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Abstract

Let X ∈ R
d be a random vector, Y a non-negative and bounded random variable, and C

a right censoring random variable operating on Y, which is independent of (X,Y ). Given

a sample of the distribution of
(

X,min {Y,C}, I[ Y <C ]

)

, our goal is to construct estimates

of the regression function m(x) = E [Y |X = x ].

We prove that suitable defined smoothing spline estimates are consistent with respect

to the L2 error and achieve the optimal rate of convergence up to a logarithmic factor.

Key words and phrases: censored data, regression estimate, universal consistency, rate of

convergence, penalized least squares estimates, smoothing splines.

1 Introduction

1.1 Nonparametric regression analysis

Let (X,Y ), (X1, Y1), (X2, Y2),. . . , (Xn, Yn) ∈ R
d×R be independent identically distributed

(i.i.d.) random vectors with EY 2 < ∞. No assumptions are made on the distribution

functions of the coordinates of X: Some of them may be continuous, others may be step

functions or a composition of these two types of distribution functions.

In regression analysis one wants to estimate Y after having observed X, i.e., one

wishes to determine a function f such that f(X) is a “good” approximation of Y . Here,

we measure the “distance” between f(X) and Y by the L2 risk of f,

E
[

|f(X) − Y |2
]

, (1.1)

which we now want to minimize. It is well known that the L2 risk of every measurable

function f is the sum of the L2 risk of the regression function m : R
d → R : x 7→

E [ Y |X = x ] and the L2 error :

E
[

|f(X) − Y |2
]

= E
[

|m(X) − Y |2
]

+

∫

Rd

|f(x) − m(x)|2µ(dx). (1.2)
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Here µ denotes the distribution of X. Since the L2 error is always non-negative, (1.2)

implies that the regression function m is the optimal predictor of Y in view of the mini-

mization of the L2 risk:

E
[

|m(X) − Y |2
]

= min
f :Rd→R,

fmeasurable

E
[

|f(X) − Y |2
]

. (1.3)

In practical applications, the distribution of (X,Y ) and hence also m are usually un-

known. But it is often possible to observe a sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) of this

distribution, and one can construct estimates

mn(·) := mn(·, (X1, Y1), (X2, Y2), . . . , (Xn, Yn)) : R
d → R

of the regression function.

It follows from (1.2) that such an estimate mn is a good approximation of Y in the

sense that the L2 risk of mn is close to the optimal value E
[

|m(X) − Y |2
]

if and only if

the L2 error
∫

Rd |mn(x) − m(x)|2µ(dx) is small. Consequently, the error caused by using

an estimate mn instead of m will be measured by the L2 error.

Definition 1.1 (Consistency) A sequence of measurable regression estimates (mn)n∈N

is called strongly universally consistent if

∫

Rd

|mn(x) − m(x)|2µ(dx) → 0 (n → ∞)

almost surely (a.s.) for all distributions of (X,Y ) with EY 2 < ∞.

1.2 Regression estimates for right censored data

Right censoring occurs whenever with non-zero probability only a lower bound on a random

variable Y of interest is known. Typical examples for Y would be lifetimes of patients

in a medical study or products in quality control. For a patient (or a product) not

failing before leaving the study, one doesn’t observe a realization y of Y , but only a lower

bound c of y. In the following, we will assume random censoring which means that the

observed censoring time c for a patient is not fixed in advance, but can be interpreted

as a realization of a right censoring variable C operating on Y . Examples of random

censoring include dropouts in medical studies or deaths unrelated to the studied causes.

The regression estimation problem we are dealing with can now be formulated as follows:

Let (X,Y,C), (X1, Y1, C1), (X2, Y2, C2), . . . , (Xn, Yn, Cn) be i.i.d. R
d × R+ × R+ – valued

random vectors. In practice, beside the realizations of the covariables Xi, all we observe

are realizations of the minima of Yi and Ci (i = 1, . . . , n), and we have the information
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whether a censored observation has occurred or not. Set therefore Z := min {Y,C} ,

δ := I[Y <C ], Zi := min {Yi, Ci} , and δi = I[Yi<Ci ]. Here, for a1, a2 ∈ R,

I[a1<a2] :=











1 if a1 < a2

0 if a1 ≥ a2.

The problem is now to estimate the regression function from the data

Dn := {(X1, Z1, δ1) , . . . , (Xn, Zn, δn)} .

1.3 Results from regression analysis of censored data

There are basically two methods to determine the functional interrelationship between

covariates and censored response: regression based approaches, on which we focus in

this article, and hazard risk approaches, which include classical Cox regression as well as

extensions to nonparametric models. Details regarding the latter one can, e.g., be found in

the books of Andersen, Borgan, Gill and Keiding (1993), Fleming and Harrington (1991)

or Cox and Oakes (1984) and in the works of Dippon (2004), Huang and Stone(1998),

Kooperberg, Stone and Troung (1995a, 1995b), and the literature cited therein.

Concerning regression based approaches, Buckley and James (1979) introduced an

estimator of a linear regression function, whose consistency was investigated by James and

Smith (1984). For a slight modification of this estimate, Ritov (1990) and Lai and Ying

(1991) established the asymptotic normality. Other estimates for the linear regression

model are due to Leurgans (1987), Koul, Sousarla, and Van Ryzin (1981), and Miller

(1976).

Without conditions on the structure of the regression function or regularity assump-

tions on the distribution of the design, Zheng (1988) showed that suitable defined nearest

neighbor estimates for censored regression are strongly pointwise consistent. He required

that (X,Y ) and C are independent. In the same setting, strong consistency of suitable

defined partitioning estimates with respect to the L2 error was proven by Carbonez (1992).

A survey of corresponding results for further nonparametric estimates is given in Pintér

(2001). Beyond, in the more general model that Y and C are conditionally independent

given X, Pintér (2001) showed that one can use a nonparametric estimate of the condi-

tional survival function, introduced by Beran (1981), to construct suitable defined local

averaging estimates which are strongly consistent with respect to the L2 error.

We are especially interested in the rate of convergence of nonparametric regression

estimates for censored data. For the complete data model, an important theoretical break-

through is due to Stone (1982). He showed that for (p,B)-smooth regression functions

and d-dimensional covariates, the optimal global rate of convergence of nonparametric

estimates is given by n
− 2p

2p+d (cf. Remark 3.3). Results for censored regression based on

7



a hazard risk model can, e.g., be found in Huang and Stone (1998), Kooperberg, Stone,

and Troung (1995b), and Zucker and Karr (1990).

However, little is known about the rate of convergence regarding regression based ap-

proaches for the analysis of censored data. Under regularity conditions on the distribution

of X (in particular that X has a density with respect to the Lebesgue–Borel measure),

Fan and Gijbels (1994) showed that suitable defined local polynomial estimates achieve

pointwise the optimal rate of convergence. In the presence of right censoring and possible

left truncation, Park (1999) proved that for (p,B)-smooth regression functions suitable

defined weighted least squares estimates reach the optimal rate of convergence, if X has

a bounded marginal density with respect to the Lebesgue–Borel measure. However, these

estimates are not calculable, since they depend on p, which is unknown in a statistical

application. We show that it is possible to define nonparametric regression estimates (in

particular smoothing spline estimates) for censored data which achieve the optimal rate

of convergence up to a logarithmic factor without assuming any regularity condition on

the distribution of X (besides X is bounded), and that this result even holds for adaptive

estimates, i.e., if we choose the parameters of our estimates by a completely data driven

method.

1.4 Regularity assumptions

This sequel presents the regularity conditions on the underlying distributions, which we

require in order to generalize known bounds on the L2 error of our estimates from non-

parametric regression with random design on censored regression. Throughout our paper,

we will use the following notation: Let F (t) := P [ Y > t ] and G(t) := P [ C > t ] (t ∈ R)

be the survival functions of the uncensored and censoring times, respectively. Further-

more, set τF := sup{t ∈ R : F (t) > 0} and τG := sup{t ∈ R : G(t) > 0}. Our regularity

assumptions can now be stated as follows:

(RA1) X ∈ [0, 1]d a.s.

(RA2) There exists a constant L ∈ [0,∞) such that 0 ≤ Y ≤ L a.s., C ≥ 0 a.s., and

P [ C > L ] > 0.

(RA3) C and (X,Y ) are independent

(RA4) G is continuous.

To be able to give upper bounds on the covering numbers in the proof of Theorems 3.2 and

3.3, we require that X and Y are bounded in absolute value with probability one, w.l.o.g.

X ∈ [0, 1]d a.s. in (RA1) and Y ∈ [0, L] a.s. in (RA2), respectively (note that only for

the sake of convenience we have chosen Y,C ≥ 0 a.s. (RA2)). Boundedness of X is a

common assumption in the analysis of the rate of convergence and is, as the boundedness
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of Y , not a serious constraint in a statistical application. (RA2) implies Y ≤ τF < ∞
a.s., but since τF (and τG) is unknown in a statistical application, we define our estimate

with a more general and known upper bound L. Once this bound is determined, one

can make a more or less rough estimate of τF and τG, as we know from (RA2) that

τF ≤ L < τG. Furthermore we want to stress that in (RA2) P [ C > L ] = 1 is allowed.

Therefore our main results presented in Section 3 are still valid if censoring does not occur.

They can be regarded as generalizations of results for multivariate smoothing splines in

usual nonparametric regression with random design (vide Kohler and Krzyżak (2001) and

Kohler, Krzyżak and Schäfer (2002)) to censored regression. Assumption (RA3) is used

to simplify the mathematical problem. It is realistic whenever the mechanism of censoring

is independent of the covariables under study. Of course there exist applications where this

is not satisfied, but without assumption (RA3) the analysis of the rate of convergence,

which is the main aim of this article, seems to be much more difficult. Assumption (RA4)

is used to simplify the presentation of our main results and their proofs. Vide Remark 3.2

and 3.6 in Section 3 for details.

1.5 Discussion of the main results

The multivariate smoothing spline estimates considered in this article are defined by:

1. transforming the censored data to virtually uncensored data as in Fan and Gijbels

(1994, 1996)

2. minimizing the sum of empirical L2 error and a penalty term over the Sobolev space

Wk([0, 1])
d (for the definition of Wk([0, 1])

d, see Definition 2.1), where k ∈ N is a

parameter of the estimate

We show that if (RA1) – (RA4) and an additional assumption, which controls the

heaviness of the censoring near τF (see (3.1)), hold, these estimates achieve for smooth

regression functions (i.e., m ∈ Wp([0, 1])
d for some p ∈ N with 2p > d) the optimal

global rate of convergence up to some logarithmic factor, and that this result still holds

for estimates for which the parameters are chosen in a total data-dependent way (i.e., for

estimates which do not depend on the smoothness of m). Furthermore, we prove that the

estimates are strongly consistent even if the regression function is not smooth.

1.6 Outline

In Section 2, the smoothing spline estimates for randomly right censored data are defined.

The main results are presented in Section 3 and proven in Section 6. Generalizations of

the theorems in Section 3 to regression estimation with additional measurement errors in

the dependent variable are given in Section 4. Section 5 contains the proofs of the results

in Section 4, while auxiliary results are shown in Appendix A and B.
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2 Definition of the estimate

2.1 Multivariate smoothing spline estimates (MSSE) for uncensored

data

Let

Dn := {(X1, Y1), . . . , (Xn, Yn)} (2.1)

be a i.i.d. sample of the R
d × R-valued random vector (X,Y ) with EY 2 < ∞. Since

the regression function minimizes the L2 risk (cf.(1.3)), a natural estimate of m can be

obtained by minimizing an estimate of the L2 risk, the empirical L2 risk,

1

n

n
∑

i=1

|f(Xi) − Yi|2. (2.2)

But if one would minimize (2.2) over all (measurable) functions, this would lead to a

function which interpolates the data (at least if the X1, . . . , Xn are all distinct). There

are basically two different strategies to avoid this: For least squares estimates one min-

imizes the empirical L2 risk over some suitable chosen class of functions which depends

on the sample size n. For penalized least squares estimates or smoothing spline estimates

one minimizes the sum of the empirical L2 risk and a penalty term which penalizes the

roughness of a function, over basically all functions.

Definition 2.1 (Multivariate smoothing spline estimates (MSSE)) Let d, k ∈ N

with 2k > d, X ∈ [0, 1]d a.s., Dn be given by (2.1), and denote by Wk([0, 1]
d) the Sobolev

space
{

f :
∂κf

∂xκ1
1 . . . ∂x

κd
d

∈ L2([0, 1]
d) ∀κ1, . . . , κd ∈ N0,

d
∑

i=1

κi = κ ≤ k

}

. (2.3)

The multivariate smoothing spline estimate (MSSE) m̃n,(k,λn) is defined by

m̃n,(k,λn)(·,Dn) := arg min
f∈Wk([0,1]d)

(

1

n

n
∑

i=1

|f(Xi) − Yi|2 + λnJ2
k (f)

)

(2.4)

with the parameter λn > 0 and the penalty term

J2
k (f) :=

∑

κ1,...,κd∈N0:
κ1+...+κd=k

k!

κ1! · . . . · κd!

∫

[0,1]d

∣

∣

∣

∣

∂kf

∂xκ1
1 . . . ∂x

κd
d

(x)

∣

∣

∣

∣

2

dx. (2.5)

The condition 2k > d implies that the functions in Wk([0, 1]
d) are continuous and hence

the evaluation of a function at a point is well defined.
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Note that in Definition 2.1 of the estimate we do not require that the minimizer is

unique. Duchon (1976) and (under some additional assumptions) Wahba (1990) showed

that a function of the form

n
∑

i=1

a1,iR(‖x − Xi‖) +
N
∑

j=1

a2,jΨj(x) (x ∈ R
d)

achieves the minimum in (2.4), where

R : R+ → R : t 7→











t2k−d ln t if 2k − d is even

t2k−d if 2k − d is odd,

Ψ1, . . . ,ΨN are all monomials xκ1
1 · . . . · x

κd
d of total degree

∑d
i=1 κi ≤ k − 1, and ‖x‖

denotes the Euclidean norm of x ∈ R
d. Furthermore, Duchon and Wahba showed that the

coefficients a1,1, . . . , a1,n, a2,1, . . . , a2,N ∈ R can be computed by solving a linear system of

equations.

2.2 MSSE for randomly right censored data

Throughout this section we assume that (RA1) – (RA3) hold. To define regression

estimates for censored data, we first transform the data according to Fan and Gijbels (1994,

1996). Based on these data, estimates are defined as in usual nonparametric regression

(cf. Section 2.1). Therefore the transformation has to be defined in such a way that the

regression functions of both the transformed data and the censored data are identical.

This so called censoring unbiased transformation has been investigated by many au-

thors, for example Buckley and James (1979), Koul, Susarla, and van Ryzin (1981), Leur-

gans (1987), Zheng (1987), or Fan and Gijbels (1994, 1996).

To be more precise, a censored datum point (X,Z, δ) will be replaced by (X,Y ∗) where

Y ∗ := δ Φ1(Z) + (1 − δ)Φ2(Z) =











Φ1(Y ) if Y < C

Φ2(C) if Y ≥ C

(2.6)

and the transformation functions Φ1(·) and Φ2(·) are chosen such that

E [Y ∗ |X ] = m(X) = E [Y |X ] . (2.7)

A special family of transformations satisfying (2.7) is given by the following two functions

(see Fan and Gijbels (1994, 1996)):

Φ1(Z) := (1 + α)

∫ Z

0

dt

G(t)
− α

Z

G(Z)
,
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Φ2(Z) := (1 + α)

∫ Z

0

dt

G(t)
. (2.8)

Here α ∈ R is the parameter of the transformation. One could, e.g., choose α such that

Y ∗ ≥ 0 a.s. (corresponding to Y ≥ 0 a.s.), which is for example fulfilled for α = 0

(Leurgans (1987)) or α = −1 (Koul, Susarla, and van Ryzin (1981)). Fan and Gijbels

(1994, 1996) suggested a data-dependent choice of the parameter:

α = min
i=1,...,n:

δi=1

∫ Zi

0
dt

G(t) − Zi

Zi
G(Zi)

−
∫ Zi

0
dt

G(t)

.

Note that our main results presented in Section 3 are valid for any (fixed) α ∈ R. According

to (2.6) and (2.8), we replace (X,Z, δ) by (X,Y ∗) with

Y ∗ = (1 + α)

∫ Z

0

dt

G(t)
− α

δZ

G(Z)
(2.9)

(

0
0 := 0

)

and, for all i = 1, . . . , n, (Xi, Zi, δi) by (Xi, Yi
∗), where

Yi
∗ = (1 + α)

∫ Zi

0

dt

G(t)
− α

δiZi

G(Zi)
. (2.10)

For Y ∗ chosen as in (2.9), it is not hard to check that (2.7) holds for all α ∈ R. From

(RA2), we can conclude that G(t) = P [ C > t ] ≥ P [ C > L ] > 0 for all t ∈ [0, L]. Using

this together with (RA3) we have

E

[

δZ

G(Z)

∣

∣

∣

∣

X

]

= E

[

I[Y <C ]
Y

G(Y )

∣

∣

∣

∣

X

]

= E

[

E
[

I[Y <C ]

∣

∣X,Y
] Y

G(Y )

∣

∣

∣

∣

X

]

= E [ Y | X ]

and

E

[∫ Z

0

dt

G(t)

∣

∣

∣

∣

X

]

= E

[∫ Y

0

I[ t<C ]

G(t)
dt

∣

∣

∣

∣

X

]

= E

[

∫ Y

0

E
[

I[ t<C ]

∣

∣ X,Y
]

G(t)
dt

∣

∣

∣

∣

∣

X

]

= E [ Y | X ] .

Now, the last two equalities together with (2.9) imply (2.7).

Since in our case the survival function G of the censoring time is unknown, the random

variables Y ∗, Y1
∗, . . . , Yn

∗ are not calculable. An obvious idea is to replace G in (2.9) and

(2.10) by an estimate Gn, the well known Kaplan-Meier product-limit estimator (see, e.g.,

Kaplan and Meier (1958))

Gn(t) :=
∏

i=1,...,n:
Z(i)≤t

[

n − i

n − i + 1

]1−δ(i)

(t ∈ R) (2.11)
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(

00 := 1
)

. Here, (Z(i), δ(i)), i = 1, . . . , n, denote the observed pairs (Zi, δi), arranged in

such a way that

Z(1) ≤ Z(2) ≤ . . . ≤ Z(n),

where in the case of ties censored observations (δi = 0) occur before uncensored observa-

tions (δi = 1):

Z(i) = Z(j), δ(i) = 0, δ(j) = 1 ⇒ i < j.

This replacement results in

Ŷ := (1 + α)

∫ Z

0

dt

Gn(t)
− α

δZ

Gn(Z)
, (2.12)

Ŷi := (1 + α)

∫ Zi

0

dt

Gn(t)
− α

δiZi

Gn(Zi)
(i = 1, . . . , n) (2.13)

(where we set 0
0 := 0), and

D̂n :=
{

(X1, Ŷ1), . . . , (Xn, Ŷn)
}

(2.14)

Note that Ŷ , Ŷ1, . . . , Ŷn depend on the sample size n and we have suppressed this in our

notation. Furthermore, we want to stress that these random variables are in general

neither independent nor identically distributed or even fulfill an equality similar to (2.7).

The key step in the proof of our main results (vide Section 6) is rather to control the

squared differences |Y1
∗ − Ŷ1|2, . . . , |Yn

∗ − Ŷn|2 (q.v. Section 4).

For the data D̂n we can now define multivariate smoothing spline estimates for censored

regression analog to Definition 2.1. Let d, k ∈ N with 2k > d and λn > 0. Let D̂n be defined

by (2.14). Our MSSE for censored data is given by

m̃n,(k,λn)(·) := m̃n,(k,λn)(·, D̂n) := arg min
f∈Wk([0,1]d)

(

1

n

n
∑

i=1

|f(Xi) − Ŷi|2 + λnJ2
k (f)

)

(2.15)

with Wk([0, 1]
d) and J2

k (f) (f ∈ Wk([0, 1]
d) defined as in (2.3) and (2.5), respectively.

Since we assumed 0 ≤ Y ≤ L < ∞ a.s., and therefore 0 ≤ m(x) ≤ L (x ∈ [0, 1]d), we

truncate our estimate (2.15) such that it is bounded in the same way:

mn,(k,λn)(·) := T[0,L]m̃n,(k,λn)(·), (2.16)

where, for a1, a2, t ∈ R with a1 ≤ a2,

T[a1,a2]t :=































a2 if t > a2

t if a1 ≤ t ≤ a2

a1 if t < a1,

and for all functions f : R
d → R, we define T[a1,a2]f : R

d → R by
(

T[a1,a2]f
)

(x0) :=

T[a1,a2](f(x0)) (x0 ∈ R
d).
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2.3 Adaptation via splitting of the sample

The estimates (2.15) and (2.16) depend on the smoothing parameter λn and on k, which

defines the degree of the Sobolev space Wk([0, 1]
d). Theorem 3.2 below gives a guideline

for the choice of these parameters. But on the one hand, for λn, this is an asymptotic

one which is orientated only towards the sample size n, not to the concrete realization of

the sample. It is evident that a non-data-dependent choice of the smoothing parameter

can lead to very unsatisfactory results. On the other hand, the choice of the parameters

k and λn in Theorem 3.2 depend on the smoothness of the regression function which is

unknown in a statistical application. Therefore we modify the estimate in a second step

(c.v. Theorem 3.3) such that it adapts automatically to the smoothness of the regression

function and choose k and λn in a totally data-dependent way via the splitting of the

sample technique.

Let n ≥ 2 and denote by btc and dte the integer part and the upper integer part of

t ∈ R, respectively. Consider the set of parameters Kn × Λn with

Kn :=

{⌊

d

2

⌋

+ 1,

⌊

d

2

⌋

+ 2, . . . ,

⌊

d

2

⌋

+
⌊

(lnn)2
⌋

}

(2.17)

(where we define K2 :=
{⌊

d
2

⌋

+ 1
}

for n = 2) and

Λn :=

{

lnn

2n
,

lnn

2n−1
, . . . ,

lnn

1

}

. (2.18)

We split the sample (2.14) into two parts, the learning or training data

D̂nl
:=
{

(X1, Ŷ1), . . . , (Xnl
, Ŷnl

)
}

and the testing data

D̂nt
:=
{

(Xnl+1, Ŷnl+1), . . . , (Xn, Ŷn)
}

,

with nt + nl = n.

For each pair of parameters (k, λ) ∈ Kn × Λn we first use the learning data to define

an estimate mnl,(k,λ) via

m̃nl,(k,λ)(·) := arg min
f∈Wk([0,1]d)

(

1

nl

nl
∑

i=1

|f(Xi) − Ŷi|2 + λJ2
k (f)

)

,

where Wk([0, 1]
d) and J2

k (f) (f ∈ Wk([0, 1]
d) are given by (2.3) and (2.5), and

mnl,(k,λ)(·) := T[0,L]m̃nl,(k,λ)(·). (2.19)

Then we choose that estimate out of all calculated estimates (2.19) which performs best

on the testing data in terms of the empirical L2 risk, i.e., our modified estimate is defined

as

mn(·) := mnl,(k̂,λ̂)(·), (2.20)
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where
(

k̂, λ̂
)

:= arg min
(k,λ)∈Kn×Λn

(

1

nt

n
∑

i=nl+1

|mnl,(k,λ)(Xi) − Ŷi|2
)

. (2.21)

3 Main results

Now we are ready to present our main results, Theorem 3.1 – 3.3. Note that they are valid

for any (fixed) α ∈ R, which is the parameter of the transformation of the censored data

(vide Subsection 2.2).

Our first result states conditions on λn under which our multivariate smoothing spline

estimates are strongly consistent for all distributions of (X,Y,C).

Theorem 3.1 (Consistency) Let k, d ∈ N with 2k > d and α ∈ R. For n ∈ N choose

λn > 0 such that λn → 0 (n → ∞) and

nλn
d
2k

lnn
→ ∞ (n → ∞).

Let the estimate mn,(k,λn) be defined by (2.15) and (2.16). Then
∫

Rd

|mn,(k,λn)(x) − m(x)|2µ(dx) → 0 (n → ∞) a.s.

for every distribution of (X,Y,C) satisfying (RA1) – (RA4).

Remark 3.1 Note that in Theorem 3.1 Assumption (RA1) can be abandoned if we

slightly modify the estimate (vide Kohler and Krzyżak (2001), Remark 3).

Remark 3.2 It follows from Assumption (RA2), the proof of Theorems 3.1– 3.3, and

Corollary 1.3 in Stute and Wang (1993) that Assumption (RA4) can be dropped in

Theorem 3.1 if we assume that F and G do not have common jumps and that either

P[C = τF ] > 0 or P[C = τF ] = 0 but P[Y = τF ] > 0.

In Theorems 3.2 – 3.3 we present our results concerning the rate of convergence of the

MSSE for censored data. Therein, the following notation will be used: For two random

variables Hn, Vn ∈ R+ we write Hn = OP (Vn) , if there exists a constant B > 0 such that

limn→∞ P [ Hn > B · Vn ] = 0. Along this line, the next theorem shows that our estimate

achieves the optimal rate of convergence up to some logarithmic factor (q.v. Remark 3.3)

for smooth regression functions m ∈ Wp([0, 1]
d), where p ∈ N with 2p > d.

Theorem 3.2 (Rate of convergence) Let d, n ∈ N, α ∈ R, and L ≥ 1. Let p ∈ N with

2p > d be arbitrary. If we choose the parameters k and λn of the estimate mn,(k,λn), which

is defined by (2.15) and (2.16), such that k = p and λn fulfills

λn = b1 ·
(

(lnn)2

n

)

2p
2p+d

J2
p (m)−

2p
2p+d
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with an arbitrary constant b1 > 0, then

∫

Rd

|mn,(k,λn)(x) − m(x)|2µ(dx) = OP

(

(

(lnn)2

n

)

2p
2p+d

J2
p (m)

d
2p+d

)

for every distribution of (X,Y,C) satisfying (RA1) – (RA4), m ∈ Wp([0, 1]
d) with 0 <

J2
p (m) < ∞, and

−
∫ τF

0
F (t)

−p
p+d dG(t) < ∞. (3.1)

Note that since G is monotonically decreasing, the left hand side of (3.1)) is always non-

negative.

Remark 3.3 Stone (1982) showed that the optimal rate of convergence (in adequate mini-

max sense) in nonparametric regression for estimates of (p,B)-smooth regression functions

is given by n
− 2p

2p+d . For p ∈ N and B ∈ [0,∞) a function f : R
d → R is called (p,B)-smooth

if
∣

∣

∣

∣

∣

∂(p−1)f

∂x
p1
1 . . . ∂x

pd
d

(x) − ∂(p−1)f

∂x
p1
1 . . . ∂x

pd
d

(x0)

∣

∣

∣

∣

∣

≤ B · ‖x − x0‖

for all p1, . . . , pd ∈ N0 with p1 + . . . + pd = p − 1 and all x, x0 ∈ R
d. Since in our setting

it is allowed that no censoring arises (i.e., P [ C > L ] = 1, vide Assumption (RA2)),

we deduce that the rate of convergence in Theorem 3.2 is optimal up to the logarithmic

factor (lnn)
4p

2p+d . Note that the rate in Theorem 3.2 is identical to known rates for MSSE in

nonparametric regression with random design (q.v. Kohler, Krzyżak, and Schäfer (2002)).

However, for censored regression, the additional assumptions on the distribution of C are

needed.

Assume that m ∈ Wp([0, 1]
d) for some p ∈ N with 2p > d. In Theorem 3.2, to achieve

the nearly optimal rate of convergence, the parameters k and λn of our estimate (2.16)

have to be chosen such that they depend on the smoothness of the regression function

m, measured by p and J 2
p (m). Since in practical applications the smoothness of m is

unknown, these parameters and hence the estimate cannot be calculated . Therefore it is

necessary to apply adaptation procedures which allow a completely data-driven choice of

the parameters without loosing the properties of Theorem 3.2. The next theorem uses the

splitting of the sample technique (vide Section 2.3).

Theorem 3.3 (Adaptation via splitting of the sample) Let d, n ∈ N with n ≥ 2 and

set nl := dn
2 e. Let the set of parameters Kn × Λn be defined by (2.17) and (2.18). Let

L ≥ 1, α ∈ R, and the estimate mn be given by (2.20). For any p ∈ N with 2p > d, we

have
∫

Rd

|mn(x) − m(x)|2µ(dx) = OP

(

(

(lnn)2

n

)

2p
2p+d

(

J2
p (m)

)
d

2p+d

)
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for every distribution of (X,Y,C) satisfying (RA1) – (RA4), m ∈ Wp([0, 1]
d) with 0 <

J2
p (m) < ∞, and (3.1).

Remark 3.4 The definition of the estimate mn does not depend on p or J 2
p (m), hence it

automatically adapts to the unknown smoothness of the regression function. Besides, the

rate of convergence is identical to that of Theorem 3.2.

Remark 3.5 We want to stress that in Theorems 3.1 – 3.3 no assumption on the under-

lying distribution of X besides (RA1) is required. Especially, it is not required that X

has a density with respect to the Lebesgue–Borel measure.

Remark 3.6 It follows from the proof of Theorems 3.1 – 3.3 and the Remark in Chen and

Lo (1997), that Assumption (RA4) can be abandoned in Theorem 3.2 and Theorem 3.3.

In this case, replace G and F in (3.1) by continuous survival functions G̃ and F̃ , where

G̃ smoothes the probability mass of G at its discontinuity points to small intervals and F̃

assigns probability 0 to these intervals. For details, see Chen and Lo (1997). Furthermore,

one can conclude that if there exists an q ∈ (0, 1) (e.g., q = 2p
2p+d with p, d ∈ N) such that

−
∫ τF

0
F̃ (t)

−q
2−q dG̃(t) < ∞

then Theorem 3.1 also holds if Assumption (RA4) is violated.

Remark 3.7 It follows from Corollary 2.2 in Chen and Lo (1997) and (RA2) that as-

sumption (3.1) in Theorems 3.2 – 3.3 is fulfilled if there exists some β ∈
(

0, 1 + d
p

)

such

that

lim sup
t→τF

(G(t) − G(τF ))β

F (t)
< ∞.

The proofs of Theorems 3.1–3.3 are given in Section 6.

4 MSSE applied to data with additional measurement er-

rors in the dependent variable

Here we shall put the setting of Subsection 2.2 in a more general context. Let therefore be

(X,Y ?) ∈ [0, 1]d × [−L?, L?] a.s. a random vector where L? ∈ [0,∞). In some situations,

data from the distribution of (X,Y ?) can only be observed with additional measurement

errors in the dependent variable (see, e.g., Kohler (2002)). Here, we do not assume that

these errors are independent or identically distributed.

So in order to calculate an estimate of the regression function m(x) = E [Y ? |X = x ],

one has only given the data

D̄n :=
{

(X1, Ȳ1,n), . . . , (Xn, Ȳn,n)
}

, (4.1)
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instead of a sample (X1, Y1
?) , . . . , (Xn, Yn

?) of i.i.d. copies of (X,Y ?). In the following, we

shall suppress the dependency of Ȳ1,n, . . . , Ȳn,n on the sample size n, i.e., use the notation

Ȳi = Ȳi,n.

Note that Y ∗, Y1
∗, . . . , Yn

∗ and Ŷ1, . . . , Ŷn as defined in Section 2.2 are special choices

of Y ?, Y1
?, . . . , Yn

? and Ȳ1, . . . , Ȳn, respectively. Nevertheless, for the sake of generality,

throughout this section we do not demand that either Y ?, Y1
?, . . . , Yn

? or Ȳ1, . . . , Ȳn take

a special form, or are even the result of a censoring unbiased transformation. Instead, the

only assumption needed here beside Y ? ∈ [−L?, L?] a.s, is that the squared measurement

errors |Y1
? − Ȳ1|2, . . . , |Yn

? − Ȳn|2 are “small”.

The MSSE considered in this section differ from those defined in Subsections 2.2 and

2.3 only in that way that we use the data (4.1) instead of (2.14) and a truncation at

[−L?, L?] instead of [0, L] in order to define them. To be more precise, the estimates are

now given by

m̃n,(k,λn)(·) := m̃n,(k,λn)(·, D̄n) := arg min
f∈Wk([0,1]d)

(

1

n

n
∑

i=1

|f(Xi) − Ȳi|2 + λnJ2
k (f)

)

, (4.2)

with 2k > d, λn > 0, Wk([0, 1]
d) and J2

k (·) defined as in Definition 2.1, and

mn,(k,λn)(·) := T[−L?,L?]m̃n,(k,λn)(·). (4.3)

Furthermore, our adaptive MSSE is defined by

mn(·) := mnl,(k̄,λ̄)(·), (4.4)

where

(k̄, λ̄) := arg min
(k,λ)∈Kn×Λn

(

1

nt

n
∑

i=nl+1

|mnl,(k,λ)(Xi) − Ȳi|2
)

.

Here nl, nt,Kn and Λn are defined as in Subsection 2.3.

In this setting the following three results hold.

Theorem 4.1 (Consistency) Let k, d ∈ N with 2k > d. For n ∈ N choose λn > 0 such

that λn → 0 (n → ∞) and

nλn
d
2k

lnn
→ ∞ (n → ∞).

Let the estimate mn,(k,λn) be defined by (4.2) and (4.3). If

1

n

n
∑

i=1

|Yi
? − Ȳi|2 → 0 (n → ∞) a.s., (4.5)

then
∫

Rd

|mn,(k,λn)(x) − m(x)|2µ(dx) → 0 (n → ∞) a.s. (4.6)

for every distribution of (X,Y ?) with (X,Y ?) ∈ [0, 1]d × [−L?, L?] a.s.
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Theorem 4.2 (Rate of convergence) Let d, n ∈ N, and L? ≥ 1. Let p ∈ N with 2p > d

be arbitrary. Assume that we have chosen the parameters k and λn of the estimate mn,(k,λn)

which is defined by (4.2) and (4.3), such that k = p and λn fulfills

λn = b1 ·
(

(lnn)2

n

)

2p
2p+d

J2
p (m)

− 2p
2p+d (4.7)

with an arbitrary constant b1 > 0. If there exists a constant b2 > 0 such that

P

[

max
i=1,...,n

|Yi
? − Ȳi|2 > b2

]

→ 0 (n → ∞), (4.8)

then we have
∫

Rd

|mn,(k,λn)(x) − m(x)|2µ(dx) = OP

(

1

n

n
∑

i=1

|Yi
? − Ȳi|2 +

(

(lnn)2

n

)

2p
2p+d

J2
p (m)

d
2p+d

)

for every distribution of (X,Y ?) with (X,Y ?) ∈ [0, 1]d × [−L?, L?] a.s., m ∈ Wp([0, 1]
d),

and 0 < J2
p (m) < ∞.

Theorem 4.3 (Adaptation via splitting of the sample) Let d, n ∈ N with n ≥ 2 and

set nl := dn
2 e. Let the set of parameters Kn × Λn be defined by (2.17) and (2.18). Let

L? ≥ 1 and the estimate mn be given by (4.4). Assume that there exists a constant b2 > 0

such that (4.8) holds. For any p ∈ N with 2p > d, we have

∫

Rd

|mn(x) − m(x)|2µ(dx) = OP

(

1

n

n
∑

i=1

|Yi
? − Ȳi|2 +

(

(lnn)2

n

)

2p
2p+d

(

J2
p (m)

)
d

2p+d

)

for every distribution of (X,Y ?) with (X,Y ?) ∈ [0, 1]d × [−L?, L?] a.s., m ∈ Wp([0, 1]
d),

and 0 < J2
p (m) < ∞.

We shall use Theorems 4.1 – 4.3 in order to prove Theorems 3.1 – 3.3 in Section 6.

5 Proof of Theorems 4.1–4.3

In this section, our results from nonparametric regression analysis with additional mea-

surement errors in the dependent variable are proven. In the proofs of Theorems 4.1 and

4.2, we need the concept of covering numbers.

Definition 5.1 (Covering number) Let d ∈ N, 1 ≤ r < ∞, and F be a class of

functions f : R
d → R. For any ε > 0 and any vn

1 = (v1, . . . , vn) ∈ (Rd)n, the covering

number Nr(ε,F , vn
1 ) is defined as the smallest integer N such that there exist functions

g1, . . . , gN : R
d → R with

min
1≤j≤N

(

1

n

n
∑

i=1

|f(vi) − gj(vi)|r
)

1
r

≤ ε

for each f ∈ F .
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Proof of Theorem 4.1. First, we shall prove the following lemma

Lemma 5.1 Let k, d ∈ N with 2k > d and L? ∈ R+. For n ∈ N choose λn > 0 such that

λn → 0 (n → ∞) and

nλn
d
2k

lnn
→ ∞ (n → ∞). (5.1)

Let the estimate mn,(k,λn) be defined by (4.2) and (4.3). If

1

n

n
∑

i=1

|Yi
? − Ȳi|2 → 0 (n → ∞) a.s. (5.2)

then

E
[

∣

∣mn,(k,λn)(X) − Y ?
∣

∣

2
∣

∣

∣ D̄n

]

− 1

n

n
∑

i=1

∣

∣mn,(k,λn)(Xi) − Yi
?
∣

∣

2 → 0 (n → ∞) a.s. (5.3)

for every distribution of (X,Y ?) with (X,Y ?) ∈ [0, 1]d × [−L?, L?] a.s.

Proof of Lemma 5.1. By the strong law of large numbers, Definition (4.2) of the

estimate m̃n,(k,λn), and (5.2)

1

n

n
∑

i=1

∣

∣m̃n,(k,λn)(Xi) − Ȳi

∣

∣

2
+ λnJ2

k (m̃n,(k,λn)) ≤
1

n

n
∑

i=1

∣

∣Ȳi

∣

∣

2

≤ 2

n

n
∑

i=1

∣

∣Yi
? − Ȳi

∣

∣

2
+

2

n

n
∑

i=1

|Yi
?|2 → 2E(Y ?)2 (n → ∞) a.s.

This implies that with probability 1, for sufficiently large n,

mn,(k,λn) ∈ F3(L?)2/λn
:=

{

T[−L?,L?]f : f ∈ Wk([0, 1]
d), J2

k (f) ≤ 3(L?)2

λn

}

Thus it suffices to show

sup
g∈G3(L?)2/λn

∣

∣

∣

∣

∣

E [g(X,Y ?)] − 1

n

n
∑

i=1

g(Xi, Yi
?)

∣

∣

∣

∣

∣

→ 0 (n → ∞) a.s.

where

G3(L?)2/λn
:=
{

g : g(x, y) = |f(x) − y|2 , f ∈ F3(L?)2/λn
, x ∈ R

d, y ∈ [−L?, L?]
}

.

For this purpose, we first note that for two functions g1, g2 ∈ G3(L?)2/λn
with gj(x, y) =

|fj(x) − y|2, fj ∈ F3(L?)2/λn
, j = 1, 2, we have

1

n

n
∑

i=1

|g1(Xi, Yi
?) − g2(Xi, Yi

?)| ≤ 4L? 1

n

n
∑

i=1

|f1(Xi) − f2(Xi)| a.s.
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which implies for all ε > 0

N1

( ε

8
,G3(L?)2/λn

, (X,Y ?)n1

)

≤ N1

( ε

32L?
,F3(L?)2/λn

, Xn
1

)

a.s.

The last inequality, Theorem 9.1 in Györfi, Kohler, Krzyżak, and Walk (2002), Lemma

3 in Kohler and Krzyżak (2001), and (5.1) imply that for all 0 < ε < 32(L?)2 and all

sufficiently large n

P

[

sup
g∈G3(L?)2/λn

∣

∣

∣

∣

∣

E [g(X,Y ?)] − 1

n

n
∑

i=1

g(Xi, Yi
?)

∣

∣

∣

∣

∣

> ε

]

≤ 8 exp

(

− nε2

128 (4(L?)2)2

)

· EN1

( ε

32L?
,F3(L?)2/λn

, Xn
1

)

≤ 8 exp






− nε2

2048(L?)4
+






B1





√

3(L?)2

λn

32L?

ε





d
k

+ B2






ln

(

B3
32(L?)2n

ε

)







≤ 8 exp

(

−1

2

nε2

2048(L?)4

)

,

where B1, B2, B3 > 0 are constants which only depend on k and d. From this, the assertion

of Lemma 5.1 follows by an application of the Borel–Cantelli lemma. �

Now we start with the proof of Theorem 4.1. Let ε > 0 be arbitrary. From Theorem 3.14

in Rudin (1974), one can conclude that there exists a function gε ∈ Wk([0, 1]
d) such that

∫

Rd

|gε(x) − m(x)|2 µ(dx) ≤ ε and J2
k (gε) < ∞. (5.4)

In this sequel, the following error decomposition will be used
∫

Rd

∣

∣mn,(k,λn)(x) − m(x)
∣

∣

2
µ(dx)

= E
[

∣

∣mn,(k,λn)(X) − Y ?
∣

∣

2
∣

∣

∣ D̄n

]

−E
[

|m(X) − Y ?|2
]

=:

8
∑

j=1

Hj,n.

Below we show how to bound each of these eight terms from above . By an application of

Lemma 5.1, we get

H1,n := E
[

∣

∣mn,(k,λn)(X) − Y ?
∣

∣

2
∣

∣

∣
D̄n

]

− 1

n

n
∑

i=1

∣

∣mn,(k,λn)(Xi) − Yi
?
∣

∣

2 → 0 (n → ∞) a.s.

The definition of the truncated estimate (4.3) and |Y ?| ≤ L? imply

H2,n :=
1

n

n
∑

i=1

∣

∣mn,(k,λn)(Xi) − Yi
?
∣

∣

2 − 1

n

n
∑

i=1

∣

∣m̃n,(k,λn)(Xi) − Yi
?
∣

∣

2 ≤ 0
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In order to bound the third term

H3,n :=
1

n

n
∑

i=1

∣

∣m̃n,(k,λn)(Xi) − Yi
?
∣

∣

2 − (1 + ε)
1

n

n
∑

i=1

∣

∣m̃n,(k,λn)(Xi) − Ȳi

∣

∣

2

from above, observe that for all a, b ≥ 0, we have

(a + b)2 ≤ a2(1 + ε) + b2

(

1 +
1

ε

)

. (5.5)

From (4.5) and (5.5) one can conclude

H3,n ≤
(

1 +
1

ε

)

1

n

n
∑

i=1

∣

∣Yi
? − Ȳi

∣

∣

2 → 0 (n → ∞) a.s.

From (5.4), the definition of m̃n,(k,λn), and λn → 0 (n → ∞) follows

H4,n := (1 + ε)

[

1

n

n
∑

i=1

∣

∣m̃n,(k,λn)(Xi) − Ȳi

∣

∣

2 − 1

n

n
∑

i=1

∣

∣gε(Xi) − Ȳi

∣

∣

2

]

≤ (1 + ε)λnJ2
k (gε) → 0 (n → ∞)

Using again (4.5) and (5.5), we have

H5,n := (1 + ε)

[

1

n

n
∑

i=1

∣

∣gε(Xi) − Ȳi

∣

∣

2 − (1 + ε)
1

n

n
∑

i=1

|gε(Xi) − Yi
?|2
]

≤ (1 + ε)

(

1 +
1

ε

)

1

n

n
∑

i=1

∣

∣Yi
? − Ȳi

∣

∣

2 → 0 (n → ∞) a.s.

and by the strong law of large numbers

H6,n := (1 + ε)2

[

1

n

n
∑

i=1

|gε(Xi) − Yi
?|2 −E

[

|gε(X) − Y ?|2
]

]

→ 0 (n → ∞) a.s.

An application of (5.4) yields

H7,n := (1 + ε)2 E
[

|gε(X) − Y ?|2
]

− (1 + ε)2 E
[

|m(X) − Y ?|2
]

≤ ε (1 + ε)2.

Finally, we get the following upper bound for the last of the eight terms

H8,n := ((1 + ε)2 − 1)E
[

|m(X) − Y ?|2
]

≤ ((1 + ε)2 − 1) (2L?)2.

Combining all the results from above, one can conclude

lim sup
n→∞

∫

Rd

|mn,(k,λn)(x) − m(x)|2µ(dx) ≤ ε (1 + ε)2 + 4 ((1 + ε)2 − 1) (L?)2 a.s.
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With ε → 0 the assertion follows. �

Proof of Theorem 4.2. Assume k = p. Let B1 > 0 be an arbitrary constant and

b2 > 0 a sufficiently large constant. We show that for all t ≥ B1λnJ2
p (m) with λn > 0,

λn → 0 (n → ∞), and
(

lnn

n

)
2p

2p+d

λ−1
n → 0 (n → ∞), (5.6)

we have

P

[

∫

Rd

∣

∣mn,(k,λn)(x) − m(x)
∣

∣

2
µ(dx) > 3 t + 4λnJ2

p (m) +
128

n

n
∑

i=1

∣

∣Yi
? − Ȳi

∣

∣

2

]

≤ 50
exp (−B2 n t)

1 − exp (−B2 n t)
+ b5 exp(−b6 n t) + P

[

max
i=1,...,n

∣

∣Yi
? − Ȳi

∣

∣

2
> b2

]

, (5.7)

where B2, b5, b6 > 0 are constants which only depend on L?. Since (4.7) implies (5.6),

λn → 0 (n → ∞), and

nλn → ∞ (n → ∞), (5.8)

the assertion of Theorem 4.2 follows from this together with (4.8) and (5.7).

In order to show (5.7), we first note that for all t > 0

P

[

∫

Rd

∣

∣mn,(k,λn)(x) − m(x)
∣

∣

2
µ(dx) > 3t + 4λnJ2

p (m) +
128

n

n
∑

i=1

∣

∣Yi
? − Ȳi

∣

∣

2

]

≤ P [ H1,n > t ] + P [ H2,n > t ] , (5.9)

where

H1,n :=

∫

Rd

∣

∣mn,(k,λn)(x) − m(x)
∣

∣

2
µ(dx)

−2

[

1

n

n
∑

i=1

∣

∣mn,(k,λn)(Xi) − m(Xi)
∣

∣

2
+ λnJ2

k (m̃n,(k,λn))

]

and

H2,n :=
1

n

n
∑

i=1

∣

∣mn,(k,λn)(Xi) − m(Xi)
∣

∣

2
+ λnJ2

k (m̃n,(k,λn))

−64

n

n
∑

i=1

∣

∣Yi
? − Ȳi

∣

∣

2 − 2λnJ2
p (m).

In the following, upper bounds for each of the probabilities on the right hand side of (5.9)

will be computed. By an application of the Peeling-technique (cf. Section 5.3 in van de

Geer (2000)), we have for all t > 0

P [ H1,n > t ] ≤
∞
∑

j=0

P
[

2jt ≤ 2λnJ2
k (m̃n,(k,λn)) + t < 2j+1t,H1,n > t

]

. (5.10)
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For every j = 0, 1, . . . and all t > 0 set

H3,n,j(t) :=
E
[

∣

∣mn,(k,λn)(X) − m(X)
∣

∣

2
∣

∣

∣
D̄n

]

− 1
n

∑n
i=1

∣

∣mn,(k,λn)(Xi) − m(Xi)
∣

∣

2

E
[

∣

∣mn,(k,λn)(X) − m(X)
∣

∣

2
∣

∣

∣
D̄n

]

+ 2jt
.

Then we can conclude from (5.10) for all t > 0

P [ H1,n > t] ≤
∞
∑

j=0

P

[

J2
k (m̃n,(k,λn)) <

2jt

λn
,H3,n,j(t) >

1

2

]

≤
∞
∑

j=0

P

[

sup
g∈G

2j t/λn

E g(X) − 1
n

∑n
i=1 g(Xi)

E g(X) + 2jt
>

1

2

]

(5.11)

where for every j = 0, 1, . . .

G2j t/λn
:=
{

g : g(x) = |f(x) − m(x)|2 , f ∈ F2j t/λn
, x ∈ [0, 1]d

}

with

F2j t/λn
:=

{

T[−L?,L?]f : f ∈ Wk([0, 1]
d), J2

k (f) ≤ 2jt

λn

}

.

Fix j = 0, 1, . . . . First, we note that for all g1, g2 ∈ G2j t/λn
with gi(x) = |fi(x) − m(x)|2,

fi ∈ F2j t/λn
, i = 1, 2 (x ∈ [0, 1]d) and all x1, . . . , xn ∈ [0, 1]d, we have

1

n

n
∑

i=1

|g1(xi) − g2(xi)|2 ≤ (4L?)2
1

n

n
∑

i=1

|f1(xi) − f2(xi)|2

and therefore for all s > 0 and all x1, . . . , xn ∈ [0, 1]d

N2

(

s,G2j t/λn
, xn

1

)

≤ N2

( s

4L?
,F2j t/λn

, xn
1

)

(5.12)

From (5.8) one can conclude for all t ≥ B1λnJ2
p (m), all ζ ≥ 2jt

4 , and all sufficiently large

n that n ζ ≥ (L?)2 . This together with Lemma B.2 and (5.12) yields

∫

√
ζ

0

√

lnN2

(

s,G2j t/λn
, xn

1

)

ds ≤ b8 (8L?)
d
2p λ

− d
4p

n

√

ζ
√

lnn + b9

√

ζ
√

lnn

≤ 2
√

n ζ
√

B1J2
p (m)

(

b8 (8L?)
d
2p

√

lnn

n
λ
− 2p+d

2p
n + b9

√

lnn

nλn

)

≤
2
(

b8 (8L?)
d
2p + b9

)√
nζ

√

B1J2
p (m)

√

(

lnn

n

)
2p

2p+d

λ−1
n (5.13)

for all t ≥ B1λnJ2
p (m), all ζ ≥ 2j t

4 , all x1, . . . , xn ∈ [0, 1]d, and all sufficiently large n with

some constants b8, b9 > 0 which only depend on p and d. The last inequality, (5.6), (5.11),
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and Theorem 2 in Kohler (2000) (set there X := [0, 1]d, F := G2j t/λn
, K1 := K2 := 4(L?)2,

ε := 1
2 , and α := 2jt) imply for all t ≥ B1λnJ2

p (m) and all sufficiently large n

P [ H1,n > t ] ≤ 50
∞
∑

j=0

exp
(

−2jB2 n t
)

≤ 50
exp (−B2 n t)

1 − exp (−B2 n t)
(5.14)

with a constant B2, which only depends on L?.

Set l := L? +
√

b2 and

m?
n,(k,λn)(·) := T[−l,l]m̃n,(k,λn)(·). (5.15)

Then one can conclude for all t > 0

P [ H2,n > t ] ≤ P

[

H2,n > t, max
i=1,...,n

∣

∣Ȳi

∣

∣ ≤ l

]

+ P

[

max
i=1,...,n

∣

∣Ȳi

∣

∣ > l

]

=: q1,n + q2,n. (5.16)

For the second term on the right hand side of (5.16), we have

q2,n ≤ P

[

max
i=1,...,n

∣

∣Yi
? − Ȳi

∣

∣+ L? > l

]

= P

[

max
i=1,...,n

∣

∣Yi
? − Ȳi

∣

∣

2
> b2

]

(5.17)

and for the first term (4.2), (4.3), and (5.15) imply for all t > 0

q1,n ≤ P

[

H2,n > t,
1

n

n
∑

i=1

∣

∣

∣m?
n,(k,λn)(Xi) − Ȳi

∣

∣

∣

2
≤ 1

n

n
∑

i=1

∣

∣m̃n,(k,λn)(Xi) − Ȳi

∣

∣

2

]

≤ P

[

1

n

n
∑

i=1

∣

∣

∣
m?

n,(k,λn)(Xi) − m(Xi)
∣

∣

∣

2
+ λnJ2

k (m̃n,(k,λn))

> t +
64

n

n
∑

i=1

∣

∣Yi
? − Ȳi

∣

∣

2
+ 2λnJ2

p (m),

1

n

n
∑

i=1

∣

∣

∣
m?

n,(k,λn)(Xi) − Ȳi

∣

∣

∣

2
≤ 1

n

n
∑

i=1

∣

∣m̃n,(k,λn)(Xi) − Ȳi

∣

∣

2

]

, (5.18)

where the last inequality follows from |m(X)| ≤ L? < l a.s. Next, we shall apply Lemma

A.1 (note that we have chosen k such that k = p). Since λn → 0 (n → ∞) and 5.6

imply (A.4) – (A.6), one can conclude from Lemma A.1 for all sufficiently large n and all

t ≥ B1λnJ2
p (m)

q1,n ≤ b5 exp(−b6nt)

with some constants b5, b6 > 0 which only depend on L?. This together with (5.9), (5.14),

(5.16), and (5.17) yields (5.7). �

Proof of Theorem 4.3. For sufficiently large n there exist (k̆, λ̆) ∈ Kn × Λn and a

constant B1 > 0 such that k̆ = p and

B1

(

(lnnl)
2

nl

)

2p
2p+d

J2
p (m)−

2p
2p+d ≤ λ̆ ≤ 2 · B1

(

(lnnl)
2

nl

)

2p
2p+d

J2
p (m)−

2p
2p+d .

25



This implies λ̆ → 0 (n → ∞), n λ̆ → 0 (n → ∞), and

(

(ln nl)
2

nl

)

2p
2p+d

λ̆−1 → 0 (n → ∞).

Therefore, we can conclude from (5.7) in the proof of Theorem 4.2 and (4.8) with a suitable

large chosen constant B2 > 0

P

[
∫

Rd

∣

∣

∣mnl,(k̆,λ̆)(x) − m(x)
∣

∣

∣

2
µ(dx)

>
B2

nl

nl
∑

i=1

∣

∣Yi
? − Ȳi

∣

∣

2
+ B2

(

(lnnl)
2

nl

)

2p
2p+d

J2
p (m)

d
2p+d

]

→ 0 (n → ∞). (5.19)

Now note that because of nl = dn
2 e and nt = n − nl = bn

2 c

1

nl

≤ 1

nt

≤ 3

n
(5.20)

for all n ∈ N with n ≥ 2. Furthermore, n
2 ≤ nl ≤ n implies

(

(lnnl)
2

nl

)

2p
2p+d

J2
p (m)

d
2p+d ≤

(

2
(lnn)2

n

)

2p
2p+d

J2
p (m)

d
2p+d =: tn. (5.21)

Let B3 > 0 be a suitably large chosen constant (see below). Then one can conclude from

(5.20) and (5.21)

P

[

∫

Rd

|mn(x) − m(x)|2 µ(dx) > 3
54B2 + B3

n

n
∑

i=1

∣

∣Yi
? − Ȳi

∣

∣

2
+ (54B2 + B3) tn

]

≤ P

[∫

Rd

|mn(x) − m(x)|2 µ(dx) − 54 min
(k,λ)∈Kn×Λn

∫

Rd

∣

∣mnl,(k,λ)(x) − m(x)
∣

∣

2
µ(dx)

>
B3

nt

n
∑

i=nl+1

∣

∣Yi
? − Ȳi

∣

∣

2
+ B3 tn

]

+P

[

min
(k,λ)∈Kn×Λn

∫

Rd

∣

∣mnl,(k,λ)(x) − m(x)
∣

∣

2
µ(dx)

>
B2

nl

nl
∑

i=1

∣

∣Yi
? − Ȳi

∣

∣

2
+ B2

(

(ln nl)
2

nl

)

2p
2p+d

J2
p (m)

d
2p+d

]

.

The assertion of Theorem 4.3 follows from this together with (5.19) and the following

lemma.

Lemma 5.2 Let l1, l2 ∈ R with l1 ≤ l2 and d, n ∈ N with n ≥ 2. Set nl :=
⌈

n
2

⌉

and

nt := n − nl. Let the set of parameters Kn × Λn be defined by (2.17) and (2.18), the

data D̄n by (2.14), and m : [0, 1]d → [ l1, l2 ]. For all (k, λ) ∈ Kn × Λn set mnl,(k,λ)(·) :=

26



T[ l1,l2 ] m̃nl,(k,λ)(·), where m̃nl,(k,λ) is given by (4.2). Define the estimate mn via mn(·) :=

mnl,(k̄,λ̄)(·), with

(k̄, λ̄) := arg min
(k,λ)∈Kn×Λn

(

1

nt

n
∑

i=nl+1

|mnl,(k,λ)(Xi) − Ȳi|2
)

.

Set

Hn :=

∫

Rd

|mn(x) − m(x)|2 µ(dx) − 54 min
(k,λ)∈Kn×Λn

∫

Rd

∣

∣mnl,(k,λ)(x) − m(x)
∣

∣

2
µ(dx).

Then there exits three constants b10, b11, b12 > 0, which only depend on l1 and l2, such that

we have for all t > 0,

qn(t) := P

[

Hn >
b10

nt

n
∑

i=nl+1

∣

∣Yi
? − Ȳi

∣

∣

2
+ b10 t

]

≤ 2 |Kn × Λn|
(

2 exp (−b11 n t) +
exp (−b12 n t)

1 − exp (−b12 n t)

)

. (5.22)

Especially, we have for tn :=
(

2 (ln n)2

n

)
2p

2p+d
J2

p (m)
d

2p+d

qn (tn) → 0 (n → ∞). (5.23)

Proof of Lemma 5.2. For all (k, λ) ∈ Kn × Λn set

νk,λ := E
[

gnl,(k,λ)(X)
∣

∣ D̄nl

]

,

where gnl,(k,λ)(x) :=
∣

∣mnl,(k,λ)(x) − m(x)
∣

∣

2
(x ∈ [0, 1]d) and

D̄nl
:=
{(

X1, Ȳ1

)

, . . . ,
(

Xnl
, Ȳnl

)}

.

One can conclude from (5.20) and Lemma A.2 for all t > 0

qn(t) ≤ P

[

∫

Rd

gnl,(k̄,λ̄)(x)µ(dx) − 2

nt

n
∑

i=nl+1

gnl,(k̄,λ̄)(Xi) > t

]

+
∑

(k,λ)∈Kn×Λn

P

[

2
1

nt

n
∑

i=nl+1

gnl,(k,λ)(Xi) − 3

∫

Rd

gnl,(k,λ)(x)µ(dx) > t

]

+P

[

1

nt

n
∑

i=nl+1

gnl,(k̄,λ̄)(Xi) − 18 min
(k,λ)∈Kn×Λn

1

nt

n
∑

i=nl+1

gnl,(k,λ)(Xi)

> t +
512

nt

n
∑

i=nl+1

∣

∣Yi
? − Ȳi

∣

∣

2

]

≤ 2
∑

(k,λ)∈Kn×Λn

P

[ ∣

∣

∣

∣

∣

νk,λ − 1

nt

n
∑

i=nl+1

gnl,(k,λ)(Xi)

∣

∣

∣

∣

∣

>
t

2
+

νk,λ

2

]
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+2 |Kn × Λn|
exp (−b7 n t)

1 − exp (−b7 n t)
, (5.24)

with a constant b7 > 0, which only depends on l1 and l2. In order to bound the first term

on the right hand side of (5.24), we first note that for all (k, λ) ∈ Kn × Λn

(l2 − l1)
2 · νk,λ ≥ E

[

(gnl,(k,λ)(X))2
∣

∣ D̄nl

]

≥ Var
[

gnl,(k,λ)(X)
∣

∣ D̄nl

]

=: σ2
(k,λ).

This together with Bernstein’s inequality and (5.20) yields for all t > 0

∑

(k,λ)∈Kn×Λn

P

[ ∣

∣

∣

∣

∣

νk,λ − 1

nt

n
∑

i=nl+1

gnl,(k,λ)(Xi)

∣

∣

∣

∣

∣

>
t

2
+

νk,λ

2

∣

∣

∣

∣

∣

D̄nl

]

≤ |Kn × Λn| max
(k,λ)∈Kn×Λn

P

[ ∣

∣

∣

∣

∣

νk,λ − 1

nt

n
∑

i=nl+1

gnl,(k,λ)(Xi)

∣

∣

∣

∣

∣

>
t

2
+

σ2
(k,λ)

2 · (l2 − l1)2

∣

∣

∣

∣

∣

D̄nl

]

≤ 2 |Kn × Λn| max
(k,λ)∈Kn×Λn

exp











−
nt

(

t
2 +

σ2
(k,λ)

2·(l2−l1)2

)2

2σ2
(k,λ) + 2·(l2−l1)2

3

(

t
2 +

σ2
(k,λ)

2·(l2−l1)2

)











≤ 2 |Kn × Λn| max
(k,λ)∈Kn×Λn

exp









−
nt

(

t
2 +

σ2
(k,λ)

2·(l2−l1)2

)

14
3 · (l2 − l1)2









≤ 2 |Kn × Λn| exp

(

− n t

28 · (l2 − l1)2

)

(5.25)

Now (5.24) and (5.25) imply (5.22). Set B1 := min{ 1
28·(l2−l1)2

, b7}. Then one can conclude

for sufficiently large n

max

{

exp

(

−b10

3
n tn

)

, exp

(

−b7

3
n tn

)}

≤ exp (−B9 n tn) ≤ 1

n2
, (5.26)

since

B1 n tn = B1 n

(

2
(lnn)2

n

)

2p
2p+d

J2
p (m)

d
2p+d ≥ 2 lnn.

Now, (5.23) follows from (5.22), (5.26) and |Kn × Λn| ≤ (lnn)2 n. �

This completes the proof of Theorem 4.3. �

6 Proof of the main results

Proof of Theorems 3.1 – 3.3. First, we shall prove the following lemma
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Lemma 6.1 Let (Y,C), (Y1, C1), . . . , (Yn, Cn) be i.i.d. R+ × R+-valued random vectors

with Y and C independent. Let α ∈ R and let Yi
∗ and Ŷi (i = 1, . . . , n) be defined by

(2.10) and (2.13), where G(t) = P [ C > t ] (t ∈ R). Set F (t) = P [ Y > t ] (t ∈ R) and

τF = sup {t : F (t) > 0}. Assume G is continuous and G(τF ) > 0. Then the following two

results hold:

1. max
i=1,...,n

|Yi
∗ − Ŷi|2 → 0 (n → ∞) a.s.

2. Let γ ∈ (0, 1). If

−
∫ τF

0
F (t)

−γ
2−γ dG(t) < ∞ (6.1)

then there exists a constant b3 ≥ 0 such that

lim sup
n→∞

nγ max
i=1,...,n

|Yi
∗ − Ŷi|2 ≤ b3 a.s. (6.2)

Proof of Lemma 6.1. First, we note that G(τF ) > 0 implies 0 ≤ Zi = min{Yi, Ci} ≤
τF < ∞ a.s. for all i ∈ {1, . . . , n}. Using this, (2.10), (2.13) and the definitions of G and

Gn, one can conclude with probability 1

max
i=1,...,n

|Yi
∗ − Ŷi|2

= max
i=1,...,n

∣

∣

∣

∣

(1 + α)

∫ Zi

0

(

1

G(t)
− 1

Gn(t)

)

dt − αδiZi

(

1

G(Zi)
− 1

Gn(Zi)

)∣

∣

∣

∣

2

≤ 2 max
i=1,...,n

(

(1 + |α|)2
∣

∣

∣

∣

∫ Zi

0

(

1

G(t)
− 1

Gn(t)

)

dt

∣

∣

∣

∣

2

+ α2

∣

∣

∣

∣

δiZi

(

1

G(Zi)
− 1

Gn(Zi)

)∣

∣

∣

∣

2
)

≤ 4 (1 + |α|)2 max
i=1,...,n

(

Zi sup
0≤t≤Zi

∣

∣

∣

∣

1

G(t)
− 1

Gn(t)

∣

∣

∣

∣

)2

≤ 4 (1 + |α|)2 τ2
F

G(τF )2Gn(τF )2

(

sup
0≤t≤τF

|G(t) − Gn(t)|
)2

. (6.3)

Corollary 1.3 in Stute and Wang (1993), G (τF ) > 0, and

P

[

lim sup
n→∞

1

Gn(τF )
>

2

G(τF )

]

= P

[

lim sup
n→∞

(G(τF ) − Gn(τF )) >
G(τF )

2

]

≤ P

[

lim sup
n→∞

sup
0≤t≤τF

|G(t) − Gn(t)| >
G(τF )

2

]

imply

lim sup
n→∞

1

Gn(τF )2
≤ 4

G(τF )2
a.s. (6.4)

From (6.3) and (6.4) one can conclude for all γ ∈ [0, 1) that with probability 1

lim sup
n→∞

nγ max
i=1,...,n

|Yi
∗ − Ŷi|2
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≤ 4 (1 + |α|)2 τ2
F

G(τF )2
lim sup

n→∞

1

Gn(τF )2

(

n
γ
2 sup

0≤t≤τF

|G(t) − Gn(t)|
)2

≤ 16 (1 + |α|)2 τ2
F

G(τF )4
lim sup

n→∞

(

n
γ
2 sup

0≤t≤τF

|G(t) − Gn(t)|
)2

. (6.5)

For γ = 0, this together with Corollary 1.3 in Stute and Wang (1993) implies the assertion

of part 1 of Lemma 6.1. Now, let γ ∈ (0, 1) and assume that (6.1) holds. Then part 2 of

Lemma 6.1 follows from (6.5) and Theorem 2.1 in Chen and Lo (1997). �

Now, we start with the proof of our main results. First notice that (2.10), G(L) =

P [ C > L ] > 0, and 0 ≤ Z = min{Y,C} ≤ L a.s. imply

|Y ∗| ≤ (1 + 2|α|) L

G(L)
=: L? < ∞ a.s. (6.6)

For all (k, λ) ∈ Kn × Λn, let mnl,(k,λ) be defined by (2.19). Since |m(X)| ≤ L ≤ L? a.s.,

we have for all k ∈ N with 2k > d and all λn > 0
∫

Rd

|mn,(k,λn)(x) − m(x)|2µ(dx) ≤
∫

Rd

|T[−L?,L?]m̃n,(k,λn)(x) − m(x)|2µ(dx). (6.7)

Therefore, one can conclude from 6.1 (where we set γ := 2p
2p+d and note that, since 2p > d,

2p
2p+d ∈

(

1
2 , 1
)

) and (6.6), that the assertions of Theorem 3.1 and Theorem 3.2 follow from

Theorem 4.1 and Theorem 4.2, respectively.

In order to prove Theorem 3.3, we first recall the definitions

(k̂, λ̂) = arg min
(k,λ)∈Kn×Λn

(

1

nt

n
∑

i=nl+1

|T[0,L]m̃nl,(k,λ)(Xi) − Ŷi|2
)

and
(

k̄, λ̄
)

= arg min
(k,λ)∈Kn×Λn

(

1

nt

n
∑

i=nl+1

|T[−L?,L?]m̃nl,(k,λ)(Xi) − Ŷi|2
)

.

Now, let B1 > 0 be a suitably large chosen constant. Set

tn :=

(

(lnn)2

n

)

2p
2p+d

J2
p (m)

d
2p+d

and

Hn :=

∫

Rd

|mnl,(k̂,λ̂)(x) − m(x)|2µ(dx) − 54 min
(k,λ)∈Kn×Λn

∫

Rd

|mnl,(k,λ)(x) − m(x)|2µ(dx).

Then one can conclude with (5.20) and (6.7)

P

[∫

Rd

|mnl,(k̂,λ̂)(x) − m(x)|2µ(dx) > 109B1 tn

]
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≤ P

[

Hn > B1 tn +
B1

nt

n
∑

i=nl+1

|Yi
∗ − Ŷi|2

]

+P

[

∫

Rd

|mnl,(k̄,λ̄)(x) − m(x)|2µ(dx) > 2B1 tn − B1

54nt

n
∑

i=nl+1

|Yi
∗ − Ŷi|2

]

≤ P

[

Hn > B1 tn +
B1

nt

n
∑

i=nl+1

|Yi
∗ − Ŷi|2

]

+P

[

∫

Rd

|T[−L?,L?]m̃nl,(k̄,λ̄)(x) − m(x)|2µ(dx) > B1 tn +
B1

n

n
∑

i=1

|Yi
∗ − Ŷi|2

]

+P

[

1

n

n
∑

i=1

|Yi
∗ − Ŷi|2 >

tn

2

]

This together with Theorem 4.3, Lemma 5.2, and Lemma 6.1 implies the assertion of

Theorem 3.3. �

A Results for fixed design regression

Below we formulate and prove two auxiliary results which are used in the proofs of Theorem

4.2 and 4.3, in a fixed design regression model. Let x1, . . . , xn ∈ [0, 1]d be arbitrary, but

fixed. Let m : [0, 1]d → R
d and assume for all i = 1, . . . , n

Yi
? = m(xi) + Ui, (A.1)

where U1, . . . , Un are independent random variables with expectation zero. Then the

following two results hold

Lemma A.1 Let n, d ∈ N, λn > 0, L? ≥ 1, and b4 > 0. Set l := L? + b4 and let

p ∈ N with 2p > d be arbitrary. Let Y1
?, . . . , Yn

? be given by (A.1) with |Yi
?| ≤ L? a.s.

and |m(xi)| ≤ L? for all i ∈ {1, . . . , n}. Let Ȳ1, . . . , Ȳn be arbitrary real-valued random

variables and define the estimates m̃n,(p,λn) and m?
n,(p,λn) by

m̃n,(p,λn)(·) := arg min
f∈Wp([0,1]d)

(

1

n

n
∑

i=1

|f(xi) − Ȳi|2 + λnJ2
p (f)

)

, (A.2)

where Wp([0, 1]
d) and J2

p (f) (f ∈ Wp([0, 1]
d) are given by (2.3) and (2.5), and

m?
n,(p,λn)(·) := T[−l,l]m̃n,(p,λn)(·). (A.3)

Assume m ∈ Wp([0, 1]
d) with J2

p (m) < ∞ and set

V1,n :=
1

n

n
∑

i=1

|m?
n,(p,λn)(xi) − m(xi)|2 + λnJ2

p (m̃n,(p,λn)) − 2λnJ2
p (m) − 64

n

n
∑

i=1

|Yi
? − Ȳi|2.
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Then there exist constants b5, b6 > 0 which only depend on L?, such that for any tn > 0

with

tn → 0 (n → ∞), (A.4)

n tn

lnn
→ ∞ (n → ∞), (A.5)

and
n tn

lnn
λ

d
2p
n → ∞ (n → ∞), (A.6)

we have for all t ≥ tn and all sufficiently large n

P

[

V1,n > t,
1

n

n
∑

i=1

|m?
n,(p,λn)(xi) − Ȳi|2 ≤ 1

n

n
∑

i=1

|m̃n,(p,λn)(xi) − Ȳi|2
]

≤ b5 exp (−b6nt) .

Proof of Lemma A.1. First, we notice that

Ui
2 = |Yi

? − m(xi)|2 ≤ 4(L?)2 a.s. (A.7)

for all i ∈ {1, . . . , n}. Set

Hn :=
1

n

n
∑

i=1

|m?
n,(p,λn)(xi) − m(xi)|2 + λnJ2

p

(

m̃n,(p,λn)

)

.

By an application of Lemma B.1 in combination with (A.7), we have for all t > 0

P

[

V1,n > t,
1

n

n
∑

i=1

|m?
n,(p,λn)(xi) − Ȳi|2 ≤ 1

n

n
∑

i=1

|m̃n,(p,λn)(xi) − Ȳi|2
]

≤ P

[

t < Hn ≤ 8

n

n
∑

i=1

(m?
n,(p,λn)(xi) − m(xi))Ui,

1

n

n
∑

i=1

U2
i ≤ 4(L?)2

]

=: q1,n. (A.8)

In order to derive an upper bound on q1,n, we notice that (A.7) together with the Cauchy–

Schwarz inequality yields

8

n

n
∑

i=1

(m?
n,(p,λn)(xi) − m(xi))Ui ≤ 16L?

√

√

√

√

1

n

n
∑

i=1

|m?
n,(p,λn)(xi) − m(xi)|2 a.s.

Therefore one can conclude that inside of q1,n

Hn ≤





√

√

√

√

1

n

n
∑

i=1

|m?
n,(p,λn)(xi) − m(xi)|2 +

λnJ2
p (m̃n,(p,λn))

√

1
n

∑n
i=1 |m?

n,(p,λn)(xi) − m(xi)|2





2

=





Hn
√

1
n

∑n
i=1 |m?

n,(p,λn)(xi) − m(xi)|2





2

≤ 256(L?)2.
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For arbitrary t > 0 set

̄min := min
{

j ∈ N : 2jt ≥ 256(L?)2
}

.

By an application of the Peeling-technique (cf. (5.10)), we can conclude from (A.8) for all

t > 0

P

[

V1,n > t,
1

n

n
∑

i=1

|m?
n,(p,λn)(xi) − Ȳi|2 ≤ 1

n

n
∑

i=1

|m̃n,(p,λn)(xi) − Ȳi|2
]

≤
̄min
∑

j=1

P

[

2jt

2
< Hn ≤ 2jt,Hn ≤ 8

n

n
∑

i=1

(m?
n,(p,λn)(xi) − m(xi))Ui,

1

n

n
∑

i=1

U2
i ≤ 4(L?)2

]

≤
̄min
∑

j=1

P

[

Hn ≤ 2jt,
1

n

n
∑

i=1

(m?
n,(p,λn)(xi) − m(xi))Ui >

2jt

16
,
1

n

n
∑

i=1

U2
i ≤ 4(L?)2

]

≤
̄min
∑

j=1

P

[

sup
g∈G

2j t/λn

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Ui g(xi)

∣

∣

∣

∣

∣

≥ 2jt

16
,
1

n

n
∑

i=1

U2
i ≤ 4(L?)2

]

=:

̄min
∑

j=1

q2,n,j, (A.9)

where for all j ∈ {1, . . . , ̄min}

G2jt/λn
:=

{

f − m : f ∈ F2j t/λn
,
1

n

n
∑

i=1

|f(xi) − m(xi)|2 ≤ 2jt

}

with

F2j t/λn
:=

{

T[−l,l]f : f ∈ Wp([0, 1]
d), J2

p (f) ≤ 2jt

λn

}

.

Similar to the proof of Theorem 4.2 (vide (5.13)), one can conclude from Lemma B.2 and

(A.5) for all t ≥ tn, all j ∈ {1, . . . , ̄min}, and all sufficiently large n

∫

√
2j t

0

√

lnN2

(

s,G2j t/λn
, xn

1

)

ds ≤ √
n2jt



b8

√

lnn

ntn
λ
− d

2p
n + b9

√

lnn

ntn



 ,

with some constants b8, b9 > 0 which only depend on p and d. This together with (A.5),

(A.6), and Corollary 8.3 in van de Geer (2000) (set there K := 2L?, σ0 := 2
√

2L?, δ := 2j t
16 ,

σ := 2L?, and R :=
√

2jt) implies for all t ≥ tn and all sufficiently large n

̄min
∑

j=1

q2,n,j ≤
̄min
∑

j=1

B1 · exp
(

−B2n2jt
)

≤ B1
exp (−B2nt)

1 − exp (−B2nt)
≤ 2B1 exp (−B2nt) , (A.10)

where B1, B2 > 0 are two constants which only depend on L?. The assertion of Lemma

A.1 follows from (A.9) and (A.10). �
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Lemma A.2 Let d, nl, nt ∈ N with nl + nt =: n and l1, l2 ∈ R with l1 ≤ l2. Let

Y1
?, . . . , Yn

? be given by (A.1) with Yi
?,m(xi) ∈ [l1, l2] a.s. for all i ∈ {1, . . . , n}. Let

Ȳ1, . . . , Ȳn be arbitrary real-valued random variables and let K × Λ be a (finite) set of pa-

rameters with K ⊆ Nd, where N1 := N for d = 1 and Nd := N \
{

1, . . . ,
⌊

d
2

⌋}

for d > 1,

and Λ ⊆ R+ \ {0}. For each (k, λ) ∈ K ×Λ define the estimates m̃nl,(k,λ) and mnl,(k,λ) by

m̃nl,(k,λ)(·) := arg min
f∈Wk([0,1]d)

(

1

nl

nl
∑

i=1

|f(xi) − Ȳi|2 + λJ2
k (f)

)

,

where Wk([0, 1]
d) and J2

k (f) (f ∈ Wk([0, 1]
d) are given by (2.3) and (2.5), and

mnl,(k,λ)(·) := T[ l1,l2 ]m̃nl,(k,λ)(·).

Now, let

mn(·) := arg min
f∈FK×Λ

(

1

nt

n
∑

i=nl+1

|f(xi) − Ȳi|2
)

where

FK×Λ :=
{

mnl,(k,λ) : (k, λ) ∈ K × Λ
}

.

Set

V2,n :=
1

nt

n
∑

i=nl+1

|mn(xi) − m(xi)|2 − 18 min
(k,λ)∈K×Λ

1

nt

n
∑

i=nl+1

∣

∣mnl,(k,λ)(xi) − m(xi)
∣

∣

2
.

Then there exists a constant b7 > 0 which depends only on l1 and l2, such that for all t > 0

P

[

V2,n > t +
512

nt

n
∑

i=nl+1

∣

∣Yi
? − Ȳi

∣

∣

2

]

≤ 2 |K × Λ| exp (−b7ntt)

1 − exp (−b7ntt)

Proof of Lemma A.2. Set

m∗
n(·) := arg min

f∈FK×Λ

1

nt

n
∑

i=nl+1

|f(xi) − m(xi)|2 .

By Lemma 1 in Kohler (2002), one can conclude for arbitrary t > 0

P

[

V2,n > t +
512

nt

n
∑

i=nl+1

∣

∣Yi
? − Ȳi

∣

∣

2

]

≤ P

[

t

2
<

1

nt

n
∑

i=nl+1

|mn(xi) − m∗
n(xi)|2

≤ 16

nt

n
∑

i=nl+1

(mn(xi) − m∗
n(xi)) (Yi

? − m(xi))

]

≤ |K × Λ| max
(k,λ)∈K×Λ

P

[

t

2
< H1,n,k,λ ≤ 16H2,n,k,λ

]

,
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where

H1,n,k,λ :=
1

nt

n
∑

i=nl+1

∣

∣mnl,(k,λ)(xi) − m∗
n(xi)

∣

∣

2

and

H2,n,k,λ :=
1

nt

n
∑

i=nl+1

(

mnl,(k,λ)(xi) − m∗
n(xi)

)

(Yi
? − m(xi)) .

An application of the Peeling-technique (cf. (5.10)) yields

P

[

V2,n > t +
512

nt

n
∑

i=nl+1

∣

∣Yi
? − Ȳi

∣

∣

2

]

≤ |K × Λ| max
(k,λ)∈K×Λ

∞
∑

s=0

P

[

2st

2
< H1,n,k,λ ≤ 2st,H1,n,k,λ ≤ 16H2,n,k,λ

]

≤ |K × Λ| max
(k,λ)∈K×Λ

∞
∑

s=0

P

[

H1,n,k,λ ≤ 2st,H2,n,k,λ >
2st

32

]

.

Set b7 := 2
(2(l2−l1))2322 . By Hoeffding’s inequality, we have for all t > 0

P

[

V2,n > t +
512

nt

n
∑

i=nl+1

∣

∣Yi
? − Ȳi

∣

∣

2

]

≤ |K × Λ|
∞
∑

s=0

2 exp (−b7 t nt 2s)

≤ 2 |K × Λ| exp (−b7ntt)

1 − exp (−b7ntt)
.

�

B Two deterministic lemmata

This section contains two deterministic lemmata which are used in the proofs of Theorem

4.2 and Lemma A.1.

Lemma B.1 Let l ≥ 0, t > 0, d ∈ N, x1, . . . , xn ∈ [0, 1]d, y?
1, ȳ1, . . . , y

?
n, ȳn ∈ R, and

m : [0, 1]d → R. Let p ∈ N with 2p > d be arbitrary, λn > 0, and let the estimates m̃n,(p,λn)

and m?
n,(p,λn) be defined by

m̃n,(p,λn)(·) := arg min
f∈Wp([0,1]d)

(

1

n

n
∑

i=1

|f(xi) − ȳi|2 + λnJ2
p (f)

)

, (B.1)

where Wp([0, 1]
d) and J2

p (f) (f ∈ Wp([0, 1]
d) are given by (2.3) and (2.5), and

m?
n,(p,λn)(·) := T[−l,l]m̃n,(p,λn)(·). (B.2)

Set

V3,n :=
1

n

n
∑

i=1

|m?
n,(p,λn)(xi) − m(xi)|2 + λnJ2

p (m̃n,(p,λn)).
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If m ∈ Wp([0, 1]
d) with J2

p (m) < ∞,

V3,n > t +
64

n

n
∑

i=1

|y?
i − ȳi|2 + 2λnJ2

p (m), (B.3)

and
1

n

n
∑

i=1

|m?
n,(p,λn)(xi) − ȳi|2 ≤ 1

n

n
∑

i=1

|m̃n,(p,λn)(xi) − ȳi|2, (B.4)

then we have

V3,n ≤ 8

n

n
∑

i=1

(

m?
n,(p,λn)(xi) − m(xi)

)

(y?
i − m(xi)). (B.5)

Proof of Lemma B.1. Assume m ∈ Wp([0, 1]
d) with J2

p (m) < ∞. Then we have by

Definition (B.1) and inequality (B.4)

V3,n =
1

n

n
∑

i=1

|m?
n,(p,λn)(xi) − ȳi|2 + λnJ2

p (m̃n,(p,λn)) −
1

n

n
∑

i=1

|m(xi) − ȳi|2

+
2

n

n
∑

i=1

(m?
n,(p,λn)(xi) − m(xi)) (ȳi − m(xi))

≤ λnJ2
p (m) +

2

n

n
∑

i=1

(m?
n,(p,λn)(xi) − m(xi)) (ȳi − m(xi)) (B.6)

If
2

n

n
∑

i=1

(m?
n,(p,λn)(xi) − m(xi)) (ȳi − m(xi)) < λnJ2

p (m),

then we can conclude from (B.3) and (B.6)

t + 2λnJ2
p (m) < V3,n < 2λnJ2

p (m)

in contradiction to t > 0. Therefore, we have shown that

V3,n ≤ 4

n

n
∑

i=1

(m?
n,(p,λn)(xi) − m(xi)) (ȳi − y?

i ) +
4

n

n
∑

i=1

(m?
n,(p,λn)(xi) − m(xi)) (y?

i − m(xi))

(B.7)

Now assume that the second term of the right hand side of (B.7) is smaller than the first

one. Then we can conclude from (B.7) by an application of the Cauchy–Schwarz inequality

V3,n ≤ 8

√

√

√

√

1

n

n
∑

i=1

|m?
n,(p,λn)(xi) − m(xi)|2 ·

√

√

√

√

1

n

n
∑

i=1

|y?
i − ȳi|2. (B.8)

If
1

n

n
∑

i=1

|m?
n,(p,λn)(xi) − m(xi)|2 6= 0,
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then (B.8) together with (B.3) implies

t +
64

n

n
∑

i=1

|y?
i − ȳi|2

<





√

√

√

√

1

n

n
∑

i=1

|m?
n,(p,λn)(xi) − m(xi)|2 +

λnJ2
p (m̃n,(p,λn))

√

1
n

∑n
i=1 |m?

n,(p,λn)(xi) − m(xi)|2





2

≤ 64

n

n
∑

i=1

|y?
i − ȳi|2

in contradiction to t > 0. And if

1

n

n
∑

i=1

|m?
n,(p,λn)(xi) − m(xi)|2 = 0,

we can conclude from (B.3) and (B.8) t < λnJ2
p (m̃n,(p,λn)) < 0. From this together with

(B.7), the assertion (B.5) of Lemma B.1 follows. �

Lemma B.2 Let l, b > 0 and p, d, n ∈ N with 2p > d and n > 1. Set

Fb :=
{

T[−l,l]f : f ∈ Wp([0, 1]
d), J2

p (f) ≤ b
}

,

where Wp([0, 1]
d) and J2

p (f) (f ∈ Wp([0, 1]
d) are given by (2.3) and (2.5). Then there

exist constants b8, b9 > 0 which only depend on p and d, such that for all ζ ≥ l2

n and all

x1, . . . , xn ∈ [0, 1]d

∫

√
ζ

0

√

lnN2(s,Fb, x
n
1 ) ds ≤ b8

(

b

ζ

) d
4p √

ζ
√

lnn + b9

√

ζ
√

lnn. (B.9)

Proof of Lemma B.2. For any ζ > 0 and all x1, . . . , xn ∈ [0, 1]d set

Iζ :=

∫

√
ζ

0

√

lnN2(s,Fb, x
n
1 ) ds.

Lemma 3 in Kohler et al. (2002) implies that there exist two constants B1, B2 > 0 which

only depend on p and d, such that for all ζ > 0 and all x1, . . . , xn ∈ [0, 1]d

Iζ ≤ B1b
d
4p

∫

√
ζ

0
s
− d

2p

√

ln

(

64l2en

s2

)

ds + B2

∫

√
ζ

0

√

ln

(

64l2en

s2

)

ds. (B.10)

Substituting t :=
√

ζ
s and applying Hölders inequality, one can conclude for all ζ > 0 and

all x1, . . . , xn ∈ [0, 1]d from (B.10)

Iζ ≤ B1b
d
4p ζ

1
2
− d

4p

√

∫ ∞

1
t

d
2p

−2
dt ·

∫ ∞

1
t

d
2p

−2 ln

(

64l2en

ζ
t2
)

dt
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+B2

√

ζ

√

∫ ∞

1
t−2dt ·

∫ ∞

1
t−2 ln

(

64l2en

ζ
t2
)

dt

= B3

(

b

ζ

)
d
4p √

ζ

√

ln

(

B4
l2n

ζ

)

+ B2

√

ζ

√

ln

(

B5
l2n

ζ

)

(B.11)

with the constants B3 := B1

1− d
2p

, B4 := 64e
1+ 2

1− d
2p , and B5 := 64e3. Finally, for all ζ ≥ l2

n

and all x1, . . . , xn ∈ [0, 1]d, (B.11) implies

Iζ ≤ B3

(

b

ζ

) d
4p √

ζ
√

2 (2 + lnB4)
√

lnn + B2

√

ζ
√

2 (2 + lnB5)
√

lnn.
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2006/007 Walk, H.: Almost sure Cesàro and Euler summability of sequences of dependent
random variables

2006/008 Meister, A.: Optimal convergence rates for density estimation from grouped data

2006/009 Förster, C.: Trapped modes for the elastic plate with a perturbation of Young’s modu-
lus


