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Almost sure Cesàro and Euler summability of
sequences of dependent random variables

By
H. WALK

Abstract. For a sequence of real random variables Cα-summability is shown un-
der conditions on the variances of weighted sums, comprehending and sharpening strong
laws of large numbers (SLLN) of Rademacher-Menchoff and Cramér-Leadbetter, respec-
tively. Further an analogue of Kolmogorov’s criterion for the SLNN is established for
Eα-summability under moment and multiplicativity conditions of 4th order, which allows
to weaken Chow’s independence assumption for identically distributed square integrable
random variables. The simple tool is a composition of Cesàro-type and of Euler summa-
bility methods, respectively.
Mathematics Subject Classification (2000): Primary 60F15; Secondary 40G05

1. Introduction. The classical Rademacher-Menchoff theorem ([20], [18]) states that
for square integrable pairwise uncorrelated real random variables Xn satisfying
∑

V ar(Xn)(log n)2/n2 < ∞, almost sure (a.s.) convergence of
∑

(Xn − EXn)/n holds
and thus, by the Kronecker lemma, the strong law of large numbers

a.s.
1

n + 1

n
∑

k=0

(Xk − EXk) → 0,

i.e., a.s. (Cesàro) C1-summability of (Xn−EXn) to 0. The classical proof uses a maximal
inequality on partial sums obtained by a combinatorial argument and has been extended
to more general forms of dependence of the Xn

′s (see [22], [23] among others). It allows to
weaken the Cramér-Leadbetter condition [7] for the strong law of large numbers. In this
paper, by an elementary argument, more generally a.s. Cα-summability of the sequence
(Xn − EXn) to 0, α > 0, i.e.,

a.s.
1

(

n+α
n

)

n
∑

k=0

(

n − k + α − 1

n − k

)

(Xk − EXk) → 0

(notation a.s. Cα-lim(Xn − EXn) = 0), is shown under an easily verifiable condition
on variances of suitably weighted partial sums (Theorem 2.1). The proof is inspired by
the fact that the composition of the Cα/2-transform of a sequence with itself leads to the
same convergence behavior as the Cα-transform. In the case α = 1 the result leads to a
further weakening of known conditions, especially of the Cramér-Leadbetter condition by
a logarithmic factor (Corollaries 2.2 and 2.3).

As is well known, for independent square integrable real random variables the squared
logarithmic factor in the Rademacher-Menchoff theorem may be omitted, which leads to
Kolmogorov’s criterion for the strong law of large numbers and also, by truncation, to
Kolmogorov’s strong law of large numbers (X0 + . . .+Xn)/(n+1) → 0 a.s. for independent
and identically distributed real random variables Xn with existence of EXn = 0 (where
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the latter in this context is also necessary), see, e.g., [17], section 17. There exists a vast
literature on weakening the independence assumptions there. For references see, e.g.,
[23], [4], [24]. Chow [6] showed that for independent and identically distributed Xn

′s
square integrability with EXn = 0 is necessary and sufficient for a.s. (Euler) Eα- sum-
mability of (Xn) to 0, i.e.,

a.s.
n
∑

k=0

(

n

k

)

αk(1 − α)n−kXk → 0

(notation a.s. Eα-limXn = 0) with arbitrary fixed α ∈ (0, 1). In this equivalence context
the Eα-summability method may be replaced by the generally stronger Borel summabil-
ity method [6], like in the context of Kolmogorov’s strong law of large numbers the C1-
summability method may be replaced by the generally stronger Abel summability method
[16]. In [6], for the sufficiency part complicated probabilistic tools (delayed averages, Hsu-
Robbins-Erdös theorem) for independent identically distributed random variables were
used. The results were generalized to power series methods of summability in [2] and [14].
A connection between E|Y |p < ∞ and corresponding Riesz summability (fixed p ≥ 1)
was established in [3]. In this paper we establish a criterion for a.s. Eα-summability of
sequences of random variables with finite fourth moment under a weakened independence
assumption (strong multiplicativity of 4th order or m-dependence) and thus, by trunca-
tion, a.s. Eα-summability in the case of fourwise independent or m-dependent identically
distributed square integrable real random variables (Theorems 2.2 and 2.3 with Remarks
2.7 and 2.8). The simple proof uses the fact that the composition of the E√

α-transform of
a sequence with itself is the Eα-transform.

2. Results. The following theorem yields a simple sufficient condition for Cα-
summability of a sequence of random variables.

Theorem 2.1. Let (Xn)n∈N0
be a sequence of square integrable real random variables.

If

0 < α < 1 and

∞
∑

n=1

1

n2α
V ar

(

n
∑

k=0

(

n − k + α
2
− 1

n − k

)

Xk

)

< ∞

or if

α = 1 and

∞
∑

n=2

log n

n2
V ar

(

n
∑

k=0

(

n − k − 1
2

n − k

)

Xk

)

< ∞

or if

α > 1 and
∞
∑

n=1

1

n1+α
V ar

(

n
∑

k=0

(

n − k + α
2
− 1

n − k

)

Xk

)

< ∞,

then
a.s. Cα- lim(Xn − EXn) = 0.

Remark 2.1. Theorem 2.1 for α = 2 means that
∑

n−3V ar(X1 + . . . + Xn) < ∞
implies a.s. C2-lim(Xn − EXn) = 0. If additionally (Xn − EXn) is bounded from below,
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e.g., if Xn ≥ 0, EXn = O(1), then a classical elementary Tauberian theorem ([25], pp.
113, 117) immediately yields a.s. C1- lim(Xn − EXn) = 0. This approach also leads to an
elementary proof of Kolmogorov’s strong law of large numbers for (pairwise) independent
identically distributed integrable real random variables. See [24] with further references,
especially [9] and [10] for an alternative elementary proof.

Remark 2.2. For the case α = 1, in an analogous manner for a stochastic process
{Xt; t ∈ R+} in R with EX2

t < ∞, t ∈ R+, and continuity in squared mean ([17], section
37), one can show: If

∞
∫

1

log t

t2
V ar





t
∫

0

1√
t − s

Xsds



 dt < ∞,

then

a.s.
1

t

t
∫

0

(Xs − EXs) ds → 0.

Corollary 2.1. Let (Xn)n∈N0
be a sequence of square integrable pairwise uncorrelated

random variables. If

0 < α < 1 and
∞
∑

n=1

1

n2α
V ar(Xn) < ∞

or if

α = 1 and

∞
∑

n=2

(log n)2

n2
V ar(Xn) < ∞

or if

α > 1 and
∞
∑

n=1

1

n2
V ar(Xn) < ∞,

then
a.s. Cα- lim(Xn − EXn) = 0.

Remark 2.3. Corollary 2.1 for α > 1/2 extends Theorem 9 in [8], where sup
n

V ar(Xn) <

∞ is assumed. Corollary 2.1 for α = 1 is a well-known consequence of the Rademacher-
Menchoff theorem (compare Remark 2.4).

Corollary 2.2. Let (Xn)n∈N0
be a sequence of square integrable real random variables

centered at expectations. If

∞
∑

n=2

log n

n3/2

n
∑

i=2

1

i1/2

(

log
n

n + 1 − i

)

(EXiXn)+ < ∞,(2.1)

then
a.s. C1- lim Xn = 0.
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Remark 2.4. Let as before the real random variables Xn be square integrable and
centered at expectations. The Rademacher-Menchoff theorem ([20], [18]; see Révész ([21],
3.2, and, in a generalization, [17], Section 36, and [23], Theorem 3.7.2) states a.s. conver-
gence of

∑

Xn/n and thus, via the Kronecker lemma, a.s. C1-limXn = 0, if the Xn
′s

are pairwise uncorrelated and
∑

(log n)2EX2
n/n2 < ∞. The two latter conditions can be

weakened to

∑ (log n)2

n2

n
∑

i=1

(EXiXn)+ < ∞(2.2)

as can be obtained according to the proof of Theorem 2.1 in [22], compare also [24],
Remark 5. Condition (2.1) in Corollary 2.2 is weaker than condition (2.2) as follows from
the inequality log(1/1 − x)) ≤ x[1 + log(1/(1 − x))], 0 ≤ x < 1. It further leads to an
improvement of a condition of Cramér-Leadbetter type for C1-summability ([7], p. 94, see
also [19] and [24], p. 333) by a logarithmic factor (see the following corollary).

Corollary 2.3. Let (Xn)n∈N0
be a sequence of square integrable real random variables

centered at expectations and satisfying

(EXiXj)
+ ≤ c

jβ

[1 + (j − i)β][log(2 + j − i)]γ
, i ≤ j

with c ∈ R+ and β = 0, γ > 1 or 0 < β < 1, γ > 2 or β = 1, γ > 4. Then

a.s. C1- lim Xn = 0.

Remark 2.5. Let βn > 0 such that βn ↑ ∞. If in Theorem 2.1 for α = 1, in Corol-
lary 2.1 for α = 1 and in Corollary 2.2 the condition is modified replacing the fractions
(log n)/n2, (log n)2/n2, (log n)/n3/2 by (log n)/β2

n, (log n)2/β2
n, (log n)n1/2/β2

n, respec-
tively, then the assertion has to be modified replacing a.s. C1-summability to 0 by

a.s.
1

βn

n
∑

k=1

(Xk − EXk) → 0.

The proof is analogous. Thus by introducing the logarithmic factor in the mentioned
conditions, one can avoid the additional conditions Xn ≥ 0 and

sup
n

β−1
n

n
∑

k=1

EXk < ∞ or sup EXn < ∞

in [4], [5], Theorem 1, and in [24], Remark 7. The a.s. convergence assertion can be
interpreted as an assertion on weighted means of Yk − EYk, where (βk − βk−1)Yk = Xk.

A sequence (Xn) of real random variables with E|Xn|4 < ∞ shall be called strongly
multiplicative of 4th order, if

EXiXjXkXl = EXiEXjEXkEXl,
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EX2
i XjXk = EX2

i EXjEXk, EX3
i Xj = EX3

i EXj, EX2
i X2

j = EX2
i EX2

j

for pairwise different indices (compare Alexits [1] and Révész [21]). For such sequences
the following theorem yields a sufficient condition for Eα-summability (0 < α < 1) which
corresponds to Kolmogorov’s condition for the strong law of large numbers.

Theorem 2.2. Let the sequence (Xn)n∈N0
of real random variables with finite 4th

moment be strongly multiplicative of 4th order. Assume

∞
∑

n=1

E(Xn − EXn)4

n2
< ∞,

∞
∑

n=1

[E(Xn − EXn)2]2

n3/2
< ∞.

Then for each α ∈ (0, 1).
a.s. Eα- lim(Xn − EXn) = 0.

Remark 2.6. The assumption
∑

n−3/2[E(Xn − EXn)2]2 < ∞ in Theorem 2.2 is
fulfilled, if E(Xn −EXn)2 ↑ and

∑

n−5/4E(Xn − EXn)2 < ∞. For these conditions imply
n−1/4E(Xn − EXn)2 → 0 according to the proof of Olivier’s theorem (see [15]).

Remark 2.7. One can transfer the proof of Theorem 2.2 (in section 3) to the case
that the assumption of strong multiplicativity of 4th order is replaced by the assumption of
m-dependence (with arbitrary fixed m ∈ N), i.e., independence of the pair (F j

0 ,F∞
j+m) :=

(F(X0, . . . , Xj),F(Xj+m, Xj+m+1, . . .)) for each j. According to [13], Theorem 17.3.2, in
the special case that (Xn) is a Gaussian sequence, m-dependence for m sufficiently large
and φ-mixing, i.e.,

φk := sup
n

sup
A∈Fn

0
,P (A)>0,B∈F∞

n+k

|P (B|A) − P (B)| → 0 (k → ∞),

are equivalent.
As a consequence of Theorem 2.2, by truncation we obtain the sufficiency part of Chow’s

[6] theorem on Eα-summability under a weakened independence assumption.
Theorem 2.3. Let the sequence (Xn)n∈N0

of identically distributed square inte-
grable real random variables be fourwise independent (independence of the quadrupel
(Xi, Xj, Xk, Xl) for pairwise different indices). Then for each α ∈ (0, 1)

a.s. Eα- lim(Xn − En) = 0.

Remark 2.8. In Theorem 2.3 the assumption of fourwise independence can be replaced
by the assumption of m-dependence. The proof is the same except for use of Remark 2.7
instead of Theorem 2.2 itself.

3. Proofs. c1, c2, . . . will be suitable constants.
Proof of Theorem 2.1. The proof is inspired by the fact that for a sequence (sn)

in R the Cα/2-transform of (sn) is Cα/2-summable if and only if (sn) is Cα-summable, see,
e.g., [12], p. 118, or [25], 54 III. Assume EXk = 0, k ∈ N0, without loss of generality. The
well-known relation

(

n + α

n

)

= (1 +
α

1
) . . . (1 +

α

n
) ∼ nα(3.1)
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(quotient of the left-hand side and the right-hand side is bounded away from 0 and ∞,
which is obvious by taking log) will be used. Set

Uj :=

j
∑

k=0

(

j − k + α
2
− 1

j − k

)

Xk (j = 0, 1, . . .).

(

(

n+ α
2

n

)−1
Un

)

is the Cα/2-transform of (Xn). With dn = n−2α if α < 1, dn = (log n)/n2 if

α = 1, dn = n−(1+α) if α > 1, the assumption
∑

dnEU2
n < ∞ implies a.s.

∑

dnU2
n < ∞

and thus

a.s. dn

n
∑

k=0

U2
k → 0(3.2)

by the Kronecker lemma. From

(1 − s)−
α
2 =

∞
∑

l=0

(

l + α
2
− 1

l

)

sl, |s| < 1,

one obtains, by taking squares,

(

m + α − 1

m

)

=

m
∑

l=0

(

m − l + α
2
− 1

m − l

)(

l + α
2
− 1

l

)

, m = 0, 1, . . . ,(3.3)

and therefore
(

n − k + α − 1

n − k

)

=
n
∑

j=k

(

n − j + α
2
− 1

n − j

)(

j − k + α
2
− 1

j − k

)

, 0 ≤ k ≤ n,

thus

Wn :=
1

(

n+α
n

)

n
∑

j=0

(

n − j + α
2
− 1

n − j

)

Uj =
1

(

n+α
n

)

n
∑

k=0

(

n − k + α − 1

n − k

)

Xk.

(Wn) is the Cα-transform of (Xn). By the Cauchy-Schwarz inequality and (3.1)

|Wn|2 ≤ 1
(

n+α
n

)2

n
∑

j=0

(

n − j + α
2
− 1

n − j

)2 n
∑

j=0

|Uj|2

≤ c1
1

n2α

n
∑

k=2

kα−2
n
∑

j=0

|Uj|2 ≤ c2dn

n
∑

j=0

|Uj|2 (n ≥ 2).

Now the assertion a.s. Wn → 0 follows from (3.2). �

Proof of Remark 2.2. The proof follows the same line, using

t
∫

0

1√
t − s

1√
s
ds =

1
∫

0

du√
1 − u

√
u

= π, t > 0,
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instead of (3.3) for α = 1. �

Proof of Corollary 2.1. Define (Un) as in the proof of Theorem 2.1. By uncorrelat-
edness and by (3.1)

V ar(Un) ≤ c1

n
∑

k=0

(n − k + 1)α−2V ar(Xk).

If 0 < α < 1, then

∞
∑

n=1

1

n2α
V ar(Un) ≤ c1

∞
∑

k=0





∞
∑

n=max{1,k}

1

n2α
(n − k + 1)α−2



V ar(Xk)

≤ c2

∞
∑

k=0

1

(k + 1)2α
V ar(Xk).

If α = 1, then

∞
∑

n=1

log n

n2
V ar(Un) ≤ c1

∞
∑

k=0

∞
∑

n=max{1,k}

log n

n2(n − k + 1)
V ar(Xk)

≤ c3

∞
∑

k=0

(log(k + 2))2

(k + 1)2
V ar(Xk),

noticing
∞
∫

k

1

x(x − k + 1)
dx = O

(

log k

k

)

.

If α > 1, then

∞
∑

n=1

1

n1+α
V ar(Un) ≤ c1

∞
∑

k=0





∞
∑

n=max{1,k}

1

n1+α

1

(n − k + 1)2−α



V ar(Xk)

≤ c4

∞
∑

k=0

1

(k + 1)2
V ar(Xk),

which for α ≥ 2 is obvious and which in the case 1 < α < 2 follows from

1

k

∞
∑

n=k+1

1

(
n

k
)1+α(

n

k
− 1)2−α

→
∞
∫

1

dx

x1+α(x − 1)2−α
< ∞ for k → ∞.

Now Theorem 2.1 together with the assumptions yields the assertion. �
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Proof of Corollary 2.2. We apply Theorem 2.1 for α = 1. We obtain

∞
∑

n=2

log n

n2
E

(

n
∑

k=0

(

n − k − 1
2

n − k

)

Xk

)2

≤ c1

[ ∞
∑

n=2

log n

n2

n
∑

k=0

1

n + 1 − k
EX2

k + 2
∞
∑

n=2

log n

n2

n
∑

j=1

j−1
∑

i=0

1√
n + 1 − j

1√
n + 1 − i

E(XiXj)
+

]

=: c1[A + 2B],

then

A ≤
∞
∑

n=2

log n

n3
(EX2

0 + EX2
1 ) +

∞
∑

k=2

log k

k2
EX2

k +

∞
∑

k=2

( ∞
∑

n=k+1

log n

n2(n + 1 − k)

)

EX2
k ,

where for k ≥ 2

∞
∑

n=k+1

log n

n2(n + 1 − k)
≤ 2

log k

k

∞
∫

k

dx

x(x + 1 − k)
≤ 4

(log k)2

k2
.

As to B, we avoid to bound 1/
√

n + 1 − i by 1/
√

n + 1 − j for i = 1, . . . , j − 1, which
would yield (2.2) as a sufficient condition, but write

B =

∞
∑

j=1

j−1
∑

i=0

( ∞
∑

n=j

log n

n2

1√
n + 1 − j

1√
n + 1 − i

)

(EXiXj)
+

≤
∞
∑

n=2

log n

n3
E(X0X1)

+ + 2
∞
∑

j=2

j−1
∑

i=0

log j

j





∞
∑

n=j

1

(n + 1)
√

n + 1 − j
√

n + 1
2
− i



 (EXiXj)
+,

where for j ≥ 2, 0 ≤ i < j

∞
∑

n=j

1

(n + 1)
√

n + 1 − j
√

n + 1
2
− i

≤
∞
∫

j

dx

x
√

x − j
√

x − (i + 1
2
)

=
1

√

(i + 1
2
)j

log

(√
j +

√

i + 1
2

)

2

j − (i + 1
2
)

≤ c2
1

(i + 1)1/2j1/2
log

j

j + 1 − i
.

Thus A + 2B < ∞ by (2.1), and the assertion is obtained from Theorem 2.1 with α = 1.�
Proof of Corollary 2.3. First let 0 < β < 1, γ > 2. We use Corollary 2.2. Noticing

log n

log(2 + n − i)
≤ 2

(

1 + log
n

n + 1 − i

)

, i ≤ n,

12



we obtain

∞
∑

n=2

log n

n3/2

n
∑

i=2

1

i1/2

(

log
n

n + 1 − i

)

(EXiXn)+

≤ c1

∞
∑

n=2

(log n)1−γ

n

1

n

n
∑

i=2

1

( i
n
)1/2

(

1 + log
1

1
n

+ 1 − i
n

)γ+1
1

1
nβ + (1 − i

n
)β

≤ c2

∞
∑

n=2

(log n)1−γ

n

1
∫

0

1

x1/2
(1 + log

1

1 − x
)γ+1 1

(1 − x)β
dx < ∞.

By this argument also the case β = 0, γ > 2 can be treated. As to the more general case
β = 0, γ > 1 we refer to [24], Theorem 3. The case β = 1, γ > 4 is treated by verifying
(2.2) (see [24], Remark 5). �

For the proof of Theorem 2.2 we need the following lemmas.
Lemma 3.1 (see [11], ch. VII, (5.11)). For each p ∈ (0, 1) a constant c∗ exists such

that for all n ∈ N and k ∈ {0, 1, . . . , n}
(

n

k

)

pk(1 − p)n−k ≤ c∗√
n

.

Lemma 3.2. Let p ∈ (0, 1). Then

∞
∑

n=k

1

n

(

n

k

)

(1 − p)n−kpk =
1

k
(k ∈ N),(3.4)

∞
∑

n=k

1

n(n − 1)

(

n

k

)

(1 − p)n−kpk =
p

k(k − 1)
(k ∈ {2, 3, . . . , }).(3.5)

Proof of Lemma 3.2. (3.4) is equivalent to

∞
∑

n=k

(

n − 1

k − 1

)

(1 − p)n−kpk = 1 (k ∈ N).(3.6)

(3.5) is equivalent to

∞
∑

n=k

(

n − 2

k − 2

)

(1 − p)(n−1)−(k−1)pk−1 = 1 (k ∈ {2, , 3, . . . , }),

which is equivalent to (3.6). But (3.6) follows, with q := 1 − p, from

(1 − q)−k =

∞
∑

j=0

(−k

j

)

(−q)j =

∞
∑

n=k

(

n − 1

k − 1

)

qn−k (k ∈ N). �
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Lemma 3.3 (see [25], 64 II, and [12], Theorem 119). Let α, β ∈ (0, 1). Then

n
∑

l=0

(

n

l

)

αl(1 − α)n−l

(

l

k

)

βk(1 − β)n−k =

(

n

k

)

(αβ)k(1 − αβ)n−k

for n ∈ N, k ∈ {0, 1, . . . , n}, i.e., Eαβ is the composition of Eα and Eβ.
To make the paper more self-contained, in view of Lemma 3.3 we mention that, with

V = (vnk)n,l∈N0
defined by vnk = (−1)k

(

n
k

)

, one has V = V −1 and Eα = V diag {αn} V
(0 < α < 1) (Eα is a so-called Hausdorff matrix; see [12], ch. XI, and [25], section
72), thus EαEβ = Eαβ (0 < α < 1, 0 < β < 1). This relation is also obtained by a
probabilistic argument. Consider a branching process at times 0, 1, 2 with size Y0 = n of
the zero generation, for which each particle of the zero generation (of the first generation)
independently of the other particles creates 1 new particle with probability α (β) ∈ (0, 1)
and no new particle with probability 1 − α (1-β). Then the sizes Yn of the generations
with numbers n = 0, 1, 2 form a Markov chain (homogeneous in the case α = β) with
matrices Eα and Eβ of transition probabilities, where obviously Y1 and Y2 have binomial
distribution b(n, α) and b(n, αβ), respectively, thus EαEβ = Eαβ.

Proof of Theorem 2.2. Let α ∈ (0, 1) be fixed. Assume EXn = 0 without loss of
generality. Set

Tn :=
n
∑

k=0

(

n

k

)√
α

k
(1 −

√
α)n−kXk.

(Tn) is the E√
α-transform of (Xn). First we show

∞
∑

n=2

1

(n + 1)1/2
ET 4

n < ∞.(3.7)

The left-hand side is bounded by

∞
∑

n=2

1

(n + 1)1/2

n
∑

k=0

[(

n

k

)√
α

k
(1 −

√
α)n−k

]4

EX4
k

+
∞
∑

n=2

1

(n + 1)1/2

∑

j 6=k∈{0,...,n}

[(

n

j

)√
α

j
(1 −

√
α)n−j

(

n

k

)√
α

k
(1 −

√
α)n−k

]2

EX2
j EX2

k

≤ c1

∞
∑

n=2

1

(n + 1)2

n
∑

k=0

(

n

k

)√
α

k
(1 −

√
α)n−kEX4

k

+c1

∞
∑

n=2

1

(n + 1)3/2

[

n
∑

k=0

(

n

k

)√
α

k
(1 −

√
α)n−kEX2

k

]2

(by Lemma 3.1)

≤ c2 + c3

∞
∑

n=2

1

(n + 1)2

n
∑

k=2

(

n

k

)√
α

k
(1 −

√
α)n−kEX4

k
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+ c3

∞
∑

n=2

1

(n + 1)3/2

n
∑

k=2

(

n

k

)√
α

k
(1 −

√
α)n−k(EX2

k)2

(by the Cauchy-Schwarz inequality)

= c2 + c3

∞
∑

k=2

( ∞
∑

n=k

1

(n + 1)2

(

n

k

)√
α

k
(1 −

√
α)n−k

)

EX4
k

+c3

∞
∑

k=2

( ∞
∑

n=k

1

(n + 1)3/2

(

n

k

)√
α

k
(1 −

√
α)n−k

)

(EX2
k)2

≤ c2 + c4

∞
∑

k=2

1

k(k − 1)
EX4

k + c4

∞
∑

k=2

1

k
√

k − 1
(EX2

k)2

by Lemma 3.2 using first (3.5) and secondly (3.4) and (3.5) together with the Cauchy-
Schwarz inequality. Now (3.7) follows from the assumptions. (3.7) implies a.s.
∑

(n + 1)−1/2T 4
n < ∞ and thus

a.s.
1

(n + 1)1/2

n
∑

k=0

T 4
k → 0(3.8)

by the Kronecker lemma. Set

Wn :=

n
∑

k=0

(

n

k

)√
α

k
(1 −

√
α)n−kTk.

(Wn) is the E√
α-transform of (Tn), i.e., by Lemma 3.3, the Eα-transform of (Xn). One

obtains

|Wn|4 ≤
n
∑

k=0

(

n

k

)√
α

k
(1 −

√
α)n−kT 4

k ≤ c5n
−1/2

n
∑

k=0

T 4
k → 0 a.s.,

by Jensen’s inequality, Lemma 3.1 and (3.8). Thus the assertion is obtained. �

The following lemma is well-known in the context of the proof of Kolmogorov’s strong
law of large numbers and will be used in the proof of Theorem 2.3. I denotes an indicator
function.

Lemma 3.4 (see [11], ch. VII, p. 240, or [17], section 17). Let X be an integrable
nonnegative random variable. Then

∑

n−2E(XI[X≤n])
2 < ∞.

Proof of Theorem 2.3. Assume Xn ≥ 0 without loss of generality. The argument of
the first step is well known from the proof of the classical Kolmogorov strong law of large
numbers. Set X∗

n := XnI[Xn≤
√

n]. Because of

∞
∑

n=0

P [Xn 6= X∗
n] =

∞
∑

n=0

P
[

X2
1 > n

]

≤ EX2
1 < ∞,

15



a.s. Xn = X∗
n from some index on (by the Borel-Cantelli lemma). Therefore and because

of EX∗
n = EX1I[X1≤

√
n] → EX1, it suffices to show

a.s. Eα- lim(X∗
n − EX∗

n) = 0.(3.9)

Lemma 3.4 yields
∑

n−2EX∗4
n < ∞, which together with

∑

n−3/2[E(X∗
n − EX∗

n)2]2 ≤
∑

n−3/2(EX2
1 )2 < ∞ yields (3.9) by Theorem 2.2. �
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