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A universal strong law of large numbers for
conditional expectations via nearest

neighbors

Harro Walk

Stuttgart, Germany

Abstract
For kn-nearest neighbor estimates of a regression Y on X (d-dimensional random vector X,
integrable real random variable Y ) based on observed independent copies of (X, Y ), strong
universal pointwise consistency is shown, i.e., strong consistency PX-almost everywhere
for general distribution of (X, Y ). With tie-breaking by indices, this means validity of a
universal strong law of large numbers for conditional expectations E(Y |X = x).
AMS 1991 subject classification: 62G07; 62H12; 60F15
Keywords: Conditional expectation; Nearest neighbor regression estimation; Strong uni-
versal pointwise consistency; Strong law of large numbers

1 Introduction

The estimation sequence (mn) is called strongly universally pointwise consistent, if

almost surely mn(x) → m(x) mod µ (1)

for all distributions of (X, Y ) with E|Y | < ∞. If, in the case that µ is concentrated in a sin-
gle point x∗ ∈ R

d, (1) immediately yields Kolmogorov’s strong law of large numbers (SLLN)
(Y1+. . .+Yn)/n → EY1 = m(x∗) almost surely, then the strong universal consistency result
can be considered as a universal strong law of large numbers for conditional expectations.
In literature one finds several results on strong universal pointwise consistency which con-
cern modifications of averaging estimates: kernel estimates with truncated Yi’s in Kozek
et al. [9], modified recursive partitioning estimate in Algoet [1], (modified) truncated ker-
nel estimate, modified recursive kernel estimate and modified truncated nearest neighbor
estimate in Algoet and Györfi [2], (semi-)recursive partitioning and (semi-)recursive ker-
nel estimate in Walk [14]. Strong pointwise consistency of the classical Nadaraya-Watson
kernel estimate was established under boundedness or moment conditions (stronger than
E|Y | < ∞) by Devroye [3], Greblicki et al. [7], Zhao and Fang [16], Stute [13] and Kozek
et al. [9] or under regularity conditions in Mukerjee [10] and Kozek et al. [9]. Györfi et
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al. [8] mention strong universal pointwise consistency of the classical kernel estimate and
the classical nearest neighbor estimate as open problems. This paper gives an affirma-
tive answer for the latter estimate, i.e., it states (1) for kn-nearest neighbor estimates for
suitable (kn) under the only condition E|Y | < ∞ (Theorem 1). This result comprehends
a universal strong law of large numbers for conditional expectations. Tools in the proof
are Etemadi’s [6] device to prove classical strong laws of large numbers, a variant of the
generalized Lebesgue density theorem concerning Emn(x) → m(x) mod µ (Lemma 1),
the Efron-Stein inequality for variances in Steele’s [11] version (Lemma 2), a sharpened
covering lemma for nearest neighbors (Lemma 3) with corollaries (Lemmas 4 - 8).

2 Result

For the definition mn(x) of the kn-nearest neighbor estimate, x ∈ R
d fixed, the data

(X1, Y1), . . . , (Xn, Yn) are reordered according to increasing values of ||Xi − x|| (euclidean
norm) where the reordered data sequence is denoted by

(X1,n(x), Y1,n(x)), . . . , (Xn,n(x), Yn,n(x))

with Xk,n(x) as the so-called kth nearest neighbor (k-NN) of x in {X1, . . . , Xn}. The kn-NN
regression function estimate is defined by

mn(x) :=
1

kn

kn
∑

i=1

Yi,n(x)

=
1

kn

n
∑

i=1

YiI[Xi is among the kn NNs of x in {X1, . . . ,Xn}] (2)

with kn ∈ {1, . . . , n − 1}, n ≥ 2, where I denotes an indicator function.
We use two rules for breaking a so-called tie ||xi1 − x|| = . . . = ||xij − x||. As to the

first rule (called purely random tie-breaking), let (X, V ) be a random vector, where V
is independent of (X, Y ) and uniformly distributed on [0, 1]. We also artificially enlarge
the random data set by introducing real random variables V1, V2, . . . such that the (d +
2)-dimensional random vectors (X, V, Y ), (X1, V1, Y1), (X2, V2, Y2), . . . are independent and
identically distributed. Especially the V ′

i s have uniform distribution on [0, 1], and each
(Xi, Vi) is distributed as (X, V ). Ties, now in context with ||(xi, Vi) − (x, V )|| instead of
||xi − x||, appear only with probability zero. In contrast to the global rule described in
Györfi et al [8], pp. 86, 87, we use this enlargement only in the above context, i.e., only in
the realized tie situation. The second rule for breaking the tie consists in declaring xil′

to
be “closer” than xil′′

if il′ < il′′ (tie-breaking by indices). The formulations in this paper
concern both rules, except one of the rules is expressly mentioned.

The following theorem states strong universal consistency of the kn-nearest neighbor
estimates.
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Theorem 1. Assume E|Y | < ∞, and let kn ∈ {1, . . . , n − 1}, n ≥ 2, with kn ↑, kn/n
β →

c ∈ (0,∞) with 0 < β < 1. Let the kn-nearest neighbor estimation be defined by (2) with
purely random tie-breaking or tie-breaking by indices. Then (1) holds.
Remark 1. If in Theorem 1 especially µ is concentrated on {x∗} for some x∗ ∈ R

d, then
almost surely mn(x∗) → m(x∗) = EY . In the case of tie-breaking by indices, this means

almost surely
Y1 + . . . + Ykn

kn

→ EY,

thus, because {kn; n ≥ 2} ⊂ {n0, n0 + 1, . . .} for some n0,

almost surely
Y1 + . . . + Yn

n
→ EY.

Therefore Theorem 1 is a universal strong law of large numbers for conditional expectations.

3 Proofs

First we give some tools (Lemmas 1 - 8) and then prove Theorem 1. Let the assumptions
of Theorem 1 be fulfilled.
Lemma 1.

Emn(x) → m(x) mod µ.

Proof. We shall use kn/n → 0. We notice E(Yi|Xi) = m(Xi) and thus

Emn(x) =
1

kn

n
∑

i=1

Em(Xi)I[Xi is among the kn NNs of x in {X1, . . . ,Xn}].

Because the random vectors (X1, Yi) are independent and identically distributed, under
both rules of tie breaking the left-hand side has the same value. Therefore we may restrict
to the case of purely random tie-breakig and obtain

Emn(x) =
n

kn

Em(X1)I[X1 is among the kn NNs of x in {X1, . . . ,Xn}].

We shall use the argument in the proof of the generalized pointwise Lebesgue density
theorem (see, e.g., Wheeden and Zygmund ([15], chapter 10), and Györfi et al. ([8], section
24.2)) and of a further generalization due to Greblicki et al. ([7] (see also Györfi et al. ([8],
Lemma 24.8)).

In the first step, for an arbitrary µ-integrable f : R
d → R we show existence of a

constant c depending on d such that

µ

{

x ∈ R
d : sup

n

n

kn

E|f(X1)|I[X1 is among the kn NNs of x in {X1, . . . , Xn}] > α

}

≤
c

α

∫

|f(y)|µ(dy)

for any α > 0. Set

A
(n)
t := {y ∈ R

d : P [y is among the kn NNs of x in {y, X2, . . . , Xn} ] > t}, t ∈ (0, 1),
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which is ∅ or a ball in R
d centered at x. Then

n

kn

E|f(X1)|I[X1 is among the kn NNs of x in {X1, . . . ,Xn}]

=
n

kn

∫

|f(y)|P [y is among the kn NN’s of x in {y, X2, . . . , Xn}] µ(dy)

=
n

kn

∫

|f(y)|

1
∫

0

I
A

(n)
t

(y)dtµ(dy)

=
n

kn

1
∫

0







∫

A
(n)
t

|f(y)|µ(dy)






dt

=

1
∫

0







∫

A
(n)
t

|f(y)|µ(dy)






dt/

1
∫

0

µ(A
(n)
t )dt

≤ sup
rational t>0

∫

A
(n)
t

|f(y)|µ(dy)/µ(A
(n)
t ),

≤ sup
h∈H

∫

Sx,h

|f(y)|µ(dy)/µ(Sx,h)

for a suitable countable set H ⊂ (0,∞). This together with the well-known fact that

µ({x ∈ R
d : sup

h∈H

∫

Sx,h

|f(y)|µ(dy)/µ(Sx,h) > α}) ≤
c

α

∫

|f(y)|µ(dy)

for any α > 0 with some constant c depending on d (see, e.g., Wheeden and Zygmund ([15],
Lemma 10.47), and Györfi et al. ([8], Lemma 24.4)), yields the desired auxiliary result.

In the second step, for an arbitrary fixed ε > 0 we choose a continuous function g :
R

d → R with compact support such that
∫

|m(y) − g(y)|µ(dy) < ε2

2(c+1)
with constant c

from the first step. For each x ∈ support(µ), because of kn/n → 0, one has

almost surely ||X(kn,n)(x) − x|| → 0,

which is a consequence of the strong law of large numbers (see Györfi et al. ([8], Lemma
6.1)), thus

almost surely
1

kn

n
∑

i=1

|g(Xi) − g(x)|I[Xi is among the kn NNs of x in {X1, . . . ,Xn}] → 0

and
dn(x) :=

n

kn

E|g(X1) − g(x)|I[X1 is among the kn NN’s of x in {X1, . . . , Xn}] → 0.
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One has, for x ∈ support(µ),

|Emn(x) − m(x)|

≤
n

kn

E|m(X1) − m(x)|I[X1 is among the kn NN’s of x in {X1, . . . ,Xn}]

≤
n

kn

E|m(X1) − g(X1)|I[X1 is among the kn NN’s of x in {X1, . . . , Xn}] + |m(x) − g(x)| + dn(x)

=: pn(x) + |m(x) − g(x)| + dn(x)

= pn(x) + |m(x) − g(x)| + o(1).

Define the set
Tε := {x ∈ R

d : sup
n

pn(x) + |m(x) − g(x)| > ε}.

By the first step and the Markov inequality

µ(Tε)

≤ µ({x ∈ R
d : sup

n

pn(x) > ε/2}) + µ
(

{x ∈ R
d : |m(x) − g(x)| > ε/2}

)

≤
2c + 2

ε

∫

|m(x) − g(x)|µ(dx) ≤ ε.

Now ε → 0 yields the assertion. �

The Efron-Stein [5] inequality on variances in Steele’s [11] version (see Györfi et al.

[8] for further references) will be formulated for the independent identically distributed
random vectors Z1 = (X1, Y1), . . . , Zn = (Xn, Yn), Z̃1 = (X̃1, Ỹ1), . . . , Z̃n = (X̃n, Ỹn).
Lemma 2. Let f : R

(d+1)n → R be measurable with square integrability of f(Z1, . . . , Zn).
Then

V ar(f(Z1, . . . , Zn)) ≤
1

2

n
∑

j=1

E|f(Z1, . . . , Zj, . . . , Zn) − f(Z1, . . . , Z̃j, . . . , Zn)|
2.

Let γd be the minimal number of closed cones C1, . . . , Cγd
of angle π/4 which are

centered at 0 with different central directions such that their union covers R
d. The following

lemma sharpens Corollary 6.1 in Györfi et al. [8], which deals with
P [ x is among the k NNs of X in {x, X2, . . . , Xn}].
Lemma 3. Let x ∈ R

d, 1 ≤ k < n. With purely random tie-breaking,

P [x is k-NN of X in {x, X2, . . . , Xn}] ≤
γd

n
.

Proof. We use ideas from the proof of Corollary 6.1 in Györfi et al. [8]. Let k ≥ 2.
The treatment of the case k = 1 is analogous, but simpler. For i ∈ {1, . . . , n} let
XJ1(i), . . . , XJk−1(i) with random indices J1(i) < . . . < Jk−1(i) in {1, . . . , i − 1, i + 1, . . . , n}
be the k − 1 NNs of Xi in {X1, . . . , Xi−1, Xi+1, . . . , Xn}. Then,

P [x is k-NN of X in {x, X2, . . . , Xn}]
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=
1

n

n
∑

i=1

P [x is k-NN of Xi in {x, X1, . . . , Xi−1, Xi+1, . . . , Xn}]

(by symmetry)

≤
1

n

n
∑

i=1

P [x is 1st NN of Xi in {x, X1, . . . , Xi+1, Xi+1, . . . , Xn}

\{XJ1(i), . . . , XJk−1(i)}
]

=
1

n
E

n
∑

i=1

I[x is 1st NN of Xi in {x,X1, . . . , Xi+1,Xi+1, . . . , Xn}

\{XJ1(i), . . . , XJk−1(i)}
]

.

Because for u, u′ ∈ x+Cj (j ∈ {1, . . . , γd}) with u 6= x the inequality ||u−x|| ≤ ||u′−x||
implies ||u − u′|| < ||u′ − x|| and thus ||u − u′|| ≥ ||u′ − x|| implies ||u − x|| > ||u′ − x||,
we can notice: if x is the 1st NN of some Xi in x + Cj (i = 1, . . . , n) in the set Ai,j ∪ {x}
with Ai,j consisting of those Xl (l ∈ {1, . . . , i− 1, i + 1, . . . , n}\{J1(i), . . . , Jk−1(i)}) falling
into x + (Cj\{0}), then Xi (in x + Cj) is the unique 1st NN of x in Ai,j. Thus the number
of such Xi’s is at most γd and the expected sum above is bounded by γd. This yields the
assertion. �

Lemma 4. Let 1 ≤ k < n and f : R
d → R+ be measurable. Then

n
∑

j=1

Ef(Xj)I[Xj is k-NN of X in {X1, . . . ,Xn}] ≤ γdEf(X).

Proof. Because the random vectors (Xi, Yi) are independent and identically distributed,
under both rules of tie-breaking the left-hand side has the same value. Therefore we may
restrict to the case of purely random tie-breaking and obtain

n
∑

j=1

Ef(Xj)I[Xj is k-NN of X in {X1, . . . , Xn}]

=
n
∑

j=1

∫

f(x)P [x is k-NN of X in {X1, . . . , Xj−1, x, Xj+1, . . . , Xn}] µ(dx)

≤ γd

∫

f(x)µ(dx)

(by Lemma 3)

= γdEf(X).

�

Lemma 5. Let 1 ≤ k < n and Yj be square integrable.

a)
n
∑

j=1

EY 2
j I[Xj is k-NN of X in {X1, . . . ,Xn}] ≤ γdEY 2.
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b) EYk,n(X)2 ≤ γdEY 2.

Proof.

a) The inequality is obtained by Lemma 4 with f(Xj) = E(Y 2
j |Xj).

b) We obtain

EYk,n(X)2 =

n
∑

j=1

EYk,n(X)2I[Xj is k-NN of X in {X1, . . . , Xn}]

=
n
∑

j=1

EY 2
j I[Xj is k-NN of X in {X1, . . . , Xn}]

≤ γdEY 2

by part a) �

Lemma 6. Let q > 0, 1 ≤ k < n.

a)

P [Yn > q, Xn is k-NN of X in {X1, . . . , Xn}] ≤
γd

n
P [Y > q].

b)

P [Yn > q, Xn is among the k NNs of X in {X1, . . . , Xn}] ≤ γd

k

n
P [Y > q].

Proof.

a) The left-hand side below concerns tie-breaking by indices as well as purely random
tie-breaking, with differing probability values. We obtain

P [Yn > q, Xn is k-NN of X in {X1, . . . , Xn}]

≤

∫

P [Yn > q|Xn = x] P [x is k-NN of X in {X1, . . . , Xn−1, x}

under purely random tie-breaking ]µ(dx)

≤
γd

n

∫

P [Yn > q|Xn = x]µ(dx)

(by Lemma 3)

=
γd

n
P [Y > q].

b) Immediately by part a). �

11



Lemma 7. Let Yj ≥ 0 be square integrable. Let 1 ≤ k < M ≤ N . Then

∫

V ar

(

M
∑

j=1

YjI[Xj is among the k NNs of x in {X1, . . . ,XN}]

)

µ(dx)

≤ 2γdkEY 2.

Proof. Let (X̃1, Ỹ1), . . . , (X̃N , ỸN) be (d + 1)-dimensional random vectors such that
(X1, Y1), . . . , (XN , YN), (X̃1, Ỹ1), . . . , (X̃n, ỸN) are independent and identically distributed.
With

FN,j(x) := [Xj is among the k NNs of x in {X1, . . . , XN}

GN,j(x) :=
[

X̃j is among the k NNs of x in {X1, . . . , Xj−1, X̃j, Xj+1, . . . , XN}
]

,

by Lemma 2 we obtain

V ar

(

M
∑

j=1

YjIFN,j (x)

)

≤
1

2

M
∑

j=1

E
(

Yj − Ỹj

)2

IFN,j (x)∩GN,j (x) +
1

2

M
∑

j=1

E
(

Y 2
j + Yk+1,N(x)2

)

IFN,j (x)∩GN,j (x){

+
1

2

M
∑

j=1

E(Ỹ 2
j + Yk,N(x)2)IFN,j (x){∩GN,j (x) +

1

2

N
∑

j=M+1

EYk+1,N(x)2IFN,j(x)∩GN,j (x){

+
1

2

N
∑

j=M+1

EYk,N(x)2IFN,j(x){∩GN,j (x),

where on FN,j(x){ ∩ GN,j(x) Xk,N(x) is only the (k + 1)-NN of x in {X1, . . . , Xj−1, X̃j,
Xj+1, . . . , XN}. Thus, by symmetry,

V ar

(

M
∑

j=1

YjIFN,j(x)

)

≤
M
∑

j=1

EY 2
j IFN,j (x) +

M
∑

j=1

EYk+1,N(x)2IFN,j (x) +
N
∑

j=M+1

EYk+1,N(x)2IFN,j (x)

≤
M
∑

j=1

EY 2
j IFM,j(x) + kEYk+1,N(x)2.

Now

∫

V ar

(

M
∑

j=1

YjIFN,j(x)

)

µ(dx)
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≤
k
∑

l=1

M
∑

j=1

EY 2
j I[Xj is l-NN of X in {X1, . . . ,XN}] + kEYk+1,N(X)2

≤ γd

k
∑

l=1

EY 2 + γdkEY 2

(by Lemma 5a,b)

≤ 2γdkEY 2.
�

Lemma 8. Let Yj ≥ 0 be square integrable. Let 1 ≤ k < M < N ≤ (1+ρ)M, with ρ > 0.
Then

∫

V ar

(

N
∑

j=M+1

YjI[Xj is among the k NNs of x in {X1, . . . ,XM ,Xj}]

)

µ(dx)

≤ 4ρ(1 + ρ)γdkEY 2.

Proof. Let (X̃1, Ỹ1), . . . , (X̃N , ỸN) be (d + 1)-dimensional random vectors such that
(X1, Y1), . . . , (XN , YN), (X̃1, Ỹ1), . . . , (X̃N , ỸN) are independent and identically distributed.
By Lemma 2 we have

Var

(

N
∑

j=M+1

YjI[Xj is among the k NNs of x in {X1, . . . ,XM ,Xj} ]

)

≤
1

2

M
∑

l=1

E
∣

∣

∣

N
∑

j=M+1

Yj

(

I[Xj is among the k NNs of x in {X1, . . . ,XM ,Xj}]

− I[Xj is among the k NNs of x in {X1, . . . , Xl−1, X̃l,Xl+1, . . . ,XM ,Xj} ]

)

∣

∣

∣

2

+
1

2

N
∑

l=M+1

E|YlI[Xl is among the k NNs of x in {X1, . . . ,XM , Xl} ]

−ỸlI[ X̃l is among the k NNs of x in {X1, . . . ,XM , X̃l}]
|2

=: V1(x) + V2(x).

Then, similarly to the proof of Lemma 7, by symmetry

V1(x) ≤ 2

M
∑

l=1

E

( N
∑

j=M+1

YjI[Xl is among the k NNs of x in {X1, . . . ,XM ,Xj}

I[Xj is (k + 1)-NN of x in {X1, . . . ,XM ,Xj}]

)2

≤ 2E





(

N
∑

j=M+1

YjI[Xj is (k + 1)-NN of x in {X1, . . . , XM , Xj}]

)2
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M
∑

l=1

I[Xl is among the k NNs of x in {X1, . . . ,XM}]

]

= 2kE

(

N
∑

j=M+1

YjI[Xj is (k + 1)-NN of x in {X1, . . . ,XM ,Xj}]

)2

= 2k

N
∑

j=M+1

EY 2
j I[Xj is (k + 1)-NN of x in {X1, . . . ,XM ,Xj}]

+2k
∑

i,j∈{M+1,...,N}
i6=j

EYiYjI[Xi is (k + 1)-NN of x in {X1, . . . ,XM ,Xi}]

I[Xj is (k + 1)-NN of x in {X1, . . . , XM ,Xj}]

=: 2kW1(x) + 2kW2(x).

Now
∫

W1(x)µ(dx)

=
N
∑

j=M+1

EY 2
j I[Xj is (k + 1)-NN of X in {X1, . . . , XM ,Xj}]

=
N
∑

j=M+1

∫

E(Y 2
j |Xj = x)P [x is (k + 1)-NN of X in {X1, . . . , XM , x}]µ(dx)

(with label j for x in case of tie-breaking by indices)

≤ (N − M)

∫

E(Y 2|X = x)P [x is (k + 1)-NN of X in {X1, . . . , XM , x}

under purely random tie-breaking] µ(dx)

(as in the proof of Lemma 6a)

≤
N − M

M + 1
γd

∫

E(Y 2|X = x)µ(dx)

(by Lemma 3)

≤ ργdEY 2.

Further
∫

W2(x)µ(dx)

= 2E
∑

i,j∈{M+1,...,N}
i6=j

YiYjI[Xi is (k + 1)-NN of X in {X1, . . . ,XM , Xi, Xj},]

I[Xj is (k + 2)-NN of X in {X1, . . . ,XM , Xi,Xj}]

(by symmetry)
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≤ 2

∫ ∫

∑

i,j∈{M+1,...,N}
i6=j

E(Yi|Xi = x)E(Yj|Xj = x̃)P [x is (k + 1)-NN of X

in {X1, . . . , XM , x, x̃}, x̃ is (k + 2)-NN of X in {X1, . . . , XM , x, x̃}

under purely random tie-breaking] µ(dx)µ(dx̃)

(as before)

= 2(N − M)(N − M − 1)E (YM+1YM+2

I[XM+1 is (k + 1)-NN of X in {X1, . . . ,XM+2}, XM+2 is (k + 2)-NN of X in {X1, . . . ,XM+2}])

≤
(N − M)2

M2
E

[

(Yk+1,M+2(X)2 + Yk+2,M+2(X)2)

M+2
∑

j=1

I[Xj is (k + 1)-NN of X in {X1, . . . ,XM+2}]

M+2
∑

j=1

I
[Xj is (k + 2)-NN of X in {X1, . . . , XM+2}

]

=
(N − M)2

M2

[

EYk+1,M+2(X)2 + EYk+2,M+2(X)2
]

(each time under purely random tie-breaking)

≤ 2ρ2γdEY 2

by Lemma 5b. Finally

V2(x) ≤ 2
N
∑

l=M+1

EY 2
l I[Xl is among the k NNs of x in {X1, . . . ,XM ,Xl}],

thus
∫

V2(x)µ(dx)

≤ 2

N
∑

l=M+1

∫

E(Y 2
l |Xl = x)P [x is among the k NNs of X in {X1, . . . , XM , x}] µ(dx)

(with label l for x in case of tie-breaking by indices)

≤ 2

∫

E(Y 2|X = x)
N
∑

l=M+1

P [x is among the k NNs of X in {X1, . . . , XM , x}]

under purely random tie-breaking] µ(dx)

(as before)

≤ 2
N − M

M + 1
γdk

∫

E(Y 2|X = x)µ(dx)

(by Lemma 3)

≤ 2ργdkEY 2.

15



Thus the assertion is obtained. �

Proof of Theorem 1. We use Etemadi’s [6] device to prove strong laws of large numbers.

Without loss of generality assume Yi ≥ 0. For c > 0 set Y
[c]
i := YiI[Yi≤c]. Further set

m(n)
n (x) :=

n
∑

i=1

Y
[kn]
i I[Xi is among the kn NNs of x in {X1, . . . ,Xn}]

kn

, x ∈ R
d.

In the first step we show that almost surely for µ-almost all x ∈ R
d the event

Bi(x) := [for some n ≥ i : Yi > kn, Xi is among the kn NNs of x in {X1, . . . , Xn}]

occurs for only finitely many i ∈ N. Thus

almost surely m(n)
n (x) − mn(x) → 0 mod µ. (3)

Let rl := min{j ∈ N; kj = l}, l ∈ N. For i ∈ N we notice

∫

P (Bi(x))µ(dx)

= P [ for some n ≥ i : Yi > kn, Xi is among the kn NNs of X in {X1, . . . , Xn}]

= P
(

[Yi > ki, Xi is among the ki NNs of X in {X1, . . . , Xi}]

∪
(

∪
l>ki

[Yi > l, Xi is among the l NNs of X in {X1, . . . , Xrl
} ]
)

= P
(

[Yi > ki, Xi is among the ki NNs of X in {X1, . . . , Xi}]

∪
(

∪
l>ki

[Yi > l, Xi is l-NN of X in {X1, . . . , Xrl
}]
)

(with pairwise disjoint events)

≤ γd

ki

i
P [Y > ki]

+
∞
∑

l=ki+1

P [Yi > l, Xi is l-NN of X in {X1, . . . , Xrl
}]

(by Lemma 6b)

=: Ai + Di.

Further

∞
∑

i=1

Ai = γd

∞
∑

i=1

ki

i
P [Y > ki]
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≤ c1

∞
∑

i=1

iβ−1P

[

Y >
1

c1

iβ
]

≤
c2
1

β

∞
∫

0

P [Y > t] dt

=
c2
1

β
EY < ∞

with some constant c1 ∈ (0,∞), and

∞
∑

i=1

Di =

∞
∑

l=1

rl−1
∑

i=1

P [Yi > l, Xi is l-NN of X in {X1, . . . , Xrl
}]

≤ γd

∞
∑

l=1

P [Y > l]

(by Lemma 4 with f(Xi) = E(I[Yi>l]|Xi))

≤ γdEY < ∞.

Thus
∞
∑

i=1

∫

P (Bi(x))µ(dx) < ∞.

Now the Borel-Cantelli lemma yields the desired result.
In the second step we show

almost surely mN
N (x) → m(x) mod µ. (4)

Set ln := banc for fixed a > 1. For N, n so large that kln+1 ≤ ln < N ≤ ln+1, we have

m∗
n(x)

:=
1

kln+1

ln
∑

i=1

Y
[kln ]
i I[Xi is among the kln NNs of x in {X1, . . . , Xl

n+1
}]

≤ m
(N)
N (x)

≤
1

kln

ln
∑

i=1

Y
[kln+1

]

i I[Xi is among the kl
n+1

NNs of x in {X1, . . . , Xln}]

+
1

kln

ln+1
∑

i=ln+1

Y
[kln+1

]

i I[Xi is among the kl
n+1

NNs of x in {X1, . . . ,Xln , Xi}]

=: m′
n(x) + m′′

n(x). (5)

First we show
almost surely m∗

n(x) − Em∗
n(x) → 0 mod µ, (6)

17



almost surely m′
n(x) − Em′

n(x) → 0 mod µ, (7)

almost surely m′′
n(x) − Em′′

n(x) → 0 mod µ. (8)

It suffices to show
∫

∑

V ar(m∗
n(x))µ(dx) < ∞, (9)

∫

∑

V ar(m′
n(x))µ(dx) < ∞, (10)

∫

∑

V ar(m′′
n(x))µ(dx) < ∞. (11)

By Lemma 7 we obtain

∑

∫

V ar(m∗
n(x))µ(dx)

≤ 2γd

∑ 1

k2
ln+1

klnE
(

Y [kln ]
)2

≤ c2

∑ 1

a(n+1)β

c′anβ
∫

0

t2PY (dt)

≤ c2

∞
∫

0

1

asβ

c′asβ
∫

0

t2PY (dt)ds

≤ c2

∞
∫

0









∞
∫

ln(t/c′)
β lna

a−sβds









t2PY (dt)

=
c2c

′

β ln a

∫

tPY (dt)

=
c2c

′

β ln a
EY < ∞

with suitable constants c′, c2 ∈ (0,∞), thus (9). Analogously, by Lemmas 7 and 8, we
obtain (10) and (11), respectively. Now for δ > 0 choose k′

n ∈ {1, . . . , n − 1} such that
k′

n = d(1 + δ)aβkne for large n. By Lemma 1

lim sup Em′
n(x)

≤ lim
k′

ln

kln

1

k′
ln

E
ln
∑

i=1

YiI[Xi is among the k′
ln

NNs of x in {X1, . . . ,Xln}]

= (1 + δ)aβm(x) mod µ .

Further
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lim sup Em′′
n(x)

≤ lim sup
1

kln

ln+1
∑

i=ln+1

EYiI[Xi is among the kl
n+1

NNs of x in {X1, . . . ,Xln , Xi}]

≤ lim sup
ln+1 − ln

kln

EY I[X is among the kl
n+1

NNs of x in {X1, . . . , Xln , X}]

(the latter expectation under purely random tie-breaking)

= lim
ln+1 − ln

kln

kln+1

ln + 1

1

kln+1

E

ln+1
∑

i=1

YiI[Xi is among the kl
n+1

NNs of x in {X1, . . . ,Xln+1}]

(the expectation under purely random tie-breaking)

= aβ(a − 1)m(x) mod µ

by Lemma 1. We notice that for arbitrary C > 0 one has kln > C for n sufficiently large,
further

1

ln+1

E

ln+1
∑

i=1

Y
[C]
i I[Xi is among the kln NNs of x in {X1, . . . ,Xl

n+1
}]

≤
1

ln
E

ln
∑

i=1

Y
[C]
i I[Xi is among the kln NNs of x in {X1, . . . ,Xl

n+1
}]

(with equality in the case of purely random tie-breaking). Once more by Lemma 1 together
with (5),(6),(7),(8), we then obtain

almost surely
1

a

1

aβ
E
(

Y [C]|X = x
)

≤ lim inf E m∗
n(x)

= lim inf m∗
n(x) ≤ lim inf m

(N)
N (x)

≤ lim sup m
(N)
N (x) ≤ lim sup m′

n(x) + lim sup m′′
n(x)

= lim sup Em′
n(x) + lim sup Em′′

n(x)

≤ [(1 + δ) + (a − 1)]aβm(x) mod µ.

Letting δ ↓ 0, a ↓ 1 and C ↑ ∞ we obtain (4).
Now (3) and (4) yield the assertion. �
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