Universität Stuttgart

Fachbereich Mathematik

Almost sure Cesàro and Euler summability of sequences of dependent random variables

Harro Walk

Preprint 2006/007

Universität Stuttgart Fachbereich Mathematik

Almost sure Cesàro and Euler summability of sequences of dependent random variables Harro Walk

Preprint 2006/007

Fachbereich Mathematik Fakultät Mathematik und Physik Universität Stuttgart Pfaffenwaldring 57 D-70 569 Stuttgart

E-Mail: preprints@mathematik.uni-stuttgart.de
WWW: http://www.mathematik/uni-stuttgart.de/preprints

ISSN 1613-8309

@ Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors. $\ensuremath{\mathbb{E}}\xspace{TEX-Style}$: Winfried Geis, Thomas Merkle

Almost sure Cesàro and Euler summability of sequences of dependent random variables

By

H. WALK

Abstract. For a sequence of real random variables C_{α} -summability is shown under conditions on the variances of weighted sums, comprehending and sharpening strong laws of large numbers (SLLN) of Rademacher-Menchoff and Cramér-Leadbetter, respectively. Further an analogue of Kolmogorov's criterion for the SLNN is established for E_{α} -summability under moment and multiplicativity conditions of 4th order, which allows to weaken Chow's independence assumption for identically distributed square integrable random variables. The simple tool is a composition of Cesàro-type and of Euler summability methods, respectively.

Mathematics Subject Classification (2000): Primary 60F15; Secondary 40G05

1. Introduction. The classical Rademacher-Menchoff theorem ([20], [18]) states that for square integrable pairwise uncorrelated real random variables X_n satisfying $\sum Var(X_n)(\log n)^2/n^2 < \infty$, almost sure (a.s.) convergence of $\sum (X_n - EX_n)/n$ holds and thus, by the Kronecker lemma, the strong law of large numbers

a.s.
$$\frac{1}{n+1} \sum_{k=0}^{n} (X_k - EX_k) \to 0,$$

i.e., a.s. (Cesàro) C_1 -summability of $(X_n - EX_n)$ to 0. The classical proof uses a maximal inequality on partial sums obtained by a combinatorial argument and has been extended to more general forms of dependence of the X_n 's (see [22], [23] among others). It allows to weaken the Cramér-Leadbetter condition [7] for the strong law of large numbers. In this paper, by an elementary argument, more generally a.s. C_{α} -summability of the sequence $(X_n - EX_n)$ to 0, $\alpha > 0$, i.e.,

a.s.
$$\frac{1}{\binom{n+\alpha}{n}} \sum_{k=0}^{n} \binom{n-k+\alpha-1}{n-k} (X_k - EX_k) \to 0$$

(notation a.s. C_{α} -lim $(X_n - EX_n) = 0$), is shown under an easily verifiable condition on variances of suitably weighted partial sums (Theorem 2.1). The proof is inspired by the fact that the composition of the $C_{\alpha/2}$ -transform of a sequence with itself leads to the same convergence behavior as the C_{α} -transform. In the case $\alpha = 1$ the result leads to a further weakening of known conditions, especially of the Cramér-Leadbetter condition by a logarithmic factor (Corollaries 2.2 and 2.3).

As is well known, for independent square integrable real random variables the squared logarithmic factor in the Rademacher-Menchoff theorem may be omitted, which leads to Kolmogorov's criterion for the strong law of large numbers and also, by truncation, to Kolmogorov's strong law of large numbers $(X_0 + \ldots + X_n)/(n+1) \rightarrow 0$ a.s. for independent and identically distributed real random variables X_n with existence of $EX_n = 0$ (where

the latter in this context is also necessary), see, e.g., [17], section 17. There exists a vast literature on weakening the independence assumptions there. For references see, e.g., [23], [4], [24]. Chow [6] showed that for independent and identically distributed X_n 's square integrability with $EX_n = 0$ is necessary and sufficient for a.s. (Euler) E_{α} - summability of (X_n) to 0, i.e.,

a.s.
$$\sum_{k=0}^{n} \binom{n}{k} \alpha^{k} (1-\alpha)^{n-k} X_{k} \to 0$$

(notation a.s. E_{α} -lim $X_n = 0$) with arbitrary fixed $\alpha \in (0, 1)$. In this equivalence context the E_{α} -summability method may be replaced by the generally stronger Borel summability method [6], like in the context of Kolmogorov's strong law of large numbers the C_1 summability method may be replaced by the generally stronger Abel summability method [16]. In [6], for the sufficiency part complicated probabilistic tools (delayed averages, Hsu-Robbins-Erdös theorem) for independent identically distributed random variables were used. The results were generalized to power series methods of summability in [2] and [14]. A connection between $E|Y|^p < \infty$ and corresponding Riesz summability (fixed $p \ge 1$) was established in [3]. In this paper we establish a criterion for a.s. E_{α} -summability of sequences of random variables with finite fourth moment under a weakened independence assumption (strong multiplicativity of 4th order or *m*-dependence) and thus, by truncation, a.s. E_{α} -summability in the case of fourwise independent or *m*-dependent identically distributed square integrable real random variables (Theorems 2.2 and 2.3 with Remarks 2.7 and 2.8). The simple proof uses the fact that the composition of the $E_{\sqrt{\alpha}}$ -transform of a sequence with itself is the E_{α} -transform.

2. Results. The following theorem yields a simple sufficient condition for C_{α} -summability of a sequence of random variables.

Theorem 2.1. Let $(X_n)_{n \in \mathbb{N}_0}$ be a sequence of square integrable real random variables. If

$$0 < \alpha < 1$$
 and $\sum_{n=1}^{\infty} \frac{1}{n^{2\alpha}} Var\left(\sum_{k=0}^{n} \binom{n-k+\frac{\alpha}{2}-1}{n-k}X_k\right) < \infty$

or if

$$\alpha = 1$$
 and $\sum_{n=2}^{\infty} \frac{\log n}{n^2} Var\left(\sum_{k=0}^{n} \binom{n-k-\frac{1}{2}}{n-k} X_k\right) < \infty$

or if

$$\alpha > 1$$
 and $\sum_{n=1}^{\infty} \frac{1}{n^{1+\alpha}} Var\left(\sum_{k=0}^{n} \binom{n-k+\frac{\alpha}{2}-1}{n-k}X_k\right) < \infty,$

then

a.s.
$$C_{\alpha}$$
-lim $(X_n - EX_n) = 0.$

Remark 2.1. Theorem 2.1 for $\alpha = 2$ means that $\sum n^{-3}Var(X_1 + \ldots + X_n) < \infty$ implies a.s. C_2 -lim $(X_n - EX_n) = 0$. If additionally $(X_n - EX_n)$ is bounded from below,

e.g., if $X_n \ge 0$, $EX_n = O(1)$, then a classical elementary Tauberian theorem ([25], pp. 113, 117) immediately yields a.s. C_1 -lim $(X_n - EX_n) = 0$. This approach also leads to an elementary proof of Kolmogorov's strong law of large numbers for (pairwise) independent identically distributed integrable real random variables. See [24] with further references, especially [9] and [10] for an alternative elementary proof.

Remark 2.2. For the case $\alpha = 1$, in an analogous manner for a stochastic process $\{X_t; t \in \mathbb{R}_+\}$ in \mathbb{R} with $EX_t^2 < \infty$, $t \in \mathbb{R}_+$, and continuity in squared mean ([17], section 37), one can show: If

$$\int_{1}^{\infty} \frac{\log t}{t^2} Var\left(\int_{0}^{t} \frac{1}{\sqrt{t-s}} X_s ds\right) dt < \infty,$$

then

a.s.
$$\frac{1}{t} \int_{0}^{t} (X_s - EX_s) ds \to 0.$$

Corollary 2.1. Let $(X_n)_{n \in \mathbb{N}_0}$ be a sequence of square integrable pairwise uncorrelated random variables. If

$$0 < \alpha < 1$$
 and $\sum_{n=1}^{\infty} \frac{1}{n^{2\alpha}} Var(X_n) < \infty$

or if

$$\alpha = 1$$
 and $\sum_{n=2}^{\infty} \frac{(\log n)^2}{n^2} Var(X_n) < \infty$

or if

$$\alpha > 1$$
 and $\sum_{n=1}^{\infty} \frac{1}{n^2} Var(X_n) < \infty$,

then

a.s.
$$C_{\alpha}$$
-lim $(X_n - EX_n) = 0$.

Remark 2.3. Corollary 2.1 for $\alpha > 1/2$ extends Theorem 9 in [8], where $\sup Var(X_n) <$

 ∞ is assumed. Corollary 2.1 for $\alpha = 1$ is a well-known consequence of the Rademacher-Menchoff theorem (compare Remark 2.4).

Corollary 2.2. Let $(X_n)_{n \in \mathbb{N}_0}$ be a sequence of square integrable real random variables centered at expectations. If

(2.1)
$$\sum_{n=2}^{\infty} \frac{\log n}{n^{3/2}} \sum_{i=2}^{n} \frac{1}{i^{1/2}} \left(\log \frac{n}{n+1-i} \right) \left(EX_i X_n \right)^+ < \infty,$$

then

a.s. $C_1 - \lim X_n = 0.$

Remark 2.4. Let as before the real random variables X_n be square integrable and centered at expectations. The Rademacher-Menchoff theorem ([20], [18]; see Révész ([21], 3.2, and, in a generalization, [17], Section 36, and [23], Theorem 3.7.2) states a.s. convergence of $\sum X_n/n$ and thus, via the Kronecker lemma, a.s. C_1 -lim $X_n = 0$, if the X_n 's are pairwise uncorrelated and $\sum (\log n)^2 E X_n^2/n^2 < \infty$. The two latter conditions can be weakened to

(2.2)
$$\sum \frac{(\log n)^2}{n^2} \sum_{i=1}^n (EX_i X_n)^+ < \infty$$

as can be obtained according to the proof of Theorem 2.1 in [22], compare also [24], Remark 5. Condition (2.1) in Corollary 2.2 is weaker than condition (2.2) as follows from the inequality $\log(1/1-x)) \leq x[1 + \log(1/(1-x))], 0 \leq x < 1$. It further leads to an improvement of a condition of Cramér-Leadbetter type for C_1 -summability ([7], p. 94, see also [19] and [24], p. 333) by a logarithmic factor (see the following corollary).

Corollary 2.3. Let $(X_n)_{n \in \mathbb{N}_0}$ be a sequence of square integrable real random variables centered at expectations and satisfying

$$(EX_iX_j)^+ \le c \frac{j^{\beta}}{[1+(j-i)^{\beta}][\log(2+j-i)]^{\gamma}}, \ i \le j$$

with $c \in \mathbb{R}_+$ and $\beta = 0$, $\gamma > 1$ or $0 < \beta < 1$, $\gamma > 2$ or $\beta = 1$, $\gamma > 4$. Then

a.s.
$$C_1$$
- $\lim X_n = 0$

Remark 2.5. Let $\beta_n > 0$ such that $\beta_n \uparrow \infty$. If in Theorem 2.1 for $\alpha = 1$, in Corollary 2.1 for $\alpha = 1$ and in Corollary 2.2 the condition is modified replacing the fractions $(\log n)/n^2$, $(\log n)^2/n^2$, $(\log n)/n^{3/2}$ by $(\log n)/\beta_n^2$, $(\log n)^2/\beta_n^2$, $(\log n)n^{1/2}/\beta_n^2$, respectively, then the assertion has to be modified replacing a.s. C_1 -summability to 0 by

a.s.
$$\frac{1}{\beta_n} \sum_{k=1}^n (X_k - EX_k) \to 0$$

The proof is analogous. Thus by introducing the logarithmic factor in the mentioned conditions, one can avoid the additional conditions $X_n \ge 0$ and

$$\sup_{n} \ \beta_{n}^{-1} \sum_{k=1}^{n} EX_{k} < \infty \text{ or } \sup EX_{n} < \infty$$

in [4], [5], Theorem 1, and in [24], Remark 7. The a.s. convergence assertion can be interpreted as an assertion on weighted means of $Y_k - EY_k$, where $(\beta_k - \beta_{k-1})Y_k = X_k$.

A sequence (X_n) of real random variables with $E|X_n|^4 < \infty$ shall be called strongly multiplicative of 4th order, if

$$EX_iX_jX_kX_l = EX_iEX_jEX_kEX_l,$$

$$EX_{i}^{2}X_{j}X_{k} = EX_{i}^{2}EX_{j}EX_{k}, \ EX_{i}^{3}X_{j} = EX_{i}^{3}EX_{j}, \ EX_{i}^{2}X_{j}^{2} = EX_{i}^{2}EX_{j}^{2}$$

for pairwise different indices (compare Alexits [1] and Révész [21]). For such sequences the following theorem yields a sufficient condition for E_{α} -summability (0 < α < 1) which corresponds to Kolmogorov's condition for the strong law of large numbers.

Theorem 2.2. Let the sequence $(X_n)_{n \in \mathbb{N}_0}$ of real random variables with finite 4th moment be strongly multiplicative of 4th order. Assume

$$\sum_{n=1}^{\infty} \frac{E(X_n - EX_n)^4}{n^2} < \infty, \quad \sum_{n=1}^{\infty} \frac{[E(X_n - EX_n)^2]^2}{n^{3/2}} < \infty.$$

Then for each $\alpha \in (0, 1)$.

a.s. E_{α} -lim $(X_n - EX_n) = 0.$

Remark 2.6. The assumption $\sum_{n=1}^{\infty} n^{-3/2} [E(X_n - EX_n)^2]^2 < \infty$ in Theorem 2.2 is fulfilled, if $E(X_n - EX_n)^2 \uparrow$ and $\sum_{n=1}^{\infty} n^{-5/4} E(X_n - EX_n)^2 < \infty$. For these conditions imply $n^{-1/4} E(X_n - EX_n)^2 \to 0$ according to the proof of Olivier's theorem (see [15]).

Remark 2.7. One can transfer the proof of Theorem 2.2 (in section 3) to the case that the assumption of strong multiplicativity of 4th order is replaced by the assumption of *m*-dependence (with arbitrary fixed $m \in \mathbb{N}$), i.e., independence of the pair $(\mathcal{F}_0^j, \mathcal{F}_{j+m}^\infty) :=$ $(\mathcal{F}(X_0, \ldots, X_j), \mathcal{F}(X_{j+m}, X_{j+m+1}, \ldots))$ for each *j*. According to [13], Theorem 17.3.2, in the special case that (X_n) is a Gaussian sequence, *m*-dependence for *m* sufficiently large and ϕ -mixing, i.e.,

$$\phi_k := \sup_{n} \sup_{A \in \mathcal{F}_0^n, P(A) > 0, B \in \mathcal{F}_{n+k}^\infty} |P(B|A) - P(B)| \to 0 \quad (k \to \infty),$$

are equivalent.

As a consequence of Theorem 2.2, by truncation we obtain the sufficiency part of Chow's [6] theorem on E_{α} -summability under a weakened independence assumption.

Theorem 2.3. Let the sequence $(X_n)_{n \in \mathbb{N}_0}$ of identically distributed square integrable real random variables be fourwise independent (independence of the quadrupel (X_i, X_j, X_k, X_l) for pairwise different indices). Then for each $\alpha \in (0, 1)$

a.s.
$$E_{\alpha} - \lim(X_n - E_n) = 0.$$

Remark 2.8. In Theorem 2.3 the assumption of fourwise independence can be replaced by the assumption of m-dependence. The proof is the same except for use of Remark 2.7 instead of Theorem 2.2 itself.

3. Proofs. c_1, c_2, \ldots will be suitable constants.

Proof of Theorem 2.1. The proof is inspired by the fact that for a sequence (s_n) in \mathbb{R} the $C_{\alpha/2}$ -transform of (s_n) is $C_{\alpha/2}$ -summable if and only if (s_n) is C_{α} -summable, see, e.g., [12], p. 118, or [25], 54 III. Assume $EX_k = 0, k \in \mathbb{N}_0$, without loss of generality. The well-known relation

(3.1)
$$\binom{n+\alpha}{n} = (1+\frac{\alpha}{1})\dots(1+\frac{\alpha}{n}) \sim n^{\alpha}$$

(quotient of the left-hand side and the right-hand side is bounded away from 0 and ∞ , which is obvious by taking log) will be used. Set

$$U_j := \sum_{k=0}^{j} {j-k+\frac{\alpha}{2}-1 \choose j-k} X_k \quad (j=0,1,\ldots)$$

 $\left(\binom{n+\frac{\alpha}{2}}{n}^{-1}U_n\right)$ is the $C_{\alpha/2}$ -transform of (X_n) . With $d_n = n^{-2\alpha}$ if $\alpha < 1$, $d_n = (\log n)/n^2$ if $\alpha = 1$, $d_n = n^{-(1+\alpha)}$ if $\alpha > 1$, the assumption $\sum d_n E U_n^2 < \infty$ implies a.s. $\sum d_n U_n^2 < \infty$ and thus

by the Kronecker lemma. From

$$(1-s)^{-\frac{\alpha}{2}} = \sum_{l=0}^{\infty} {\binom{l+\frac{\alpha}{2}-1}{l}} s^l, \ |s| < 1,$$

one obtains, by taking squares,

(3.3)
$$\binom{m+\alpha-1}{m} = \sum_{l=0}^{m} \binom{m-l+\frac{\alpha}{2}-1}{m-l} \binom{l+\frac{\alpha}{2}-1}{l}, \quad m=0,1,\ldots,$$

and therefore

$$\binom{n-k+\alpha-1}{n-k} = \sum_{j=k}^{n} \binom{n-j+\frac{\alpha}{2}-1}{n-j} \binom{j-k+\frac{\alpha}{2}-1}{j-k}, \qquad 0 \le k \le n,$$

thus

$$W_n := \frac{1}{\binom{n+\alpha}{n}} \sum_{j=0}^n \binom{n-j+\frac{\alpha}{2}-1}{n-j} U_j = \frac{1}{\binom{n+\alpha}{n}} \sum_{k=0}^n \binom{n-k+\alpha-1}{n-k} X_k.$$

 (W_n) is the C_{α} -transform of (X_n) . By the Cauchy-Schwarz inequality and (3.1)

$$|W_n|^2 \leq \frac{1}{\binom{n+\alpha}{n}^2} \sum_{j=0}^n \binom{n-j+\frac{\alpha}{2}-1}{n-j}^2 \sum_{j=0}^n |U_j|^2$$

$$\leq c_1 \frac{1}{n^{2\alpha}} \sum_{k=2}^n k^{\alpha-2} \sum_{j=0}^n |U_j|^2 \leq c_2 d_n \sum_{j=0}^n |U_j|^2 \qquad (n \geq 2).$$

Now the assertion a.s. $W_n \to 0$ follows from (3.2).

Proof of Remark 2.2. The proof follows the same line, using

$$\int_{0}^{t} \frac{1}{\sqrt{t-s}} \frac{1}{\sqrt{s}} ds = \int_{0}^{1} \frac{du}{\sqrt{1-u}\sqrt{u}} = \pi, \quad t > 0,$$

instead of (3.3) for $\alpha = 1$.

Proof of Corollary 2.1. Define (U_n) as in the proof of Theorem 2.1. By uncorrelatedness and by (3.1)

$$Var(U_n) \leq c_1 \sum_{k=0}^n (n-k+1)^{\alpha-2} Var(X_k).$$

If $0 < \alpha < 1$, then

$$\sum_{n=1}^{\infty} \frac{1}{n^{2\alpha}} Var(U_n) \leq c_1 \sum_{k=0}^{\infty} \left(\sum_{n=\max\{1,k\}}^{\infty} \frac{1}{n^{2\alpha}} (n-k+1)^{\alpha-2} \right) Var(X_k)$$
$$\leq c_2 \sum_{k=0}^{\infty} \frac{1}{(k+1)^{2\alpha}} Var(X_k).$$

If $\alpha = 1$, then

$$\sum_{n=1}^{\infty} \frac{\log n}{n^2} Var(U_n) \leq c_1 \sum_{k=0}^{\infty} \sum_{n=\max\{1,k\}}^{\infty} \frac{\log n}{n^2(n-k+1)} Var(X_k)$$
$$\leq c_3 \sum_{k=0}^{\infty} \frac{(\log(k+2))^2}{(k+1)^2} Var(X_k),$$

noticing

$$\int_{k}^{\infty} \frac{1}{x(x-k+1)} dx = O\left(\frac{\log k}{k}\right).$$

If $\alpha > 1$, then

$$\sum_{n=1}^{\infty} \frac{1}{n^{1+\alpha}} Var(U_n) \leq c_1 \sum_{k=0}^{\infty} \left(\sum_{n=\max\{1,k\}}^{\infty} \frac{1}{n^{1+\alpha}} \frac{1}{(n-k+1)^{2-\alpha}} \right) Var(X_k)$$

$$\leq c_4 \sum_{k=0}^{\infty} \frac{1}{(k+1)^2} Var(X_k),$$

which for $\alpha \geq 2$ is obvious and which in the case $1 < \alpha < 2$ follows from

$$\frac{1}{k}\sum_{n=k+1}^{\infty}\frac{1}{(\frac{n}{k})^{1+\alpha}(\frac{n}{k}-1)^{2-\alpha}}\to\int_{1}^{\infty}\frac{dx}{x^{1+\alpha}(x-1)^{2-\alpha}} < \infty \text{ for } k\to\infty.$$

Now Theorem 2.1 together with the assumptions yields the assertion.

Proof of Corollary 2.2. We apply Theorem 2.1 for $\alpha = 1$. We obtain

$$\sum_{n=2}^{\infty} \frac{\log n}{n^2} E\left(\sum_{k=0}^n \binom{n-k-\frac{1}{2}}{n-k} X_k\right)^2$$

$$\leq c_1 \left[\sum_{n=2}^{\infty} \frac{\log n}{n^2} \sum_{k=0}^n \frac{1}{n+1-k} E X_k^2 + 2 \sum_{n=2}^{\infty} \frac{\log n}{n^2} \sum_{j=1}^n \sum_{i=0}^{j-1} \frac{1}{\sqrt{n+1-j}} \frac{1}{\sqrt{n+1-i}} E(X_i X_j)^+\right]$$

$$=: c_1 [A+2B],$$

then

$$A \le \sum_{n=2}^{\infty} \frac{\log n}{n^3} (EX_0^2 + EX_1^2) + \sum_{k=2}^{\infty} \frac{\log k}{k^2} EX_k^2 + \sum_{k=2}^{\infty} \left(\sum_{n=k+1}^{\infty} \frac{\log n}{n^2(n+1-k)} \right) EX_k^2,$$

where for $k \geq 2$

$$\sum_{n=k+1}^{\infty} \frac{\log n}{n^2(n+1-k)} \le 2\frac{\log k}{k} \int_{k}^{\infty} \frac{dx}{x(x+1-k)} \le 4\frac{(\log k)^2}{k^2}.$$

As to B, we avoid to bound $1/\sqrt{n+1-i}$ by $1/\sqrt{n+1-j}$ for i = 1, ..., j-1, which would yield (2.2) as a sufficient condition, but write

$$B = \sum_{j=1}^{\infty} \sum_{i=0}^{j-1} \left(\sum_{n=j}^{\infty} \frac{\log n}{n^2} \frac{1}{\sqrt{n+1-j}} \frac{1}{\sqrt{n+1-i}} \right) (EX_i X_j)^+$$

$$\leq \sum_{n=2}^{\infty} \frac{\log n}{n^3} E(X_0 X_1)^+ + 2 \sum_{j=2}^{\infty} \sum_{i=0}^{j-1} \frac{\log j}{j} \left(\sum_{n=j}^{\infty} \frac{1}{(n+1)\sqrt{n+1-j}\sqrt{n+\frac{1}{2}-i}} \right) (EX_i X_j)^+,$$

where for $j \ge 2, \ 0 \le i < j$

$$\sum_{n=j}^{\infty} \frac{1}{(n+1)\sqrt{n+1-j}\sqrt{n+\frac{1}{2}-i}} \le \int_{j}^{\infty} \frac{dx}{x\sqrt{x-j}\sqrt{x-(i+\frac{1}{2})}}$$
$$= \frac{1}{\sqrt{(i+\frac{1}{2})j}} \log \frac{\left(\sqrt{j}+\sqrt{i+\frac{1}{2}}\right)^2}{j-(i+\frac{1}{2})} \le c_2 \frac{1}{(i+1)^{1/2}j^{1/2}} \log \frac{j}{j+1-i}.$$

Thus $A + 2B < \infty$ by (2.1), and the assertion is obtained from Theorem 2.1 with $\alpha = 1.\square$ **Proof of Corollary 2.3.** First let $0 < \beta < 1$, $\gamma > 2$. We use Corollary 2.2. Noticing

$$\frac{\log n}{\log(2+n-i)} \le 2\left(1+\log\frac{n}{n+1-i}\right), \ i \le n,$$

we obtain

$$\sum_{n=2}^{\infty} \frac{\log n}{n^{3/2}} \sum_{i=2}^{n} \frac{1}{i^{1/2}} \left(\log \frac{n}{n+1-i} \right) (EX_i X_n)^+$$

$$\leq c_1 \sum_{n=2}^{\infty} \frac{(\log n)^{1-\gamma}}{n} \frac{1}{n} \sum_{i=2}^{n} \frac{1}{(\frac{i}{n})^{1/2}} \left(1 + \log \frac{1}{\frac{1}{n}+1-\frac{i}{n}} \right)^{\gamma+1} \frac{1}{\frac{1}{n^{\beta}} + (1-\frac{i}{n})^{\beta}}$$

$$\leq c_2 \sum_{n=2}^{\infty} \frac{(\log n)^{1-\gamma}}{n} \int_{0}^{1} \frac{1}{x^{1/2}} (1 + \log \frac{1}{1-x})^{\gamma+1} \frac{1}{(1-x)^{\beta}} dx < \infty.$$

By this argument also the case $\beta = 0, \gamma > 2$ can be treated. As to the more general case $\beta = 0, \gamma > 1$ we refer to [24], Theorem 3. The case $\beta = 1, \gamma > 4$ is treated by verifying (2.2) (see [24], Remark 5).

For the proof of Theorem 2.2 we need the following lemmas.

Lemma 3.1 (see [11], ch. VII, (5.11)). For each $p \in (0, 1)$ a constant c^* exists such that for all $n \in \mathbb{N}$ and $k \in \{0, 1, \dots, n\}$

$$\binom{n}{k}p^k(1-p)^{n-k} \le \frac{c^*}{\sqrt{n}}.$$

Lemma 3.2. Let $p \in (0, 1)$. Then

(3.4)
$$\sum_{n=k}^{\infty} \frac{1}{n} \binom{n}{k} (1-p)^{n-k} p^k = \frac{1}{k} \quad (k \in \mathbb{N}),$$

(3.5)
$$\sum_{n=k}^{\infty} \frac{1}{n(n-1)} \binom{n}{k} (1-p)^{n-k} p^k = \frac{p}{k(k-1)} \qquad (k \in \{2, 3, \dots, \}).$$

Proof of Lemma 3.2. (3.4) is equivalent to

(3.6)
$$\sum_{n=k}^{\infty} \binom{n-1}{k-1} (1-p)^{n-k} p^k = 1 \quad (k \in \mathbb{N}).$$

(3.5) is equivalent to

$$\sum_{n=k}^{\infty} \binom{n-2}{k-2} (1-p)^{(n-1)-(k-1)} p^{k-1} = 1 \quad (k \in \{2, 3, \dots, \}),$$

which is equivalent to (3.6). But (3.6) follows, with q := 1 - p, from

$$(1-q)^{-k} = \sum_{j=0}^{\infty} {\binom{-k}{j}} (-q)^j = \sum_{n=k}^{\infty} {\binom{n-1}{k-1}} q^{n-k} \quad (k \in \mathbb{N}).$$

Lemma 3.3 (see [25], 64 II, and [12], Theorem 119). Let $\alpha, \beta \in (0, 1)$. Then

$$\sum_{l=0}^{n} \binom{n}{l} \alpha^{l} (1-\alpha)^{n-l} \binom{l}{k} \beta^{k} (1-\beta)^{n-k} = \binom{n}{k} (\alpha\beta)^{k} (1-\alpha\beta)^{n-k}$$

for $n \in \mathbb{N}$, $k \in \{0, 1, \dots, n\}$, i.e., $E_{\alpha\beta}$ is the composition of E_{α} and E_{β} .

To make the paper more self-contained, in view of Lemma 3.3 we mention that, with $V = (v_{nk})_{n,l \in \mathbb{N}_0}$ defined by $v_{nk} = (-1)^k \binom{n}{k}$, one has $V = V^{-1}$ and $E_{\alpha} = V \operatorname{diag} \{\alpha^n\} V$ $(0 < \alpha < 1)$ $(E_{\alpha}$ is a so-called Hausdorff matrix; see [12], ch. XI, and [25], section 72), thus $E_{\alpha}E_{\beta} = E_{\alpha\beta}$ $(0 < \alpha < 1, 0 < \beta < 1)$. This relation is also obtained by a probabilistic argument. Consider a branching process at times 0, 1, 2 with size $Y_0 = n$ of the zero generation, for which each particle of the zero generation (of the first generation) independently of the other particles creates 1 new particle with probability α $(\beta) \in (0, 1)$ and no new particle with probability $1 - \alpha$ $(1-\beta)$. Then the sizes Y_n of the generations with numbers n = 0, 1, 2 form a Markov chain (homogeneous in the case $\alpha = \beta$) with matrices E_{α} and E_{β} of transition probabilities, where obviously Y_1 and Y_2 have binomial distribution $b(n, \alpha)$ and $b(n, \alpha\beta)$, respectively, thus $E_{\alpha}E_{\beta} = E_{\alpha\beta}$.

Proof of Theorem 2.2. Let $\alpha \in (0,1)$ be fixed. Assume $EX_n = 0$ without loss of generality. Set

$$T_n := \sum_{k=0}^n \binom{n}{k} \sqrt{\alpha}^k (1 - \sqrt{\alpha})^{n-k} X_k.$$

 (T_n) is the $E_{\sqrt{\alpha}}$ -transform of (X_n) . First we show

(3.7)
$$\sum_{n=2}^{\infty} \frac{1}{(n+1)^{1/2}} ET_n^4 < \infty.$$

The left-hand side is bounded by

$$\begin{split} &\sum_{n=2}^{\infty} \frac{1}{(n+1)^{1/2}} \sum_{k=0}^{n} \left[\binom{n}{k} \sqrt{\alpha}^{k} (1-\sqrt{\alpha})^{n-k} \right]^{4} EX_{k}^{4} \\ &+ \sum_{n=2}^{\infty} \frac{1}{(n+1)^{1/2}} \sum_{j \neq k \in \{0, \dots, n\}} \left[\binom{n}{j} \sqrt{\alpha}^{j} (1-\sqrt{\alpha})^{n-j} \binom{n}{k} \sqrt{\alpha}^{k} (1-\sqrt{\alpha})^{n-k} \right]^{2} EX_{j}^{2} EX_{k}^{2} \\ &\leq c_{1} \sum_{n=2}^{\infty} \frac{1}{(n+1)^{2}} \sum_{k=0}^{n} \binom{n}{k} \sqrt{\alpha}^{k} (1-\sqrt{\alpha})^{n-k} EX_{k}^{4} \\ &+ c_{1} \sum_{n=2}^{\infty} \frac{1}{(n+1)^{3/2}} \left[\sum_{k=0}^{n} \binom{n}{k} \sqrt{\alpha}^{k} (1-\sqrt{\alpha})^{n-k} EX_{k}^{2} \right]^{2} \\ & \text{(by Lemma 3.1)} \\ &\leq c_{2} + c_{3} \sum_{n=2}^{\infty} \frac{1}{(n+1)^{2}} \sum_{k=2}^{n} \binom{n}{k} \sqrt{\alpha}^{k} (1-\sqrt{\alpha})^{n-k} EX_{k}^{4} \end{split}$$

+
$$c_3 \sum_{n=2}^{\infty} \frac{1}{(n+1)^{3/2}} \sum_{k=2}^{n} \binom{n}{k} \sqrt{\alpha}^k (1-\sqrt{\alpha})^{n-k} (EX_k^2)^2$$

(by the Cauchy-Schwarz inequality)

$$= c_{2} + c_{3} \sum_{k=2}^{\infty} \left(\sum_{n=k}^{\infty} \frac{1}{(n+1)^{2}} \binom{n}{k} \sqrt{\alpha}^{k} (1-\sqrt{\alpha})^{n-k} \right) EX_{k}^{4}$$
$$+ c_{3} \sum_{k=2}^{\infty} \left(\sum_{n=k}^{\infty} \frac{1}{(n+1)^{3/2}} \binom{n}{k} \sqrt{\alpha}^{k} (1-\sqrt{\alpha})^{n-k} \right) (EX_{k}^{2})^{2}$$
$$\leq c_{2} + c_{4} \sum_{k=2}^{\infty} \frac{1}{k(k-1)} EX_{k}^{4} + c_{4} \sum_{k=2}^{\infty} \frac{1}{k\sqrt{k-1}} (EX_{k}^{2})^{2}$$

by Lemma 3.2 using first (3.5) and secondly (3.4) and (3.5) together with the Cauchy-Schwarz inequality. Now (3.7) follows from the assumptions. (3.7) implies a.s. $\sum (n+1)^{-1/2} T_n^4 < \infty$ and thus

by the Kronecker lemma. Set

$$W_n := \sum_{k=0}^n \binom{n}{k} \sqrt{\alpha}^k (1 - \sqrt{\alpha})^{n-k} T_k.$$

 (W_n) is the $E_{\sqrt{\alpha}}$ -transform of (T_n) , i.e., by Lemma 3.3, the E_{α} -transform of (X_n) . One obtains

$$|W_n|^4 \leq \sum_{k=0}^n \binom{n}{k} \sqrt{\alpha}^k (1 - \sqrt{\alpha})^{n-k} T_k^4 \leq c_5 n^{-1/2} \sum_{k=0}^n T_k^4 \to 0 \quad \text{a.s.},$$

by Jensen's inequality, Lemma 3.1 and (3.8). Thus the assertion is obtained.

The following lemma is well-known in the context of the proof of Kolmogorov's strong law of large numbers and will be used in the proof of Theorem 2.3. I denotes an indicator function.

Lemma 3.4 (see [11], ch. VII, p. 240, or [17], section 17). Let X be an integrable nonnegative random variable. Then $\sum n^{-2} E(XI_{[X \le n]})^2 < \infty$.

Proof of Theorem 2.3. Assume $X_n \ge 0$ without loss of generality. The argument of the first step is well known from the proof of the classical Kolmogorov strong law of large numbers. Set $X_n^* := X_n I_{[X_n \le \sqrt{n}]}$. Because of

$$\sum_{n=0}^{\infty} P\left[X_n \neq X_n^*\right] = \sum_{n=0}^{\infty} P\left[X_1^2 > n\right] \le E X_1^2 < \infty,$$

a.s. $X_n = X_n^*$ from some index on (by the Borel-Cantelli lemma). Therefore and because of $EX_n^* = EX_1I_{[X_1 \le \sqrt{n}]} \to EX_1$, it suffices to show

(3.9) a.s. $E_{\alpha} - \lim(X_n^* - EX_n^*) = 0.$

Lemma 3.4 yields $\sum n^{-2} E X_n^{*4} < \infty$, which together with $\sum n^{-3/2} [E(X_n^* - E X_n^*)^2]^2 \leq \sum n^{-3/2} (E X_1^2)^2 < \infty$ yields (3.9) by Theorem 2.2.

References

- G. ALEXITS, Convergence Problems of Orthogonal Series. Akadémici Kiadó, Budapest (1961).
- [2] N. H. BINGHAM and M. MAEJIMA, Summability methods and almost sure convergence. Z. Wahrscheinlichkeitstheorie verw. Gebiete 68, 383-392 (1985).
- [3] N. H. BINGHAM and G. TENENBAUM, Riesz and Valiron means and fractional moments. Math. Proc. Camb. Phil. Soc. 99, 143-149 (1986).
- [4] T. K. CHANDRA and A. GOSWAMI, Cesàro uniform integrability and the strong law of large numbers. Sankhyā Ser. A 54, 215-231 (1992).
- [5] T. K. CHANDRA and A. GOSWAMI, Corrigendum: Cesàro uniform integrability and the strong law of large numbers. Sankhyā Ser. A 55, 327-328 (1993).
- [6] Y. S. CHOW, Delayed sums and Borel summability of independent, identically distributed random variables. Bull. Inst. Math. Acad. Sinica 1, 207-220 (1973).
- [7] H. CRAMÉR and M.R. LEADBETTER, Stationary and Related Stochastic Processes. Wiley, New York (1967).
- [8] Y. DENIEL, On the a.s. Cesàro- α convergence for stationary or orthogonal random variables. J. Theor. Probab. **2**, 475-485 (1989).
- [9] N. ETEMADI, An elementary proof of the strong law of large numbers. Z. Wahrscheinlichkeitstheorie verw. Gebiete 55, 119-122 (1981).
- [10] N. ETEMADI, On the laws of large numbers for nonnegative random variables. J. Multivariate Anal. 13, 187-193 (1983).
- [11] W. FELLER, An Introduction to Probability Theory and Its Applications, vol II, 2nd ed., Wiley, New York (1971).
- [12] G.H. HARDY, Divergent Series. Oxford University Press, London (1949).
- [13] I. A. IBRAGIMOV and Yu V. LINNIK, Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff Publ., Groningen (1971).

- [14] R. KIESEL, Power series methods and almost sure convergence. Math. Proc. Camb. Phil. Soc. 113, 195-204 (1993).
- [15] K. KNOPP, Theorie und Anwendung der unendlichen Reihen. Springer, Berlin (1964).
- [16] T. L. LAI, Summability methods for independent identically distributed random variables. Proc. Amer. Math. Soc. 45, 253-261 (1974).
- [17] M. LOÈVE, Probability Theory. 4th ed., Springer, Berlin, New York (1977).
- [18] D. MENCHOFF, Sur les séries des fonctions orthogonales, I. Fund. Math. 4, 82-105 (1923).
- [19] B. NINNESS, Strong laws of large numbers under weak assumptions with application. IEEE Trans. Automat. Control 45, 2117-2122 (2000).
- [20] H. RADEMACHER, Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen. Math. Ann. 87, 112-138 (1922).
- [21] P. RÉVÉSZ, The Laws of Large Numbers. Academic Press, New York (1968).
- [22] R. J. SERFLING, Convergence properties of S_n under moment restrictions. Ann. Math. Statist. **41**, 1235-1248 (1970).
- [23] W. F. STOUT, Almost Sure Convergence. Academic Press, New York (1974).
- [24] H. WALK, Strong laws of large numbers by elementary Tauberian arguments. Monatsh. Math. 144, 329-346 (2005).
- [25] K. ZELLER and W. BEEKMANN, Theorie der Limitierungsverfahren. 2. Aufl. Springer, Berlin (1970)

Harro Walk
Pfaffenwaldring 57
70569 Stuttgart
Germany
E-Mail: walk@mathematik.uni-stuttgart.de
WWW: http://www.isa.uni-stuttgart.de/LstStoch/Walk

Erschienene Preprints ab Nummer 2004/001

Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints

- 2004/001 Walk, H.: Strong Laws of Large Numbers by Elementary Tauberian Arguments.
- 2004/002 Hesse, C.H., Meister, A.: Optimal Iterative Density Deconvolution: Upper and Lower Bounds.
- 2004/003 Meister, A.: On the effect of misspecifying the error density in a deconvolution problem.
- 2004/004 *Meister, A.:* Deconvolution Density Estimation with a Testing Procedure for the Error Distribution.
- 2004/005 *Efendiev, M.A., Wendland, W.L.:* On the degree of quasiruled Fredholm maps and nonlinear Riemann-Hilbert problems.
- 2004/006 Dippon, J., Walk, H.: An elementary analytical proof of Blackwell's renewal theorem.
- 2004/007 *Mielke, A., Zelik, S.:* Infinite-dimensional hyperbolic sets and spatio-temporal chaos in reaction-diffusion systems in \mathbb{R}^n .
- 2004/008 *Exner, P., Linde, H., Weidl T.:* Lieb-Thirring inequalities for geometrically induced bound states.
- 2004/009 Ekholm, T., Kovarik, H.: Stability of the magnetic Schrödinger operator in a waveguide.
- 2004/010 Dillen, F., Kühnel, W.: Total curvature of complete submanifolds of Euclidean space.
- 2004/011 Afendikov, A.L., Mielke, A.: Dynamical properties of spatially non-decaying 2D Navier-Stokes flows with Kolmogorov forcing in an infinite strip.
- 2004/012 Pöschel, J.: Hill's potentials in weighted Sobolev spaces and their spectral gaps.
- 2004/013 Dippon, J., Walk, H.: Simplified analytical proof of Blackwell's renewal theorem.
- 2004/014 Kühnel, W.: Tight embeddings of simply connected 4-manifolds.
- 2004/015 Kühnel, W., Steller, M.: On closed Weingarten surfaces.
- 2004/016 Leitner, F.: On pseudo-Hermitian Einstein spaces.
- 2004/017 Förster, C., Östensson, J.: Lieb-Thirring Inequalities for Higher Order Differential Operators.
- 2005/001 Mielke, A.; Schmid, F.: Vortex pinning in super-conductivity as a rate-independent model
- 2005/002 Kimmerle, W.; Luca, F., Raggi-Cárdenas, A.G.: Irreducible Components of the Burnside Ring
- 2005/003 Höfert, C.; Kimmerle, W.: On Torsion Units of Integral Group Rings of Groups of Small Order
- 2005/004 Röhrl, N.: A Least Squares Functional for Solving Inverse Sturm-Liouville Problems
- 2005/005 *Borisov, D.; Ekholm, T; Kovarik, H.:* Spectrum of the Magnetic Schrödinger Operator in a Waveguide with Combined Boundary Conditions
- 2005/006 Zelik, S.: Spatially nondecaying solutions of 2D Navier-Stokes equation in a strip
- 2005/007 Meister, A.: Deconvolving compactly supported densities
- 2005/008 *Förster, C., Weidl, T.:* Trapped modes for an elastic strip with perturbation of the material properties
- 2006/001 *Dippon, J., Schiemert, D.:* Stochastic differential equations driven by Gaussian processes with dependent increments
- 2006/002 Lesky, P.A.: Orthogonale Polynomlösungen von Differenzengleichungen vierter Ordnung
- 2006/003 Dippon, J., Schiemert, D.: Option Pricing in a Black-Scholes Market with Memory

- 2006/004 Banchoff, T., Kühnel, W.: Tight polyhedral models of isoparametric families, and PL-taut submanifolds
- 2006/005 *Walk, H.:* A universal strong law of large numbers for conditional expectations via nearest neighbors
- 2006/006 *Dippon, J., Winter, S.:* Smoothing spline regression estimates for randomly right censored data
- 2006/007 *Walk, H.:* Almost sure Cesàro and Euler summability of sequences of dependent random variables
- 2006/008 Meister, A.: Optimal convergence rates for density estimation from grouped data
- 2006/009 Förster, C.: Trapped modes for the elastic plate with a perturbation of Young's modulus