the
fibre. The cohomology ring of a projective plane is a truncated polynomial ring in one variable, the
fibres are spheres. Consequently, the 1st homology of the real isoparametric hypersurface is generated
by two generators c and c where c corresponds to the first homology of RP 2 and c to the unit normal
1-sphere around the Veronese-type embedding. Similarly, the 2nd homology of the complex isoparametric
hypersurface is generated by two generators c and c where c corresponds to the second homology of CP 2

and c to the unit normal 2-sphere around it. However, if we interchange the two focal sets then the rôles
of c and c are also interchanged. So we can regard c as being homologous to a generator of the middle
homology in the antipodal RR2 or CP 2, respectively. In [14] the following interpretation is given: One of
the two focal sets is the point space of a projective plane over R or C, respectively, and the other one is the
line space of the same projective plane, i.e., the space of all projective lines. The tubular sphere around a
point in the former then corresponds to the set of all projective lines through that point in the latter, and,
conversely, a tubular sphere around a point in the latter (which is a projective line) corresponds to the
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set of all points on that line. Their intersection behavior in the Cartan hypersurface reflects the incidence
structure of the projective plane. In our terminology these tubular spheres represent the generators c
and c of the homology H1 or H2, respectively. Topologically, this means that c shrinks onto a projective
line on one side and onto a tubular S1 or S2 around the other side, similarly for c where the rôles are
interchanged. All these considerations are analogous for the Hopf decomposition of the 3-sphere into tori.
Here the two focal sets correspond to two opposite circles.

In order to prove the 1-tightness or 2-tightness of our polyhedral analogues of the Cartan hypersurfaces,
let us denote the vertex set by V ∪ V where each vertex occurs in a version v ∈ V and in its antipodal
version v ∈ V . Assume that V spans one focal set RP 2

6 or CP 2
9 and V spans the antipodal focal set

RP
2

6 or CP
2

9. If the intersection with a halfspace H+ contains two antipodal vertices v and v then it
contains also the center point of the ambient cross polytope. Therefore in t his case it contains at least
one vertex of any antipodal pair, so at least 7 vertices of the original RP 2

6 ∗∆ RP 2
6 or 10 of the original

CP 2
9 ∗∆ CP 2

9 , respectively. By duality, it is sufficient to consider the case where we have at most 6 or 9
vertices, respectively, not all belonging to V or V . In this case the original vertices in H+ split into A∪B
where A ⊂ V, B ⊂ V , A ∩ B = ∅ and A, B 6= ∅. The question is: What is the Z2-homology H1 or H2,
respectively, of the intersection of H+ with the t-level of the function f?

Obviously, this will depend on the homology of the span of A in the focal set and the span of B in the
antipodal focal set. If both are contractible then the intersection of H+ with the t-level is also contractible.
The 2-dimensional homology H1 or H2, respectively, is generated by the generator c and c of H1 or H2

in each of the antipodal focal sets, respectively. These correspond to pointwise tubular sphere “running
around the focal set” in two different ways. Now, if the span of A is homologous to c and the span of B is
homologous to zero, then the intersection of H+ with the t-level is homologous to c also. Similarly, if the
span of A is homologous to zero and the span of B is homologous to c, then the intersection of H+ with
the t-level is homologous to c. In any case, the intersection with H+ injects at the homology level H1 or
H2, respectively. The tightness follows.

As an example, we consider the case A = {1, 2, 3}, B = {4, 5, 6}. The span of 1,2,3 is homologous to c, the
other part is contractible, even collapsible. Therefore, the span of A ∪ B in the t-level collapses onto the
1-cycle 14 24 34 which injects at the homology level to one of the generators there. Similarly, the span of
{1, 2, 3, 1, 4, 5, 6} collapses onto the figure eight spanned by the two 1-cycles 14 24 34 and 24 21 26 which
injects also because it represents the sum of the two generators. �

Remarks: 1. In the quaternionic case there is a perfect candidate for a tight 15-vertex triangulation of
HP 2, see [9], compare also [23, p.65]. There is, however, no formal proof that it is really a triangulation
of HP 2 although it shares many properties with it. Its deleted join is the Bier sphere triangulation of
the 13-sphere with 30 vertices. By construction it is a subcomplex of ∂β15. By the same argument as
above, the t-level sets in between the two focal sets define a family of tight polyhedral analogues of the
quaternionic isoparametric family in some 14-space.

2. In the octonion case it is still open whether or not there is an appropriate tight 27-vertex triangulation.
If yes, its deleted join would be a Bier triangulation of the 25-sphere as a subcomplex of ∂β27, and the
level sets would be tight polyhedral versions of the corresponding isoparametric family. In the octonion
case it is still open whether or not there is an appropriate tight 27-vertex triangulation. If yes, its deleted
join would yield a Bier triangulation of the 25-sphere as a subcomplex of ∂β27, and the level sets would
be tight polyhedral versions of the corresponding isoparametric family.

3. One can ask whether there are similar polyhedral analogues of isomarametric families with 4 or 6
principal curvatures. It seems these are not yet available. There is a tight triangulation for one focal set
in one of the standard examples with 4 principal curvatures. The focal set is the “complexified sphere”.
There is a (2n + 3)-vertex triangulation of the product S1 × Sn−1 for even n and of the twisted product
S1×Sn−1 for odd n, see [15, 5B]. However, it is not clear how this can be embedded into an appropriate
triangulated sphere which contains the other focal set as well. The Bier sphere is not suitable here because
the combinatorial Alexander dual of the triangulation above is not a manifold.

3. Branched simplicial coverings related to RP
2
6 ∗∆ RP

2
6

It was pointed out by Massey in [26] that incidentally a number of interesting 4-manifolds (among them
the complex projective plane) are (branched or non-branched) quotients of S2 × S2. In particular, CP 2

is the quotient of S2 × S2 by the involution τ (x, y) = (y, x), and the 4-sphere is the quotient of CP 2
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modulo complex conjugation σ where σ[z0, z1, z2] = [z0, z1, z2]. In the latter case the branch locus consists
precisely of the real part which is a real projective plane. Opposite to it we find the complex quadric
z2
0 + z2

1 + z2
2 = 0 on which the involution σ acts freely.

An elementary polyhedral proof for CP 2/σ ∼= S4 was given in [5] but the branched simplicial covering
required a certain subdivision of a triangulation of CP 2. The Sarkaria-Bier sphere Bier6(RP 2

6 ) = RP 2
6 ∗∆

RP 2
6 gives a possibility to realize this branched covering in a canonical and fairly symmetrical way as a

simplicial map from a triangulated CP 2 with 18 vertices onto a triangulated S4 with 12 vertices, branched
along a 6-vertex RP 2. In this case all the data are contained in the ordinary icosahedron, a Platonic solid.
Recall that branched simplicial coverings between 2-dimensional surfaces with the minimum number of
vertices were investigated in [25] and that a minimal polyhedral model of the Hopf mapping S3 → S2 was
found in [24]. By a branched simplicial k-sheeted covering between two d-manifolds we mean a simplicial
mapping which is simultaneously a branched k-sheeted covering. In particular, it is required that the
preimage of any (open) d-simplex consists of k disjoint (open) d-simplices and that there is no collapsing
of lower-dimensional simplices. Then the branch locus is a simplicial subcomplex of each of the two
triangulated d-manifolds.

Proposition 7 There is a branched simplicial 2-sheeted covering from a triangulated CP 2 onto a
triangulated 4-sphere which is branched along a subcomplex isomorphic to RP 2

6 . We can denote it – by
slight abuse of notation – as follows:

CP 2
18 := S2

12 ∗∆ RP 2
6 −→ RP 2

6 ∗∆ RP 2
6 .

Here S2
12 denotes the icosahedral triangulation of the 2-sphere with its 2-fold simplicial covering S2

12 −→
RP 2

6 . The complex S2
12 ∗∆ RP 2

6 does not literally denote the deleted join but the join where each simplex
is deleted which involves one vertex of RP 2

6 and any of the two corresponding antipodal vertices of the
icosahedron S2

12.

This branched simplicial covering has the minimum number of vertices which is possible for this map-
ping. In addition, the triangulation is highly symmetric since the group A5 × C2 acts on the Bier sphere,
transitively on vertices and on 4-dimensional simplices.

Corollary 8 The polyhedral Cartan hypersurface halfway between the two copies of RP 2
6 in the Bier

sphere lifts to a 2-fold covering halfway between S2
12 and RP 2

6 . This is a polyhedral decomposition of the lens
space L(4, 1) which occurs as a tubular neighborhood of the real projective plane in the complex projective
plane. Combinatorially, it consists of 120 triangular prisms

Proof: Since the intermediate levels do not intersect the branch locus, this defines a twofold non-branched
covering of some 3-manifold onto the Cartan isoparametric hypersurface in S4. Topologically the latter
is the quaternion space S3/Q where Q = {±1,±i,±j,±k} denotes the quaternion group of order 8. Any
twofold covering in between is a quotient of S3 by a group of order 4 which is a subgroup of Q. This is
possible only for the cyclic group C4, e.g., for {±1,±i} ⊂ Q. Consequently, the twofold covering of the
Cartan hypersurface is a lens space L(4, 1) with fundamental group C4. Its combinatorial automorphism
group of order 240 acts transitively on the 120 prisms.

Proposition 9 There is a branched simplicial 2-sheeted covering from a triangulated S2 × S2 onto a
triangulated CP 2 which is branched along a subcomplex isomorphic to the icosahedral triangulation of S2.
We can denote it – wth the same remark as in Proposition 7 above – as follows:

(S2 × S2)24 := S2
12 ∗∆ S2

12 −→ S2
12 ∗∆ RP 2

6

where S2
12 −→ RP 2

6 denotes the same 2-fold simplicial covering as above.

Corollary 10 The polyhedral Cartan hypersurface halfway between the two copies of RP 2
6 in the Bier

sphere lifts to a 4-fold covering halfway between the two copies of S2
12 in the triangulated S2 ×S2. This is

a polyhedral decomposition of the RP 3 which occurs as a tubular neighborhood of the diagonal in S2 × S2.
It consists of 240 triangular prisms

Proof: As in Corollary 8 the intermediate hypersurface does not intersect the branch locus. Therefore,
the branched simplicial 4-sheeted covering (S2×S2)24 −→ RP 2

6 ∗∆ RP 2
6 induces a non-branched we obtain
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a 4-sheeted covering of the Cartan hypersurface S3/Q. Hence we obtain a 2-fold quotient of S3 which
must be RP 3. In fact, since the diagonal in S2 × S2 is given by {(x, y) | x = y}, for small ε the tube is
given by {(x, y) | dist(x, y) = ε} which is homeomorphic with the total space of the unit tangent bundle
of S2 which in turn is known to be homeomorphic with RP 3. The combinatorial automorphism group
acts transitively on the 240 prisms. Its universal covering gives a decomposition of the 3-sphere into 480
triangular prisms.

4. Polyhedral Tautness

Definition An embedding M → E
N of a compact manifold is called taut, if for any open ball (or ball

complement) B ⊂ E
N the induced homomorphism

H∗(M ∩ B) −→ H∗(M)

is injective where H∗ denotes an appropriate homology theory with coefficients in a certain field. The
notion of k-tautness refers to the injectivity in the low dimensions Hi(M ∩ B) → Hi(M), i = 0, . . . , k.
Tautness is conformally invariant. An equivalent formulation is that all nondegenerate distance functions
are perfect functions. Any taut embedding is also tight, and a tight spherical embedding is also taut,
compare [13]. Moreover, any taut smooth submanifold of E

N can be lifted to a spherical taut submanifold
of SN ⊂ E

N+1 by inverse stereographic projection.

Examples of taut embeddings are the Veronese-type embeddings discussed above as well as the tubes in
spheres around them. More generally, any isoparametric hypersurface in a sphere is taut [12].

This definition does not apply to polyhedral submanifolds since the distance spheres do not fit the piecewise
linear structure. Even if one replaces the euclidean distance spheres by the distance spheres in the
maximum norm (which then are euclidean cubes), this does not seem to give an appropriate analogue.
Instead, we suggest the following definition of PL-tautness:

Definition A polyhedral complex M ⊂ E
N with convex faces is called PL-taut, if for any open ball (or

ball complement) B ⊂ E
N the induced homomorphism

H∗(M ∩ 〈B0〉) −→ H∗(M)

is injective where B0 denotes the set of vertices in M ∩ B, and 〈B0〉 refers to the subcomplex in M
spanned by those vertices. We call an embedding of a manifold (or a submanifold) PL-taut if there is
a polyhedral decomposition such that the image (or the submanifold itself) can be decomposed into a
PL-taut polyhedral complex. Note that PL-tautness is not invariant under subdivision.

Obviously, any PL-taut embedding is also tight (consider very large balls), and a tight PL-embedding is
PL-taut provided that it is PL-spherical in the following sense:

Definition and Proposition 11 A polyhedral complex with convex faces is called PL-spherical if
all its vertices are contained in a certain euclidean sphere. Then any tight and PL-spherical embedding is
also PL-taut.

Proof: Consider a ball (or ball complement) B and the set B0 of vertices in B∩M . Since all the vertices
of M are contained in a sphere, it is possible to find a halfspace E+ such that M ∩E+ and M ∩B contain
precisely the same vertices. Consequently, the span of B0 has the same homology as M ∩ E+, and the
latter injects at the homology level by the assumption of tightness.

Corollary 12 Any tight subcomplex of a higher-dimensional regular simplex or cube is PL-taut. This
includes the class of tight triangulations of manifolds as well as the class of power complexes 2K as
subcomplexes of the n-cube where K denotes an arbitrary simplicial complex with n vertices, see [15,
Ch.3].

Examples: All the PL analogues of isoparametric hypersurfaces discussed in Theorem 1 are not only
tight but also PL-taut because in each case all vertices lie on a common euclidean sphere. In particular
Corollary 12 implies that the class of PL-taut submanifolds is much richer than the class of smooth taut
submanifolds. Infinitely many surfaces admit tight triangulations. In higher dimensions there are a number
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of tight triangulations of manifolds including the K3 surface and the homogeneous space SU(3)/SO(3)
[18] as well as tight subcomplexes of cubes which are homeomorphic to connected sums of standard
handles Sk × Sl [19]. By truncating the tight and PL-taut complex projective plane as a subcomplex
CP 2

9 of the regular 8-dimensional simplex and by inserting copies of the same triangulation one obtains
an embedding of CP 2#(−CP 2)#9 as a PL-taut and PL-spherical submanifold of 8-space. The unique
7-vertex triangulation of the torus can be realized by a PL-taut submanifold in several ways, namely, as a
PL-spherical and tight subcomplex of the cyclic 4-polytope with 7 vertices, or as a subcomplex of the 6-
dimensional regular simplex, or as Császár’s torus in 3-space, see [15]. The tight polyhedral Klein bottle in
5-space found in [4] is also PL-taut since all the vertices can be chosen in a sphere. Similarly, by truncating
the 6-vertex triangulation of RP 2 as a subcomplex of the regular 5-dimensional simplex one obtains a PL-
taut and PL-spherical surface with χ = −5 in 5-space by precisely the polyhedral decomposition which
is depicted on the cover of [15]. The same surface admits 14 combinatorially distinct tight 10-vertex
triangulations [1] and, therefore, as many non-congruent PL-taut realizations as a subcomplex of the
9-dimensional regular simplex.

Corollary 13 Any PL-taut submanifold of E
N with convex faces can be lifted to a tight and PL-spherical

submanifold of E
N+1 by mapping the vertices by inverse stereographic projection and by replacing the convex

faces of the original manifold by convex faces in the image.

Example: The standard polyhedral square torus in 3-space based on a (4,4)-grid is PL-taut and can be
lifted to a kind of a PL Clifford torus in 4-space where all the vertices are contained in a 3-sphere. By
an appropriate choice of the stereographic projection it can be regarded as a realization by the power
complex 2{4} = {4} × {4} which is a subcomplex of the 4-dimensional cube, compare [19].

Theorem 14 Let f : Σn → E
N be a PL-taut embedding of a certain homology sphere Σn, then f(Σn) is

the boundary of a convex polytope in (n + 1)-space. If we regard only those vertices which are vertices of
that polytope, then f is PL-spherical. In particular, Σn is the standard PL sphere Sn.

Proof: Since f is, in particular, tight, the first claim follows from a well known statement about tightly
embedded spheres, see [15, 3.6]. Now consider the PL-spherical lift into the (n + 1)-sphere, according to
Corollary 13 above. Since this is again tight, its image has to be part of an affine (n + 1)-dimensional
space. Because all vertices lie on a certain sphere, and since stereographic projection preserves spheres,
all the vertices of the original f(Σn) lie on a certain sphere as well. Therefore, f is PL-spherical.

Corollary 15 (i) The image of any PL-taut embedding of an n-ball into N-space is a convex (n + 1)-
polytope such that all vertices lie on a common sphere.

(ii) Any top-dimensional face of the image of a PL-taut embedding of any n-manifold is a PL-spherical
convex n-polytope.

Definition A subset of a PL-taut submanifold M is called a top-set if it is the intersection of M with

a supporting hyperplane.

Proposition 16 Any top-set of any PL-taut submanifold is again PL-taut.

Proof: Let M → EN be PL-taut, and let H be a supporting hyperplane. According to Corollary
13 we consider the lift of the embedding such that all vertices lie on the N -sphere. In this case
a top-set X = M ∩ H will be mapped onto a certain topset X ′ with respect to a hyperplane
H ′ which contains the stereographic preimage of H . It is well known that a top-set of a tight
embedding is again tight. So now X ′ is PL-spherical and tight, hence PL-taut. Therefore X is
also PL-taut as the image of X ′ under stereographic projection..

Theorem 17 The image of any PL-taut polyhedral embedding of CP 2 into 8-space (not in a
hyperplane and such that all vertices are in general position) is a subcomplex of an 8-dimensional
simplex which is combinatorially equivalent to CP 2

9 .

Proof: According to Corollary 13 we consider the lift of the embedding such that all vertices lie
on the 8-sphere. If the image lies in an 8-dimensional affine subspace then the vertices lie in a
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7-sphere, and the original embedding was PL-spherical. In this case the convex hull of the image
of the original embedding is a simplicial 8-polytope, and the image itself is a subcomplex of it.
In this case the assertion follows from [15, Thm.4.5] together with the uniqueness of the 9-vertex
triangulation of CP 2. Otherwise, if the image does not lie in any 8-dimensional affine subspace, we
obtain a tight substantial embedding into some euclidean 9-space which is impossible by Theorem
14 in [20].

Conjecture: The assertion of Theorem 17 holds without the assumption about general position,
and for any tight polyhedral embedding.

Final remark:

¿From the purely combinatorial point of view one might ask for discrete (i.e., finite) analogues
of the examples in Theorem 1. We could start with two copies of the 7-point projective plane
PG(2, 2) with automorphism group GL(3, 2) ∼= PSL(2, 7) of order 168. If these correspond to the
two focal sets then the levels in between correspond to the set of the 21 flags in that plane with the
same group acting. Therefore, the isotropy group has order 8 (as in the classical case of Cartan’s
hypersurface in the 4-sphere). However, it is not isomorphic to the quaternion group because it
contains a non-cyclic abelian subgroup of order 4.
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