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A universal strong law of large numbers for
conditional expectations via nearest
neighbors

Harro Walk
Stuttgart, Germany

Abstract

For k,-nearest neighbor estimates of a regression Y on X (d-dimensional random vector X,
integrable real random variable Y') based on observed independent copies of (X, Y), strong
universal pointwise consistency is shown, i.e., strong consistency Px-almost everywhere
for general distribution of (X,Y’). With tie-breaking by indices, this means validity of a
universal strong law of large numbers for conditional expectations E(Y|X = z).

AMS 1991 subject classification: 62G07; 62H12; 60F15

Keywords: Conditional expectation; Nearest neighbor regression estimation; Strong uni-
versal pointwise consistency; Strong law of large numbers

1 Introduction
The estimation sequence (m,,) is called strongly universally pointwise consistent, if
almost surely m,(x) — m(z) mod u (1)

for all distributions of (X,Y") with E|Y| < co. If, in the case that u is concentrated in a sin-
gle point z* € R?, (1) immediately yields Kolmogorov’s strong law of large numbers (SLLN)
(Y1+...4Y,)/n — EY; = m(a2*) almost surely, then the strong universal consistency result
can be considered as a universal strong law of large numbers for conditional expectations.
In literature one finds several results on strong universal pointwise consistency which con-
cern modifications of averaging estimates: kernel estimates with truncated Y;’s in Kozek
et al. 9], modified recursive partitioning estimate in Algoet [1], (modified) truncated ker-
nel estimate, modified recursive kernel estimate and modified truncated nearest neighbor
estimate in Algoet and Gyorfi [2], (semi-)recursive partitioning and (semi-)recursive ker-
nel estimate in Walk [14]. Strong pointwise consistency of the classical Nadaraya-Watson
kernel estimate was established under boundedness or moment conditions (stronger than
E|Y| < o0) by Devroye [3], Greblicki et al. [7], Zhao and Fang [16], Stute [13] and Kozek
et al. [9] or under regularity conditions in Mukerjee [10] and Kozek et al. [9]. Gyorfi et



al. [8] mention strong universal pointwise consistency of the classical kernel estimate and
the classical nearest neighbor estimate as open problems. This paper gives an affirma-
tive answer for the latter estimate, i.e., it states (1) for k,-nearest neighbor estimates for
suitable (k,) under the only condition F|Y| < oo (Theorem 1). This result comprehends
a universal strong law of large numbers for conditional expectations. Tools in the proof
are Etemadi’s [6] device to prove classical strong laws of large numbers, a variant of the
generalized Lebesgue density theorem concerning Em,(x) — m(x) mod p (Lemma 1),
the Efron-Stein inequality for variances in Steele’s [11] version (Lemma 2), a sharpened
covering lemma for nearest neighbors (Lemma 3) with corollaries (Lemmas 4 - 8).

2 Result

For the definition m,(x) of the k,-nearest neighbor estimate, z € R? fixed, the data
(X1,Y1),...,(X,,Y,) are reordered according to increasing values of || X; — z|| (euclidean
norm) where the reordered data sequence is denoted by

(X1n(2), Yin(2)), - - s (Xnn(2), You(2))

with X}, () as the so-called kth nearest neighbor (k-NN) of z in {X;, ..., X,,}. The k,-NN
regression function estimate is defined by

k
1 n
moi=1
1 n
= ]{7_ ZY;I[XZ is among the k, NNs of z in {X1,...,X,}] (2)
moi=1
with &k, € {1,...,n— 1}, n > 2, where I denotes an indicator function.
We use two rules for breaking a so-called tie ||z;, — || = ... = ||z;; — z||. As to the

first rule (called purely random tie-breaking), let (X,V’) be a random vector, where V
is independent of (X,Y’) and uniformly distributed on [0,1]. We also artificially enlarge
the random data set by introducing real random variables Vi, V5, ... such that the (d +
2)-dimensional random vectors (X, V,Y), (X1, V1, Y1), (Xo, V5, Y3), ... are independent and
identically distributed. Especially the Vs have uniform distribution on [0, 1], and each
(X;, Vi) is distributed as (X, V). Ties, now in context with ||(z;, V;) — (z,V)|| instead of
||z; — x||, appear only with probability zero. In contrast to the global rule described in
Gydorfi et al [8], pp. 86, 87, we use this enlargement only in the above context, i.e., only in
the realized tie situation. The second rule for breaking the tie consists in declaring z;, to
be “closer” than z;, if iy < i (tie-breaking by indices). The formulations in this paper
concern both rules, except one of the rules is expressly mentioned.

The following theorem states strong universal consistency of the k,-nearest neighbor
estimates.



Theorem 1. Assume E|Y| < oo, and let k, € {1,...,n — 1}, n > 2, with k, T, k,/n” —
c € (0,00) with 0 < 8 < 1. Let the k,-nearest neighbor estimation be defined by (2) with
purely random tie-breaking or tie-breaking by indices. Then (1) holds.

Remark 1. If in Theorem 1 especially p is concentrated on {z*} for some z* € R?, then
almost surely m,,(z*) — m(z*) = EY. In the case of tie-breaking by indices, this means

Vit... +Y,
kn

thus, because {k,;n > 2} C {no,no + 1,...} for some ny,

almost surely — BY,

Yi+...4+Y,
almost surely hrdtn — BY.
n

Therefore Theorem 1 is a universal strong law of large numbers for conditional expectations.

3 Proofs

First we give some tools (Lemmas 1 - 8) and then prove Theorem 1. Let the assumptions
of Theorem 1 be fulfilled.
Lemma 1.

Emy(z) — m(xz) mod p.

Proof. We shall use k,/n — 0. We notice E(Y;|X;) = m(X;) and thus

n

1
Emn(£) = 3 Z Eﬁ?fn'()(z)I[XI is among the ky, NNs of z in {X1,..., Xn}l-

Fin i=1
Because the random vectors (Xi,Y;) are independent and identically distributed, under
both rules of tie breaking the left-hand side has the same value. Therefore we may restrict
to the case of purely random tie-breakig and obtain

n
Emn(z) = k_Em(Xl)I[Xl is among the ky, NNs of z in {X1,..., Xn}l-

We shall use the argument in the proof of the generalized pointwise Lebesgue density
theorem (see, e.g., Wheeden and Zygmund ([15], chapter 10), and Gyorfi et al. ([8], section
24.2)) and of a further generalization due to Greblicki et al. (7] (see also Gyorfi et al. ([8],
Lemma 24.8)).

In the first step, for an arbitrary p-integrable f : RY — R we show existence of a
constant ¢ depending on d such that

n C
% {ZIZ’ € Rd : Supk_E|f(Xl)|[[X1 is among the kn, NNs of z in {X1,..., Xn}l > a} S a / |f(y)|lu(dy)

n n

for any o > 0. Set

Ag") .= {y € R?: P[y is among the k, NNs of x in {y, X,..., X} | >}, t € (0,1),

7



which is 0 or a ball in R? centered at z. Then

k_E|f(Xl)|I[X1 is among the kn, NNs of z in {X71,..., Xn}l

= k‘ﬁ / |f(y)|P [y is among the k, NN’s of x in {y, Xo,..., X }] u(dy)

_ kﬁn/\f |/11An) (y)dtu(dy)
- ; / / () lpu(dy) | at

=/ /|f () dt//

< sup / () 1y (AT,
rational ¢>0

<

sup / F) )/ (Sun)

for a suitable countable set H C (0,00). This together with the well-known fact that

(e <R sup / F@)a(dy)/u(Sen) > a}) < / F)lu(dy)

x,h

for any av > 0 with some constant ¢ depending on d (see, e.g., Wheeden and Zygmund ([15],
Lemma 10.47), and Gyorfi et al. ([8], Lemma 24.4)), yields the desired auxiliary result.
In the second step, for an arbitrary fixed € > 0 we choose a continuous function g :
R — R with compact support such that [ |m(y) — g(y)|u(dy) < 2(5—;) with constant c
from the first step. For each x € support(u), because of k,,/n — 0, one has

almost surely || X, n)(z) — 2|[ — 0,

which is a consequence of the strong law of large numbers (see Gyorfi et al. ([8], Lemma
6.1)), thus

almost Surely E ‘g |IX1 is among the k, NNs of z in {X1,..., Xn}] 0

and

n
dn(x) = k_E|g(X1> - g(x>|I[X1 is among the k, NN’s of z in {X1,..., Xn} 0.



One has, for x € support(u),

| Em () —m(z)]

n
< k_E|m(Xl) - m($)|][X1 is among the kn NN’s of « in {X1,..., Xn}l
n
< k_E|m(X1) _g(Xl)‘I[Xl is among the kn NN’s of z in {X1,..., Xn}] + |m(:z:) - g(SU)’ +dn(£(])

= pa(®) + Im(z) — g(2)| + du(2)
= pal2) +[m(z) = g(z)] + o(1),

Define the set
T. .= {x € R : sup p,(z) + |m(x) — g(z)| > €}.

By the first step and the Markov inequality

u(Tz)
< p({r eR?: sup pn(x) > ¢/2}) + p ({z € R? : Jm(x) — g(z)| > £/2})

2c
<

2 [ mte) — gla)lutao) < =

Now ¢ — 0 yields the assertion. O
The Efron-Stein [5] inequality on variances in Steele’s [11] version (see Gyorfi et al.

8] for further references) will be formulated for the independent identically distributed

random vectors Z; = (X1, Y1),...,Z, = (Xu, Ya), 7, = ()~(1,1~/1), /A (Xn,f/n)

Lemma 2. Let f : R — R be measurable with square integrability of f(Z,..., Z,).

Then

1 n
Var(f(Zy,...,Z,)) < §ZE|f(Zl,...,Zj,...,Zn)—f(Zl,...,Zj,...,Zn)|2.
7j=1

Let 74 be the minimal number of closed cones Ci,...,C,, of angle /4 which are
centered at 0 with different central directions such that their union covers R¢. The following
lemma sharpens Corollary 6.1 in Gyorfi et al. [8], which deals with
P z is among the k& NNs of X in {z, X,..., X, }].

Lemma 3. Let x € R?, 1 < k < n. With purely random tie-breaking,

Plris k-NN of X in {z, Xo, ..., X,}] < 22,
n

Proof. We use ideas from the proof of Corollary 6.1 in Gyorfi et al. [8]. Let k > 2.
The treatment of the case k = 1 is analogous, but simpler. For ¢ € {1,...,n} let
Xns- - X7, with random indices Ji(i) < ... < Jp—q(¢) in {1,...,i—=1,i4+1,...,n}
be the k —1 NNsof X; in {Xy,..., X; 1, Xit1,..., X, }. Then,

Pz is k-NN of X in {z, X5,..., X,,}|

9



1 n
= =) Plzis kNN of X;in {z, X1,..., Xio1, Xiga, ..., Xn}]
n “

(by symmetry)

IA

1 n
= Plris 1st NN of X; in {z, X1, ..., Xis1, X, ..., X}
n
=1
X @y X}
1

= EE E ][:c is 1st NN of X; in {z, X1,..., Xit1, Xid1y---s Xn}
=1

\{XJl(i)a e >XJk71(i)}] :

Because for u,u’ € x+Cj (5 € {1,...,7v4}) with u # z the inequality ||u—z|| < ||u'—z]|
implies ||u — /|| < [|v' — z|| and thus ||u — || > ||v’ — z|| implies ||u — z|| > ||u" — z||,
we can notice: if x is the 1st NN of some X; in x +C; (1 = 1,...,n) in the set A;; U {z}
with A; ; consisting of those X; (1 € {1,...,i—1,i+1,....n}\{/1(0),..., Jp—1(4)}) falling
into z + (C;\{0}), then X; (in = + C;) is the unique 1st NN of z in A; ;. Thus the number
of such X;’s is at most 74 and the expected sum above is bounded by ~,. This yields the
assertion. 0J
Lemma 4. Let 1 <k <n and f: RY — R, be measurable. Then

ZEf I1X; is k-NN of X in {X1,...,Xn}] < YaEf(X).

Proof. Because the random vectors (X;,Y;) are independent and identically distributed,
under both rules of tie-breaking the left-hand side has the same value. Therefore we may
restrict to the case of purely random tie-breaking and obtain

ZEf [[XJ is k-NN of X in {X1,..., Xn}

= Z/f(x)P [z is k-NN of X in {Xy,..., X1, 2, X;41,..., Xy} p(dz)

Vd/f

(by Lemma 3)
= Ef(X).

IN

Lemma 5. Let 1 <k <n and Y; be square integrable.

a) Y EYPIx; is kNN of X in {X1,..., Xn}] < VaEY?
j=1

10



b) EYk7n(X)2 S ’}/dEY2.
Proof.
a) The inequality is obtained by Lemma 4 with f(X;) = E(Y}|X).

b) We obtain

EY; . (X)? = Z EYjn(X)I[X, is k-NN of X in {X1,..., Xn}]
=1

j=1
S ’)/dEyz
by part a) d

Lemma 6. Let ¢ >0, 1 <k <n.

a)
P[Y, > ¢, X, is kNN of X in {X1,..., X, }] < Z2P[Y > q].
n
b)
k
P[Y, > q, X,, is among the k£ NNs of X in {Xj,..., X,,}|] < ’ydEP[Y > q].
Proof.

a) The left-hand side below concerns tie-breaking by indices as well as purely random
tie-breaking, with differing probability values. We obtain

PlY, >q, X, is k-NN of X in {Xy,..., X, }|

g(/PMQWM;:MPMEhNNdXhﬂXM”gQAJ}
under purely random tie-breaking | u(dx)
< 2 PIY, > qlX, = lu(do)
(by Lemma 3)
= Yply > ¢l
n
b) Immediately by part a). O

11



Lemma 7. Let Y; > 0 be square integrable. Let 1 < k < M < N. Then

M
/ Var <Z }/}I[Xj is among the k NNs of z in {X1,..., XN}]> ,u(d:z:)

j=1
< 2v.kEY?.

Proof. Let (X1,Y1), ..., (f( 1}7 ) be (d + 1)-dimensional random vectors such that
(X1, Y1), ..., (XN, YN), (X1, Y1), ..., (X, Yy) are independent and identically distributed.

With
Fyj(x) = [X, is among the K NNs of z in {Xy,..., Xy}
Gnj(x) = [f(j is among the £ NNs of z in {Xl,...,Xj_l,f(j,XjH,...,XN}] ,

by Lemma 2 we obtain

j=1 , j=1
M
1
+ §ZE (V7 + Yin()? Mpy @tncn, @ + 5 Z EYjo1,5(2) Ipy ()G, (0f
j=1 j=M+1
LN
2 Z EYin(2) Ly (000G o)

where on Fi;(2)® N Gn;(z) Xin(x)is only the (k+1)-NN of z in {X;,..., X, 1, X},
Xj+1, ..., Xn}. Thus, by symmetry,

M
: (z mN,j@)
j=1

M M N
Z E}/.;?[FNJ(I) + Z EYkH,N(x)z[FN,j(x) + Z EYk+1,N($)2[FN’j(x)

j=1 j=1 J=M+1

IA

M
< Y EYPp, @)+ kEYi v(z)’
=1

Now

/ Var (ZYIFNJ ) p(dz)

7j=1

12



IN

<

M
Z Z EYjQI[Xj is I-NN of X in {X1,...,Xn}] T kEY1,n(X)?
=1 j=1
k
Ya Y EY? 4+ .k EY?
=1
(by Lemma 5a,b)

2v.kEY?.
O

Lemma 8. Let Y; > 0 be square integrable. Let 1 <k <M < N < (1+p)M, with p > 0.

Then

N
/V(L’f’ < Z Y}I[Xj is among the k NNs of z in {Xl,...,XM,Xj}]> ,u(d:z:)

j=M+1

< 4p(1+ p)yak EY?.

Proof. Let (X1,Y1), ..., (XNLYN) be (d + 1)-dimensional random vectors such that
(X1, Y1), ..., (XN, Yn), (X1, Y1),..., (XN, Yy) are independent and identically distributed.

By Lemma 2 we have

N
Var E Y}[[Xj is among the k NNs of = in {X1,..., X, X;} |

j=M+1

M N
1
< §ZE‘ Z }G(I[X] is among the k NNs of z in {X71,..., Xy, X;}]

=1

J=M+1

2
- I[Xj is among the k NNs of z in {Xl,...,Xl,l,Xl,XHl,...,XM,XJ-} ]) ‘

1 N
+§ E E|YEI[XZ is among the k NNs of z in {X1,..., X, X} ]
I=M+1

Vi ; -k
I4[ X} is among the k NNs of « in {X1,..., Xnr, X;}]

= Vi(z) + Vao(x).

Then, similarly to the proof of Lemma 7, by symmetry

Vi(z)

M N
S 2 E E< E Y}'[[XL is among the k NNs of z in {X1,..., X, X;}
=1 j=M+1

2
I1x; is (k+ 1)-NN of  in {Xl,...,XM,Xj}])

IN

N 2
2E (Z Yilix, is(k+l)—NNofxin{Xl,...,XM,Xj}]>
J

13



77777

=
~
s
.
o

3

o]

=
[o5°]
-t
=
0]
=
2,
2
w
o,
8
o
.
>
>
S
-

| I |

l

N 2
= 21{5E< Z Yilix; is (k + 1)-NN of 2 in {X1, ..., XM,X]»}]>
j=M+1

1

N
= 2k Z Esz][Xj is (k+ 1)-NN of z in {X1,..., X1, X;}]
j=M+1

+2k Z EY;Y;1x, is (k+ 1)-NN of @ in {X1, ..., Xar, X;}]

WE{M.:l ,,,, N}
7]

No

[ witantas)

= Z EY?T1x, s (k+1)-NN of X in {X1, .., Xar, X, }]
j=Mt1

N

. /E(yfp(j _ )Plais (k+ 1)-NN of X in {X1,. .., Xap, e}|u(de)
J=M+1
(with label j for = in case of tie-breaking by indices)

< (N—M) /E(Y2|X — )Pz is (k+ 1)-NN of X in {X,,..., Xar, 2}
under purely random tie-breaking] u(dx)

(as in the proof of Lemma 6a)
N-—-M

< E(Y?|X =

< S [ B07IX = ayutar)
(by Lemma 3)

< pyBY?.

Further

/ Wa()u(de)
= 2F

E YiYilix, is (k+ 1)-NN of X in {X1,..., Xas, Xs, X; 1]

z‘,je{M—;l ..... N}
1]

T1x; is (k+2)-NN of X in {X1,..., Xar, Xi, X, }]
(by symmetry)

14



IA

2 // | E(Y)|X; = 2)E(Y;|X; = #) Pz is (k + 1)-NN of X

z,je{M—;l ..... N}
1]

in {Xq,..., Xy, 2,2}, 718 (k+2)-NNof X in {Xy,..., Xy, 2,7}
under purely random tie-breaking] u(dx)u(dz)
(as before)

= 2N = M)(N = M — 1)E (Yars1Yarso

I[X]w+1 is (k + 1)—NN of X in {Xl ..... X1V1+2}7 Xni42 is (k + 2)—NN of X in {Xl ..... X1V1+2}])

< WMy {(YHLMH(XV  Veraarsa(X)?)

M+2 M+2

Z Iix; i (k4 1)-NN of X in {X1,..., Xars2}] Z I

j=1 j=1 [X;is (k+2)-NNof X in {X1,..., Xpr1a}
= %75\4)2 [EYji1,m42(X)? + EYgioar42(X)?]

(each time under purely random tie-breaking)
< 2% EY?

by Lemma 5b. Finally

thus

/ Va(@)pu(da)

N
< 2 Z /E(Yf\Xl:x)P[x is among the & NNs of X in {Xy,..., Xy, x}] pu(de)

I=M+1

(with label [ for = in case of tie-breaking by indices)

N
< 2/E(Y2|X =) Z Pz is among the £ NNs of X in {Xy,..., Xy, x}]
I=M+1
under purely random tie-breaking] p(dz)
(as before)
N-M

< 2 k| E(Y?X =2)u(d
< 2Nk [ B01x = pyp(an

(by Lemma 3)
< 2pv.kEY?.

15



Thus the assertion is obtained. O

Proof of Theorem 1. We use Etemadi’s [6] device to prove strong laws of large numbers.
Without loss of generality assume Y; > 0. For ¢ > 0 set Yi[c} = Yil|y,<q. Further set

kn
In the first step we show that almost surely for p-almost all € R? the event
Bi(z) := [for somen >1i:Y; > k,, X;is among the k, NNsof xin {Xy,..., X, }]
occurs for only finitely many ¢ € N. Thus
almost surely m™ (z) — m,(z) — 0 mod . (3)
Let r; :=min{j € N;k; =}, [ € N. For i € N we notice
| Pt

= PJ[forsomen >1i:Y; > k,, X;isamong the k, NNs of X in {X;,..., X,,}]
= P([Yi > k;, X; is among the k; NNs of X in {Xy,..., X;}]

(U [Y; > [, X; is among the [ NNs of X in {Xl,...,X,,l}])
>k
- P([Yi > ki, X; is among the k; NNs of X in {X,..., X;}]
(l V; > 1, X; is I-NN of X in {Xl,...,Xrl}])
>7,

(with pairwise disjoint events)

k;
Yz P[Y > k]

VAN

+ Z PY;>1, X; is NN of X in{Xy,..., X, }]
l=k)i+l
(by Lemma 6b)

Further
iAi = ydz P[Y >k
i=1

16



IA
o

Ngk:
A
i
N
>-<
V

2 |
RS

IA

with some constant ¢; € (0, 00), and

=1

oo r—1

I=1 i=1
< Yy P>
=1
(by Lemma 4 with f(X;) = E(Iy,>y]|Xi))
< wEY < oo.

Thus o
> / P(By(z))u(dz) < .

Now the Borel-Cantelli lemma yields the desired result.
In the second step we show

N

almost surely my(z) — m(x) mod p.

> D PYi>1, X;is NN of X in {X,...

X 3]

(4)

Set [, := [a”] for fixed a > 1. For N,n so large that k;,,, <[, <N <l,;1, we have

m,,(z)

1

In
. E : (k1]
= Y; " ][XZ is among the k;,, NNs of  in {X1,..., X;

bnt1 2

N
miy (x)

1

IN

IA

In =1

In+1
1

[kl +1]
+-— E Y; " [[Xl is among the kln+1 NNs of z in {X;

n i1
=: m,(z)+m(r).

First we show

almost surely m; (z) — Em;(z) — 0 mod u,

17
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Lyt1
Y;' " ][XZ is among the &, ; NNs of z in {X1,...,



almost surely m/ (z) — Em)(x) — 0 mod p, (7)
almost surely m! (z) — Em)(x) — 0 mod p. (8)

It suffices to show

/ > Var(ml,(z))u(dz) < oo, (10)
/Z Var(m’ (2))u(dz) < oo, (11)

By Lemma 7 we obtain

IN
[\
=
5
N
&
3
&
—~
=
k)
3
N
N

VAN
Q
)
e\‘
3
AT .
=
=
~
o]
~
—~
QU
~
S~—

IA
N
—

Q
@ | =
IS
—
~
[N}
R
&
QL
»

IA
Q
)
0\8
IS
5
&)
U
»
~
[\
7
—
U
~
~—

with suitable constants ¢, ¢y € (0,00), thus (9). Analogously, by Lemmas 7 and 8, we
obtain (10) and (11), respectively. Now for 6 > 0 choose k!, € {1,...,n — 1} such that
k' = [(1+ 6)a’k,] for large n. By Lemma 1

: !/
lim sup Em,,(x)
/ In
lim —=
n ln i=1

= (1+0)d’m(z) mod p.

Further

18



lim sup Em, (x)

lnt1
< lim sup H E E}/ZI[XZ is among the k;, , NNs of z in {X1,..., X1, X}
o=l +1
. n+l — ln
< lim sup L EYI[X is among the k; NNs of z in {X3 X, X}

n41 T T A LR

n

In
(the latter expectation under purely random tie-breaking)

In+1
— 1 ln—l—l - ln kl7l+1 1 VI
= lm E 14[X; is among the kln+1 NNs of z in {X7,..., X1, +1}]
Ko ot Lk, Zi:l

(the expectation under purely random tie-breaking)
= d’°(a—1)m(z) mod p

by Lemma 1. We notice that for arbitrary C' > 0 one has k;, > C for n sufficiently large,
further

1 ln+1
E : [C]
E Y; ][XZ is among the k;,, NNs of z in {X1,..., Xy H
=1

ln-‘,—l

n

In

< ey vl

> l_ i [X; is among the k;, NNs of « in {X71,..., Xy 1]
i=1

(with equality in the case of purely random tie-breaking). Once more by Lemma 1 together
with (5),(6),(7),(8), we then obtain

11
almost surely -—E (Y[C]|X =2z) < liminf E m}(z)
aa
= liminfm) (z) < liminf mgf,v) (x)

< limsup m%v) (z) < limsupmy,(x) + lim sup m; (z)

= limsup Em) (z) + limsup Em,, ()
< [146)+ (a —1)]a’m(xr) mod p.

Letting 6 | 0, a | 1 and C' T oo we obtain (4).
Now (3) and (4) yield the assertion. O
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