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Abstract

The aim of this article are Fenchel-Fáry-type inequalities, isoperimetric inequalities of

Banchoff-Pohl-type for closed curves in euclidean space forms and Fenchel-Fáry-type inequal-

ities for closed surfaces in euclidean spaces.

Keywords: Fenchel-Fáry inequality, isoperimetric inequality, euclidean space form, total

absolute curvature, curves, surfaces.

MS Classification: 53C40, 53C65, 53A04, 53A05

1 Introduction

Differential geometric quantities of geometric objects, e.g. length, area, total absolut curvature,

or topological quantities, e.g. betti numbers, are often related through geometric inequalities.

Here, we derive Fenchel-Fáry-type inequalities, isoperimetric inequalities of Banchoff-Pohl-type

for closed curves in euclidean space forms, and Fenchel-Fáry-type inequalities for closed surfaces

in euclidean spaces.

For geometric objects in euclidean spaces we use applications of classical techniques, i.e. Morse

theory of linear level functions in connection with total absolute curvature, and integral geometric

techniques in connection with Crofton formula and isoperimetric inequalities.

For geometric objects in euclidean space forms we use lifting through the universal riemannian

covering into euclidean spaces. For euclidean space forms cf. [20].

Let c be a closed smooth curve in n−dimensional euclidean space En. Then there are the

following inequalities for the total absolute curvature of c,

tac(c) :=
1

π

∫

c

| κ | ds . (1)

The Fenchel inequality

tac(c) ≥ 2 , (2)

with equality holding if and only if c is a simple plane convex curve (cf. [10], [11], [3]).

The Fáry inequality, if c lies inside a ball B(o, R) ⊂ En with center o and radius R,

tac(c) ≥
1

πR
· L(c) , (3)
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where L(c) denotes the length of c. Equality holds if and only if c is a plane circle, traversed a

number of times (cf. [5], [6], [9]).

And further the Banchoff-Pohl isoperimetric inequality

L(c)2 ≥
32π3

On · On−1

∫

Gn−2,n

wc(ξ)
2 dξ , (4)

where wc(ξ) denotes the winding number of c w.r.t. the (n − 2)−dimensional plane ξ ⊂ En.

Equality holds if and only if c is a circle, traversed in the same direction a number of times

(cf. [2]). (Gn−2,n = Grassmann manifold of all (n − 2)−dimensional planes ξ ⊂ En; dξ =

invariant volume density in Gn−2,n (cf. [16]); On = surface area of the n−dimensional unit sphere

Sn ⊂ Rn+1.)

Remark: Concerning the total absolute curvature of surfaces in euclidean space forms, cf.

[14].

2 Fenchel-Fáry inequalities in euclidean spaces

Proposition 2.1 Let c be a closed smooth regular curve in En lying inside a ball B(o, R) with

center o and radius R. Then

tac(c) ≥ 2 +
On

2πROn−1
· L(c) −

2n

ROn−1
· Wn−1(conv(c)) , (5)

where Wn−1(conv(c)) denotes the (n − 1)−th quermassintegral of the convex hull conv(c) of c

(notation as in [16]). Equality holds if and only if c is a simple plane convex curve in case n ≥ 2

or a circle with radius R, traversed a number of times, in case n = 2.

Proof: We consider the oriented hyperplane ξ(u, p) in En with unit normal vector u ∈ Sn−1 =

T 1
o En at distance p from o ∈ En. We take the orthogonal projection hu of En onto the line o+R·u

(linear level function w.r.t. u) and its restriction hu|c along the curve c.

Through Morse theory each subarc of c induced by the intersection ξ∩c causes at least one critical

point of hu|c. Therefore, a.e. in Sn−1 × R,

ν(hu|c) ≥ 2 + n(ξ(u, p) ∩ c) − 2 · χ(ξ(u, p) ∩ conv(c)) , (6)

ν(hu|c) = number of critical points of hu|c; n(ξ(u, p)∩c) = number of intersection points ξ(u, p)∩c;

χ(ξ(u, p) ∩ conv(c)) = Euler characteristic of ξ(u, p) ∩ conv(c). Note: n(ξ ∩ c) 6= 0 transverse

intersection points cause at least n critical points of hu|c and χ(ξ ∩ conv(c)) = 1, n(ξ ∩ c) = 0

implies χ(ξ ∩ conv(c)) = 0 respectively.

Now, we integrate (6) over all oriented hyperplanes ξ(u, p) intersecting B(o, R), i.e. u ∈ Sn−1,

−R ≤ p ≤ R, w.r.t. the invariant density dξ = du dp (cf. [16]). And we take into account the

relation between total absolute curvature and Morse theory,

tac(c) =
1

On−1

∫

Sn−1

ν(hu|c) du (7)
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(cf. [7], [12]),

the Crofton formula (cf. [16] (14.70))
∫

ξ∩B(o,R) 6=∅

n(ξ ∩ c) dξ =
On

π
· L(c) , (8)

and the definition of quermassintegrals (cf. [16] (14.1))
∫

ξ∩B(o,R) 6=∅

χ(ξ ∩ conv(c)) dξ =

∫

ξ∩conv(c) 6=∅

dξ = 2n · Wn−1(conv(c)) (9)

(Remark: Up to constant factors Wn−1(conv(c)) equals the mean breadth of conv(c), or the integral

of the (n − 2)th mean curvature of ∂ conv(c) respectively; especially for n = 2: 2 W1(conv(c)) =

L(∂ conv(c))).

This yields (5).

To the equality case: Equality in (5) implies equality in (6).

This implies c ⊂ ∂ conv(c). Because otherwise there exists hu|c with a non-degenerate critical

point in the interior of conv(c). Take the corresponding critical level plane ξ(u, p), fix u and vary

p. This causes in (6) a jump exactly at the term n(ξ ∩ c) and hence a contradiction to equality in

(6).

Moreover c is a plane curve. Because otherwise there exists hu|c with at least 3 non-degenerate

critical points. Take the middle one of the corresponding critical level planes (w.l.o.g. these planes

are pairwise distinct planes), fix u and vary p. As above, this causes a jump exactly at the term

n(ξ ∩ c) in (6) and hence a contradiction.

Finally, if the convex plane curve c is a circle of radius R in case n = 2 then χ(ξ ∩ conv(c)) = 1

for all ξ ∩ B(o, R) 6= ∅. Hence equality in (6) gives ν(hu|c) = n(ξ ∩ c) and c may be traversed a

number of times. In all other cases there exists some ξ with ξ ∩ B(o, R) 6= ∅ such that ξ ∩ c = ∅

and ξ ∩ conv(c) = ∅. Hence equality in (6) gives ν(hu|c) = 2 and c is traversed once.

Remarks:

1) (5) implies the Fenchel inequality (2) (note: n(ξ ∩ c) − 2 · χ(ξ ∩ conv(c)) ≥ 0 in (6)).

(5) implies the sharp Fáry inequality (3) (cf. [5]) in case n = 2 resp. a weaker version (cf. [9]) in

case n ≥ 3 (note: 2 − 2 · χ(ξ ∩ conv(c)) ≥ 0 in (6)).

2) The ball B(o, R) may be the minimal ball circumscribed c. Then by the Jung inequality

(cf. e.g. [4] 11.1)

R ≤
n

n + 1
· d , (10)

d = diameter of c ⊂ En, and we may rewrite (5) in terms of d.

3) Through the Favard inequalities relating the quermassintegrals Wn−1, Wn−2 and Wn−3 (cf.

[4] 20.2), especially in dimension n = 3,

W2 ≤
1

12π
·
area(∂ conv(c))2

vol(conv(c))
, (11)

we may rewrite (5) in terms of surface area and volume of conv(c).

For knots c ⊂ E3 there are improvements of the Fenchel inequality, e.g.

tac(c) ≥ 2 · b(c) , (12)
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where b(c) denotes the bridge index of c (cf. e.g. [13]).

Proposition 2.2 Let c be a smooth knot in E3 lying inside a ball B(o, R) with radius R. Then

tac(c) ≥ 2b(c) +
1

4R
L(c) − 2b(c)

3

4πR
W2(conv(c)) +

1

8πR

b(c)−1
∑

k=1

(2b(c) − 2k)m2k(c) , (13)

where m2k(c) denotes the total measure in G2,3 of those oriented planes ξ having exactly 2k inter-

section points ξ ∩ c.

Proof: We start at

ν(hu|c) ≥ 2b(c) + max(n(ξ(u, p) ∩ c) − 2b(c), 0) =

= 2b(c) + n(ξ ∩ c) − 2b(c) · χ(ξ ∩ conv(c)) +

+

b(c)−1
∑

k=1

(2b(c) − 2k) · 12k (14)

(12k = characteristic function of the subset in G2,3 of those oriented planes ξ which have exactly

2k intersection points ξ ∩ c).

Then, as in the proof of Proposition 2.1., we integrate over all oriented planes ξ intersecting B(o, R)

in order to get (13).

Remark: Formulas writing m2k(c) in terms of the curve c are given in [18] (for plane curves,

cf. [1], [17]).

Let us now consider a closed smooth regular oriented surface M ⊂ E3.

The Chern-Lashof inequality generalizes the Fenchel inequality, i.e.

tac(M) ≥ β(M) ≥ 2 , (15)

where tac(M) = 1
2π

∫

M
| K(x) | dx denotes the total absolute Gauss curvature of M and β(M) is

the sum of the betti numbers of M , cf. [7], [12]. Equality holds if and only if M lies tight in E3.

Moreover, if M lies inside a ball B(o, R) with radius R, then the Fáry inequalities ( cf. [9], [15])

say

tac(M) ≥
2π

R2−i
· σi(M) (i = 0, 1) , (16)

σi(M) = integral of the i th mean curvature of M (normalisations as in [16]). Equality holds if

an only if M is a sphere of radius R.

Proposition 2.3 Let M be a closed smooth regular surface embedded in E3 bounding a compact

domain D. Suppose that M lies inside a ball B(o, R) with center o and radius R. Then

tac(M) ≥ 2 +
1

2πR
| σ1(M) | −

3

2πR
· W2(conv(M)) . (17)

Equality holds if and only if M is convex.

Proof: Through Morse theory each component of ξ(u, p) ∩ M causes at least 2 critical points

of hu|M . Therefore a.e.

ν(hu|M ) ≥ 2 + 2 · n1(ξ(u, p) ∩ M) − 2 · χ(ξ(u, p) ∩ conv(M)) , (18)
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n1(ξ(u, p) ∩ M) = number of components of the intersection ξ(u, p) ∩ M .

Now, we integrate over all oriented planes ξ(u, p) intersecting B(o, R) w.r.t. the invariant density

dξ = du dp. We take into account

n1(ξ ∩ M) ≥| χ(ξ ∩ D) | , (19)

and we use the relation between total absolute curvature and Morse theory (cf. [12])

tac(M) =
1

On−1

∫

Sn−1

ν(hu|M ) du , (20)

the kinematic formula (cf. [16] (14.79))

∫

ξ∩B(o,R) 6=∅

χ(ξ ∩ D) dξ = 2 · σ1(M) , (21)

and the definition of quermassintegrals (cf. [16]), in order to get (17).

To the equality case: Equality in (17) implies equality in (18). As in the proof of Proposition

2.1 this implies M ⊂ ∂ conv(M). M is closed and regular, hence M is of sphere-type and M =

∂ conv(M).

Remark: (17) implies the Fenchel inequality (note: | χ(ξ∩D) | −χ(ξ∩conv(M)) ≥ 0 in (18)).

(17) implies the Fáry inequality for i = 1 (note: 1 − χ(ξ ∩ conv(M)) ≥ 0 in (18)).

Proposition 2.4 Let M be a closed smooth regular surface embedded in E3 bounding a compact

domain D. Suppose that M lies inside a ball B(o, R) with center o and radius R. Then

tac(M) ≥ 2β(M) +
1

2πR
|σ1(M)| − 2β(M)

3

4πR
W2(conv(M)) +

+
1

8πR

β(M)/2
∑

k=1

(β(M) − 2k)mk(M) , (22)

where mk(M) is the total measure in G2,3 of those oriented planes ξ having exactly k intersection

components ξ ∩ M , 1 ≤ k ≤ β(M)/2.

Proof: Starting at

ν(hu|M ) ≥ β(M) + max(2 · n1(ξ ∩ M) − β(M), 0)

= β(M) + 2n1(ξ ∩ M) − β(M)χ(ξ ∩ conv(M)) +

+

β(M)/2
∑

k=1

(β(M) − 2k)1k (23)

(1k = characteristic function of the subset in G2,3 of those oriented planes ξ having exactly k

intersection components ξ ∩ M), and proceeding as in Proposition 2.3, we get (22).

Remarks:

1) (22) implies the Chern-Lashof inequality

(note: 2n1(ξ ∩ M) +
β(M)/2

∑

k=1

(β(M) − 2k) 1k ≥ β(M)χ(ξ ∩ conv(M)) in (23)).

2) Formulas writing mk(M) in terms of the surface M are given in [18].
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3 Fenchel-Fáry inequalities in euclidean space forms

Proposition 3.1 Let c be a closed smooth regular curve in a n-dimensional euclidean space

form X. Let x ∈ c. Then

tac(c) ≥
σx,a + σx,b

π
+

n + 1

d(c)n On−1

(

On

2π
(L(c) + l(c, x)) − 2n Wn−1(conv(c̃x))

)

, (24)

where l(c, x) denotes the minimal length of loops through x homotopic to c, d(c) denotes the

diameter of c in X, see (25), c̃x is a universal lift of cx (cx = curve c cut up at x), and σx,a , σx,b

are the angles at x between the oriented subarc cx and the oriented chord sxx at start and finish

(sxx = geodesic segment from x to x homotopic to cx) (0 ≤ σx ≤ π).

Equality holds if and only if c is a closed geodesic or a closed curve with 2 nd Frenet curvature

(torsion) κ2 = 0, 1 st Frenet curvature (curvature) κ1 ≥ 0 (w.r.t. suitable orientation) and rotation

index turn(c) = (2π)−1(σx,a + σx,b).

Proof: Let c be oriented. The subarc cx is c cut up at x. We consider a lift c̃x of cx w.r.t. the

universal riemannian covering π : En → X . a, b ∈ En are start and finish of c̃x. The lift s̃xx of

the chord sxx is the line segment in En between a and b, and L(s̃xx) = l(c, x).

Now we take the closed curve c̃x ∪ s̃xx in En with vertices at a resp. b and angles σx,a resp. σx,b

there. We apply Proposition 2.1. We take into account tac(c̃x) = tac(c), tac(s̃xx) = 0, and that

the vertices a and b produce total absolute curvature contribution 1
π (π − σx,a + π − σx,b).

And we use the Jung inequality (10) to estimate the circumscribed radius of conv(c̃x) ⊂ En

through the diameter d(c) of c in X , where

d(c) := max
x∈c

(

max
y∈cx

L(sxy)

)

, (25)

sxy = chord from x to y = geodesic segment from x to y homotopic to the subarc c|[x,y].

This proves (24).

To the equality case:

Equality in (24) implies c̃x ∪ s̃xx simple plane convex. (Note: We used (5) and the Jung inequality

(10), hence eventual circles in the equality case are traversed only once.) Therefore either c̃x = s̃xx

and hence c is a closed geodesic, or c̃x with κ2 = 0, κ1 ≥ 0 and turn(c̃x) = (2π)−1(σx,a + σx,b).

(Remark: The rotation index of a curve c with κ2 = 0 is defined as the total variation of the angle

between c and a fixed direction in the osculating tangent planes (fixed direction means parallel

along c), normalized by (2π)−1

Remarks:

1) For c nullhomotopic c̃x is closed, and we have σx,a = σx,b = π and l(c, x) = 0.

2) If the chord sxx is a closed geodesic then σx,a = σx,b.

3) Let X be a homogeneous euclidean space form, i.e. X = T n−i × Ri, 0 ≤ i ≤ n, T n−i =

(n− i)-dimensional flat torus (cf. [20] 2.7.1). Then all deck transformations are translations. And

therefore l(c, x) = l(c), sxx is a closed geodesic, and σx,a = σx,b. In case of equality this implies

σx = 0 ( c closed geodesic) or σx = π (c closed curve with κ2 = 0, κ1 ≥ 0 and turn(c) = 1).

4) If x ∈ c produces the maximal right-hand side appearing in (24), then start or finish of c̃x

lies on the boundary of conv(c̃x).
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(Because otherwise variation of x along c leaves conv(c̃x) unchanged but in general changes σx,a

and σx,b proportional to the curvature κ of c at x. And therefore, variation of x along c in the

suitable direction in general increases the right-hand side in (24).)

5) The result in [8] applied to the arc c̃x in E2 yields

tac(c) ≥
4

π
arccos

l(c)

L(c)
. (26)

Example: Let us give a more detailed description in 2-dimensional euclidean space forms.

The case X orientable, i.e. X = flat plane, cylinder or torus:

X is homogeneous, hence see remark 3.

The case X non-orientable, i.e. X = flat Moebius band or Klein bottle:

If c is orientation-preserving, then sxx is a closed geodesic and σx,a = σx,b.

If c is orientation-reversing, then in general sxx is a broken geodesic and σx,b = σx,a − δ(c).

Considering the lifts of cx, sxx and of the generators of the 1 st fundamental group π1(X) of X ,

considering the deck transformations in E2, and using some trigonometry, one can compute δ(c).

X = flat Moebius band: c ≃ γα

(γ = minimal closed geodesic which generates π1(X); α a suitable integer). Then

δ(c) = arccos
α L(γ)

l(c, x)
(27)

in case α ≡ 1 mod(2).

In case α ≡ 0 mod(2), c is orientation-preserving and δ(c) = 0.

In both cases

l(c, x) =
√

(α L(γ))2 + (2 ᾱ d(x, γ))2 (28)

(d(x, γ) = distance beween x and γ; ᾱ = α mod(2)).

X = flat Klein bottle: c ≃ γα1
1 γα2

2

(γ1, γ2 = minimal closed geodesics which generate π1(X) under the relation γ−1
2 γ1 γ2γ1 = 1; γ1,

γ2 cut each other orthogonally; α1, α2 suitable integers). Then

δ(c) = arccos
α2 L(γ2)

l(c, x)
(29)

in case α2 ≡ 1 mod(2).

In case α2 ≡ 0 mod(2), c is orientation-preserving and hence δ(c) = 0.

In both cases

l(c, x) =
√

(α1 L(γ1) + 2 ᾱ2 d(x, γ2))2 + (α2 L(γ2))2 . (30)

Remark on non-homogeneous euclidean space forms X with dim(X) ≥ 3: In general the

relation between σx,a and σx,b depends not only on the homotopy class of c or cx respectivly, but

also on the position of the tangent vector of c at x w.r.t. the action of the deck transformation

from a to b.
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4 Banchoff-Pohl inequalities

in 2-dimensional euclidean space forms

Proposition 4.1 Let c be a closed smooth regular curve in a 2-dimensional orientable euclidean

space form X (i.e. X = flat plane, cylinder or torus). Then

L(c)2 ≥ l(c)2 + 2

∫

T 1X

Wc(p, u) dp du , (31)

where l(c) denotes the minimal length of closed curves in the homotopy class of c, and Wc(p, u)

denotes the generalized winding number of c w.r.t. (p, u) ∈ T 1X, see (34).

For c nullhomotopic equality holds if and only if c is a circle, i.e. c has constant curvature.

For c not nullhomotopic equality holds if and only if c is a closed geodesic.

Proof: We follow the line in [19].

The secant space Sc parametrizes the oriented secants of c together with their limiting positions.

Let c be oriented and given by an immersion f : S1 → X ; w.l.o.g. c has only transversal self-

intersections. The interior of Sc is just (S1×S1)\(D∪D3) with D := {(x, y) ∈ S1×S1 | x = y} and

D3 := {(x, y) ∈ S1 × S1 | x 6= y , f(x) = f(y) , and c|[x,y] nullhomotopic inX}. For (x, y) ∈ intSc

the corresponding oriented secant is determined by the geodesic segment sxy from f(x) to f(y)

(chord) homotopic to the subarc c|[x,y]. Equivalently, if we take the universal riemannian covering

π : E2 → X , this means that the lifts of the chord sxy from f(x) to f(y) or of the subarc c|[x,y]

respectivly have the same final points if they start together. The boundary of Sc: The diagonal

D of S1 × S1 is replaced by two copies of D as boundary components, i.e. by the set D1 of

tangent geodesics of c at f(x) oriented through the orientation of c, and by the set D2 of oriented

geodesics induced by the geodesic segments form f(x) to f(x) homotopic to cx = curve c cut up at

x. The finite set D3 at each of its points is replaced by T 1
(x,y)(S

1 ×S1) parametrizing the oriented

geodesics in X through f(x).

For (x, y) ∈ Sc let r(x, y) be the length of the corresponding chord from f(x) to f(y). Let

Φ : Sc × [0, r(x, y)] → T 1X be the smooth map with Φ(x, y, ρ) := (p, u), where u is the unit

tangent vector of the oriented chord from f(x) to f(y) at the point p at distance ρ along the chord

from f(x).

Then (cf. [19] proof of Lemma 1)

Φ∗(dp du) = π∗
1(ω2 ∧ ω12) ∧ dρ (32)

w.r.t. the orthonormal 2-frame f(x) e1 e2 defined on Sc with e1 = unit tangent vector of the chord

from f(x) to f(y) (ωi , ωij = associated Maurer-Cartan forms; π1 = projection of Sc × [0, r] onto

Sc).

Application of the coarea formula to Φ yields
∫

Sc×[0,r]

Φ∗(dp du) = −

∫

T 1X

Wc(p, u) dp du (33)
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with the degree of Φ at (p, u) ∈ T 1X

−Wc(p, u) :=
∑

x∈S1

f(x)∈g−

ix









∑

y∈S1 , f(y)∈g+

c|[x,y]≃g|[f(x),f(y)]

iy









, (34)

where (p, u) defines the oriented geodesic g through p in direction u and p induces the geodesic

subrays g+, g− of g emanating from p (g+ this one from p in direction u; g+ has the same, g−

the opposite orientation as g), and ix and iy are the algebraic intersection numbers of c with g at

f(x) and f(y). (Note: The sum in (34) is finite because c is compact.)

Now we consider (w.l.o.g. c arc-length parametrized)

∫

Sc

(dx ∧ dy + 2r ω2 ∧ ω12) +

∫

∂Sc

rω1 . (35)

Using Stokes in Sc, taking into account the structure equations for the frame field, we rewrite (35)

∫

Sc

(dx ∧ dy + dr ∧ ω1 + r ω2 ∧ ω12) . (36)

(36) is always grater or equal to zero (cf. [19] proof of theorem, [2]), and equality holds if an only

if σx = −σy or σx = σy = π or σx = σy = −π (σx and σy = signed angles between the chord from

f(x) to f(y) and the curve c at f(x) and f(y)).

To the second integral in (35): r|D1
= 0, r|D3

= 0, r|D2
= const. = l(c) and therefore

∫

∂Sc

r ω1 =

l(c)
∫

D2

ω1 = −l(c)2 (note: the deck transformations are translations, hence the lift c̃x of cx has

parallel tangent vectors at start and finish; note: e1 parallel along D2).

This proves (31).

To the equality cases:

For c nullhomotopic, the lift c̃ of c is a closed curve in E2. In case of equality we have σx = −σy

along Sc. This implies that c̃ is a circle in E2. Hence c has constant curvature.

For c not nullhomotopic, the lifts c̃x are not closed. In case of equality we have σx = −σy along

Sc. Moreover we have σx = σy along D2 (note: c̃x has parallel tangent vectors at start and finish).

Therefore σx = σy = 0 along D2. This implies that c̃x is a line segment in E2. Hence c is a closed

geodesic in X .

Remarks:

1) For c nullhomotopic, the generalized winding number Wc of c is related to the classical

winding number wc̃ of the lift c̃ in E2, namely

Wc(p, u) =
∑

x∈π−1(p)

wc̃(x)2 . (37)

2) To closed curves c in non-orientable 2-dimensional euclidean space forms X (i.e. X = flat

Moebius band or Klein bottle):

For c orientation-preserving, the proof runs as above and we get (31).

For c orientation-reversing, in general we have r|D2
6= constant, and the boundary term raises
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difficulties. But if we traverse c twice we get a new curve which is orientation-preserving, and we

can proceed as above.

3) For simple closed curves c bounding a compact domain D ⊂ X there are isoperimetric

inequalities on surfaces, e.g.

L(c)2 ≥ 4π χ(D) area(D) (38)

(cf. [4] 2.2 (8)).

For c simple nullhomotopic (31) and (38) coincide. In general for simple curves, (31) looks sharper

than (38).
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