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1. Introduction

The statistical problem of estimating a density function when only aggregated data are observed
has received considerable attention, where research is mainly motivated by real applications in the
field of econometrics. For a study on parameter identification from averaged data, see the recent
note of Machado & Santos Silva (2006). A nonparametric approach to density estimation from
aggregated observations is given by Linton & Whang (2002).

In the mathematical model, we define the i.i.d. random variables Xij , integer i, j, having the
density function fX , which we aim to estimate. The only empirical access is given by the data
Y1, . . . , Yn where

Yi =
m

∑

j=1

Xij , (1)

where m is the fixed size of the data groups. Note that our problem may also be seen as a
missing data problem in time series analysis. Suppose an autoregressive process AR(1) involving
Zk, integer k, where Zk+1 = Zk + Xk and we are interested in the density of the Xk while only
the Zm·l are observed for each integer l.

The current note intends to advance the understanding of this problem by deriving the opti-
mal rates of convergence under common smoothness conditions on fX with respect to the mean
integrated squared error (MISE). In Section 2, we study the optimal rates for symmetric densities.
In Section 3, we describe a procedure for data-driven bandwidth selection; in Section 4 we give an
extent to skew densities. The proofs are deferred to Section 5.

To give a survey on related problems of indirect density estimation, we mention problems of
reconstructing a density from measurement error; that topic has become famous as density decon-
volution (Stefanski & Carroll (1990), Carroll & Hall (1988), Zhang (1990), Horowitz & Markatou
(1996) among many others). Another contribution is given by Schick & Wefelmeyer (2004) where
estimation of the density of the sums of independent random variables is studied; hence, somehow,
our consideration can be seen as the corresponding inverse problem. The problem of estimating
the density of independent components of a Poisson sum is considered in van Es et al. (2005).

2. Minimax rates

We focus on those fX which are symmetric around zero and, hence, have a real-valued Fourier
transform fft

X (t). As the density fY of each observation Yi turns out to be the m-fold self-
convolution of fX , it is convenient to apply a Fourier approach, similarly to Linton & Whang
(2002). With respect to the characteristic functions f ft

X and fft
Y , we have

fft
Y (t) =

[

fft
X (t)

]m
.

We assume that fX(x) = fX(−x) for almost all x; and, for even m, in addition,

fft
X (t) 6= 0 , ∀t . (2)

The necessity of condition (2) to ensure identifiability of fX will be shown in the following:

We define the density
f0(x) =

(

1 − cos(x)
)

/(πx2) , (3)

having the triangle-shaped Fourier transform f ft
0 (t) = 1 − |t| on t ∈ [−1, 1]. Therefore, the

densities f±(x) = f0(x) ± (1/2)f0(x) cos(2x) possess the Fourier transforms

fft
± (t) = fft

0 (t) ±
1

4

[

fft
0 (t + 2) + fft

0 (t − 2)
]

,

1



hence we have
[

fft
+ (t)

]2
=

[

fft
− (t)

]2
for all t. This proves that fX = f+ cannot be uniquely recon-

structed from the observation density fY = f+ ∗ f+ in this example; where ∗ denotes convolution.

The empirical Fourier transform is denoted by f̂ft
Y (t) = 1

n

∑n
k=1 exp(itYk). We define the

estimator of fX by Fourier inversion,

f̂X(x) =
1

2π

∫

exp(−itx)Kft(th)
∣

∣f̂ft
Y (t)

∣

∣

1/m
dt , (4)

where K denotes a square-integrable kernel function where Kft(0) = 1 and Kft is compactly
supported; parameter h denotes the bandwidth.

In order to establish rates of convergence, we propose common smoothness conditions on fX

by assuming a uniform upper bound on the Sobolev norm of fX . We introduce the class FβC ;
whose elements f are even densities; they satisfy (2) and

∫

|fft
X (t)|2(1 + t2)βdt ≤ C ,

where β describes the smoothness degree. Further, we consider so-called supersmooth densities
whose Fourier transforms satisfy

∫

|fft
X (t)|2 exp

(

C0|t|
γ
)

dt ≤ C1 .

Those densities are collected into the class GC0C1γ . We give the following theorem

Theorem 1 Let ‖·‖ denote the L2(R)-norm. As the kernel function K, we choose the sinc kernel
with Kft(t) = χ[−1,1](t), i.e. the indicator function of the interval [−1, 1].
(a) Take estimator fX as in (4). Then, we have

sup
fX∈FβC

E‖f̂X − fX‖2 = O
(

n−2β/
[

m(2β+1)
]

)

,

sup
fX∈GC0C1γ

E‖f̂X − fX‖2 = O
(

(ln n)1/γn−1/m
)

,

when selecting h = cnn−1/
[

m(2β+1)
]

where cn > 0 is bounded away from both ∞ and 0; and

h = d(ln n)−1/γ with a constant d ≤ C
1/γ
0 , respectively.

(b) Assume an arbitrary estimator f̂ of fX based on the data Y1, . . . , Yn. Then, for γ ∈ (0, 1)
and β > 1/2, there is a constant c > 0 so that

sup
fX∈FβC

E‖f̂ − fX‖2 ≥ c · n−2β/
[

m(2β+1)
]

,

sup
fX∈GC0C1γ

E‖f̂ − fX‖2 ≥ c · (ln n)1/γn−1/m .

Hence, we have established rate optimality of our estimation procedure. We notice deterioration
of the convergence rate compared to density estimation based on direct data where the well-known
rates n−2β/(2β+1) and (ln n)1/γn−1, resp., occur; they are included into our framework for m = 1.
The rates become worse when m increases. In fact we have algebraic rates for supersmooth den-
sities contrarily to the expectation stated in Linton & Whang (2002), p. 433. We mention that
Theorem 1(a) can be extended to more general kernels K as long as Kft(t) = 1 on an open interval
around t = 0 and Kft is compactly supported.
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3. Adaptive estimation

The choice of the bandwidth h as given in Theorem 1 leads to optimal rates; however it requires
knowledge of the parameters β, γ, C0. Therefore our goal is to find a fully data-driven bandwidth
selector. In classical density estimation, cross-validation (CV) is a famous procedure for adaptive
bandwidth choice. As mentioned in Linton & Whang (2002) there is no straight-forward extent
of the underlying theory to aggregated data problems as the estimators are non-linear.

Nevertheless, we can apply CV to estimate the observation density fY based on the direct
data Y1, . . . , Yn. The outcome bandwidth is denoted by ĥC , see Hall & Marron (1987) for the
methodology and theory for that problem. In this section we restrict our consideration on densities
whose Fourier transforms satisfy

C2|t|
−β−1/2 ≤ |fft

X (t)| ≤ C3|t|
−β−1/2 , ∀|t| ≥ T (5)

for some T; and |fft
X (t)| ≥ |fft

X (T )| for all |t| ≤ T . Those smoothness assumption is closely related
to fX ∈ FβC with appropriate constants; indeed, the optimal convergence rates are the same under
the corresponding constraints. Therefore, the mean integrated squared error for the estimation of
fY is minimised by h = h0 ∼ n−1/(2βm+m). Surprisingly, those selection rule also minimises the
MISE in our aggregated data problem when estimating fX according to Theorem 1. That inspires
us to employ ĥ = ĥC as the bandwidth selector.

The resulting estimator is denoted by f̂X,ĥ. With respect to the convergence rates, we give a
weak individual version. We write const. for a generic positive constant.

Proposition 1 Assume fX satisfies (5) where β > 7/2; and f ′
X , f ′′

X are integrable. We apply the

sinc kernel in f̂X,ĥ. Then, for all c > 0, we have

lim sup
n→∞

P
(

n2β/
[

m(2β+1)
]

‖f̂X,ĥ − fX‖2 > c
)

≤ const. · c−1

Therefore, the adaptive estimator f̂X,ĥ keeps the optimal rates from Theorem 1 under certain
circumstances. The case of supersmooth fX is more difficult to address.

4. Skew densities

When fX is no longer assumed to be symmetric around zero, its Fourier transform f ft
X is not real-

valued. Therefore the inversion procedure becomes more difficult as we have m different complex
roots of fft

Y (t) and its empirical version f̂ft
Y (t). Let R(t), ϕ(t) denote the absolute value and the

angle of fft
Y (t) in the polar representation of complex numbers. We face the problem that the angle

is not uniquely defined. Our intention is to specify ϕ(t) so that those functions are continuous for
all t and ϕ(0) = 0.

We introduce the intervals Ij = ((j/2 − 1)π, (j/2 + 1)π] for j = 0, . . . , 3. Considering that

R(t) 6= 0, the angle ϕ(t) is uniquely determined by f ft
Y (t) if their images are restricted to Ij for

any j. Therefore, we denote the angles within Ij by ϕj(t). Setting ϕ(t) = ϕj(t)(t), we start with
t0 = 0, j(t0) = 0. Then, given tk, we denote by tk+1 the smallest t > tk where ϕj(tk)(t) crosses

either (j(tk)/2−1/2)π or (j(tk)/2+1/2)π; in the first case, we put j(tk+1) =
[

j(tk)−1
]

mod 4; in

the latter case, we define j(tk+1) =
[

j(tk)+1
]

mod 4. It follows from there that ϕ(tk) = j(tk)π/2

holds for any k. The sequence (tk)k>0 tends to infinity as, otherwise, the continuity of f ft
Y (t) is

violated at the limit of (tk)k>0. Then we define ϕ(t) = ϕj(τ(t))(t) with τ(t) = max{tk : tk ≤ t}
for t ≥ 0; for t < 0 we set ϕ(t) = −ϕ(−t). Then ϕ is a continuous function on the whole real line
with ϕ(0) = 0.
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When determining an empirical version ϕ̂(t) for ϕ(t), we must consider that f̂ft
Y (t) may have

some isolated zeros. Therefore we introduce a parameter ρn > 0. We realise that the set N̂ =
{t : |f̂ft

Y (t)| ≤ ρn} may be written as the disjoint union of countably many intervals, [τj , τj+1] say.

We introduce a function f̃ft
Y (t) which is equal to f̂ft

Y (t) outside the set N̂ ; while on any interval

[τj , τj+1] we put f̃ft
Y equal to the shortest connection between

(

τj , f̂
ft
Y (τj)

)

and
(

τj+1, f̂
ft
Y (τj+1)

)

under the constraint |f̃ft
Y (t)| = ρn for all t ∈ [τj , τj+1].

Then, define R̂(t) = |f̃ft
Y (t)| and ϕ̂(t) by applying the procedure for deriving ϕ(t) to f̃ft

Y (t)

instead of fft
Y (t).

Further, we define the empirical version of f ft
X (t) by

f̂ft
X (t) = R̂1/m(t) exp

(

itϕ̂(t)/m
)

, ∀t ∈ (−T, T ) , (6)

and, accordingly,

f̂X(x) =
1

2π

∫

exp(−itx)Kft(th)f̂ft
X (t) dt , (7)

while stipulating that Kft is supported on [−1, 1] and h > 1/T .
In order to give convergence rates we need more restrictive conditions compared to symmetric

densities, namely
∫

x2fX(x)dx ≤ C7 and (5). As an analogue for (5) for supersmooth densities
we use

C5|t|
(γ−1)/2 exp(−C4|t|

γ) ≤ |fft
X (t)| ≤ C6|t|

(γ−1)/2 exp(−C4|t|
γ) , ∀|t| ≥ T . (8)

Densities satisfying those conditions are collected into the class F ′
βC7C2C3

, which corresponds to
FβC . When assuming (8) instead of (5), we call the density class G ′

γC7C4C5C6
, as the analogue of

GC0C1γ .

Proposition 2 Take estimator f̂X as defined in (7) and K as in Theorem 1. Choose ρn =
exp(−n). Under the constraint fX ∈ F ′

βC7C2C3
, select h = hn = [Ch(ln n)/n]1/[m(2β+1)] with a

constant Ch > (24m)/C2m
2 . Then, for β > 1/2, we have

sup
fX∈F ′

βC7C2C3

E‖f̂X − fX‖2 = O
(

(ln n/n)2β/[m(2β+1)]
)

.

If fX ∈ G′
γC7C4C5C6

and max{1, γ} < m, select h = hn =
{

2C4m/
[

1 − ν(ln ln n)/ lnn
]

}1/γ

·

(ln n)−1/γ with ν ∈ (1 − m(γ − 1)/γ, m/γ] to obtain

sup
fX∈G′

γC7C4C5C6

E‖f̂X − fX‖2 = O
(

(ln n)1/γn−1/m
)

.

Therefore, the rates are kept in the case of fX ∈ F ′
βC7C2C3

from the symmetric constraint
fX ∈ FβC (see Theorem 1) up to a logarithmic factor; while, for fX ∈ G′

γC7C4C5C6
, they are

exactly the same as for symmetric fX ∈ GC0C1γ in Theorem 1.

5. Proofs

Proof of Theorem 1: (a) By Parseval’s identity and Fubini’s theorem, we obtain, for fX ∈ FβC ,

E‖f̂X − fX‖2 =

∫

|Kft(t/h)|2E
∣

∣|f̂ft
Y (t)|1/m − |fft

X (t)|
∣

∣

2
dt + O(h2β) . (9)

In the case of fX ∈ GC0C1γ , the bias term in (9) changes from O(h2β) to O
(

exp(−C0h
−γ)

)

.
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For the variance term we use the inequalities |x1/m − y1/m|m ≤ |x − y| for x, y > 0 and even
m as well as |x1/m − y1/m|m ≤ 2m|x− y| for all x, y in the case of odd m; combined with Jensen’s
inequality, we obtain

E
∣

∣|f̂ft
Y (t)|1/m − |fft

X (t)|
∣

∣

2
≤ const. ·

(

E
∣

∣f̂ft
Y (t) − fft

Y (t)
∣

∣

2
)1/m

= O
(

n−1/m
)

,

independently of t. Therefore, the mean integrated squared error is bounded above by
O

(

h−1n−1/m, h2β
)

for fX ∈ FβC and O
(

h−1n−1/m, exp(−C0h
−γ)

)

for fX ∈ GC0C1γ . Choosing h
as stated in the theorem leads to the given rates.
(b) First we consider fX ∈ FβC . Take f0 as in (3). Furthermore, we introduce the supersmooth

Cauchy density f1(x) = π−1(1 + x2)−1 with fft
1 (t) = exp(−|t|). From there, we construct the

following subclass of densities

fn,θ(x) =
1

2

{

f1(x) + f0(x)
}

+ const. ·
∑

2kn≥j≥kn

θjj
−β−(1/2) cos(2jx)f0(x) , (10)

where kn denotes a positive integer still to be determined and const. is sufficiently small; and
all θj ∈ {0, 1} are i.i.d. random variables with P (θj = 0) = 1/2. The corresponding Fourier
transforms are given by

fft
n,θ(t) =

1

2

{

fft
1 (t) + fft

0 (t)
}

+ const. ·
∑

2kn≥j≥kn

θjj
−β−(1/2)

{

fft
0 (t − 2j) + fft

0 (t + 2j)
}

.

By that we may verify that all f ft
n,θ are non-vanishing and fn,θ ∈ FβC .

Now assume an arbitrary estimator f̂(x) = f̂(x; Y1, . . . , Yn). In the sequel, we write θj,b =
(

θkn , . . . , θj−1, b, θj+1, . . . , θ2kn

)

where b ∈ {0, 1} and fY,θj,b
= f∗,n

n,θj,b
, i.e. the n-fold self-convolution

of fn,θj,b
, which, therefore, denotes the density of each observation Yj . We consider its mean in-

tegrated squared error, using Parseval’s identity and Fubini’s theorem,

sup
fx∈FβC

E‖f̂ − fX‖2 ≥ const.
∑

2kn≥j≥kn

Eθj Efn,θj

∫ 2j+1

2j−1

∣

∣f̂ft(t) − fft
n,θ(t)

∣

∣

2
dt

≥ const.
∑

2kn≥j≥kn

∫ 2j+1

2j−1

∣

∣fft
n,θj,0

(t) − fft
n,θj,1

(t)
∣

∣

2
dt

·

∫

· · ·

∫

min{fY,θj,0(y1) · · · fY,θj,0(yn) , fY,θj,1(y1) · · · fY,θj,1(yn)
}

dy1 · · · dyn

≥ const.
∑

2kn≥j≥kn

j−2β−1 ≥ const.k−2β
n , (11)

if the χ2-distance between fY,θj,0 and fY,θj,1 satisfies

χ2(fY,θj,0 , fY,θj,1) =

∫

∣

∣fY,θj,0(x) − fY,θj,1(x)
∣

∣

2[
fY,θj,0(x)

]−1
dx = O(1/n) (12)

holds for all kn ≤ j ≤ 2kn. There we have used a result in Fan (1993) which has been developed
for the classical deconvolution problem. From the definition of the density subclass, we derive
fY,θj,0(x) ≥ 2−mf∗,m

1 (x). That implies

fY,θj,0(x) ≥ const.(1 + x2)−1 ,

and, from there, we see that (12) may be represented equivalently in the Fourier domain by

∫ 2j+1

2j−1

[∣

∣gj(t)
∣

∣

2
+

∣

∣g′j(t)
∣

∣

2]
dt = O(1/n) , (13)
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where

|gj(t)| =
∣

∣

∣

(

fY,θj,0 − fY,θj,0

)ft
(t)

∣

∣

∣

=
∣

∣

∣

(1

2
fft
1 (t) + j−β−1/2fft

0 (t + 2j)
)m

−
(

j−β−1/2fft
0 (t + 2j)

)m
∣

∣

∣

≤ const. · jm(−β−1/2) ,

while j ≥ kn and |t| ≥ 2j − 1. We can derive the same bound for |g′
j(t)|. Then, (13) and, hence,

(11) follow when selecting kn = bn1/[m(2β+1)]c.

In the case fX ∈ GC0C1γ , we replace j−β−(1/2) by n−1/(2m) and set kn = b(1/2)·
[

ln n/(mC ′)
]1/γ

c
with some constant C ′ > C0 in (10). Then the proof follows analogously. �

Proof of Proposition 1: We consider

P
(

n2β/
[

m(2β+1)
]

· ‖f̂X,ĥ − fX‖2 > c
)

≤ P
(

n2β/
[

m(2β+1)
]
∫

|t|≤(dh0)−1

∣

∣f̂ft

X,ĥ
(t) − fft

X (t)
∣

∣

2
dt > c/2

)

+ P (ĥ < dh0) + P
(

n2β/
[

m(2β+1)
]

ĥ2β > c/2
)

(14)

for some d ∈ (0, 1). The first addend is seen to be bounded above by const. · c−1 when using

Markov’s inequality. The second and the third terms are bounded above by P
(

|ĥ−h0| ≥ const.·h0

)

.

Both n3/10(ĥ0 −h0) and n3/10(ĥ− ĥ0) are asymptotically normal distributed, due to Theorem

2.1 in Hall & Marron (1987); where ĥ0 is the bandwidth which minimises the integrated squared
error; the conditions are satisfied for β > 7/2, f ′

X , f ′′
X integrable and an appropriate kernel; also

note that the kernel used for deriving ĥC need not coincide with K in estimator f̂X,ĥ. It follows

from there that the second term in (14) converges to zero as n → ∞ so that the proposition
follows. �

Proof of Proposition 2: Note that, for |t| ≤ 1/h, we have

|f̂ft
Y (t) − fft

Y (t)| ≥ |f̃ft
Y (t) − fft

Y (t)| − 2ρn

and hence |f̂ft
Y (t) − fft

Y (t)| ≥ (1/2)|f̃ft
Y (t) − fft

Y (t)|.

With f̂ft
X as in (6), we derive

E
∣

∣f̂ft
X (t) − fft

X (t)
∣

∣

2
= E

∣

∣R̂1/m(t) exp
[

iϕ̂(t)/m
]

− R1/m(t) exp
[

iϕ(t)/m
]∣

∣

2

≤ E
∣

∣R̂1/m(t) − R1/m(t)
∣

∣

2
+ ER̂1/m(t)R1/m(t)

[

1 − cos
(

(ϕ̂(t) − ϕ(t))/m
)]

= O
(

n−1/m
)

+ ER̂1/m(t)R1/m(t)
[

1 − cos
(

(ϕ̂(t) − ϕ(t))/m
)]

· χ{|ϕ̂(t)−ϕ(t)|>π}

+ ER̂1/m(t)R1/m(t)
[

1 − cos
(

(ϕ̂(t) − ϕ(t))/m
)]

· χ{|ϕ̂(t)−ϕ(t)|≤π} .

Considering the fact that the function
[

1−cos(·/m)
]

/
[

1−cos(·)
]

is bounded on the interval [−π, π],
some standard techniques lead to

E
∣

∣f̂ft
X (t) − fft

X (t)
∣

∣

2
= O

(

n−1/m ,
{

R2(t)P (|ϕ̂(t) − ϕ(t)| > π)
}1/m

)

.
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Parseval’s identity leads to

E‖f̂X − fX‖2 = O
(

h−1n−1/m , h2β , sup
|t|≤1/h

{

P (|ϕ̂(t) − ϕ(t)| > π)
}1/m)

, (15)

for fX ∈ F ′
βC7C2C3

; the latter term needs more careful consideration for any t ∈ [−1/h, 1/h].
As |ϕ̂(t) − ϕ(t)| > π implies the existence of at least one s ∈ [0, t] so that |ϕ̂(s) − ϕ(s)| = π/2

and hence
∣

∣f̂ft
Y (s) − fft

Y (s)
∣

∣ ≥ (1/2) · |fft
Y (s)|. Applying the sequence (sj)j , j = 1, . . . , M − 1 of

equidistant points sj = jt/M where M = Mn, we derive that

P (|ϕ̂(t) − ϕ(t)| > π) ≤ P
(

∃j = 1, . . . , M − 1 :
∣

∣f̂ft
Y (sj) − fft

Y (sj)
∣

∣ ≥ (Cm
2 /6) · hm(β+1/2)

)

+ P
( 1

Mn

n
∑

k=1

|Yk| ≥ const. · hm(β+1/2)
)

+ χ{M−1≥const.·hm(β+1/2)} . (16)

By Hoeffding’s inequality, the first addend in (16) has the upper bound

O(M) · exp
(

−
1

12
C2m

2 hm(2β+1)n
)

.

The second addend is bounded above by

P
( 1

Mn

∑

k

(

|Yk | − E|Yk|
)

≥ const. · hm(β+1/2)
)

+ χ{M−1≥const.·hm(β+1/2)}

≤ O
(

M−2n−1h−m(2β+1)
)

+ χ{M−1≥const.·hm(β+1/2)} .

The latter term above as well as the third addend in (16) vanish when selecting M = CMh−m(β+1/2)

with an appropriate constant CM > 0.
In the case fX ∈ G′

γC7C4C5C6
, the proof follows by replacing C2 by C5, h2β by exp(−2C4h

−γ) in

(15) and hm(β+1/2) by exp(−C4mh−γ) · h−m(γ−1)/2 in the first two lines of (16) and, accordingly,
in the sequel.

Then the specific choice of h as stated in the theorem leads to the desired rates in the view of
(15). �
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2006/007 Walk, H.: Almost sure Cesàro and Euler summability of sequences of dependent
random variables

2006/008 Meister, A.: Optimal convergence rates for density estimation from grouped data

2006/009 Förster, C.: Trapped modes for the elastic plate with a perturbation of Young’s
modulus


