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Abstract

In this paper we consider embedded eigenvalues of a Schrödinger Hamiltonian in a waveg-

uide induced by a symmetric perturbation. It is shown that these eigenvalues become unstable

and turn into resonances after twisting of the waveguide. The perturbative expansion of the

resonance width is calculated for weakly twisted waveguides and the influence of the twist on

resonances in a concrete model is discussed in detail.

1 Introduction

Quantum waveguides have been studied ever since the pioneering works by Lewin (see [20] and also
[16, 21, 23]) appeared, even if only recently the problem of quantum transmission in waveguides
has been considered. In this framework the spectral analysis of differential operators in tubular
domains has become a research field of certain interest (see, e.g., [4, 5, 14, 15]). Moreover, with
the introduction of nano-devices such as nanotubes, new open problems in quantum transmission
for such structures appeared [6].

We consider a waveguide type domain Ω = R × ω (see Figure 1, on the left), where the cross
section ω of the waveguide is a bounded subset of R2. We impose Dirichlet boundary conditions
at the boundary of Ω. The spectrum of the free operator −∆ on Ω is absolutely continuous and
covers the half-line [E1,∞), where E1 is the lowest eigenvalue of the Dirichlet Laplacian on ω. It
is a well known fact that the threshold of such spectrum is unstable against perturbations; indeed,
a negative perturbation of −∆ will induce at least one bound state below E1. The perturbation
can be either of a potential type or of a geometric type, see [2, 3, 8, 14, 15] and references there.
These new bound states correspond to the particles (electrons) which do not propagate along Ω,
but remain localized in a bounded region of Ω.

Recently it has been shown,[13, 12], that the presence of bound states in Ω can be, up to certain
extent, suppressed by another geometrical perturbation: the so called twisting (see Figure 1, on
the right), see Section 2 for details. More exactly, the result of [13] shows that if the cross section
ω is not rotationally symmetric and the tube Ω is twisted, even only locally, then the bound states
for the perturbed Hamiltonian −∆+V do not appear for any negative potential V (x), but only if
V is strong enough. In other words, one could say that a twisting of a tubular domain Ω stabilizes
the transport of charged particles in Ω in the sense that it protects the particles to get trapped
by weak perturbations. Similar result was obtained for two-dimensional waveguide with combined
boundary conditions, where the twist is represented by the change of the boundary conditions at
one point, [18].

However, the geometrical perturbations of the waveguide generically induce also the existence of
resonances, i.e. metastable states with very long lifetimes, see [9, 10, 11]. These states correspond
to the particles which remain localized in a bounded region for a very long time before they finally
propagate to infinity.

It is the aim of the present paper to describe the influence of twisting on the resonances in the
waveguides. More precisely, we start form the situation, in which the free Laplacian is perturbed
by an attractive potential V , which decays at infinity along the waveguide direction. The point
spectrum of the perturbed Hamiltonian −∆ + V (x), where x ∈ R represents the coordinate along
the waveguide direction, consists, in addition to the bound states below E1, of infinitely many
eigenvalues embedded in the continuum [E1,∞) (see Figure 2). It was shown in [9], for two-
dimensional waveguides, that these embedded eigenvalues generically turn into resonances in the
presence of a constant magnetic field. Following the method of [9] we show that this happens
also when the magnetic field is replaced by the twisting, provided the cross section ω is not
rotationally symmetric, see Theorem 1. For weak twisting we also give the perturbative expansion
of the corresponding resonance width.

In order to obtain a precise estimate of the imaginary part of the resonances and, in particular,
to prove that it is strictly negative we consider in Section 5 a concrete model in which the potential
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Figure 1: On the left, the plot of the surface of a rectangular waveguide without twisting; in the
right, plot of the surface of the twisted rectangular waveguide. Bold line represents the boundary
of ω.

V approximates a one-dimensional point interaction and an additional perturbation W is intro-
duced. For such model we calculate the leading term of the imaginary part of a chosen resonance
explicitly, see Proposition 1. In particular, we show that the twisting can also decrease the lifetime
(i.e. increase the imaginary part) of an already existing resonance (induced by the perturbation
W ), provided W satisfies certain symmetry condition. We may thus say that twisting not only
suppresses the creation of bound states, but also improves the particle transport in waveguides in
the sense that it does not allow the existence of embedded eigenvalues or (in certain situations) it
even might shorten the lifetimes of already existing resonances.

2 Preliminaries

Let ω be an open bounded and connected set in R2 and let α be a differentiable function from R

to R. For a given x ∈ R and s := (y, z) ∈ ω we define the mapping fǫ : R × ω → R3 by

fε(x, s) = (x, y cos(ε α(x)) + z sin(ε α(x)), z cos(ε α(x)) − y sin(ε α(x))), (1)

where ε > 0 is a real parameter. Furthermore, we introduce

Ω0 = R × ω and Ωε := fε(Ω0).

Clearly, Ωε is a tube which is twisted unless the function α is constant (e.g., in Figure 1 we plot,
respectively, a rectangular tube without and with twisting).

For a real-valued measurable bounded function V (x) on R we formally define the Hamiltonians

H0
ε = −∆ and HV

ε = −∆ + V (x) in L2(Ωε)

with Dirichlet boundary conditions at ∂Ωε. The operator HV
ε is associated with the closed

quadratic form

QV
ε [ψ] :=

∫

Ωε

[

|∇ψ|2 + V (x) |ψ|2
]

dxds , (2)
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with the form domain D(QV
ε ) = H1

0(Ωε). Given a test function ψ ∈ C∞
0 (R × ω) it is useful to

introduce the following shorthand,

∂τψ := y∂zψ − z∂yψ. (3)

As usual in such situations, in order to analyze the operator HV
ε we pass from the twisted tube

Ωε to the untwisted tube Ω0 by means of a simple substitution of variables. This gives

QV
ε [ψ] =

∫

Ω0

(

|∇sψ|2 + |∂xψ + ǫα̇(x)∂τψ|2 + V (x) |ψ|2
)

dxds ,

where

∇sψ := (∂yψ, ∂zψ) .

In other words, the operator HV
ε acts on its domain in L2(Ω0) as

HV
ε = −∂2

y − ∂2
z − [∂x + εα̇(x) ∂τ ]2 + V (x) = HV

0 + UV
ǫ ,

where

HV
0 = −∂2

x − ∂2
y − ∂2

z + V (x)

and

UV
ε = −[∂x + εα̇(x) ∂τ ]2 + ∂2

x

= −2ε α̇(x)∂x ∂τ − ε α̈(x) ∂τ − ε2α̇2(x) ∂2
τ .

Remark 1. The term UV
ε is a symmetric operator on L2(Ω0) with Dirichlet boundary conditions

on ∂Ω0.

In order to show that the embedded eigenvalues ofHV
0 turn into the resonances once the waveguide

is twisted, we employ the method of the exterior complex scaling in combination with the regular
perturbation theory. We start by locating the spectrum of the untwisted model.

3 Spectrum of H
V
0

We will suppose that V satisfies the following

Assumption A. The function V (x) is not identically equal to zero and

∫

R

(1 + x2) |V (x)| dx <∞ and

∫

R

V (x) dx ≤ 0 . (4)

It then follows from [22] (see, e.g. Theorem XIII.110 in and its Notes) that the operator

h := −∂2
x + V (x) in L2(R)

possesses finitely many negative eigenvalues {µj}N
j=1, N ≥ 1, each of multiplicity one. We denote

by ϕj(x) the corresponding normalized eigenfunctions. The essential spectrum of h covers the
positive half-line [0,∞). On the other hand, it is well known that the operator −∆ω

D, i.e. the
Dirichlet Laplacian on ω, is positive definite and has purely discrete spectrum. Let {En}∞n=1

be the non-decreasing sequence of its eigenvalues and let χn(s) denote the associated normalized
eigenfunctions. The set of such eigenfunctions is an orthonormal basis of L2(ω) with Dirichlet
boundary conditions on ∂ω. We denote by

Σ = {E = µj + En, j = 1, . . . , N, n ≥ 1}

7



E1 E2 E3

Figure 2: The discrete spectrum of HV
0 consists of finitely many simple eigenvalue below E1

(denoted by full circle); the essential spectrum is given by the half-line [E1,+∞). Furthermore, a
non empty set of simple eigenvalues (denoted by empty circle) embedded in the essential spectrum
occurs.

the set of eigenvalues of HV
0 with associated normalized eigenvectors

ψn,j(x, s) = ϕj(x)χn(s),

and

Σ+ = Σ ∩ [E1,+∞), Σ− = Σ ∩ (−∞, E1)

where Σ− is not empty since µj < 0 for any j. Then, by the standard arguments, [22], the
spectrum of

HV
0 = −∆ + V (x) , in L2(R × ω)

is given by σ(HV
0 ) = σd(H

V
0 ) ∪ σess(H

V
0 ), where

σd(H
V
0 ) = Σ− and σess(H

V
0 ) = [E1,∞).

In addition, HV
0 possesses point spectrum embedded into the continuum given by Σ+ (see Figure

2) .

We expect that when ε becomes non-zero then these embedded eigenvalues generically turn into
resonances, which are the main object of our study.

Remark 2. Since the operator HV
0 commutes with complex conjugation then its eigenfunctions

ψ can be assumed to be real-valued.

4 Complex scaling

Henceforth, we would like to employ the method of exterior complex scaling to the operator HV
ε .

In order to do so, we will need some assumptions on the functions V and α:

Assumption B. V extends to analytic function with respect to x in some sector

Mβ := {ζ ∈ C : | arg ζ| ≤ β}, with β > 0.

Moreover, V is uniformly bounded in Mβ .

Assumption C. α extends to analytic function with respect to x in

Mβ = Mβ ∪ {ζ ∈ C : |ℑζ| ≤ β} , with β > 0.

and α̇ is uniformly bounded in Mβ . In addition α̇(x) > 0, ∀x ∈ R.

Remark 3. Since α̇ is uniformly bounded in Mβ then from the Cauchy theorem it follows that
α̈ is uniformly bounded in Mβ′ for any 0 < β′ < β.

8
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Figure 3: The discrete spectrum of HV
0 (θ) consists of a sequence of real and simple eigenvalues

(denoted by circle); the essential spectrum is given by the half-lines En + e−2iℑθR+.

In analogy with [9] we introduce the mapping Sθ, which acts as a complex dilation in the longitu-
dinal variable x:

(Sθψ)(x, s) = eθ/2ψ(eθx, s) , θ ∈ C .

The transformed operator then takes the form

HV
ε (θ) = SθH

V
ε S

−1
θ = HV

0 (θ) + UV
ε (θ) ,

where

HV
0 (θ) = SθH

V
0 S

−1
θ = −e−2θ ∂2

x − ∂2
y − ∂2

z + V (eθx)

and

UV
ε (θ) = SθU

V
ε S

−1
θ = −2ε e−θ α̇(eθx)∂x ∂τ − ε e−θ α̈(eθx) ∂τ − ε2α̇2(eθx) ∂2

τ . (5)

Lemma 1. Let V satisfy assumptions A and B, then HV
0 (θ) is an analytic family of type A with

respect to θ. Furthermore, the spectrum of HV
0 (θ) has the form (see Figure 3)

σ
(

HV
0 (θ)

)

=
⋃

n

[

En + e−2iℑθ
R

+
]

.

More precisely, the essential spectrum of HV
0 (θ) consists of the sequence of the half-lines En +

e−2iℑθR+, n = 1, 2, . . ., and the discrete spectrum of HV
0 (θ) consists of the set of eigenvalues

µj + En with associated eigenvectors

[ψn,j(θ)] (x, s) = [Sθψn,j ] (x, s) = eθ/2ϕj(e
θx)χn(s). (6)

Proof. It follows from Assumption B that the family of operators HV
0 (θ) in analytic of type A

with respect to θ, see [17, Chap.7]. For what concerns its spectrum it is enough to remark that
the operator

h(θ) = SθhS
−1
θ = −e−2θ ∂2

x + V (eθx)

in L2(R) has the spectrum given by

σ(h(θ)) = {µ1, . . . , µN} ∪ e−2iℑθ
R

+ .

Lemma 2. Let V satisfy assumptions A and B and let α satisfies assumption C, then the operator
UV

ε (θ) is a relatively bounded perturbation of HV
0 (θ). Moreover, the family of operators HV

ε (θ) is
analytic of type A for all θ such that |θ| < Rε, where Rε → ∞ as ε→ 0.

9



Proof. In order to prove this Lemma we introduce Rζ = (HV
0 (θ) − ζ)−1, where ζ is a point from

the resolvent set of HV
0 (θ). Note that both

∂2
xRζ and ∂2

τ Rζ

are bounded operators (ω is a bounded domain). This follows from the fact that Rζ maps L2(Ω0)
into the domain of HV

0 (θ)

D(HV
0 (θ)) = H2(Ω) ∩H1

0(Ω),

which is contained in the domain of I⊗∂2
τ as well as in the domain of ∂2

x⊗ I. For any ψ ∈ C∞
0 (Ω)

we have the estimate

‖∂x∂τψ‖ = (∂x∂τψ, ∂x∂τψ)1/2 ≤ ‖∂2
τψ‖1/2 ‖∂2

xψ‖1/2 ≤ ‖∂2
τψ‖ + ‖∂2

xψ‖ ,

where ‖ · ‖ denotes the norm in L2(R × ω). This implies that

‖(∂x∂τ + ∂2
τ )Rζ‖ ≤ Cζ (7)

for some constant Cζ . On the other hand, using the boundedness of V (eθx) we can estimate the
first order term in (5) as follows

‖∂τψ‖2 = (ψ, ∂2
τψ) ≤ (ψ,HV

0 (θ)ψ) + c1 ‖ψ‖2

= (Rζ (HV
0 (θ) − ζ)ψ, (HV

0 (θ) − ζ)ψ) + (c1 + ζ)‖ψ‖2

≤ ‖Rζ‖ ‖(HV
0 (θ) − ζ)ψ‖2 + (c1 + ζ)‖ψ‖2 , (8)

where c1 is a positive constant. We can thus conclude that there exists a constant c2 > 0 such
that

‖UV
ε (θ)Rζ ψ‖ ≤ c2(ε+ ε2) ‖ψ‖

holds true for all ψ ∈ C∞
0 (Ω0).

To prove the second statement of the Lemma we first notice that by assumption B we have
D(HV

0 (θ)) = D(HV
0 (0)). By assumption C and [17, Sec. 7.2] it thus suffices to show that both

∂x∂τ and ∂τ are relatively bounded with respect to HV
0 (θ). However, this follows immediately

from (7) and (8).

Lemma 2 tells us that the eigenvalues of HV
ε (θ) are analytic functions of θ. By a standard

argument, [7], it turns out, that they are in fact independent of θ. The non-real eigenvalues of
HV

ε (θ) are identified with the resonances of HV
ε , [7].

Remark 4. As a result of the previous proof it follows that UV
ε (θ) is a regular perturbation of

the operator HV
0 (θ). This enables us to apply the analytic perturbation theory to the eigenvalues

of the operator HV
0 (θ).

Theorem 1. Let E = En + µj ∈ Σ+ be a simple eigenvalue of HV
0 (θ). For any ball B centered

in E there exists ε⋆ > 0 such that for any ε with |ε| < ε⋆, there is an eigenvalue E(ε) of HV
ε (θ)

belonging to B and with the imaginary part given by

ℑE(ε) = −ε2a+O(ε3) (9)

where a is a constant independent of ε and equal to

a =
∑

k≤k⋆

∣

∣〈∂τχn, χk〉L2(ω)

∣

∣

2 〈vj ,ℑr̂(E − Ek)vj〉L2(R) . (10)

Here

vj = (−2α̇∂x + α̈)ϕj , k
⋆ = max

k
{Ek − E < 0}

and ℑr̂ stands for the imaginary part of the reduced resolvent of h = −∂2
x + V with respect to the

eigenvalue µj.
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Proof. Let ψ(θ) = ψn,j(θ) be the associated normalized eigenvector (6) belonging to E. We apply
the regular perturbation theory saying that for some fixed r > 0 small enough and for any ε with
modulus small enough, in the given ball Br(E) exists only one eigenvalue E(ε) of HV

ε (θ) with
associated eigenvector

ψε(θ) =
1

2πi

∮

∂Br

[

ζ −HV
ε (θ)

]−1
ψ(θ)dζ .

Furthermore, the regular perturbation theory also yields that this eigenvalues is given by means
of the convergent perturbative series

E(ε) =

〈

ψ̄(θ), HV
ε (θ)ψε(θ)

〉

L2(R×ω)
〈

ψ̄(θ), ψε(θ)
〉

L2(R×ω)

=
∞
∑

m=0

em(ε), em = O(εm)

where, as usual,

e0 = E and e1 =
〈ψ̄(θ), UV

ε (θ)ψ(θ)〉L2(R×ω)

〈ψ̄(θ), ψ(θ)〉L2(R×ω)

=
〈ψ,UV

ε ψ〉L2(R×ω)

〈ψ, ψ〉L2(R×ω)

are constant with respect to θ. The constants e0 and e1 are real since UV
ε symmetric (see Remark

1) and ψ is real-valued (see Remark 2). If we prove that ℑe2 = −ε2a + O(ε3) for some a > 0
independent of ε then the stated result follows. To this end we recall that (see [22, §XII.6], [9])

ℑe2 = ℑa2 (1 +O(ε)) ,

where

a2 = − 1

2πi

∮

∂Br

〈

ψ̄(θ), UV
ε (θ)

[

ζ −HV
0 (θ)

]−1
UV

ε (θ)ψ(θ)
〉

L2(R×ω)

dζ

ζ − E

= lim
ρ→0+

f(θ, E + iρ) = lim
ρ→0+

f(θ = 0, E + iρ)

and

f(θ, ζ) = −
〈

ψ̄(θ), UV
ε (θ)

[

ζ −HV
ε (θ)

]−1
UV

ε (θ)ψ(θ)
〉

L2(R×ω)
+

+
∣

∣

∣

〈

ψ̄(θ), UV
ε (θ)ψ(θ)

〉

L2(R×ω)

∣

∣

∣

2

(ζ − E)−1.

Hence

a2 = −〈ψ,UV
ε R̂(E + i0)UV

ε ψ〉L2(R×ω) (11)

where R̂(ζ) = ̂
[

ζ −HV
0

]

−1

is the reduced resolvent of HV
0 with respect to the eigenvalue E, see

[17]. Recalling that ψ has the form

ψ(x, s) = ψn,j(x, s) = ϕj(x)χn(s)

for some n and j and that {χk(s)} is a basis of L2(ω) with Dirichlet boundary conditions, we
obtain

UV
ε ψ =

∑

k

dk(x)χk, where dk(x) = 〈χk, U
V
ε ψ〉L2(ω) .

We can thus write

a2 = −
∑

k

〈

dk,
̂[h− E + Ek − i0]−1

dk

〉

L2(R)

. (12)
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Concerning the imaginary part of a2 we emphasize that only finitely many terms on the r.h.s. of
(12) have a non zero imaginary part. The latter follows from the fact that Ek −E belongs to the
resolvent set of h for any k large enough, more precisely for k > k⋆, where

k⋆ = max
k

{Ek − E < 0} . (13)

From

dk(x) = εvj(x)〈∂τχn, χk〉L2(ω) [1 +O(ε)] , vj = (−2α̇∂x + α̈)ϕj

we can then conclude that

a2 = −ε2A [1 +O(ε)] .

The equation (9) now follows because

A = An,j =
∑

k≤k⋆

∣

∣〈∂τχn, χk〉L2(ω)

∣

∣

2
〈

vj ,
̂[h− E + Ek − i0]

−1
vj

〉

L2(R)

is independent of ε. Finally, introducing

ℑr̂(ζ) =
1

2

(

̂[h− ζ − i0]−1 − ̂[h− ζ + i0]−1

)

we arrive at (10) since

a = ℑA =
∑

k≤k⋆

∣

∣〈∂τχn, χk〉L2(ω)

∣

∣

2 〈vj ,ℑr̂(E − Ek)vj〉L2(R) .

Remark 5. Notice that if ω is rotationally symmetric, then a = 0.

Remark 6. We point out that ℑr(ζ) is a symmetric and positive operator for ζ real (see, e.g.,
[9]). We can thus generically expect that for any E > E1 fixed there exists ε⋆ > 0 small enough
such that HV

ε (θ) does not have discrete spectrum in the interval [E1, E ] for any 0 < |ε| ≤ ε⋆; more
precisely, for any δ > 0 the set

σd(H
V
ε (θ)) ∩ {[E1, E ] × i[−δ,+δ]}

is empty or it consists of finitely many points with imaginary part strictly negative (see Fig. 4).
As a result it follows that any embedded eigenvalue E ∈ Σ+ of the untwisted model turns into be
a resonance for the twisted model once the twisting is applied. In particular, the twisted model
does not admit embedded eigenvalues in the interval [E1,+∞).

Remark 7. Finally, let us mention that there is one important difference between our result and
that of [13]. Contrary to the effect of the twist on the ground state, the effect on the embedded
eigenvalues occurs also when the Dirichlet boundary conditions at ∂Ω are replaced by the Neumann
conditions. However, since all the calculations with the corresponding Neumann operators are
completely analogous, we skip them and work only with the Dirichlet operators.

5 One concrete model

In the previous section we have seen, that the embedded eigenvalues under the influence of twisting
generically turn into resonances.

In this section, we introduce an addition potential perturbation W (x, s) and consider the
operator

HV
ε,κ = −∆ + V (x) + κW (x, s) in L2(Ωε) , (14)

where κ is a small parameter. The potential function W is supposed to satisfy

12



E1 E2 E3

Figure 4: The discrete spectrum of HV
ε (θ), for ε 6= 0 small enough, consists of two parts; the first

part is given by the real and simple eigenvalues (full circle) below E1, the second one is given by
simple eigenvalues with real part larger that E1 and with imaginary part strictly negative (empty
circle).

Assumption D. For each fixed s the function W (·, s) satisfies (B).

For simplicity we put κ = ε. In the same way as in the previous section we can thus define the
translated operator

H̃V
ε (θ) = SθH

V
ε S

−1
θ = HV

0 (θ) + UV
ε (θ) , (15)

where

HV
0 (θ) = SθH

V
0 S

−1
θ = −e−2θ ∂2

x − ∂2
y − ∂2

z + V (eθx)

and

UV
ε (θ) = −2ε e−θ α̇(eθx)∂x ∂τ − ε e−θ α̈(eθx) ∂τ − ε2α̇2(eθx) ∂2

τ + εW (eθx, s) .

If α̇ = 0, then the waveguide is straight, without twisting, and the embedded eigenvalues of
HV

ε in general turn into resonances due to the presence of the additional W (x, s) provided W is
not constant in s, see [9].

Our goal is to find out, how the presence of twisting changes the width of these resonances
in the leading order of the perturbation series. To make this problem simpler we would like to
consider a concrete model, in which V acts as a Dirac delta potential. However, as the Dirac
delta potential is obviously not dilation analytic, see Assumption B, we will approximate it by the
sequence

Vν(x) = − ν

2 cosh2(νx)
, ν > 0, (16)

which converges to the delta function at zero as ν → ∞ in the sense of distributions. Moreover,
to be able to give some quantitave results we assume that

α(x) = x

and that ω satisfies the

Assumption E. The cross section ω is such that the two lowest eigenvalues E1, E2 of −∆D
ω are

simple and

E2 − E1 >
1

4
, C1 = 〈χ1, ∂τ χ2〉L2(ω) 6= 0 . (17)

Under assumptions (A — E) we then have

Proposition 1. Let α(x) = x and consider the embedded eigenvalue E = E2 + µ1 of the operator
HVν

0 , where Vν is given by (16). Then in the vicinity of E there is an eigenvalue E(ε) of H̃Vν
ε (θ)

with the imaginary part given by

ℑE(ε) = −ε2a+O(ε3) , a > 0 . (18)
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Moreover, if

W (x, s) = W (|x|, s), (19)

then

lim
ν→∞

a = C2
1

√

E2 − E1 − 1
4

(E2 − E1)2
+ 〈W 〉 , (20)

where 〈W 〉 ≥ 0, see (39), (40).

Remark 8. Note that

ℑE(ε) > 〈W 〉 ,

which means that the twisting pushes the eigenvalue E(ε) down in the complex plane, making
thus the lifetime of the corresponding resonance shorter.

Remark 9. The assumption (E) on the cross section is quite weak. As an example one could
take the rectangle ω = [0, 1]× [0, 2]. In this case one has

σ(−∆D
ω ) =

{

E1 =
5

4
π2, E2 = 2π2, E3 =

13

4
π2, E4 =

17

4
π2, . . .

}

and

χ1(y, z) =
√

2 sin (π y) sin
(π

2
z
)

, χ2(y, z) =
√

2 sin (π y) sin (π z) .

An explicit calculation then shows that

C1 = 〈χ1, ∂τ χ2〉L2(ω) = −2

3
6= 0 .

On the other hand, it is clear that C1 = 0 whenever ω is rotationally symmetric. Of course, in
such a situation the twisting has no influence on E(ε).

Remark 10. In a similar way one could calculate the imaginary parts of the eigenvalues of H̃Vν
ε (θ)

coming from the higher threshold energies Ek , k ≥ 3. To avoid cumbersome computations we skip
it.

5.1 Proof of Proposition 1

Equation (18) follows directly from Theorem 1. The rest of the proof will be given in two steps.

Spectrum of hν = −∂2
x + Vν

Following [19, §23] we set

s =
1

2

[

−1 +

√

1 +
2

ν

]

. (21)

the eigenvalue problem hνϕ̃j = µjϕ̃j admits solutions

µj = −ν
2

4

[

−(2j − 1) +

√

1 +
2

ν

]2

, 1 ≤ j < s+ 1 (22)

with associated eigenfunctions

ϕ̃j(x) = (1 − ξ2)ej/2F

[

ej − s, ej + s+ 1, ej + 1,
1

2
(1 − ξ)

]

, (23)
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where

ξ = tanh(νx), ej =

√−µj

ν
=

1

2

[

−(2j − 1) +

√

1 +
2

ν

]

, (24)

F denote the hypergeometric function and ej − s = j − 1. In particular, when ν ≫ 1 then
s ∼ 1

2ν ≪ 1 and the spectrum of h consists of only one eigenvalue

µ1 = −ν
2

4

[

−1 +

√

1 +
2

ν

]2

∼ −1

4
+O(ν−1) (25)

with the associated normalized eigenvector

ϕ1(x) =
ϕ̃1(x)

‖ϕ̃1(x)‖L2(R)
, ϕ̃1(x) =

[

1 − tanh2(νx)
]e1/2

. (26)

We emphasize that hν → h∞ = −∂2
x − δ as ν → +∞ in the norm resolvent (see, e.g., [1]),

where δ denotes the Dirac’s delta at x = 0.

Computation of the coefficient a

For ν → ∞ we have

σd(hν) =

{

µ1 = −1

4
+O(ν−1)

}

. (27)

We take ν large enough so that for the set Σ = {E = Ej,n = µj + En} of eigenvalues of HVν

0 holds

E1,1 = E1 −
1

4
+O(ν−1) < E1 < E1,2 = E2 −

1

4
+O(ν−1) < E2. (28)

We then apply then the perturbative theory to the embedded eigenvalue

E = E1,2 = E2 + µ1 (29)

with the associated eigenvector

ψ(x, y, z) = ϕ1(x)χ2(y, z) . (30)

In such a case k⋆ = 2 and

ℑa2 = (31)

− lim
ρ→0+

ℑ







∑

k=1,2

〈dk, [hν − E + Ek − iρ]
−1
dk〉L2(R) +

∣

∣

∣

〈

ψ,UVν

ε ψ
〉

L2(R×ω

∣

∣

∣

2

(iρ)−1







where

UVν

ε = −2ε∂x∂τ − ε2∂2
τ + εW and dk(x) = 〈χk, U

Vν

ε ψ〉L2(ω) (32)

An integration by parts shows that 〈χ2, ∂τχ2〉L2(ω) = 0. We thus get

〈ψ,UVν

ε ψ〉L2(R×ω) = −2ε〈ϕ1, ∂xϕ1〉L2(R)〈χ2, ∂τχ2〉L2(ω)

−ε2〈ϕ1, ϕ1〉L2(R)〈χ2, ∂
2
τχ2〉L2(ω) + ε 〈ϕ1,W22ϕ1〉L2(R)

= −C0ε
2 + ε 〈ϕ1,W22 ϕ1〉L2(R) ,
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where

C0 = 〈χ2, ∂
2
τχ2〉L2(ω), W22(x) = 〈χ2,Wχ2〉L2(ω) .

Furthermore, from (32) it follows that

d1(x) = −2εC1 ∂xϕ1 − ε2C2 ϕ1 + εW12 ϕ1, d2(x) = −ε2C0 ϕ1 + εW22 ϕ1

where

C2 = 〈χ1, ∂
2
τχ2〉L2(ω) , W12(x) = 〈χ2,Wχ1〉L2(ω) .

Collecting all these facts and keeping in mind that E = E2 + µ1 and ϕ1 is the eigenfuction of hν

with eigenvalue µ1 we get after some tedious, but straightforward calculations, that

lim
ρ→0+

ℑ
{

〈d2, [hν − E + E2 − iρ]
−1
d2〉L2(R) +

∣

∣〈ψ,UVν

ε ψ〉
∣

∣

2

L2(Ω0)
(iρ)−1

}

= 0 . (33)

This implies

ℑa2 = − lim
ρ→0+

ℑ〈d1, [hν − E + E1 − iρ]−1
d1〉L2(R)

= − lim
ρ→0+

ℑ
[

4ε2C2
1 〈∂xϕ1, [hν − E + E1 − iρ]

−1
∂xϕ1〉

]

− lim
ρ→0+

ℑ
[

ε2 〈W12 ϕ1, [hν − E + E1 − iρ]
−1
W12 ϕ1〉

]

− lim
ρ→0+

2ε2 C1 ℑ
[

〈∂xϕ1, [hν − E + E1 − iρ]
−1
W12 ϕ1〉

+〈W12 ϕ1, [hν − E + E1 − iρ]
−1
∂xϕ1〉

]

+O(ǫ3) . (34)

We now pass to the limit ν → ∞ which implies

µ1 → −1

4
, ϕ1 → φ =

√

1

2
e−|x|/2 , hν → h∞ , (35)

where the last limit is reached in the norm resolvent sense. We recall also that the resolvent
[h∞ − ζ]−1 of h∞ = −∂2

x + δ has the kernel given by

Kζ(x, x
′) = K0

ζ(x, x
′) + K1

ζ(x, x
′) ,

where

K0
ζ(x, x

′) =
i

2k
eik|x−x′| , K1

ζ(x, x
′) =

1

2k

1

2k + i
eik[|x|+|x′|], ζ = k2, ℑk > 0 ,

see [1]. In our case

ζ = k2 = E − E1 + iρ = E2 − E1 + µ1 + iρ . (36)

We will denote by K0
ζ and K1

ζ the integral operators with the kernels K0
ζ(x, x

′) and K1
ζ(x, x

′)

respectively. Since ∂xϕ1(x) is an odd function, it follows that K1
ζ∂xϕ1 ≡ 0 and

[〈∂xϕ1,
(

K0
ζ + K1

ζ

)

W12 ϕ1〉 + 〈W12 ϕ1,
(

K0
ζ + K1

ζ

)

∂xϕ1〉
]

= 0 . (37)

This means that in the limit ν → ∞ we have to replace [hν −E +E1 − iρ]−1 on the r.h.s. of (34)
by K0

ζ . An explicit computation then gives

lim
ρ→0+

ℑ〈∂xϕ1,K0
ζ ∂xϕ1〉 =

4
√
E2 − E1 + µ1

[1 + 4(E2 − E1 + µ1)]
2 . (38)
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Finally, the contribution from W equals

lim
ρ→0+

ℑ〈W12 ϕ1, (K0
ζ + K1

ζ)W12 ϕ1〉 =
2b2 + 1

4b2 + 1

(∫

R

W12(x)ϕ1(x) cos(bx) dx

)2

(39)

where

b =
√

E2 − E1 + µ1 .

We denote by

〈W 〉 :=
E2 − E1 + 1

4

2(E2 − E1)

(∫

R

W12(x)φ(x) cos(bx) dx

)2

(40)

its limit as ν → ∞. In view of (35) and (38) we get

lim
ν→∞

ℑa2 = −ε2


C2
1

√

E2 − E1 − 1
4

(E2 − E1)2
+ 〈W 〉



 .

The proof is complete.
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2005/004 Röhrl, N.: A Least Squares Functional for Solving Inverse Sturm-Liouville Problems

2005/005 Borisov, D.; Ekholm, T; Kovarik, H.: Spectrum of the Magnetic Schrödinger Operator
in a Waveguide with Combined Boundary Conditions

2005/006 Zelik, S.: Spatially nondecaying solutions of 2D Navier-Stokes equation in a strip

2005/007 Meister, A.: Deconvolving compactly supported densities

2005/008 Förster, C., Weidl, T.: Trapped modes for an elastic strip with perturbation of the
material properties

2006/001 Dippon, J., Schiemert, D.: Stochastic differential equations driven by Gaussian
processes with dependent increments
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