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Homogenization with corrector

for periodic differential operators.

Approximation of solutions

in the Sobolev class H1(Rd)

M. Sh. Birman∗and T. A. Suslina†

December 22, 2006

Abstract

We continue to study a class of matrix periodic elliptic second order differential
operators Aε in R

d with rapidly oscillating coefficients (depending on x/ε). This
class was considered in [BSu1,2,4]. The homogenization problem in the small period
limit is studied. We obtain approximation for the resolvent (Aε + I)−1 in the op-
erator norm from L2(R

d) to H1(Rd) with error of order ε. In this approximation,
the corrector is taken into accout. Besides, the (L2 → L2)-approximations of the so
called fluxes are obtained.
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(Âε +Qε)−1. Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

§15. Approximation of the fluxes for the generalized resolvent (Âε +Qε)−1 . . . . . 62
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0 Introduction

0.1

The present paper is a continuation of a series of papers [BSu2–4] on homogenization
theory for one class of (matrix) differential operators (DO’s) acting in L2(R

d). This class
is rather wide, and it includes many applications. The operator-theoretic constructions
(see [BSu2, Ch. 1], [BSu3] and Ch. 1 below) lie in the basis of our approach. The
work [Su1,2] about homogenization of the Maxwell system is based on the same abstract
material. However, in general case, the Maxwell operator can not be studied on the
basis of the class of DO’s considered in [BSu2,4] and in the present paper. Applications
of the operator-theoretic material to DO’s are based on using the Floquet-Bloch theory
(precisely, on applying the Gelfand transform) in combination with an elementary scale
transformation.

Formally, the present paper can be read independently of [BSu2–4]. The necessary
notions and objects are defined again, the necessary results from [BSu2–4] are cited.

0.2. The class of operators

We consider elliptic positive second order matrix DO’s in L2(R
d; Cn) admitting a represen-

tation (factorization) of the form

A = A(g, f) = f(x)∗b(D)∗g(x)b(D)f(x). (0.1)

Here b(D) is a homogeneous matrix first order DO with constant coefficients. Its symbol
b(ξ) is an (m × n)-matrix of rank n (it is assumed that m ≥ n). The matrix-valued
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functions f(·) (of size n × n) and g(·) (of size m ×m) are assumed to be periodic with
respect to some lattice Γ in Rd and such that

g(x) > 0; g, g−1 ∈ L∞, f, f−1 ∈ L∞.

More precise description of the operators (0.1) can be found below in Subsection 4.1.
It is useful to start with the study of a more narrow class of operators of the form

Â = Â(g) = b(D)∗g(x)b(D). (0.2)

Correspondingly, we accept the „two-level“ order of exposition.
The operators (0.1) and (0.2) are considered as selfadjoint operators in L2(R

d; Cn).
The bottom of the spectrum of A(g, f) is the point λ = 0:

min specA(g, f) = 0. (0.3)

Along with the operators (0.1) and (0.2), we consider the following operators, whose
coefficients are rapidly oscillating for small ε > 0:

Aε(g, f) = f(ε−1x)∗b(D)∗g(ε−1x)b(D)f(ε−1x), ε > 0, (0.4)

Âε(g) = b(D)∗g(ε−1x)b(D), ε > 0. (0.5)

0.3

The homogenization problem can be treated as the problem of the asymptotic description
of the behavior of the resolvent (Aε(g, f) + I)−1 as ε → 0. For simplicity, now we
shall speak about operators of the form (0.5). In the classical homogenization theory,

the following fact plays a crucial role: there exists an effective DO Â0 = Â(g0) of the

form (0.2) with the constant (effective) matrix g0 such that the resolvent (Âε(g) + I)−1

converges (in some sense) to the resolvent (Â0 + I)−1. Usually the strong (or even weak)

convergence is considered. Further correction terms to (Â0 + I)−1 are constructed. The
main of them is the term εK(ε) of order ε, where the operator K(ε) is called a corrector.
The error estimates are obtained under the smoothness conditions on the coefficients f
and g and smoothness conditions on the right-hand sides of the corresponding equations.

The rule of constructing g0 for a given matrix g is known. It is not quite elementary,
but is visible. Under our conditions, this rule is described below in §5.

For the first time in the homogenization theory, the error estimates of order ε (sharp-
order) in the L2-norm uniform with respect to the right-hand sides were obtained in
[BSu1,2]. In terms of the resolvents, these estimates have the following form:

‖(Âε + I)−1 − (Â0 + I)−1‖L2(Rd;Cn)→L2(Rd;Cn) ≤ Cε. (0.6)

The constant C depends only on the lattice Γ, on the upper and lower bounds for the
matrix-valued function g and on the constants in the inequality (4.2) (see below). The
similar but somewhat more complicated approximations were obtained for operators of
the form (0.4).
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0.4. The method of investigation

We put
(Tεu)(y) = εd/2u(εy), y ∈ R

d.

The scaling operator Tε is unitary in L2(R
d; Cn). Obviously,

(Âε + I)−1 = ε2T ∗
ε (Â + ε2I)−1Tε,

(Â0 + I)−1 = ε2T ∗
ε (Â0 + ε2I)−1Tε.

These identities allow us to deduce (0.6) from the estimate

‖(Â + ε2I)−1 − (Â0 + ε2I)−1‖L2(Rd;Cn)→L2(Rd;Cn) ≤ Cε−1. (0.7)

This way the inequality (0.6) has been obtained in [BSu1,2]. The operators Tε, T
∗
ε have

no influence, when we „return“ from (0.7) to (0.6), since they are unitary.
The passage from (0.7) to (0.6) is quite trivial. At the same time, it clearly illustrates

that the homogenization procedure is a manifestation of the spectral threshold effect: we
have to know the behavior of the resolvent of a periodic operator Â = Â(g) near the
bottom λ = 0 (see (0.3)) of its spectrum. It is the latter problem that was solved in
[BSu1,2].

In order to obtain estimate (0.7), we transform the operator Â applying the (unitary)
Gelfand transformation V (see definition below in Subsection 4.3). Let Ω be the cell
of the lattice Γ, and let k ∈ R

d be the parameter (the quasimomentum). Under the

Gelfand transformation V, the operator Â turns into the operator of multiplication by an
appropriate operator-valued function Â(k). For each k, the operators Â(k) are selfadjoint
operators in L2(Ω; Cn) with compact resolvent. The latter allows us to use the general
spectral analytic perturbation theory (with respect to the one-dimensional parameter

t = |k|) and to obtain some analog of the inequality (0.7) for the operator (Â(k)+ ε2I)−1

with the constant independent of k. Then application of the inverse transformation V∗

leads to (0.7).
The method described above may seem to be somewhat roundabout. But it is this

method that openes the way to delicate calculations and sharp-order estimates. This
method turned out to be effective also for obtaining more accurate approximation of the
resolvent (Âε + I)−1 in the (L2(R

d; Cn))-operator norm with the error estimate of order
ε2 (see [BSu4]). For this, terms of order ε must be included in approximation, i. e., the
corrector must be taken into account. Evidently, the corresponding constructions become
more complicated.

We emphasize that, if, for instance, one studies convergence of (Âε+I)
−1 to (Â0+I)−1

in the strong sense, then applying the scaling transformation gives nothing. Indeed, then
on the „coming back“ step the factors Tε, T

∗
ε are the obstacles for the limit procedure as

ε → 0.

0.5. The corrector

In [BSu4], the following estimate has been obtained:

‖(Âε + I)−1 − (Â0 + I)−1 − εK̃(ε)‖L2(Rd;Cn)→L2(Rd;Cn) ≤ Cε2. (0.8)
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As it was shown in [BSu4], the bounded operator K̃(ε) (the corrector), must contain three
terms:

K̃(ε) = K1(ε) +K2(ε) +K3. (0.9)

Note that K2(ε) = K1(ε)
∗ and that K3 does not depend on ε. The expression for K̃(ε) is

given below in (10.9). Clearly, K̃(ε) is not defined uniquely, since we can add some terms
of order O(ε) to it.

In the traditional homogenization theory, the corrector contains only one term, which
differs from our term K1(ε) by the absence of the additional smoothing operator. Our
smoothing operator Πε is defined by (10.4); it is possible to use another smoothing opera-

tors. In [BSu4], it was discussed in detail, when the smoothing operator can be eliminated;
it is not always possible, if we want to preserve estimate (0.8). Also in [BSu4] the cases
where K3 = 0 were distinguished. At the same time, it was shown that in the vector prob-
lems of mathematical physics (elasticity theory, electrodynamics), in general, the term K3

is nontrivial and should not be ignored.

0.6. The main goal of the present paper

is the proof of the estimate

‖(Âε + I)−1 − (Â0 + I)−1 − εK1(ε)‖L2(Rd;Cn)→H1(Rd;Cn) ≤ Cε. (0.10)

It is easily seen that the estimate (0.10) can be reduced to the inequality

‖Â1/2
ε

(
(Âε + I)−1 − (Â0 + I)−1 − εK1(ε)

)
‖L2(Rd;Cn)→L2(Rd;Cn) ≤ Cε. (0.11)

This inequality can be obtained on the same way as the estimate (0.8). For this, one
should rely on the abstact results of §2.

Thus, we see that in (0.10) the role of corrector is played by the first term in (0.9). One

may also use the full corrector K̃(ε) in (0.10), (0.11); this will change only the constants
in the right-hand side. Using this version, one may interpolate between (0.10) and (0.8),
which leads to the estimate

‖(Âε + I)−1 − (Â0 + I)−1 − εK̃(ε)‖L2(Rd;Cn)→Hs(Rd;Cn) ≤ Csε
2−s, 0 ≤ s ≤ 1.

In what follows, we distinguish the cases, where the smoothing operator Πε in the
corrector in (0.10) may be eliminated. The required restrictions are harder than the
similar restrictions related to estimate (0.8).

Estimates of the type (0.10) give possibility to approximate the fluxes, i. e., the

operators g(ε−1x)b(D)(Âε + I)−1. The corresponding error estimate of order ε in the
(L2(R

d; Cn) → L2(R
d; Cm))-norm is given (in somewhat different form) below in Theo-

rem 12.1. In a number of important cases (acoustics, elasticity theory, electrodynamics),
the fluxes are of direct interest.

Note that estimates of the form (0.10) for the acoustics operator and the operator of
elasticity theory were obtained in recent papers [Zh, Pas, ZhPas]. In these papers, an
essentially different (non-spectral) method was used. This method is related to including
an additional parameter ω in the problem, which corresponds to the shift of the vectors
of the lattice Γ by an arbitrary vector ω ∈ Ω. This way leads to the appearance of the
Steklov averaging operator as a smoothing operator (different from our smoothing operator
Πε). However, as well as in our method, afterwards this smoothing operator is eliminated
for the acoustics operator and, in the case d = 2, also for the elasticity operator.
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0.7. The generalized resolvent

What was said in Subsections 0.3–0.6 is related to the resolvent (Âε +I)−1 of the operator
(0.5). Besides, we study similar questions also for the generalized resolvent of the operator

Âε. Namely, let Q(x) be a positive Γ-periodic (n × n)-matrix-valued function such that

Q,Q−1 ∈ L∞, and let Qε(x) = Q(ε−1x). The operator (Âε +Qε)−1 is called a generalized

resolvent of the operator Âε. The analogs of all the statements already proved for the
ordinary resolvent (Âε + I)−1 are proved afterwards for the generalized resolvent. This
corresponds to the „two-level“ order of exposition, which has already been mentioned.
Herewith, we rely on the abstract results of §3 and also on the corresponding material for
the ordinary resolvent. In is important to note that the study of the resolvent (Aε + I)−1

for an arbitrary operator of the form (0.4) is reduced to the study of the generalized

resolvent (Âε +Qε)−1 with the same matrix g and an appropriate matrix-valued function
Q. However, the generalized resolvent is of its own interest.

0.8. The structure of the paper

The paper consists of four chapters and a small concluding §23. The necessary operator
theoretic material is contained in Chapter 1 (§1–3). In Chapter 2 (§4–9) the threshold

approximations (i. e., as ε → 0) for Â1/2(Â + ε2I)−1 (in §8) and for Â1/2(Â + ε2Q)−1

(in §9) are studied. In Chapter 3 (§10–16), the homogenization results are deduced from

the threshold approximations. Namely, approximations of the resolvents (Âε + I)−1 and

(Âε+Q
ε)−1 in the (L2 → H1)-norm and approximations of the corresponding fluxes in the

(L2 → L2)-norm are obtained. Besides, approximation for the operator f ε(Aε + I)−1 in
the (L2 → H1)-norm is obtained, where Aε is of general type (0.4), and f ε(x) = f(ε−1x).
In all cases, the corrector is taken into account in approximations, and the error term
is of order ε. In Chapter 4 (§17–22), general results of Chapter 3 are interpreted for a
number of operators of mathematical physics. The choice of examples was motivated by
their own significance, as well as by the will to illustrate various exceptional and special
cases, which were distinguished in the general theory. In more details, the content of the
paper can be seen from the table of contents and from the prefaces in the beginnings of
the chapters. A small separate §23 is devoted to additional comments and references.

Below, the constants in estimates either are controlled explicitly, or admit such a
control (probably, bulky), in principal.

0.9. Notation

Let G, G∗ be separable Hilbert spaces. The symbols (·, ·)G and ‖ · ‖G stand for the inner
product and the norm in G, correspondingly. The symbol ‖ · ‖G→G∗

stands for the norm of
a linear continuous operator acting from G to G∗. Sometimes we omit indices, if this does
not lead to confusion. By I = IG we denote the identity operator in G. If A : G → G∗

is a linear operator, then DomA stands for its domain. If N is a subspace in G, then
N⊥ := G ⊖ N. If P is the orthogonal projection of G onto N, then P⊥ is the orthogonal
projection onto N⊥. The spectrum of a closed operator T in G is denoted by spec T . The
symbol 〈·, ·〉 = 〈·, ·〉n is the standard inner product in Cn, | · | is the norm of a vector in
Cn; 1 = 1n is the unit (n×n)-matrix. For z ∈ C, by z∗ we denote the complex conjugate
number; we use such non-standard notation, since notation g is used for the mean value
of the matrix-valued function g. For an (m × n)-matrix a, the symbol |a| stands for the
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norm of the corresponding linear operator from Cn to Cm; the symbol at denotes the
transposed matrix, and a∗ is the Hermitian adjoint (n×m)-matrix.

The Lp-classes of Cn-valued functions in domain O ⊂ Rd are denoted by Lp(O; Cn),
1 ≤ p ≤ ∞. The Sobolev classes of C

n-valued functions (in domain O ⊆ R
d) of order

s and summability index p are denoted by W s
p (O; Cn). If p = 2, we use the notation

Hs(O; Cn), s ∈ R. For n = 1, we use the simplified notation Lp(O), W s
p (O), Hs(O), etc.

But sometimes (if this does not lead to confusion), we use such simplified notation also
for the spaces of vector-valued or matrix-valued functions.

Next, x = (x1, . . . , xd) ∈ Rd, iDj = ∂j = ∂/∂xj , j = 1, . . . , d, ∇ = grad = (∂1, . . . , ∂d),
D = −i∇ = (D1, . . . , Dd).

Below C, c, C, C (probably, with indices and marks) denote various constants in
estimates. By β with indices and marks we denote various absolute constants.
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Chapter 1. The abstract method

This Chapter (§1–3) contains the facts of the abstract theory of selfadjoint operators.
These facts are basic for further constructions, and they are additional to the facts given in
[BSu2, Ch. 1] and [BSu3]. We still rely on the spectral perturbation theory for factorized
selfadjoint operator families which quadratically depend on the parameter. Part of the
material is borrowed from [BSu2,3] and is given without proofs. New facts are completely
proved.

The main results of Chapter 1 are contained in §2 and §3. Formally, the statements
of §3 contain the statements of §2. However, for the proof of the results of §3, as well as
for convenience of further applications, the two-level exposition is useful.

1 Preliminaries

1.1. A factorized family A(t)

Let H and H∗ be complex separable Hilbert spaces. Let X0 : H → H∗ be a densely defined
closed operator, and let X1 : H → H∗ be a bounded operator. We put

X(t) := X0 + tX1, DomX(t) = DomX0, t ∈ R.

The family of selfadjoint operators

A(t) := X(t)∗X(t), t ∈ R, (1.1)

in H is our main object. The operator (1.1) is generated by the quadratic form

a(t)[u, u] = ‖X(t)u‖2
H∗
, u ∈ DomX0,

7



which is closed in H. We denote A(0) = X∗
0X0 =: A0,

N := KerA0 = KerX0, N∗ := KerX∗
0 .

By P and P∗ we denote the orthogonal projections of H onto N and of H∗ onto N∗,
respectively. We use notation of the type P⊥ = I − P , N⊥ = P⊥H, etc.

It is assumed that the point λ0 = 0 is an isolated point of the spectrum of the operator
A0 (an eigenvalue), and that

0 < n := dim N <∞, n ≤ n∗ := dim N∗ ≤ ∞.

By d0 we denote the distance from the point λ0 = 0 to the rest of the spectrum of A0.
Let F (t, s) be the spectral projection of the operator A(t) for an interval [0, s]. We fix a

number δ > 0 such that 8δ < d0. It turns out that (see [BSu2, (1.1.3)])

F (t, δ) = F (t, 3δ), rankF (t, δ) = n, for |t| ≤ t0 := δ1/2‖X1‖−1. (1.2)

Below we usually write F (t) instead of F (t, δ).

1.2. The operators Z and R

Let D := DomX0∩N⊥, and let u ∈ H∗. We consider the following equation for an element
ψ ∈ D (cf. [BSu2, (1.1.7)]):

(X0ψ,X0ζ)H∗
= (u,X0ζ)H∗

, ∀ζ ∈ D. (1.3)

There exists a unique solution ψ of the equation (1.3), moreover, ‖X0ψ‖H∗
≤ ‖u‖H∗

. Now,
let

ω ∈ N, u = −X1ω; (1.4)

the corresponding solution of the equation (1.3) is denoted by ψ(ω). We define the
bounded operator Z : H → H by the following relations:

Zω = ψ(ω), ω ∈ N; Zx = 0, x ∈ N⊥. (1.5)

Clearly, rankZ ≤ n. As it was shown in [BSu3, (1.8)],

‖Z‖H→H ≤ (8δ)−1/2‖X1‖H→H∗
= (2

√
2t0)−1. (1.6)

Note that
ZP = Z, PZ = 0. (1.7)

Suppose now that (1.4) is satisfied, and ψ(ω) is the solution of equation (1.3). We put

ω∗ = X0ψ(ω) +X1ω

and introduce the operator R (see [BSu2, Subsection 1.1.2]):

R : N → N∗, Rω = ω∗ ∈ N∗.

Another description of R is given by the formula

R = P∗X1|N. (1.8)
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1.3. The spectral germ

The selfadjoint operator
S = R∗R : N → N (1.9)

is called the spectral germ of the operator family (1.1) at t = 0 (see [BSu2, Subsection
1.1.3]). From (1.8) and (1.9) it follows that

S = PX∗
1P∗X1|N.

The germ S is called non-degenerate if KerS = {0}, or, equivalently, if rankR = n.
According to the general analytic perturbation theory (see [K]), for |t| ≤ t0 there exist

real-analytic functions λl(t) and real-analytic H-valued functions ϕl(t) such that

A(t)ϕl(t) = λl(t)ϕl(t), l = 1, . . . , n, |t| ≤ t0,

and the ϕl(t), l = 1, . . . , n, form an orthonormal basis in F (t)H. For sufficiently small
t∗ (≤ t0) and |t| ≤ t∗, we have the following convergent power series expansions:

λl(t) = γlt
2 + µlt

3 + · · · , γl ≥ 0, µl ∈ R, l = 1, . . . , n, (1.10)

ϕl(t) = ωl + tϕ
(1)
l + t2ϕ

(2)
l + · · · , l = 1, . . . , n. (1.11)

The elements ωl = ϕl(0), l = 1, . . . , n, form an orthonormal basis in N. As it was shown in
[BSu2, Subsection 1.1.6], the numbers γl and the elements ωl, l = 1, . . . , n, are eigenvalues

and eigenvectors of the operator S:

Sωl = γlωl, l = 1, . . . , n.

1.4. Threshold approximations

In [BSu2, Theorem 1.4.1], it was shown that

F (t) − P = Φ(t),

‖Φ(t)‖H→H ≤ C1|t|, |t| ≤ t0, C1 = β1δ
−1/2‖X1‖.

(1.12)

As it has already been mentioned, by β (with indices) we denote various absolute constants.
For instance, one can put β1 = 25(1 + π−1)(1 +

√
2)2−3/2.

Next, in [BSu2, Theorem 1.4.3], it was shown that

A(t)F (t) − t2SP = Ψ(t),

‖Ψ(t)‖H→H ≤ C2|t|3, |t| ≤ t0, C2 = β2δ
−1/2‖X1‖3.

(1.13)

1.5. The contour Γδ. The difference of resolvents

We put Rz(t) := (A(t)−zI)−1, Rz(0) := (A(0)−zI)−1. We need to integrate the difference
of resolvents over the complex contour Γδ that envelopes the interval [0, δ] equidistantly
at the distance δ. By (1.2), for |t| ≤ t0 the contour Γδ is separated from the spectrum of
A(t) by the distance δ. Therefore,

‖Rz(t)‖H→H ≤ δ−1, z ∈ Γδ, |t| ≤ t0. (1.14)
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We recall the notation introduced in [BSu2, §1.2, 1.3]. Putting

Ωz(0) = I + (z + 2δ)Rz(0), (1.15)

we have (see [BSu2, (1.3.3)])

‖Ωz(0)‖H→H ≤ 5, z ∈ Γδ, |t| ≤ t0.

As in [BSu2, Subsection 1.3.2], by d we denote the Hilbert space DomX0 with the metric
form

‖u‖2
d := ‖X0u‖2

H∗
+ 2δ‖u‖2

H. (1.16)

Let T
(1)
δ and T

(2)
δ be the selfadjoint continuous operators in d generated by the forms

2Re (X0u,X1u)H∗
and ‖X1u‖2

H∗
, u ∈ d, respectively. We have (see [BSu2, (1.3.7), (1.3.8)])

‖T (1)
δ ‖d→d ≤ (2δ)−1/2‖X1‖, ‖T (2)

δ ‖d→d ≤ (2δ)−1‖X1‖2. (1.17)

Denote
Tδ(t) = tT

(1)
δ + t2T

(2)
δ .

Then (see [BSu2, (1.3.9)])

‖Tδ(t)‖d→d ≤
√

2 + 1

2
|t|δ−1/2‖X1‖, |t| ≤ t0. (1.18)

We have the following representation (see [BSu2, (1.3.11)]):

Rz(0) − Rz(t) = Ωz(0)Tδ(t)Rz(t), z ∈ Γδ. (1.19)

Iterating (1.19), we distinguish the term of order t in the right-hand side:

Rz(0) −Rz(t) = tΩz(0)T
(1)
δ Rz(t) + t2Ωz(0)T

(2)
δ Rz(t)

= tΩz(0)T
(1)
δ (Rz(0) − Ωz(0)Tδ(t)Rz(t)) + t2Ωz(0)T

(2)
δ Rz(t).

Then
Rz(0) −Rz(t) = tΩz(0)T

(1)
δ Rz(0) + Ψ1(t, z), (1.20)

where
Ψ1(t, z) = −tΩz(0)T

(1)
δ Ωz(0)Tδ(t)Rz(t) + t2Ωz(0)T

(2)
δ Rz(t). (1.21)

1.6. Representation for the projection F (t)

From the formula

F (t) − P =
1

2πi

∫

Γδ

(Rz(0) − Rz(t)) dz

and representation (1.20) it follows that (cf. [BSu3, (2.10), (2.11)])

F (t) − P = tF1 + F2(t), (1.22)

where

F1 =
1

2πi

∫

Γδ

Ωz(0)T
(1)
δ Rz(0) dz,

F2(t) =
1

2πi

∫

Γδ

Ψ1(t, z) dz. (1.23)
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In [BSu3, (2.15)] it was shown that

F1 = ZP + PZ∗. (1.24)

Combining (1.24) with (1.7), we see that

F1P = ZP. (1.25)

2 Approximation for the operator-valued function

A(t)1/2(A(t) + ε2I)−1

2.1

We assume that (cf. [BSu2, (1.5.1)]) for some c∗ > 0 we have

A(t) ≥ c∗t
2I, |t| ≤ t0. (2.1)

This is equivalent to the fact that the eigenvalues λl(t) of the operator A(t) satisfy the
estimates

λl(t) ≥ c∗t
2, |t| ≤ t0, l = 1, . . . , n. (2.2)

Then (1.10) implies that
γl ≥ c∗, l = 1, . . . , n. (2.3)

Thus, the germ S is non-degenerate. We introduce the notation

Ξ = Ξ(t, ε) := (t2S + ε2IN)−1P. (2.4)

Obviously, (2.1) and (2.3) imply the estimates

‖(A(t) + ε2I)−1‖H→H ≤ (c∗t
2 + ε2)−1, |t| ≤ t0,

‖Ξ(t, ε)‖H→H ≤ (c∗t
2 + ε2)−1. (2.5)

2.2

In [BSu1,2], it was shown that for small ε > 0 operator (2.4) gives the principal term of
approximation for the resolvent (A(t) + ε2I)−1. Herewith,

‖(A(t) + ε2I)−1 − Ξ(t, ε)‖H→H ≤ C3ε
−1, 0 < ε ≤ 1, |t| ≤ t0. (2.6)

Note that each of the operators (A(t) + ε2I)−1 and Ξ(t, ε) is of order ε−2, while the
difference is of order ε−1. The constant C3 depends only on δ, ‖X1‖ and c∗, and is given
by

C3 = C1c
−1/2
∗ +

1

2
C2c

−3/2
∗ + (3δ)−1,

where C1 and C2 are defined by (1.12), (1.13). The estimate (2.6) is order-sharp.
In [BSu3], more accurate approximation with the „corrector“ for the resolvent

(A(t) + ε2I)−1 has been found. Now we formulate the corresponding result. We introduce
the following operator in H (see [BSu3, (4.13)]):

N = Z∗X∗
1RP + (RP )∗X1Z. (2.7)
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Note that (see [BSu3, (4.16)])

‖N‖H→H ≤ (2δ)−1/2‖X1‖3. (2.8)

By Theorem 5.1 from [BSu3], we have

‖(A(t) + ε2I)−1 − Ξ − t(ZΞ + ΞZ∗) + t3ΞNΞ‖H→H ≤ C4, 0 < ε ≤ 1, |t| ≤ t0. (2.9)

The constant C4 depends only on δ, ‖X1‖ and on c∗, and is given by

C4 = δ−1(β◦
1c

−2
∗ ‖X1‖4 + β◦

2c
−3
∗ ‖X1‖6 + β◦

3c
−1
∗ ‖X1‖2 + 1/3).

The terms
t(ZΞ + ΞZ∗) − t3ΞNΞ (2.10)

play the role of the „corrector“. We see that, in order to approximate the resolvent
(A(t) + ε2I)−1 in the operator norm in H with error of order O(1), one has to add corrector
(2.10) which contains three terms to the principal term Ξ(t, ε).

2.3

Now our goal is to approximate for small ε the operator-valued function

Aε(t) := A(t)1/2(A(t) + ε2I)−1, ε > 0, (2.11)

in the operator norm in H with error O(1). For this, it suffices to add only one term tZΞ
to Ξ (instead of the three-term corrector (2.10)). The following theorem is true.

Theorem 2.1. Suppose that the operator family A(t) satisfies conditions of Subsection

1.1 and also condition (2.1). Let Z be the operator defined by (1.5), and let S be the

spectral germ of the family A(t) at t = 0. Let Ξ(t, ε) be the operator (2.4). Then for

|t| ≤ t0 and 0 < ε ≤ 1 we have

‖A(t)1/2
(
(A(t) + ε2I)−1 − (I + t Z)Ξ(t, ε)

)
‖H→H ≤ C5. (2.12)

The constant C5 is defined below in (2.24); it depends only on δ, ‖X1‖ and c∗.

2.4

We start the proof of Theorem 2.1. By (2.2),

‖Aε(t)F (t)‖H→H = sup
1≤l≤n

√
λl(t)(λl(t) + ε2)−1 ≤ c−1/2

∗ |t|−1, |t| ≤ t0. (2.13)

Combining this with (1.12), we see that

‖Aε(t)F (t)(F (t) − P )‖H→H ≤ C1c
−1/2
∗ , |t| ≤ t0. (2.14)

Note that, by (1.2),
‖Aε(t)F (t)⊥‖H→H ≤ (3δ)−1/2, |t| ≤ t0. (2.15)

Now we write down the resolvent identity (see [BSu3, (5.1)])

F (t)(A(t) + ε2I)−1P

= F (t)Ξ(t, ε) − F (t)(A(t) + ε2I)−1(A(t)F (t) − t2SP )Ξ(t, ε).
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Multiplying this identity by A(t)1/2, we obtain

Aε(t)F (t)P = F (t)A(t)1/2Ξ(t, ε) − Aε(t)F (t)(A(t)F (t) − t2SP )Ξ(t, ε).

We estimate the second term on the right, using (2.13), (1.13), and (2.5). Then

‖Aε(t)F (t)P − F (t)A(t)1/2Ξ(t, ε)‖H→H ≤ C2c
−3/2
∗ , |t| ≤ t0. (2.16)

Next, by (1.22) and (1.25),

F (t)A(t)1/2Ξ(t, ε) = A(t)1/2(P + tF1 + F2(t))Ξ(t, ε)

= A(t)1/2(Ξ(t, ε) + tZΞ(t, ε) + F2(t)Ξ(t, ε)). (2.17)

Obviously,
Aε(t) = Aε(t)F (t)⊥ + Aε(t)F (t)(F (t) − P ) + Aε(t)F (t)P.

Combining this with (2.17) and using (2.11) and (2.14)–(2.16), for |t| ≤ t0, we obtain:

‖A(t)1/2
(
(A(t) + ε2I)−1 − (I + tZ)Ξ(t, ε)

)
‖H→H

≤ (3δ)−1/2 + C1c
−1/2
∗ + C2c

−3/2
∗ + ‖A(t)1/2F2(t)Ξ(t, ε)‖H→H. (2.18)

It remains to estimate the last term in the right-hand side of (2.18).

2.5. Estimate for the term A(t)1/2F2(t)Ξ(t, ε)

We want to use representation (1.21), (1.23) for F2(t). First, we prove four lemmas.

Lemma 2.2. We have

‖A(t)1/2‖d→H ≤
√

2, |t| ≤ t0. (2.19)

Proof. For u ∈ d, by (1.1), (1.2), and (1.16), we have:

‖A(t)1/2u‖H = ‖(X0 + tX1)u‖H∗
≤ ‖X0u‖H∗

+ t0‖X1‖‖u‖H

≤ ‖X0u‖H∗
+ δ1/2‖u‖H ≤

√
2‖u‖d, |t| ≤ t0.

Lemma 2.3. For z ∈ Γδ and |t| ≤ t0 the resolvent Rz(t) = (A(t) − zI)−1 satisfies the

estimate

‖Rz(t)‖H→d ≤
√

10 δ−1/2. (2.20)

Proof. For u ∈ H and |t| ≤ t0, by (1.1), (1.2), and (1.16), we have:

‖Rz(t)u‖2
d = ‖X0Rz(t)u‖2

H∗
+ 2δ‖Rz(t)u‖2

H

≤ (‖(X0 + tX1)Rz(t)u‖H∗
+ |t|‖X1‖‖Rz(t)u‖H)2 + 2δ‖Rz(t)u‖2

H

≤ 2(A(t)Rz(t)u,Rz(t)u)H + (2(t0‖X1‖)2 + 2δ)‖Rz(t)u‖2
H

= 2(u+ zRz(t)u,Rz(t)u)H + 4δ‖Rz(t)u‖2
H.

Combining this with (1.14) and using the inequality |z| ≤ 2δ for z ∈ Γδ, we obtain:

‖Rz(t)u‖2
d ≤ 2‖u‖H‖Rz(t)u‖H + 8δ‖Rz(t)u‖2

H ≤ 10δ−1‖u‖2
H.

This proves estimate (2.20).
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Lemma 2.4. For the operator (1.15) we have

‖Ωz(0)‖d→d ≤ 1 + 4
√

5, z ∈ Γδ. (2.21)

Proof. By (1.15) and (2.20) (with t = 0), for u ∈ d and z ∈ Γδ we have:

‖Ωz(0)u‖d ≤ ‖u‖d + |z + 2δ|‖Rz(0)u‖d ≤ ‖u‖d + 4δ
√

10δ−1/2‖u‖H.

Since ‖u‖H ≤ (2δ)−1/2‖u‖d, (2.21) follows.

Lemma 2.5. Let Ψ1(t, z) be the operator (1.21). Then for |t| ≤ t0 and z ∈ Γδ we have:

‖A(t)1/2Ψ1(t, z)‖H→H ≤ t2β3δ
−3/2‖X1‖2. (2.22)

Proof. We have:

A(t)1/2Ψ1(t, z) = A(t)1/2
(
−tΩz(0)T

(1)
δ Ωz(0)Tδ(t) + t2Ωz(0)T

(2)
δ

)
Rz(t).

Then
‖A(t)1/2Ψ1(t, z)‖H→H ≤ ‖A(t)1/2‖d→H‖Rz(t)‖H→d‖Ωz(0)‖d→d

×
(
|t|‖Ωz(0)‖d→d‖T (1)

δ ‖d→d‖Tδ(t)‖d→d + t2‖T (2)
δ ‖d→d

)
.

Combining this with (2.19)–(2.21), (1.17), and (1.18), we obtain:

‖A(t)1/2Ψ1(t, z)‖H→H ≤ 2(
√

5 + 20)δ−1/2t2

×
(
(1 + 4

√
5)(

√
2 + 1)2−3/2δ−1‖X1‖2 + (2δ)−1‖X1‖2

)
= t2β3δ

−3/2‖X1‖2,

where β3 = (
√

5 + 20)((1 + 4
√

5)(1 + 2−1/2) + 1).
Now, representation (1.23) and estimate (2.22) imply that

‖A(t)1/2F2(t)‖H→H ≤ (2π)−1(2δ + 2πδ)t2β3δ
−3/2‖X1‖2

= t2β3(1 + π−1)δ−1/2‖X1‖2, |t| ≤ t0. (2.23)

Combining this with (2.5), we obtain:

‖A(t)1/2F2(t)Ξ(t, ε)‖H→H ≤ β3(1 + π−1)c−1
∗ δ−1/2‖X1‖2, |t| ≤ t0.

Together with (2.18), this implies estimate (2.12) with

C5 = (3δ)−1/2 + C1c
−1/2
∗ + C2c

−3/2
∗ + β3(1 + π−1)c−1

∗ δ−1/2‖X1‖2. (2.24)

This completes the proof of Theorem 2.1.

2.6. Interpolation

In (2.12) the one-term corrector tZΞ can be replaced by the „full“ corrector (2.10). Only
the constant in estimate will change.

Theorem 2.6. Suppose that conditions of Theorem 2.1 are satisfied. Let N be the operator

(2.7). Then for 0 < ε ≤ 1 and |t| ≤ t0 we have

‖A(t)1/2
(
(A(t) + ε2I)−1 − Ξ − t(ZΞ + ΞZ∗) + t3ΞNΞ

)
‖H→H ≤ C6. (2.25)

The constant C6 is defined below in (2.29); it depends only on δ, ‖X1‖ and c∗.
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Proof. By (2.12), it suffices to estimate the terms tA(t)1/2ΞZ∗ and t3A(t)1/2ΞNΞ. Note
that

‖A(t)1/2P‖H→H ≤ |t|‖X1‖, (2.26)

which follows from (1.1):

‖A(t)1/2Pu‖H = ‖(X0 + tX1)Pu‖H∗
= ‖tX1Pu‖H∗

≤ |t|‖X1‖‖u‖H.

Since A(t)1/2Ξ = A(t)1/2PΞ, then (2.26), (2.5), and (1.6) imply that

‖tA(t)1/2ΞZ∗‖H→H ≤ t2(8δ)−1/2‖X1‖2(c∗t
2 + ε2)−1 ≤ (8δ)−1/2‖X1‖2c−1

∗ . (2.27)

By (2.26), (2.5), and (2.8), the term t3A(t)1/2ΞNΞ = t3A(t)1/2PΞNΞ satisfies the estimate

‖t3A(t)1/2ΞNΞ‖H→H ≤ t4(2δ)−1/2‖X1‖4(c∗t
2 + ε2)−2 ≤ (2δ)−1/2‖X1‖4c−2

∗ . (2.28)

Now, (2.12), (2.27), and (2.28) yield estimate (2.25) with the constant

C6 = C5 + (8δ)−1/2‖X1‖2c−1
∗ + (2δ)−1/2‖X1‖4c−2

∗ . (2.29)

A simple interpolation between (2.9) and (2.25) implies the following result.

Theorem 2.7. Under conditions of Theorem 2.6, for 0 < ε ≤ 1 and |t| ≤ t0 we have

‖A(t)s/2
(
(A(t) + ε2I)−1 − Ξ − t(ZΞ + ΞZ∗) + t3ΞNΞ

)
‖H→H ≤ C1−s

4 Cs
6,

0 ≤ s ≤ 1.

2.7. The case of zero corrector

We distinguish the case where Z = 0. Then the corrector in (2.12) is equal to zero. The
three-term corrector (2.10) is also equal to zero, since N = 0 in this case (see (2.7)).
Correspondingly, (2.12) turns into the estimate

‖A(t)1/2
(
(A(t) + ε2I)−1 − Ξ(t, ε)

)
‖H→H ≤ C5, 0 < ε ≤ 1, |t| ≤ t0, (2.30)

and (2.9) turns into

‖(A(t) + ε2I)−1 − Ξ(t, ε)‖H→H ≤ C4, 0 < ε ≤ 1, |t| ≤ t0. (2.31)

Interpolating between (2.30) and (2.31), we obtain the following statement.

Theorem 2.8. Suppose that conditions of Theorem 2.1 are satisfied. Suppose also that

Z = 0. Then for 0 < ε ≤ 1 and |t| ≤ t0 we have

‖A(t)s/2
(
(A(t) + ε2I)−1 − Ξ(t, ε)

)
‖H→H ≤ C1−s

4 Cs
5, 0 ≤ s ≤ 1.
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3 Approximation for the operator-valued function

Â(t)1/2(Â(t) + ε2Q)−1

3.1. Preliminaries

(See [BSu2, Subsections 1.1.5 and 1.5.3]). Let Ĥ be yet another Hilbert space, and let

M : H → Ĥ be an isomorphism. Let X̂(t) = X̂0 + tX̂1 : Ĥ → H∗ be a family of the same
type as X(t). Suppose that

MDomX0 = Dom X̂0, X0 = X̂0M, X1 = X̂1M. (3.1)

Then X(t) = X̂(t)M . Consider the family of operators

Â(t) = X̂(t)∗X̂(t) : Ĥ → Ĥ. (3.2)

Obviously,
A(t) = M∗Â(t)M. (3.3)

In what follows, all the objects corresponding to the family (3.2) are marked by the upper
index „̂“. Note that

N̂ = MN, n̂ = n,

N̂∗ = N∗, n̂∗ = n∗, P̂∗ = P∗,
(3.4)

R = R̂M |N, S = PM∗ŜM |N, Ŝ = P̂ (M∗)−1SM−1|bN
.

Denote
Q := (MM∗)−1 = (M∗)−1M−1 : Ĥ → Ĥ. (3.5)

The operator Q is positive and continuous together with Q−1.
Sometimes, it is convenient to assume that initially the operator Â(t) of the form (3.2)

and the continuous positive definite operator Q in Ĥ are given. Then, since Q admits a
(non-unique) representation of the form (3.5), we can construct the operator A(t) by the
formula (3.3).

From condition (2.1) it follows that

Â(t) ≥ ĉ∗t
2I, |t| ≤ t0, (3.6)

where ĉ∗ = c∗‖M‖−2.
The selfadjoint operator

(Â(t) + ε2Q)−1, ε > 0, (3.7)

in Ĥ is called the generalized resolvent (Q-resolvent) of the family Â(t). From (3.3) and
(3.5) it follows that

(Â(t) + ε2Q)−1 = M(A(t) + ε2I)−1M∗. (3.8)

By (3.6), the germ Ŝ is non-degenerate (as well as S).
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3.2

Let QbN
be the block of the operator Q in the subspace N̂:

QbN
= P̂Q|bN

: N̂ → N̂.

Then the operator
(t2Ŝ + ε2QbN

)−1 : N̂ → N̂

exists. We put
Ξ̂Q(t, ε) = (t2Ŝ + ε2QbN

)−1P̂ . (3.9)

Then the operators (2.4) and (3.9) satisfy the relation (cf. [BSu2, (1.5.18)])

MΞ(t, ε)M∗ = Ξ̂Q(t, ε). (3.10)

In [BSu2, Subsection 1.5.3], it was shown that the operator (3.9) gives the principal
term of approximation for the generalized resolvent (3.7). Herewith,

‖(Â(t) + ε2Q)−1 − Ξ̂Q(t, ε)‖bH→bH
≤ C3‖M‖2ε−1, 0 < ε ≤ 1, |t| ≤ t0.

In [BSu3, §6], more accurate approximation for the generalized resolvent (3.7) was

found. Now we describe the corresponding result. Let ẐQ be the operator in Ĥ which

takes an element û ∈ Ĥ to the solution ψ̂Q of the equation

X̂∗
0 (X̂0ψ̂Q + X̂1ω̂) = 0, Qψ̂Q ⊥ N̂,

where ω̂ = P̂ û ∈ N̂. Then (see [BSu3, Lemma 6.1])

ẐQ = MZM−1P̂ , (3.11)

where Z is the operator (1.5). We put (see [BSu3, (6.18)])

N̂Q = P̂ (M∗)−1NM−1P̂ = Ẑ∗
QX̂

∗
1 R̂P̂ + (R̂P̂ )∗X̂1ẐQ.

(Recall that the operator N is defined by (2.7).)
By Theorem 6.3 from [BSu3], for 0 < ε ≤ 1 and |t| ≤ t0 we have

‖(Â(t) + ε2Q)−1 − Ξ̂Q − t(ẐQΞ̂Q + Ξ̂QẐ
∗
Q) + t3Ξ̂QN̂QΞ̂Q‖bH→bH

≤ C4‖M‖2, (3.12)

where Ξ̂Q is the operator (3.9), and C4 is the constant from (2.9). The terms

t(ẐQΞ̂Q + Ξ̂QẐ
∗
Q) − t3Ξ̂QN̂QΞ̂Q (3.13)

play the role of the „corrector“. Thus, in order to approximate the generalized resolvent
(Â(t)+ ε2Q)−1 in the operator norm in Ĥ with error O(1), one should add the three-term

corrector (3.13) to the principal term Ξ̂Q.
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3.3

Now we want to approximate the operator-valued function

Â(t)1/2(Â(t) + ε2Q)−1, ε > 0,

in the operator norm in Ĥ with error O(1). For this, it suffices to add only one term

tẐQΞ̂Q to Ξ̂Q (instead of the three-term corrector (3.13)).

Theorem 3.1. Under the assumptions of Subsections 3.1 and 3.2, we have

‖Â(t)1/2
(
(Â(t) + ε2Q)−1 − Ξ̂Q − tẐQΞ̂Q

)
‖bH→bH

≤ C5‖M‖,
0 < ε ≤ 1, |t| ≤ t0. (3.14)

Proof follows from estimate (2.12) by recalculation. By (3.8), (3.10), (3.11), (3.1), and
(3.4), we have:

‖Â(t)1/2
(
(Â(t) + ε2Q)−1 − Ξ̂Q − tẐQΞ̂Q

)
‖bH→bH

= ‖(X̂0 + tX̂1)
(
M(A(t) + ε2I)−1M∗−MΞM∗−tMZM−1P̂MΞM∗

)
‖bH→H∗

= ‖(X0 + tX1)
(
(A(t) + ε2I)−1 − Ξ − tZΞ

)
M∗‖bH→H∗

≤ ‖M‖‖A(t)1/2
(
(A(t) + ε2I)−1 − Ξ − tZΞ

)
‖H→H.

Combining this with (2.12), we obtain (3.14).

3.4. Interpolation

In (3.14), the one-term corrector tẐQΞ̂Q can be replaced by the full corrector (3.13). The
next statement follows from (2.25) by recalculation.

Theorem 3.2. For 0 < ε ≤ 1 and |t| ≤ t0 we have

‖Â(t)1/2
(
(Â(t) + ε2Q)−1 − Ξ̂Q − t(ẐQΞ̂Q + Ξ̂QẐ

∗
Q) + t3Ξ̂QN̂QΞ̂Q

)
‖bH→bH

≤ C6‖M‖. (3.15)

Interpolating between (3.12) and (3.15), we arrive at the following result.

Theorem 3.3. For 0 < ε ≤ 1, |t| ≤ t0 and 0 ≤ s ≤ 1 we have:

‖Â(t)s/2
(
(Â(t) + ε2Q)−1 − Ξ̂Q − t(ẐQΞ̂Q + Ξ̂QẐ

∗
Q) + t3Ξ̂QN̂QΞ̂Q

)
‖bH→bH

≤ C1−s
4 Cs

6‖M‖2−s.

3.5. The case of zero corrector

In the case where ẐQ = 0 (which is equivalent to the condition Z = 0), the corrector in
(3.14) is equal to zero. Then the three-term corrector (3.13) is also equal to zero. In this
case (3.14) turns into the estimate

‖Â(t)1/2
(
(Â(t) + ε2Q)−1 − Ξ̂Q

)
‖bH→bH

≤ C5‖M‖, 0 < ε ≤ 1, |t| ≤ t0, (3.16)

and (3.12) turns into the estimate

‖(Â(t) + ε2Q)−1 − Ξ̂Q‖bH→bH
≤ C4‖M‖2, 0 < ε ≤ 1, |t| ≤ t0. (3.17)

Interpolating between (3.16) and (3.17), we arrive at the following statement.

Theorem 3.4. Suppose that conditions of Theorem 3.1 are satisfied. Suppose also that

ẐQ = 0 (or, equivalently, Z = 0). Then for 0 < ε ≤ 1 and |t| ≤ t0 we have

‖Â(t)s/2
(
(Â(t) + ε2Q)−1 − Ξ̂Q

)
‖bH→bH

≤ C1−s
4 Cs

5‖M‖2−s, 0 ≤ s ≤ 1.
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Chapter 2. Periodic differential operators in L2(R
d; Cn).

Threshold approximations for the resolvents

In this Chapter, we consider periodic elliptic second order DO’s acting in the space
L2(R

d; Cn). We study the behavior of the resolvent near the spectral threshold. In §4, 5,
we give the detailed description of the classes of periodic operators under consideration
and their images under the Gelfand transform; the definition and the properties of the
effective matrix g0 are discussed. In §6, 7, the required threshold approximations for the
operator family Â(k) are obtained; this operator family acts in L2(Ω; Cn) and depends on
the quasimomentum k. In §8, 9, from these approximations we deduce approximations
near the threshold for the resolvent and the generalized resolvent of the periodic operator
Â acting in L2(R

d; Cn). The approximations are accompanied by the error estimates in
the operator norm.

4 Classes of periodic operators. Direct integral

expansion

Here we recall the description of a class of matrix second order differential operators
(DO’s) admitting a factorization of the form A = X ∗X , where X is a homogeneous first
order DO. This class was distinguished and studied in [BSu1,2].

4.1. Factorized second order operators

Let b(D) : L2(R
d; Cn) → L2(R

d; Cm) be a homogeneous first order DO with constant
coefficients. We always assume that m ≥ n. The symbol b(ξ), ξ ∈ Rd, of the operator
b(D) is an (m× n)-matrix-valued linear homogeneous function of ξ. Suppose that

rank b(ξ) = n, 0 6= ξ ∈ R
d. (4.1)

From (4.1) it follows that

α01n ≤ b(θ)∗b(θ) ≤ α11n, θ ∈ S
d−1, 0 < α0 ≤ α1 <∞, (4.2)

with some constants α0, α1.
Suppose that an (n× n)-matrix-valued function f(x) and an (m×m)-matrix-valued

function h(x) are bounded, together with their inverses:

f, f−1 ∈ L∞(Rd); h, h−1 ∈ L∞(Rd). (4.3)

We consider the DO

X : = hb(D)f : L2(R
d; Cn) → L2(R

d; Cm),

DomX : = {u ∈ L2(R
d; Cn) : fu ∈ H1(Rd; Cn)}.

The operator X is closed. The selfadjoint operator A(g, f) = A := X ∗X in L2(R
d; Cn) is

generated by the closed quadratic form

a[u,u] := ‖Xu‖2
L2(Rd;Cm), u ∈ DomX .
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Formally,

A(g, f) = A = f(x)∗b(D)∗g(x)b(D)f(x), g(x) := h(x)∗h(x). (4.4)

By using the Fourier transformation and conditions (4.2) and (4.3), it is easy to show that

c0

∫

Rd

|D(fu)|2 dx ≤ a[u,u] ≤ c1

∫

Rd

|D(fu)|2 dx, u ∈ DomX ,

where
c0 = α0‖h−1‖−2

L∞
, c1 = α1‖h‖2

L∞
. (4.5)

4.2. Lattices Γ and Γ̃

In what follows, the matrix-valued functions f and h are assumed to be periodic with

respect to some lattice Γ ⊂ Rd. By Ω ⊂ Rd we denote the elementary cell of the lattice Γ.
Next, let Γ̃ be the dual lattice, and let Ω̃ be the Brillouin zone of Γ̃. (See [BSu2, Ch. 2,

Subsection 1.2].) Note that |Ω||Ω̃| = (2π)d. Let r0 denote the radius of the ball inscribed

in clos Ω̃, and put r1 = max
k∈∂ eΩ |k|. Note that

2r0 = min |b|, 0 6= b ∈ Γ̃. (4.6)

We denote B(r) = {k ∈ Rd : |k| ≤ r}.
By H̃s(Ω) we denote the subspace of all functions in Hs(Ω) such that the Γ-periodic

extension of them to Rd belongs to Hs
loc(R

d).

4.3. The Gelfand transformation

Initially, the Gelfand transformation V is defined on the functions v ∈ S(Rd; Cn) of the
Schwartz class by the formula

ṽ(k,x) = (Vv)(k,x) = |Ω̃|−1/2
∑

a∈Γ

exp(−i〈k,x + a〉)v(x + a),

x ∈ R
d, k ∈ R

d.

Since ∫

eΩ

∫

Ω

|ṽ(k,x)|2 dxdk =

∫

Rd

|v(x)|2 dx, ṽ = Vv,

the transformation V extends by continuity to a unitary mapping

V : L2(R
d; Cn) →

∫

eΩ

⊕L2(Ω; Cn) dk =: K. (4.7)

The relation v ∈ H1(Rd; Cn) is equivalent to the fact that ṽ(k, ·) ∈ H̃1(Ω; Cn) for almost

every k ∈ Ω̃ and
∫

eΩ

∫

Ω

(
|(D + k)ṽ(k,x)|2 + |ṽ(k,x)|2

)
dx dk <∞.
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4.4. The forms a(k) and the operators A(k)

Putting
H = L2(Ω; Cn), H∗ = L2(Ω; Cm),

we consider the operator
X (k) : H → H∗, k ∈ R

d,

defined by the formula
X (k) = hb(D + k)f

on the domain
DomX (k) = {u ∈ H : fu ∈ H̃1(Ω; Cn)} =: d.

The operator X (k) is closed. The selfadjoint operator

A(k) := X (k)∗X (k) : H → H

is generated by the closed quadratic form

a(k)[u,u] := ‖X (k)u‖2
H∗
, u ∈ d.

It is easy to check that (cf. [BSu2, (2.2.6)])

c0

∫

Ω

|(D + k)v|2 dx ≤ a(k)[u,u] ≤ c1

∫

Ω

|(D + k)v|2 dx, v = fu ∈ H̃1(Ω; Cn), (4.8)

where c0 and c1 are defined by (4.5). From (4.8) and the compactness of the embedding

of H̃1(Ω; Cn) in L2(Ω; Cn) it follows that the spectrum of A(k) is discrete. Observe also
that the resolvent of the operator A(k) is compact and depends on k ∈ Rd continuously
(in the operator norm). Let

N := KerA(0) = KerX (0). (4.9)

Relations (4.8) with k = 0 show that

N = {u ∈ L2(Ω; Cn) : fu = c ∈ C
n}, dim N = n. (4.10)

4.5. The direct integral for the operator A
The operators A(k) allow us to partially diagonalize the operator A in the direct integral
K. Let ũ = Vu, u ∈ Dom a. Then

ũ(k, ·) ∈ d for a. e. k ∈ Ω̃, (4.11)

a[u,u] =

∫

eΩ

a(k)[ũ(k, ·), ũ(k, ·)] dk. (4.12)

Conversely, if ũ ∈ K satisfies (4.11) and the integral in (4.12) is finite, then u ∈ Dom a
and (4.12) is valid. The above arguments show that, in the direct integral K, the operator

A turns into multiplication by the operator-valued function A(k), k ∈ Ω̃. All this can be
expressed briefly by the formula

VAV−1 =

∫

eΩ

⊕A(k) dk. (4.13)
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4.6. Incorporation of the operators A(k) into the general scheme

For k ∈ Rd we put
k = tθ, t = |k|, |θ| = 1,

and consider t as a perturbation parameter. At the same time, we have to make our
constructions and estimates uniform with respect to the parameter θ.

We apply the method of §1, putting H = L2(Ω; Cn), H∗ = L2(Ω; Cm). The role of X(t)
is played by the operator

X(t, θ) = X (tθ) = X0 + tX1(θ),

where X0 = X (0) = hb(D)f , DomX0 = d; X1(θ) = hb(θ)f . The role of A(t) is played by
A(t, θ) = A(tθ). By (4.9) and (4.10),

N = KerX0 = KerX (0), dim N = n.

Condition m ≥ n guarantees that n ≤ n∗; and the following alternative realizes: either
n∗ = ∞ (if m > n), or n∗ = n (if m = n); see [BSu2, §2.3]. In [BSu2, §2.2, 2.3], it was
shown that the distance d0 from the point λ0 = 0 to the rest of the spectrum of A(0)
satisfies the estimate

d0 ≥ 4c∗r
2
0, c∗ = α0‖f−1‖−2

L∞
‖h−1‖−2

L∞
. (4.14)

In §1, it was required to choose δ < d0/8. Recalling (4.14), we fix δ so that

δ = c∗r
2
0/4 = (r0/2)2α0‖f−1‖−2

L∞
‖h−1‖−2

L∞
. (4.15)

Next, the estimate ‖X1(θ)‖ ≤ α
1/2
1 ‖f‖L∞

‖h‖L∞
allows us to choose t0 (see (1.2)) equal

not to δ1/2‖X1(θ)‖−1, but to a smaller number independent of θ. Namely, we put

t0 = δ1/2α
−1/2
1 ‖f‖−1

L∞
‖h‖−1

L∞

= (r0/2)α
1/2
0 α

−1/2
1 ‖f‖−1

L∞
‖f−1‖−1

L∞
‖h‖−1

L∞
‖h−1‖−1

L∞
. (4.16)

Observe that, by (4.16), t0 ≤ r0/2, whence B(t0) ⊂ B(r0/2) ⊂ Ω̃.
The next estimate easily follows from the variational estimates for the eigenvalues (see

[BSu2, (2.2.13)]):

A(k) = A(t, θ) ≥ c∗r
2I, k ∈ Ω̃ \ B(r), 0 < r ≤ r0. (4.17)

4.7. Non-degeneracy of the germ of the family A(t, θ)

The analytic in t (see (1.10), (1.11)) branches of the eigenvalues λl(t, θ) and the branches
of the eigenvectors ϕl(t, θ), l = 1, . . . , n, |t| ≤ t0, depend on θ. In [BSu2, §2.2, 2.3], it
was shown that

λl(t, θ) ≥ c∗t
2, l = 1, . . . , n, t ∈ [0, t0], (4.18)

where c∗ and t0 are defined by (4.14) and (4.16). It is essential that in (4.18) c∗ and t0

do not depend on θ. From (4.18) it follows that condition (2.1) for A(t, θ) is satisfied,
whence the germ S(θ) of the family A(t, θ) is non-degenerate uniformly in θ:

S(θ) ≥ c∗IN, θ ∈ S
d−1. (4.19)
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5 The effective matrix

The effective matrix g0 (with constant coefficients) for the operator (4.4) is defined by the
rule known in the homogenization theory. In fact, the matrix g0 does not depend on f ;
therefore, it suffices to consider the operator (4.4) with f = 1n.

5.1. The operator Â(g) := A(g, 1n) and the matrix g0

In the case where f = 1n, we agree to mark all the objects by the upper index „ ̂“. For
the operator

Â = Â(g) = b(D)∗g(x)b(D),

the family Â(k) = Â(k; g) is denoted by Â(t, θ) = Â(t, θ; g). If f = 1n, the kernel (4.10)
takes the form

N̂ = {u ∈ H : u = c ∈ C
n}. (5.1)

Let P̂ be the orthogonal projection of H onto the subspace (5.1). Then

P̂u = |Ω|−1

∫

Ω

u(x) dx, u ∈ H. (5.2)

In other words, P̂ is the operator of averaging over the cell.
As it was shown in [BSu2, §3.1], the spectral germ Ŝ(θ) of the family Â(t, θ; g) acting

in N̂ is represented as

Ŝ(θ) = b(θ)∗g0b(θ), θ ∈ S
d−1,

where g0 is the constant positive (m × m)-matrix called the effective matrix. We shall
also use the notation

Ŝ(k) := t2Ŝ(θ) = b(k)∗g0b(k), k ∈ R
d. (5.3)

In order to define g0, we introduce the operator Λ : Cm → H, which takes a vector
C ∈ Cm to the (weak) periodic solution vC ∈ H̃1(Ω; Cn) of the problem

b(D)∗g(x)(b(D)vC(x) + C) = 0,

∫

Ω

vC dx = 0. (5.4)

Let e1, . . . , em be the standard orthonormal basis in Cm, and let vj = vej
. In the standard

basis ẽ1, . . . , ẽn in Cn the vector-valued functions vj(x) can be written as columns of
length n. Let Λ(x) be the periodic (n × m)-matrix-valued function with the columns
v1(x), . . . ,vm(x). Then the operator Λ acts as multiplication by the matrix Λ(x). Note
that the mean value of Λ(x) over the cell Ω is equal to zero. We introduce the following
periodic (m×m)-matrix-valued function:

g̃(x) = g(x)(b(D)Λ(x) + 1m). (5.5)

The effective matrix g0 is defined by the relation

g0 = |Ω|−1

∫

Ω

g̃(x) dx.
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We introduce the following operator with constant coefficients:

Â0 = Â(g0) = b(D)∗g0b(D), (5.6)

and the corresponding family

Â0(k) = b(D + k)∗g0b(D + k).

It is essential that the germ Ŝ0(θ) for the family Â0(t, θ) = Â0(tθ) coincides with Ŝ(θ).

The operator (5.6) is called the effective operator for Â(g).

5.2. The properties of the effective matrix g0

(See [BSu2, §3.1].)

Proposition 5.1. The effective matrix satisfies the estimates

g ≤ g0 ≤ g, (5.7)

where

g := |Ω|−1

∫

Ω

g(x) dx, g−1 := |Ω|−1

∫

Ω

g(x)−1 dx.

If m = n, the effective matrix g0 coincides with g: g0 = g.

For specific DO’s, estimates (5.7) are well known in the homogenization theory as the
Voight-Reuss bracketing.

We distinguish the cases where one of the inequalities in (5.7) becomes an identity.
The following statements were obtained in [BSu2, Propositions 3.1.6 and 3.1.7].

Proposition 5.2. The identity g0 = g is equivalent to the relations

b(D)∗gk(x) = 0, k = 1, . . . , m, (5.8)

where gk(x), k = 1, . . . , m, are the columns of the matrix g(x).

Note that, under condition (5.8), we have Λ(x) = 0.

Proposition 5.3. The identity g0 = g is equivalent to the relations

lk(x) = l0k + b(D)wk, l0k ∈ C
m, wk ∈ H̃1(Ω; Cn), k = 1, . . . , m, (5.9)

where lk(x), k = 1, . . . , m, are the columns of the matrix g(x)−1.

6 Approximation for the operator Â(k)1/2(Â(k) + ε2I)−1

6.1. The main goal

of the present section is to prove the following theorem.
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Theorem 6.1. We have

‖Â(k)1/2
(
(Â(k) + ε2I)−1 − (I + Λb(D + k))(Â0(k) + ε2I)−1P̂

)
‖H→H ≤ C3,

k ∈ Ω̃, 0 < ε ≤ 1. (6.1)

Here Λ : H∗ → H is the operator of multiplication by the matrix-valued function Λ(x)

defined in Subsection 5.1, and the orthogonal projection P̂ onto the subspace N̂ is defined

by (5.2). The constant C3 depends only on m, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

, r0, and r1.

The explicit expression for C3 will be found in the proof; see formula (6.24) below.
The estimate (6.1) is more informative for |k| ≤ t̂ 0, where the number t̂ 0 is defined

according to (4.16) with f = 1n (see (6.9) below). The estimate for k ∈ Ω̃ \ B(t̂ 0)
is rougher, since in this case each term in (6.1) is estimated separately; however, the
corresponding calculations also require attention.

Note that b(k)P̂ = b(D + k)P̂ , whence

tb(θ)P̂ = b(k)P̂ = b(D + k)P̂ , k ∈ Ω̃. (6.2)

Next, by (5.3),

t2Ŝ(θ)P̂ = Ŝ(k)P̂ = P̂ b(k)∗g0b(k)P̂ = b(D + k)∗g0b(D + k)P̂ = Â0(k)P̂ ,

k ∈ Ω̃, (6.3)

therefore,
(Ŝ(k) + ε2IbN

)−1P̂ = (Â0(k) + ε2I)−1P̂ , k ∈ Ω̃. (6.4)

6.2. Estimate for |k| ≤ t̂ 0

We apply Theorem 2.1 to the operator Â(t, θ) = Â(k). Now the role of the operator (2.4)
is played by the operator

Ξ̂ = Ξ̂(t, θ, ε) = Ξ̂(k, ε) := (t2Ŝ(θ) + ε2IbN
)−1P̂ = (Ŝ(k) + ε2IbN

)−1P̂ , (6.5)

and the role of Z is played by the operator (see [BSu4, (4.2)])

Ẑ(θ) = Λb(θ)P̂ . (6.6)

We put Ẑ(k) := tẐ(θ). Then Ẑ(k) = Λb(k)P̂ .
Estimate (2.12) is applicable. We only have to specify the constants. The constants

ĉ∗, δ̂, t̂
0 are defined according to (4.14)–(4.16) with f = 1. Namely,

ĉ∗ = α0‖h−1‖−2
L∞
, (6.7)

δ̂ = (r0/2)2α0‖h−1‖−2
L∞
, (6.8)

t̂ 0 = δ̂1/2α
−1/2
1 ‖h‖−1

L∞
. (6.9)

Taking the estimate ‖X̂1(θ)‖ ≤ α
1/2
1 ‖h‖L∞

into account, instead of the precise values

Ĉ1(θ) = β1δ̂
−1/2‖X̂1(θ)‖ and Ĉ2(θ) = β2δ̂

−1/2‖X̂1(θ)‖3 (see Subsection 1.4), we take the
values

Ĉ1 = β1δ̂
−1/2α

1/2
1 ‖h‖L∞

, Ĉ2 = β2δ̂
−1/2α

3/2
1 ‖h‖3

L∞
.
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Instead of the precise constant Ĉ5(θ) (see (2.24)), we take the higher value

Ĉ5 = (3δ̂)−1/2 + Ĉ1ĉ
−1/2
∗ + Ĉ2ĉ

−3/2
∗ + β3(1 + π−1)δ̂−1/2α1‖h‖2

L∞
ĉ−1
∗ .

Thus,
Ĉ5 = Ĉ5(α0, α1, ‖h‖L∞

, ‖h−1‖L∞
, r0).

Now, estimate (2.12) implies that

‖Â(k)1/2
(
(Â(k) + ε2I)−1 − (I + Λb(k))(Ŝ(k) + ε2IbN

)−1P̂
)
‖H→H ≤ Ĉ5,

|k| ≤ t̂ 0, 0 < ε ≤ 1.

By (6.2) and (6.4), the last inequality can be written as

‖Â(k)1/2
(
(Â(k) + ε2I)−1 − (I + Λb(D + k))(Â0(k) + ε2I)−1P̂

)
‖H→H ≤ Ĉ5,

|k| ≤ t̂ 0, 0 < ε ≤ 1. (6.10)

Thus, estimate (6.1) is proved for |k| ≤ t̂ 0.

6.3. Estimate for k ∈ Ω̃ \ B(t̂ 0)

Note that constants (6.7)–(6.9) are related not only to the family Â(k), but also to the

family Â0(k) (this follows from inequalities (5.7)). Then (4.17) with r = t̂ 0 implies that

Â(k) ≥ ĉ∗(t̂
0)2I, Â0(k) ≥ ĉ∗(t̂

0)2I, k ∈ Ω̃ \ B(t̂ 0). (6.11)

The operator under the norm sign in (6.1) can be written as

E(k, ε) := Â(k)1/2(Â(k) + ε2I)−1 − (Â(k)1/2P̂ )(Â0(k) + ε2I)−1

− (Â(k)1/2ΛP̂m)(b(D + k)P̂ )(Â0(k) + ε2I)−1. (6.12)

Here P̂m is the orthogonal projection of H∗ = L2(Ω; Cm) onto the subspace of constants.
From (6.11) it follows that

‖Â(k)1/2(Â(k) + ε2I)−1‖H→H ≤ ĉ−1/2
∗ (t̂ 0)−1, k ∈ Ω̃ \ B(t̂ 0), (6.13)

‖(Â0(k) + ε2I)−1‖H→H ≤ ĉ−1
∗ (t̂ 0)−2, k ∈ Ω̃ \ B(t̂ 0). (6.14)

Now we estimate the norm of the operator Â(k)1/2P̂ . We have:

‖Â(k)1/2P̂ u‖2
H = ‖(X̂0 + tX̂1(θ))P̂ u‖2

H∗

= |k|2‖X̂1(θ)P̂ u‖2
H∗

≤ α1‖h‖2
L∞

|k|2‖u‖2
H,

whence
‖Â(k)1/2P̂‖H→H ≤ α

1/2
1 ‖h‖L∞

r1, k ∈ Ω̃. (6.15)

Next, by (6.2) and (4.2),

‖b(D + k)P̂‖H→H ≤ |k||b(θ)| ≤ α
1/2
1 r1, k ∈ Ω̃. (6.16)
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It remains to estimate the norm of the operator Â(k)1/2ΛP̂m. Since Λ(x) is the matrix

with the columns vj(x), j = 1, . . . , m, it suffices to estimate the norm ‖Â(k)1/2vj‖H.
Recall that the function vj satisfies the relation

(g(b(D)vj + ej), b(D)w)H∗
= 0, ∀w ∈ H̃1(Ω; Cn), (6.17)

and also the normalization condition
∫
Ω
vj dx = 0. From (6.17) it follows that

‖g1/2b(D)vj‖H∗
≤ ‖g‖1/2

L∞
|Ω|1/2. (6.18)

Next, decomposing vj in the Fourier series under the normalization condition and taking
(4.6) and (4.2) into account, we obtain that

‖vj‖2
H ≤ (2r0)

−2

∫

Ω

|Dvj|2 dx ≤ (2r0)
−2α−1

0 ‖b(D)vj‖2
H∗

≤ (2r0)
−2α−1

0 ‖g−1‖L∞
‖g1/2b(D)vj‖2

H∗
.

Combining this with (6.18), we obtain the estimate

‖vj‖H ≤ (2r0)
−1α

−1/2
0 ‖g−1‖1/2

L∞
‖g‖1/2

L∞
|Ω|1/2. (6.19)

By (4.2) and (6.19),

‖g1/2b(k)vj‖H∗
≤ ‖g‖1/2

L∞
α

1/2
1 r1‖vj‖H

≤ (2r0)
−1r1α

1/2
1 α

−1/2
0 ‖g−1‖1/2

L∞
‖g‖L∞

|Ω|1/2, k ∈ Ω̃. (6.20)

Now, since

‖Â(k)1/2vj‖H = ‖g1/2b(D + k)vj‖H∗
≤ ‖g1/2b(D)vj‖H∗

+ ‖g1/2b(k)vj‖H∗
,

relations (6.18) and (6.20) imply that

‖Â(k)1/2vj‖H ≤ ‖g‖1/2
L∞

|Ω|1/2
(
1 + r1(2r0)

−1α
1/2
1 α

−1/2
0 ‖g‖1/2

L∞
‖g−1‖1/2

L∞

)
=: C1,

k ∈ Ω̃. (6.21)

From (6.21) it directly follows that

‖Â(k)1/2ΛP̂m‖H∗→H ≤ m1/2|Ω|−1/2 sup
1≤j≤m

‖Â(k)1/2vj‖H

≤ m1/2C1|Ω|−1/2 =: C̃1, k ∈ Ω̃. (6.22)

The inequalities (6.13)–(6.16) and (6.22) lead to the following estimate for the norm
of the operator (6.12):

‖E(k, ε)‖H→H ≤ ĉ−1/2
∗ (t̂ 0)−1 + α

1/2
1 r1ĉ

−1
∗ (t̂ 0)−2(‖g‖1/2

L∞
+ C̃1) =: C2,

k ∈ Ω̃ \ B(t̂ 0). (6.23)

Combining estimates (6.10) and (6.23), we obtain (6.1) with the constant

C3 = max{Ĉ5, C2}. (6.24)

This completes the proof of Theorem 6.1.
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6.4. The case of zero corrector

If
Λ(x)b(θ) = 0, x ∈ Ω, θ ∈ S

d−1, (6.25)

then Ẑ(θ) = 0 for all θ (see (6.6)). In paricular, (6.25) is satisfied if g0 = g (then
Λ(x) = 0). Under condition (6.25), the term in (6.1) which corresponds to the corrector
is equal to zero. Herewith, the constant in estimate (6.1) can be made more precise. In
this case, estimate (6.10) yields that

‖Â(k)1/2
(
(Â(k) + ε2I)−1 − (Â0(k) + ε2I)−1P̂

)
‖H→H ≤ Ĉ5,

|k| ≤ t̂ 0, 0 < ε ≤ 1.

For k ∈ Ω̃ \ B(t̂ 0), we use estimates (6.13), (6.14), and (6.15). Then

‖Â(k)1/2
(
(Â(k) + ε2I)−1 − (Â0(k) + ε2I)−1P̂

)
‖H→H

≤ ĉ−1/2
∗ (t̂ 0)−1 + α

1/2
1 r1ĉ

−1
∗ (t̂ 0)−2‖g‖1/2

L∞
, k ∈ Ω̃ \ B(t̂ 0), 0 < ε ≤ 1.

As a result, we arrive at the following theorem.

Theorem 6.2. Under condition (6.25), we have:

‖Â(k)1/2
(
(Â(k) + ε2I)−1 − (Â0(k) + ε2I)−1P̂

)
‖H→H ≤ C◦

3 ,

k ∈ Ω̃, 0 < ε ≤ 1,

where

C◦
3 = max{Ĉ5, ĉ

−1/2
∗ (t̂ 0)−1 + α

1/2
1 r1ĉ

−1
∗ (t̂ 0)−2‖g‖1/2

L∞
}.

6.5. Approximation with the three-term corrector

In what follows (in order to obtain the interpolational results), besides Theorem 6.1 which

gives approximation for the operator Â(k)1/2(Â(k)+ε2I)−1 with the „one-term corrector“,
we will need another approximation of this operator with the „three-term corrector“. We
apply Theorem 2.6 to the operator Â(t, θ) = Â(k). Now Ξ is the operator Ξ̂(k, ε) defined

by (6.5), and Z is the operator Ẑ(θ) (see (6.6)). The operator N is realized (see [BSu4,
(4.9)]) as

N̂(θ) = b(θ)∗L(θ)b(θ)P̂ ,

where

L(θ) = |Ω|−1

∫

Ω

(Λ(x)∗b(θ)∗g̃(x) + g̃(x)∗b(θ)Λ(x)) dx.

Recall that g̃(x) is the matrix defined by (5.5). Then

N̂(k) := t3N̂(θ) = b(k)∗L(k)b(k)P̂ = b(D + k)∗L(D + k)b(D + k)P̂ . (6.26)

Now we specify the constant C6 from (2.25). Instead of the precise value Ĉ6(θ) (see
(2.29)), we can take the rougher value

Ĉ6 = Ĉ5 + (8δ̂)−1/2ĉ−1
∗ α1‖g‖L∞

+ (2δ̂)−1/2ĉ−2
∗ α2

1‖g‖2
L∞
.
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Now estimate (2.25) means that

‖Â(k)1/2
(
(Â(k) + ε2I)−1 − (Â0(k) + ε2I)−1P̂ −K(k, ε)

)
‖H→H ≤ Ĉ6,

|k| ≤ t̂ 0, 0 < ε ≤ 1. (6.27)

Here

K(k, ε) := Ẑ(k)Ξ̂(k, ε) + Ξ̂(k, ε)Ẑ(k)∗ − Ξ̂(k, ε)N̂(k)Ξ̂(k, ε)

= Λb(k)Ξ̂(k, ε) + Ξ̂(k, ε)b(k)∗Λ∗ − Ξ̂(k, ε)N̂(k)Ξ̂(k, ε). (6.28)

By (6.2), (6.4), (6.5), and (6.26), expression (6.28) can be rewritten as

K(k, ε) = Λb(D + k)(Â0(k) + ε2I)−1P̂ + (Â0(k) + ε2I)−1P̂ b(D + k)∗Λ∗

− (Â0(k) + ε2I)−1b(D + k)∗L(D + k)b(D + k)(Â0(k) + ε2I)−1P̂ . (6.29)

Now we obtain the estimate of the form (6.27) for k ∈ Ω̃\B(t̂ 0), estimating each term
in (6.27) separately. We write the operator under the norm sign in (6.27) as

Â(k)1/2
(
(Â(k) + ε2I)−1 − (Â0(k) + ε2I)−1P̂ −K(k, ε)

)

= Â(k)1/2
(
(Â(k) + ε2I)−1 − (Â0(k) + ε2I)−1P̂

− Ẑ(k)(Â0(k) + ε2I)−1P̂ − P̂ (Â0(k) + ε2I)−1Ẑ(k)∗

+ (Â0(k) + ε2I)−1N̂(k)(Â0(k) + ε2I)−1P̂
)
. (6.30)

First of all, using (6.12), we rewrite inequality (6.23) as

‖Â(k)1/2
(
(Â(k) + ε2I)−1 − (Â0(k) + ε2I)−1P̂

− Ẑ(k)(Â0(k) + ε2I)−1P̂
)
‖H→H ≤ C2, k ∈ Ω̃ \ B(t̂ 0). (6.31)

Next, the norm of the operator Ẑ(θ) satisfies the estimate (see (1.6))

‖Ẑ(θ)‖H→H ≤ (8δ̂)−1/2‖X̂1(θ)‖ ≤ (8δ̂)−1/2α
1/2
1 ‖g‖1/2

L∞
,

whence
‖Ẑ(k)‖H→H = |k|‖Ẑ(θ)‖H→H ≤ r1(8δ̂)

−1/2α
1/2
1 ‖g‖1/2

L∞
, k ∈ Ω̃. (6.32)

As it was shown in [BSu4, (4.27)],

‖N̂(θ)‖H→H ≤ (2δ̂)−1/2α
3/2
1 ‖g‖3/2

L∞
,

whence
‖N̂(k)‖H→H = |k|3‖N̂(θ)‖H→H ≤ r3

1(2δ̂)
−1/2α

3/2
1 ‖g‖3/2

L∞
, k ∈ Ω̃. (6.33)

The term (Â(k)1/2P̂ )(Â0(k) + ε2I)−1Ẑ(k)∗ can be estimated by using (6.14), (6.15),
and (6.32):

‖Â(k)1/2P̂ (Â0(k) + ε2I)−1Ẑ(k)∗‖H→H ≤ r2
1(8δ̂)

−1/2α1ĉ
−1
∗ (t̂ 0)−2‖g‖L∞

,

k ∈ Ω̃ \ B(t̂ 0). (6.34)
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Finally, relations (6.14), (6.15), and (6.33) imply that

‖Â(k)1/2P̂ (Â0(k) + ε2I)−1N̂(k)(Â0(k) + ε2I)−1P̂‖H→H

≤ r4
1(2δ̂)

−1/2α2
1ĉ

−2
∗ (t̂ 0)−4‖g‖2

L∞
, k ∈ Ω̃ \ B(t̂ 0). (6.35)

Now, (6.31), (6.34), and (6.35) yield the following estimate for the operator (6.30):

‖Â(k)1/2
(
(Â(k) + ε2I)−1 − (Â0(k) + ε2I)−1P̂ −K(k, ε)

)
‖H→H ≤ C4,

k ∈ Ω̃ \ B(t̂ 0), (6.36)

where

C4 = C2 + r2
1(8δ̂)

−1/2α1ĉ
−1
∗ (t̂ 0)−2‖g‖L∞

+ r4
1(2δ̂)

−1/2α2
1ĉ

−2
∗ (t̂ 0)−4‖g‖2

L∞
.

Relations (6.27) and (6.36) imply the following result.

Theorem 6.3. Let K(k, ε) be the operator defined by (6.29). Then

‖Â(k)1/2
(
(Â(k) + ε2I)−1 − (Â0(k) + ε2I)−1P̂ −K(k, ε)

)
‖H→H

≤ max{Ĉ6, C4} =: C5, k ∈ Ω̃, 0 < ε ≤ 1.

7 Approximation for the operator Â(k)1/2(Â(k)+ ε2Q)−1

7.1

Now we obtain approximation for the operator-valued function

Â(k)1/2(Â(k) + ε2Q)−1.

Here Q is the operator of multiplication by the Γ-periodic positive (n× n)-matrix-valued
function Q(x) such that

Q,Q−1 ∈ L∞. (7.1)

Let Q be the mean value of the matrix Q(x) over the cell Ω. The following theorem is
the main result of this section.

Theorem 7.1. We have

‖Â(k)1/2
(
(Â(k)+ε2Q)−1−(I+Λb(D + k))(Â0(k)+ε2Q)−1P̂

)
‖H→H ≤ Č3,

k ∈ Ω̃, 0 < ε ≤ 1. (7.2)

Here Λ : H∗ → H is the operator of multiplication by the matrix-valued function Λ(x)

introduced in Subsection 5.1, and P̂ is the orthogonal projection onto the subspace N̂

defined by (5.2). The constant Č3 is defined below in (7.17) and depends only on m, α0,

α1, ‖g‖L∞
, ‖g−1‖L∞

, ‖Q‖L∞
, ‖Q−1‖L∞

, r0, and r1.

We use the following representation (cf. (3.5)) for the matrix Q(x):

Q(x) = (f(x)f(x)∗)−1.

Here f(x) is a Γ-periodic (n×n)-matrix-valued function such that f, f−1 ∈ L∞. Suppose

that the number t0 is defined by (4.16) (and corresponds to the operator A(k) = f ∗Â(k)f).
Estimate (7.2) for |k| ≤ t0 is obtained by applying Theorem 3.1, and the estimate for

k ∈ Ω̃ \ B(t0) is rougher, since each term is estimated separately.
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7.2. The estimate for |k| ≤ t0

We apply Theorem 3.1 to the family Â(t, θ) = Â(k) and the operator Q. The block QbN

of the operator of multiplication by Q(x) in the subspace N̂ (see (5.1)) is the operator of
multiplication by the constant matrix

Q = (ff ∗)−1.

The operator Ξ̂Q (see (3.9)) now takes the form

Ξ̂Q(t, θ, ε) = Ξ̂Q(k, ε) = (t2Ŝ(θ) + ε2Q)−1P̂ = (Ŝ(k) + ε2Q)−1P̂ . (7.3)

The role of the operator ẐQ is played by the operator (see [BSu4, §5])

ẐQ(θ) = ΛQb(θ)P̂ . (7.4)

Here ΛQ is the operator of multiplication by the periodic (n×m)-matrix ΛQ(x) with the

columns v
(Q)
j (x), j = 1, . . . , m, which are the Γ-periodic solutions of the problem

b(D)∗g(x)(b(D)v
(Q)
j (x) + ej) = 0,

∫

Ω

Q(x)v
(Q)
j (x) dx = 0.

Then (see [BSu4, (5.4)])

ΛQ(x) = Λ(x) + Λ0
Q, Λ0

Q = −(Q)−1(QΛ). (7.5)

By the presence of the projection P̂ and by (6.2) and (6.3), relations (7.3) and (7.4) imply
that

(I + tẐQ(θ))Ξ̂Q(t, θ, ε)P̂ = (I + ΛQb(D + k))(Â0(k) + ε2Q)−1P̂ . (7.6)

The estimate (3.14) is applicable. We should only specify the constants. The constants

c∗, δ, t
0 correspond to the operator A(k) = f ∗Â(k)f and are defined by (4.14)–(4.16).

Using the estimate ‖X1(θ)‖ ≤ α
1/2
1 ‖h‖L∞

‖f‖L∞
, instead of more precise values C1(θ) =

β1δ
−1/2‖X1(θ)‖ and C2(θ) = β2δ

−1/2‖X1(θ)‖3 (see Subsection 1.4), we take the following
values:

C1 = β1δ
−1/2α

1/2
1 ‖h‖L∞

‖f‖L∞
,

C2 = β2δ
−1/2α

3/2
1 ‖h‖3

L∞
‖f‖3

L∞
.

Instead of C5(θ) (see (2.24)), we take the overstated value

C5 = (3δ)−1/2 + C1c
−1/2
∗ + C2c

−3/2
∗ + β3(1 + π−1)δ−1/2c−1

∗ α1‖h‖2
L∞

‖f‖2
L∞
. (7.7)

Thus,
C5 = C5(α0, α1, ‖g‖L∞

, ‖g−1‖L∞
, ‖Q‖L∞

, ‖Q−1‖L∞
, r0).

Then the constant in the right-hand side of (3.14) can be replaced by the rougher value

C5‖f‖L∞
= C5‖Q−1‖1/2

L∞
. Applying Theorem 3.1 and taking (7.6) into account, we obtain:

‖Â(k)1/2
(
(Â(k) + ε2Q)−1 − (I + ΛQb(D + k))(Â0(k) + ε2Q)−1P̂

)
‖H→H

≤ C5‖Q−1‖1/2
L∞
, |k| ≤ t0, 0 < ε ≤ 1. (7.8)
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Using (7.5), show that one can replace ΛQ by Λ in (7.8). This will influence only on
the constant in estimate. We have:

‖Â(k)1/2Λ0
Qb(D + k)(Â0(k) + ε2Q)−1P̂‖H→H

= ‖g1/2b(D + k)Λ0
Qb(D + k)(Â0(k) + ε2Q)−1P̂‖H→H∗

≤ ‖g‖1/2
L∞

sup
k

|b(k)Λ0
Qb(k)(Ŝ(k) + ε2Q)−1| ≤ ‖g‖1/2

L∞
α1ĉ

−1
∗ |Λ0

Q|. (7.9)

We have taken into account the following relation, which is valid because of the presence
of the projection P̂ :

b(D + k)Λ0
Qb(D + k)(Â0(k) + ε2Q)−1P̂ = b(k)Λ0

Qb(k)(Ŝ(k) + ε2Q)−1P̂ ,

and used the estimates |b(k)| ≤ α
1/2
1 |k| and |(Ŝ(k)+ε2Q)−1| ≤ ĉ−1

∗ |k|−2 (see (4.2), (4.19),
and (5.3)).

Next, we have |(Q)−1| ≤ ‖Q−1‖L∞
. Besides, as it was shown in [BSu4, (7.14)],

|QΛ| ≤ m1/2(2r0)
−1α

−1/2
0 ‖g‖1/2

L∞
‖g−1‖1/2

L∞
‖Q‖L∞

. (7.10)

Then, by (7.9) and (7.5), we obtain:

‖Â(k)1/2Λ0
Qb(D + k)(Â0(k) + ε2Q)−1P̂‖H→H

≤ m1/2(2r0)
−1α1α

−1/2
0 ĉ−1

∗ ‖g‖L∞
‖g−1‖1/2

L∞
‖Q‖L∞

‖Q−1‖L∞
. (7.11)

Now, relations (7.8), (7.11), and (7.5) imply that

‖Â(k)1/2
(
(Â(k) + ε2Q)−1 − (I + Λb(D + k))(Â0(k) + ε2Q)−1P̂

)
‖H→H

≤ C5‖Q−1‖1/2
L∞

+m1/2(2r0)
−1α1α

−1/2
0 ĉ−1

∗ ‖g‖L∞
‖g−1‖1/2

L∞
‖Q‖L∞

‖Q−1‖L∞

=: Č0, |k| ≤ t0, 0 < ε ≤ 1. (7.12)

7.3. The estimate for k ∈ Ω̃ \ B(t0)

The operator under the norm sign in (7.2) can be represented as

EQ(k, ε) := Â(k)1/2(Â(k) + ε2Q)−1 − (Â(k)1/2P̂ )(Â0(k) + ε2Q)−1

− (Â(k)1/2ΛP̂m)(b(D + k)P̂ )(Â0(k) + ε2Q)−1. (7.13)

By (4.17) with r = t0, we have (cf. (6.11))

Â(k) ≥ ĉ∗(t
0)2I, Â0(k) ≥ ĉ∗(t

0)2I, k ∈ Ω̃ \ B(t0).

Hence,
‖Â(k)1/2(Â(k) + ε2Q)−1‖H→H ≤ ĉ−1/2

∗ (t0)−1, k ∈ Ω̃ \ B(t0), (7.14)

‖(Â0(k) + ε2Q)−1‖H→H ≤ ĉ−1
∗ (t0)−2, k ∈ Ω̃ \ B(t0). (7.15)

The operator Â(k)1/2P̂ is estimated in (6.15), the operator b(D + k)P̂ is estimated in

(6.16), while (6.22) gives the estimate for the operator Â(k)1/2ΛP̂m. As a result, using
(7.13)–(7.15), we obtain:

‖EQ(k, ε)‖H→H ≤ ĉ−1/2
∗ (t0)−1 + α

1/2
1 r1ĉ

−1
∗ (t0)−2(‖g‖1/2

L∞
+ C̃1) =: Č2,

k ∈ Ω̃ \ B(t0). (7.16)

Combining estimates (7.12) and (7.16), we arrive at (7.2) with

Č3 = max{Č0, Č2}. (7.17)

This completes the proof of Theorem 7.1.
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7.4. The case of zero corrector

If condition (6.25) is satisfied, then the term in (7.2) which corresponds to the corrector
is equal to zero. Herewith, the constant in estimate (7.2) can be refined. Under condition
(6.25), relation (7.5) implies that

ΛQ(x)b(θ) = 0, x ∈ Ω, θ ∈ S
d−1.

Then (7.8) turns into the estimate

‖Â(k)1/2
(
(Â(k) + ε2Q)−1 − (Â0(k) + ε2Q)−1P̂

)
‖H→H ≤ C5‖Q−1‖1/2

L∞
,

|k| ≤ t0, 0 < ε ≤ 1.

For k ∈ Ω̃ \ B(t0), we use estimates (7.14), (7.15), and (6.15):

‖Â(k)1/2
(
(Â(k) + ε2Q)−1 − (Â0(k) + ε2Q)−1P̂

)
‖H→H

≤ ĉ−1/2
∗ (t0)−1 + α

1/2
1 r1ĉ

−1
∗ (t0)−2‖g‖1/2

L∞
, k ∈ Ω̃ \ B(t0).

As a result, we arrive at the following theorem.

Theorem 7.2. Under condition (6.25), we have

‖Â(k)1/2
(
(Â(k) + ε2Q)−1 − (Â0(k) + ε2Q)−1P̂

)
‖H→H ≤ Č◦

3 ,

k ∈ Ω̃, 0 < ε ≤ 1,

where

Č◦
3 = max{C5‖Q−1‖1/2

L∞
, ĉ−1/2

∗ (t0)−1 + α
1/2
1 r1ĉ

−1
∗ (t0)−2‖g‖1/2

L∞
}.

7.5. Approximation with the three-term corrector

In what follows (with a view to interpolation), besides approximation (7.2), we will need

another approximation for the operator Â(k)1/2(Â(k) + ε2Q)−1, namely, the approxima-

tion with the „three-term corrector“. We apply Theorem 3.2 to the operator Â(t, θ) =

Â(k). Now Ξ̂Q = Ξ̂Q(k, ε) is the operator (7.3), and ẐQ = ẐQ(θ) is the operator (7.4).

The operator N̂Q is realized (see [BSu4, (5.13)]) as

N̂Q(θ) = b(θ)∗LQ(θ)b(θ)P̂ ,

where

LQ(θ) = |Ω|−1

∫

Ω

(ΛQ(x)∗b(θ)∗g̃(x) + g̃(x)∗b(θ)ΛQ(x)) dx.

We put ẐQ(k) = |k|ẐQ(θ), N̂Q(k) = |k|3N̂Q(θ). Instead of the value

C6(θ) = C5(θ) + (8δ)−1/2‖X1(θ)‖2c−1
∗ + (2δ)−1/2‖X1(θ)‖4c−2

∗

(see (2.29)), we take the value

C6 = C5 + (8δ)−1/2c−1
∗ α1‖g‖L∞

‖Q−1‖L∞
+ (2δ)−1/2c−2

∗ α2
1‖g‖2

L∞
‖Q−1‖2

L∞
,

where the constant C5 is defined by (7.7).
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Applying Theorem 3.2, we obtain the estimate

‖Â(k)1/2
(
(Â(k) + ε2Q)−1 − (Â0(k) + ε2Q)−1P̂ −KQ(k, ε)

)
‖H→H

≤ C6‖Q−1‖1/2
L∞
, |k| ≤ t0, 0 < ε ≤ 1. (7.18)

Here

KQ(k, ε) := ẐQ(k)Ξ̂Q(k, ε) + Ξ̂Q(k, ε)ẐQ(k)∗ − Ξ̂Q(k, ε)N̂Q(k)Ξ̂Q(k, ε)

= ΛQb(D + k)(Â0(k) + ε2Q)−1P̂ + (Â0(k) + ε2Q)−1P̂ b(D + k)∗Λ∗
Q

− (Â0(k) + ε2Q)−1b(D + k)∗LQ(D + k)b(D + k)(Â0(k) + ε2Q)−1P̂ .

This expression can be transformed to the following form (cf. [BSu4, (7.6)]):

KQ(k, ε) = Λb(D + k)(Â0(k) + ε2Q)−1P̂ + (Â0(k) + ε2Q)−1P̂ b(D + k)∗Λ∗

− (Â0(k) + ε2Q)−1b(D + k)∗L(D + k)b(D + k)(Â0(k) + ε2Q)−1P̂

− (Â0(k)+ε2Q)−1
(
ε2b(D+k)∗(QΛ)∗+ε2(QΛ)b(D+k)

)
(Â0(k)+ε2Q)−1P̂ . (7.19)

Representation (7.19) contains Λ and L(D + k) instead of ΛQ and LQ(D + k).

Now we obtain the estimate of the form (7.18) for k ∈ Ω̃ \ B(t0). Inequality (7.16) in
combination with (7.13) means that

‖Â(k)1/2
(
(Â(k) + ε2Q)−1 − (I + Λb(D + k))(Â0(k)+ε2Q)−1P̂

)
‖H→H ≤ Č2,

k ∈ Ω̃ \ B(t0). (7.20)

The estimate for the term

Â(k)1/2(Â0(k) + ε2Q)−1P̂ b(D + k)∗Λ∗ = (Â(k)1/2P̂ )(Â0(k) + ε2Q)−1Ẑ(k)∗

can be obtained on the basis of (6.15), (7.15) and (6.32):

‖Â(k)1/2(Â0(k) + ε2Q)−1P̂ b(D + k)∗Λ∗‖H→H

≤ r2
1(8δ̂)

−1/2α1‖g‖L∞
ĉ−1
∗ (t0)−2, k ∈ Ω̃ \ B(t0). (7.21)

The term

Â(k)1/2(Â0(k) + ε2Q)−1b(D + k)∗L(D + k)b(D + k)(Â0(k) + ε2Q)−1P̂

= (Â(k)1/2P̂ )(Â0(k) + ε2Q)−1N̂(k)(Â0(k) + ε2Q)−1P̂

is estimated with the help of (6.15), (7.15), and (6.33):

‖Â(k)1/2(Â0(k)+ε2Q)−1b(D+k)∗L(D+k)b(D+k)(Â0(k)+ε2Q)−1P̂‖H→H

≤ r4
1(2δ̂)

−1/2α2
1‖g‖2

L∞
ĉ−2
∗ (t0)−4, k ∈ Ω̃ \ B(t0). (7.22)

Finally, the operator

Â(k)1/2(Â0(k) + ε2Q)−1

×
(
ε2b(D + k)∗(QΛ)∗ + ε2(QΛ)b(D + k)

)
(Â0(k) + ε2Q)−1P̂
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is estimated by using of (6.15), (6.16), (7.10), and (7.15):

‖Â(k)1/2(Â0(k) + ε2Q)−1

×
(
ε2b(D + k)∗(QΛ)∗ + ε2(QΛ)b(D + k)

)
(Â0(k) + ε2Q)−1P̂‖H→H

≤ r2
1r

−1
0 α1α

−1/2
0 m1/2ĉ−2

∗ (t0)−4‖g‖L∞
‖g−1‖1/2

L∞
‖Q‖L∞

,

k ∈ Ω̃ \ B(t0), 0 < ε ≤ 1. (7.23)

As a result, combining (7.20)–(7.23) with (7.19), we obtain the estimate

‖Â(k)1/2
(
(Â(k) + ε2Q)−1 − (Â0(k)+ε2Q)−1P̂ −KQ(k, ε)

)
‖H→H ≤ Č4,

k ∈ Ω̃ \ B(t0), 0 < ε ≤ 1, (7.24)

where

Č4 = Č2 + r2
1(8δ̂)

−1/2α1‖g‖L∞
ĉ−1
∗ (t0)−2 + r4

1(2δ̂)
−1/2α2

1‖g‖2
L∞
ĉ−2
∗ (t0)−4

+ r2
1r

−1
0 α1α

−1/2
0 m1/2ĉ−2

∗ (t0)−4‖g‖L∞
‖g−1‖1/2

L∞
‖Q‖L∞

.

Relations (7.18) and (7.24) imply the following theorem.

Theorem 7.3. Let KQ(k, ε) be the operator defined by (7.19). We have

‖Â(k)1/2
(
(Â(k) + ε2Q)−1 − (Â0(k) + ε2Q)−1P̂ −KQ(k, ε)

)
‖H→H

≤ max{C6‖Q−1‖1/2
L∞
, Č4} =: Č5, k ∈ Ω̃, 0 < ε ≤ 1.

8 Approximation for the operator Â1/2(Â + ε2I)−1

8.1

We put
G = L2(R

d; Cn), G∗ = L2(R
d; Cm).

Now we return to the operator Â = b(D)∗g(x)b(D) acting in the space G. Let g0 be

the effective matrix, and let Â0 = b(D)∗g0b(D) be the effective operator. Let V be the
Gelfand transform defined in Subsection 4.3. Using decomposition (4.13) for the operator

Â, we represent the resolvent (Â + ε2I)−1 as

(Â + ε2I)−1 = V−1

(∫

eΩ

⊕(Â(k) + ε2I)−1 dk

)
V.

The similar expansion is valid for (Â0 + ε2I)−1. Under the Gelfand transformation, the
operator b(D) turns into

∫
eΩ
⊕b(D + k) dk, while the operator of multiplication by the

periodic matrix-valued function Λ(x) turns into the operator of multiplication by the
same matrix in the fibers of the direct integral K (see (4.7)). Besides, we will need the
operator

Π := V−1[P̂ ]V,
acting in G. Here [P̂ ] is the projection in K, which acts in the fibers as the operator P̂ (the
operator of averaging over Ω). As it was shown in [BSu4, (6.8)], Π is a pseudodifferential
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operator in G with the symbol χeΩ(ξ), where χeΩ is the characteristic function of the set Ω̃.
Thus,

Π = F∗[χeΩ]F , (8.1)

where F is the Fourier operator in G.
Applying the Gelfand transformation to the operators in (6.1), we arrive at the fol-

lowing result.

Theorem 8.1. Let Â = b(D)∗g(x)b(D), and let Â0 = b(D)∗g0b(D) be the effective

operator. Let Λ : G∗ → G be the operator of multiplication by the matrix-valued function

Λ(x) introduced in Subsection 5.1. Let Π be the operator (8.1). Then we have

‖Â1/2
(
(Â + ε2I)−1 − (I + Λb(D))(Â0 + ε2I)−1Π

)
‖G→G ≤ C3, 0 < ε ≤ 1. (8.2)

The constant C3 is defined by (6.24) and depends only on m, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

, r0,
and r1.

8.2. „Elimination“ of the operator Π

Now our goal is to find conditions, under which the pseudodifferential operator Π in (8.2)
can be replaced by I. It turns out that, in the principal term of approximation, i. e., in
the operator Â1/2(Â0 +ε2I)−1Π, such replacement is always possible (only the constant in
the remainder estimate will change), while in the corrector term it is not always possible
to replace Π by I.

We consider the operator

Â1/2(Â0 + ε2I)−1(I − Π). (8.3)

The operator (Â0 + ε2I)−1(I − Π) is the pseudodifferential operator of order (−2) with
the symbol

(1 − χeΩ(ξ))(b(ξ)∗g0b(ξ) + ε21n)−1.

We estimate the norm of the operator (8.3). According to (4.19) and (5.3), we have

b(ξ)∗g0b(ξ) ≥ ĉ∗|ξ|21n, ξ ∈ R
d. (8.4)

Together with (4.2), this implies that

|b(ξ)(b(ξ)∗g0b(ξ) + ε21n)−1| ≤ α
1/2
1 ĉ−1

∗ |ξ|−1. (8.5)

Then for u ∈ G we have:

‖Â1/2(Â0 + ε2I)−1(I − Π)u‖G

= ‖g1/2b(D)(Â0 + ε2I)−1(I − Π)u‖G∗

≤ ‖g‖1/2
L∞

sup
|ξ|≥r0

|b(ξ)(b(ξ)∗g0b(ξ) + ε21n)−1| ‖u‖G

≤ ‖g‖1/2
L∞
α

1/2
1 ĉ−1

∗ r−1
0 ‖u‖G.

Thus,
‖Â1/2(Â0 + ε2I)−1(I − Π)‖G→G ≤ ‖g‖1/2

L∞
α

1/2
1 ĉ−1

∗ r−1
0 . (8.6)

Now Theorem 8.1 and estimate (8.6) lead to the following result.
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Theorem 8.2. Under the conditions of Theorem 8.1, we have

‖Â1/2
(
(Â + ε2I)−1 − (Â0 + ε2I)−1 − Λb(D)(Â0 + ε2I)−1Π

)
‖G→G

≤ C3 + ‖g‖1/2
L∞
α

1/2
1 ĉ−1

∗ r−1
0 =: C6, 0 < ε ≤ 1.

In order to eliminate Π in the corrector, we need additional assumptions on Λ(x)
(which in a number of cases are valid automatically). The operator

Σ(ε) := b(D)(Â0 + ε2I)−1(I − Π)

continuously maps G = L2(R
d; Cn) to G1

∗ = H1(Rd; Cm). By (8.5), we have

‖Σ(ε)‖G→G1
∗

= sup
ξ∈Rd

(1 + |ξ|2)1/2|b(ξ)(b(ξ)∗g0b(ξ) + ε21n)−1|(1 − χeΩ(ξ))

≤ α
1/2
1 ĉ−1

∗ sup
|ξ|≥r0

(1 + |ξ|2)1/2|ξ|−1 ≤ α
1/2
1 ĉ−1

∗ (1 + r−2
0 )1/2. (8.7)

Thus, for the replacement of Π by I in the term Â1/2Λb(D)(Â0 + ε2I)−1Π, it suffices

to assume that the operator Â1/2Λ continuosly maps G1
∗ to G. The last condition is

equivalent to the condition that the operator g1/2b(D)Λ continuously maps G1
∗ to G∗.

Since Λ(x) is the matrix with the columns vj(x), j = 1, . . . , m, then

‖g1/2b(D)Λ‖G1
∗→G∗

≤
( m∑

j=1

‖g1/2b(D)[vj ]‖2
H1(Rd)→G∗

)1/2

. (8.8)

We prove the following lemma (cf. [Su2, Proposition 8.2]).

Lemma 8.3. Suppose that the solutions vj of the problem (5.4) with C = ej satisfy

condition

vj ∈ L∞, j = 1, . . . , m. (8.9)

Then the operator g1/2b(D)[vj ] continuously maps H1(Rd) to G∗, and

‖g1/2b(D)[vj ]‖H1(Rd)→G∗
≤ C∇

j , (8.10)

C∇
j := ‖g‖1/2

L∞

(√
2 + (

√
8 + 1)α

1/2
1 d1/2‖vj‖L∞

+
√

2α
1/4
1 d1/2‖vj‖1/2

L∞

)
. (8.11)

Proof. We have

b(D) =

d∑

l=1

blDl, (8.12)

where bl are constant (m×n)-matrices. From (4.2) it follows that |bl| ≤ α
1/2
1 , l = 1, . . . , d.

Let u ∈ H1(Rd). Then

g1/2b(D)(vju) = g1/2(b(D)vj)u+ g1/2

d∑

l=1

(blDlu)vj. (8.13)

By (8.9),

‖g1/2

d∑

l=1

(blDlu)vj‖G∗
≤ ‖g‖1/2

L∞
‖vj‖L∞

( d∑

l=1

|bl|2
)1/2

‖u‖H1(Rd)

≤ ‖g‖1/2
L∞

‖vj‖L∞
α

1/2
1 d1/2‖u‖H1(Rd). (8.14)
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Next, relation (5.4) with C = ej implies the following identity:

∫

Rd

〈g(x)(b(D)vj + ej), b(D)w〉 dx = 0 (8.15)

for arbitrary w ∈ G1 = H1(Rd; Cn) such that w(x) = 0 for |x| > R (with some R > 0).
Let u ∈ C∞

0 (Rd). We put w(x) = |u(x)|2vj(x). Then

b(D)w = |u|2b(D)vj +

d∑

l=1

bl(Dl|u|2)vj.

Substituting this in (8.15), we obtain that

∫

Rd

〈g(x)(b(D)vj + ej), |u|2b(D)vj +

d∑

l=1

bl(Dl|u|2)vj〉 dx = 0.

Hence,

∫

Rd

|g1/2b(D)vj |2|u|2 dx = −
∫

Rd

〈g1/2ej , g
1/2b(D)vj〉|u|2 dx

−
∫

Rd

〈g1/2b(D)vj , g
1/2

d∑

l=1

bl(Dl|u|2)vj〉 dx−
∫

Rd

〈gej,
d∑

l=1

bl(Dl|u|2)vj〉 dx.

The first term on the right can be estimated by

∫

Rd

(
|g1/2ej |2 +

1

4
|g1/2b(D)vj |2

)
|u|2 dx

≤ ‖g‖L∞

∫

Rd

|u|2 dx +
1

4

∫

Rd

|g1/2b(D)vj |2|u|2 dx,

and the second term is estimated by

‖g‖1/2
L∞

∫

Rd

|g1/2b(D)vj |
( d∑

l=1

2|bl||Dlu||u|
)
|vj | dx

≤ 1

4

∫

Rd

|g1/2b(D)vj |2|u|2 dx + 4‖g‖L∞

∫

Rd

( d∑

l=1

|bl||Dlu|
)2

|vj |2 dx

≤ 1

4

∫

Rd

|g1/2b(D)vj |2|u|2 dx + 4‖g‖L∞
‖vj‖2

L∞
α1d

∫

Rd

|∇u|2 dx.

The third term is estimated by

‖g‖L∞

∫

Rd

( d∑

l=1

2|bl||Dlu||u|
)
|vj| dx ≤ ‖g‖L∞

‖vj‖L∞
α

1/2
1

∫

Rd

(|∇u|2 + d|u|2) dx.
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As a result, we obtain:

1

2

∫

Rd

|g1/2b(D)vj |2|u|2 dx ≤ ‖g‖L∞

∫

Rd

|u|2 dx

+ 4‖g‖L∞
‖vj‖2

L∞
α1d

∫

Rd

|∇u|2 dx+‖g‖L∞
‖vj‖L∞

α
1/2
1

∫

Rd

(|∇u|2+d|u|2) dx.

Hence, ∫

Rd

|g1/2b(D)vj |2|u|2 dx ≤ C0
j ‖u‖2

H1(Rd),

C0
j = 2‖g‖L∞

(1 + 4α1d‖vj‖2
L∞

+ α
1/2
1 d‖vj‖L∞

).

Combining this with (8.13) and (8.14), we obtain that

‖g1/2b(D)(vju)‖G∗
≤
(
‖g‖1/2

L∞
‖vj‖L∞

α
1/2
1 d1/2 + (C0

j )
1/2
)
‖u‖H1(Rd),

which yields (8.10) and (8.11).

We introduce the following condition.

Condition 8.4. Suppose that the solutions vj of the problem (5.4) with C = ej satisfy

vj ∈ L∞, j = 1, . . . , m. (8.16)

Consider the operator

Â1/2Λb(D)(Â0 + ε2I)−1(I − Π) = Â1/2ΛΣ(ε).

Using (8.7), (8.8), and Lemma 8.3, under Condition 8.4, we obtain the following estimate:

‖Â1/2ΛΣ(ε)‖G→G = ‖g1/2b(D)ΛΣ(ε)‖G→G∗

≤ ‖Σ(ε)‖G→G1
∗
‖g1/2b(D)Λ‖G1

∗→G∗

≤ α
1/2
1 ĉ−1

∗ (1 + r−2
0 )1/2

( m∑

j=1

(C∇
j )2

)1/2

. (8.17)

Combining this with Theorem 8.2, we arrive at the following result.

Theorem 8.5. Suppose that conditions of Theorem 8.1 are satisfied. Suppose also that

Condition 8.4 is valid. Then

‖Â1/2
(
(Â + ε2I)−1 − (I + Λb(D))(Â0 + ε2I)−1

)
‖G→G

≤ C6 + α
1/2
1 ĉ−1

∗ (1 + r−2
0 )1/2

( m∑

j=1

(C∇
j )2

)1/2

=: C7, 0 < ε ≤ 1.

Now we find conditions which guarantee the validity of Condition 8.4.

Condition 8.6. Suppose that at least one of the following assumptions is true:
1◦) d ≤ 2;

2◦) d ≥ 1 and Â = D∗g(x)D, where the matrix g(x) has real entries;
3◦) d ≥ 1 and g0 = g (i. e., representations (5.9) are valid).
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Lemma 8.7. Condition 8.6 guarantees that Condition 8.4 is satisfied.

Proof. 1◦. The solutions vj satisfy condition vj ∈ W̃ 1
p (Ω) with some p > 2 (see [G]). If

d ≤ 2, then (8.16) follows, by the embedding W 1
p (Ω) ⊂ L∞.

2◦. For the operator Â = D∗g(x)D, where the matrix g(x) has real entries, the bounded-
ness of the solutions vj follows from Theorem 13.1 of Chapter III in the book [LaU].
3◦. In the case where g0 = g, the relation (8.16) was proved in Proposition 6.9 of [BSu4].

Remark 8.8. Under Condition 8.6(2◦), the norms ‖vj‖L∞
are estimated by the constant

depending only on ‖g‖L∞
, ‖g−1‖L∞

, d, and Ω. Under Condition 8.6(3◦), the norms ‖vj‖L∞

can be estimated by the constant depending on α0, α1, ‖g‖L∞
, ‖g−1‖L∞

, m, n, d, and on
parameters of the lattice Γ.

Remark 8.9. Condition 8.4 can be also guaranteed by some smoothness assumptions on
the matrix-valued function g(x).

8.3. The case of zero corrector

Under condition (6.25), by the Gelfand transformation, Theorem 6.2 yields the following
estimate:

‖Â1/2
(
(Â + ε2I)−1 − (Â0 + ε2I)−1Π

)
‖G→G ≤ C◦

3 , 0 < ε ≤ 1. (8.18)

Using (8.6), we can „eliminate“ the operator Π in (8.18). As a result, we obtain the
following theorem.

Theorem 8.10. Under condition (6.25), we have

‖Â1/2
(
(Â + ε2I)−1 − (Â0 + ε2I)−1

)
‖G→G

≤ C◦
3 + ‖g‖1/2

L∞
α

1/2
1 ĉ−1

∗ r−1
0 =: C◦

6 , 0 < ε ≤ 1.

8.4. Approximation with the three-term corrector

By the Gelfand transformation, the following estimate is deduced from Theorem 6.3:

‖Â1/2
(
(Â + ε2I)−1 − (Â0 + ε2I)−1Π −K(ε)

)
‖G→G ≤ C5, 0 < ε ≤ 1, (8.19)

where

K(ε) = Λb(D)(Â0 + ε2I)−1Π + (Â0 + ε2I)−1Πb(D)∗Λ∗

− (Â0 + ε2I)−1b(D)∗L(D)b(D)(Â0 + ε2I)−1Π. (8.20)

Using (8.6), we can replace Π by I in the term Â1/2(Â0 + ε2I)−1Π in (8.19). This will
change only the constant in the estimate. We have:

‖Â1/2
(
(Â + ε2I)−1 − (Â0 + ε2I)−1 −K(ε)

)
‖G→G

≤ C5 + ‖g‖1/2
L∞
α

1/2
1 ĉ−1

∗ r−1
0 , 0 < ε ≤ 1. (8.21)

Similarly, Π can be replaced by I in the last term in K(ε). Indeed, we denote (cf. [BSu4,
(6.16)])

σ(ξ)=(1−χeΩ(ξ))(b(ξ)∗g0b(ξ)+ε21n)−1b(ξ)∗L(ξ)b(ξ)(b(ξ)∗g0b(ξ)+ε21n)−1,

ξ ∈ R
d.
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As it was shown in [BSu4, Subsection 6.3],

|σ(ξ)| ≤
√

2|ξ|−1r−1
0 α

3/2
1 α

−5/2
0 ‖g‖3/2

L∞
‖g−1‖5/2

L∞
, |ξ| ≥ r0,

and σ(ξ) = 0 for |ξ| < r0. We have:

‖Â1/2(Â0 + ε2I)−1b(D)∗L(D)b(D)(Â0 + ε2I)−1(I − Π)‖G→G

= ‖g1/2b(D)(Â0 + ε2I)−1b(D)∗L(D)b(D)(Â0 + ε2I)−1(I − Π)‖G→G∗

≤ ‖g‖1/2
L∞

sup
ξ∈Rd

|b(ξ)σ(ξ)| ≤
√

2r−1
0 α2

1α
−5/2
0 ‖g‖2

L∞
‖g−1‖5/2

L∞
. (8.22)

The following result is a consequence of (8.20)–(8.22).

Theorem 8.11. We have

‖Â1/2
(
(Â + ε2I)−1 − (Â0 + ε2I)−1 − K̃(ε)

)
‖G→G ≤ C8, 0 < ε ≤ 1,

where

K̃(ε) = Λb(D)(Â0 + ε2I)−1Π + (Â0 + ε2I)−1Πb(D)∗Λ∗

− (Â0 + ε2I)−1b(D)∗L(D)b(D)(Â0 + ε2I)−1,

C8 = C5 + ‖g‖1/2
L∞
α

1/2
1 ĉ−1

∗ r−1
0 +

√
2r−1

0 α2
1α

−5/2
0 ‖g‖2

L∞
‖g−1‖5/2

L∞
.

It is possible to „eliminate“ the projection Π in the first two terms of the operator
K̃(ε) under Condition 8.4. As for the first term, estimate (8.17) required for this has been
already obtained. In order to do this in the second term, we consider the operator

Â1/2(Â0 + ε2I)−1(I − Π)b(D)∗Λ∗.

Under Condition 8.4, the operator of multiplication by Λ∗(x) continuously maps G to G∗,
and

‖Λ∗‖G→G∗
= ‖Λ‖L∞

. (8.23)

The operator (Â0 + ε2I)−1(I − Π)b(D)∗ is the pseudodifferential operator of order (−1)
with the symbol

(1 − χeΩ(ξ))(b(ξ)∗g0b(ξ) + ε21n)−1b(ξ)∗,

therefore, it continuously maps G∗ to G1 = H1(Rd; Cn), and (cf. (8.7))

‖(Â0 + ε2I)−1(I − Π)b(D)∗‖G∗→G1

≤ sup
|ξ|≥r0

|(b(ξ)∗g0b(ξ) + ε21n)−1b(ξ)∗|(1 + |ξ|2)1/2 ≤ α
1/2
1 ĉ−1

∗ (1 + r−2
0 )1/2. (8.24)

Finally, the operator Â1/2 is continuous from G1 to G, and

‖Â1/2u‖G = ‖g1/2b(D)u‖G∗
≤ ‖g‖1/2

L∞
α

1/2
1 ‖u‖G1 ,

whence
‖Â1/2‖G1→G ≤ α

1/2
1 ‖g‖1/2

L∞
. (8.25)

From (8.23)–(8.25) it follows that

‖Â1/2(Â0 + ε2I)−1(I − Π)b(D)∗Λ∗‖G→G ≤ α1ĉ
−1
∗ (1 + r−2

0 )1/2‖g‖1/2
L∞

‖Λ‖L∞
. (8.26)

Combining Theorem 8.11 with estimates (8.17) and (8.26), we arrive at the following
result.
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Theorem 8.12. Under Condition 8.4, we have:

‖Â1/2
(
(Â + ε2I)−1 − (Â0 + ε2I)−1 −K0(ε)

)
‖G→G ≤ C9, 0 < ε ≤ 1,

where
K0(ε) = Λb(D)(Â0 + ε2I)−1 + (Â0 + ε2I)−1b(D)∗Λ∗

− (Â0 + ε2I)−1b(D)∗L(D)b(D)(Â0 + ε2I)−1,

C9 = C8 + α
1/2
1 ĉ−1

∗ (1 + r−2
0 )1/2

( m∑

j=1

(C∇
j )2

)1/2

+ α1ĉ
−1
∗ (1 + r−2

0 )1/2‖g‖1/2
L∞

‖Λ‖L∞
.

9 Approximation for the operator Â1/2(Â + ε2Q)−1

9.1

Using Theorem 7.1 and applying the Gelfand transformation, we arrive at the following
result.

Theorem 9.1. Let Â = b(D)∗g(x)b(D), and let Â0 = b(D)∗g0b(D) be the effective

operator. Let Q be the operator of multiplication by the Γ-periodic positive (n×n)-matrix-

valued function Q(x) satisfying condition (7.1). Let Q be the mean value of the matrix

Q(x) over the cell Ω. Let Λ : G∗ → G be the operator of multiplication by the matrix-

valued function Λ(x) introduced in Subsection 5.1. Let Π be the operator (8.1). Then

‖Â1/2
(
(Â + ε2Q)−1 − (I + Λb(D))(Â0 + ε2Q)−1Π

)
‖G→G ≤ Č3, 0 < ε ≤ 1.

The constant Č3 is defined by (7.17) and depends only on m, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

,

‖Q‖L∞
, ‖Q−1‖L∞

, r0, and r1.

9.2. Elimination of the operator Π

The following estimate is obtained in the same way as estimate (8.6):

‖Â1/2(Â0 + ε2Q)−1(I − Π)‖G→G ≤ ‖g‖1/2
L∞
α

1/2
1 ĉ−1

∗ r−1
0 . (9.1)

Combining Theorem 9.1 with (9.1), we arrive at the following statement.

Theorem 9.2. Under conditions of Theorem 9.1, we have:

‖Â1/2
(
(Â + ε2Q)−1 − (Â0 + ε2Q)−1 − Λb(D)(Â0 + ε2Q)−1Π

)
‖G→G

≤ Č3 + ‖g‖1/2
L∞
α

1/2
1 ĉ−1

∗ r−1
0 = Č6, 0 < ε ≤ 1.

Next, similarly to (8.7), we obtain:

‖b(D)(Â0 + ε2Q)−1(I − Π)‖G→G1
∗
≤ α

1/2
1 ĉ−1

∗ (1 + r−2
0 )1/2. (9.2)

Under Condition 8.4, relations (9.2), (8.8), and Lemma 8.3 imply the following estimate
(cf. (8.17)):

‖Â1/2Λb(D)(Â0 + ε2Q)−1(I − Π)‖G→G

≤ α
1/2
1 ĉ−1

∗ (1 + r−2
0 )1/2

( m∑

j=1

(C∇
j )2

)1/2

. (9.3)

Combining this with Theorem 9.2, we obtain the following result.

42



Theorem 9.3. Suppose that conditions of Theorem 9.1 are satisfied. Besides, suppose

that Condition 8.4 is valid. Then

‖Â1/2
(
(Â + ε2Q)−1 − (I + Λb(D))(Â0 + ε2Q)−1

)
‖G→G ≤ Č7, 0 < ε ≤ 1,

Č7 = Č6 + α
1/2
1 ĉ−1

∗ (1 + r−2
0 )1/2

( m∑

j=1

(C∇
j )2

)1/2

.

9.3. The case of zero corrector

Under condition (6.25), using Theorem 7.2 and applying the Gelfand transformation, we
obtain the following estimate:

‖Â1/2
(
(Â + ε2Q)−1 − (Â0 + ε2Q)−1Π

)
‖G→G ≤ Č◦

3 , 0 < ε ≤ 1.

Applying (9.1), we arrive at the following result.

Theorem 9.4. Under condition (6.25), we have

‖Â1/2
(
(Â + ε2Q)−1 − (Â0 + ε2Q)−1

)
‖G→G

≤ Č◦
3 + ‖g‖1/2

L∞
α

1/2
1 ĉ−1

∗ r−1
0 =: Č◦

6 , 0 < ε ≤ 1.

9.4. Approximation with the three-term corrector

Using Theorem 7.3, with the help of the Gelfand transformation, we obtain the following
estimate:

‖Â1/2
(
(Â + ε2Q)−1 − (Â0 + ε2Q)−1Π −KQ(ε)

)
‖G→G ≤ Č5, 0 < ε ≤ 1, (9.4)

where

KQ(ε) = Λb(D)(Â0 + ε2Q)−1Π + (Â0 + ε2Q)−1Πb(D)∗Λ∗

− (Â0 + ε2Q)−1(b(D)∗L(D)b(D) + ε2b(D)∗(QΛ)∗ + ε2(QΛ)b(D))

× (Â0 + ε2Q)−1Π. (9.5)

Using (9.1), we can replace Π by I in the term Â1/2(Â0 + ε2Q)−1Π in (9.4):

‖Â1/2
(
(Â + ε2Q)−1 − (Â0 + ε2Q)−1 −KQ(ε)

)
‖G→G

≤ Č5 + ‖g‖1/2
L∞
α

1/2
1 ĉ−1

∗ r−1
0 , 0 < ε ≤ 1. (9.6)

Now we show that it is possible to replace Π by I also in the last term of the corrector
(9.5). By analogy with (8.22), we have

‖Â1/2(Â0 + ε2Q)−1b(D)∗L(D)b(D)(Â0 + ε2Q)−1(I − Π)‖G→G

≤
√

2r−1
0 α2

1α
−5/2
0 ‖g‖2

L∞
‖g−1‖5/2

L∞
. (9.7)

Relations (4.2) and (8.4) imply that

‖b(D)(Â0 + ε2Q)−1(I − Π)‖G→G∗

≤ sup
|ξ|≥r0

|b(ξ)(b(ξ)∗g0b(ξ) + ε2Q)−1| ≤ α
1/2
1 ĉ−1

∗ r−1
0 .
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Combining this with (9.1) and (7.10), we obtain:

‖Â1/2(Â0 + ε2Q)−1ε2(QΛ)b(D)(Â0 + ε2Q)−1(I − Π)‖G→G

≤ 2−1α1α
−1/2
0 m1/2ĉ−2

∗ r−3
0 ‖g‖L∞

‖g−1‖1/2
L∞

‖Q‖L∞
, 0 < ε ≤ 1. (9.8)

The term
Â1/2(Â0 + ε2Q)−1ε2b(D)∗(QΛ)∗(Â0 + ε2Q)−1(I − Π)

admits a similar estimate (with the same constant as in (9.8)). Combining this with
(9.6)–(9.8), we obtain the following result.

Theorem 9.5. We have

‖Â1/2
(
(Â + ε2Q)−1 − (Â0 + ε2Q)−1 − K̃Q(ε)

)
‖G→G ≤ Č8, 0 < ε ≤ 1,

where

K̃Q(ε) = Λb(D)(Â0 + ε2Q)−1Π + (Â0 + ε2Q)−1Πb(D)∗Λ∗

− (Â0 + ε2Q)−1(b(D)∗L(D)b(D) + ε2b(D)∗(QΛ)∗ + ε2(QΛ)b(D))

× (Â0 + ε2Q)−1,

Č8 = Č5 + ‖g‖1/2
L∞
α

1/2
1 ĉ−1

∗ r−1
0 +

√
2r−1

0 α2
1α

−5/2
0 ‖g‖2

L∞
‖g−1‖5/2

L∞

+ α1α
−1/2
0 m1/2ĉ−2

∗ r−3
0 ‖g‖L∞

‖g−1‖1/2
L∞

‖Q‖L∞
.

It is possible to „eliminate“ Π in the first two terms in (9.5) under Condition 8.4. For
this, we apply estimate (9.3) and the estimate

‖Â1/2(Â0 + ε2Q)−1(I − Π)b(D)∗Λ∗‖G→G ≤ α1ĉ
−1
∗ (1 + r−2

0 )1/2‖g‖1/2
L∞

‖Λ‖L∞
,

which can be proved in the same way as (8.26). As a result, we arrive at the following
theorem.

Theorem 9.6. Under Condition 8.4, we have

‖Â1/2
(
(Â + ε2Q)−1 − (Â0 + ε2Q)−1 −K0

Q(ε)
)
‖G→G ≤ Č9, 0 < ε ≤ 1,

where

K0
Q(ε) = Λb(D)(Â0 + ε2Q)−1 + (Â0 + ε2Q)−1b(D)∗Λ∗

− (Â0 + ε2Q)−1(b(D)∗L(D)b(D) + ε2b(D)∗(QΛ)∗ + ε2(QΛ)b(D))

× (Â0 + ε2Q)−1,

Č9 = Č8 + α
1/2
1 ĉ−1

∗ (1 + r−2
0 )1/2

( m∑

j=1

(C∇
j )2

)1/2

+ α1ĉ
−1
∗ (1 + r−2

0 )1/2‖g‖1/2
L∞

‖Λ‖L∞
.
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Chapter 3. Homogenization with corrector for periodic

differential operators

We proceed to the homogenization problems in the small period limit for periodic DO’s
acting in G = L2(R

d; Cn). If φ(x) is a measurable Γ-periodic function in Rd, we agree to
denote φε(x) = φ(ε−1x), ε > 0. We consider the operators

Âε = Â(gε) = b(D)∗gεb(D),

Aε = A(gε, f ε) = (f ε)∗b(D)∗gεb(D)f ε

with rapidly oscillating (as ε → 0) coefficients. Recall the notation G1 = H1(Rd; Cn). In

§10, we obtain approximation for the resolvent (Âε +I)−1 in the operator norm from G to
G1. In §11, by interpolation, we obtain approximation with the three-term corrector for
(Âε + I)−1 in the operator norm from G to Gs = Hs(Rd; Cn), 0 < s ≤ 1. In §12, we study
approximation for the fluxes in G∗ = L2(R

d; Cm). Next, §13–15 are devoted to the study

of the generalized resolvent (Âε + Qε)−1: in §13, approximation in the operator norm
from G to G1 is obtained, §14 contains the interpolational results, and §15 is devoted
to approximation of the corresponding fluxes in G∗. Finally, the resolvent (Aε + I)−1 is
studied in §16.

10 Approximation for the resolvent (Âε + I)−1 in the

(L2 → H1)-norm

10.1. Approximation for the operator Â1/2
ε (Âε + I)−1

Let Tε be the unitary scaling transformation in G:

(Tεu)(y) = εd/2u(εy), y ∈ R
d. (10.1)

Then we have:
Âε = ε−2T ∗

ε ÂTε, Â1/2
ε = ε−1T ∗

ε Â1/2Tε,

Â1/2
ε (Âε + I)−1 = εT ∗

ε Â1/2(Â + ε2I)−1Tε,

Â1/2
ε (Â0 + I)−1 = εT ∗

ε Â1/2(Â0 + ε2I)−1Tε,

b(D) = ε−1T ∗
ε b(D)Tε, [Λε] = T ∗

ε [Λ]Tε.

(10.2)

Putting
Πε := T ∗

ε ΠTε, (10.3)

and taking (8.1) into account, we see that Πε is the pseudodifferential operator in G with
the symbol χeΩ/ε(ξ), i. e.,

Πε = F∗[χeΩ/ε(·)]F . (10.4)

From (10.2) and (10.3) it follows that

Â1/2
ε

(
(Âε + I)−1 − (Â0 + I)−1 − εΛεb(D)(Â0 + I)−1Πε

)

= εT ∗
ε Â1/2

(
(Â + ε2I)−1 − (Â0 + ε2I)−1 − Λb(D)(Â0 + ε2I)−1Π

)
Tε. (10.5)

Since Tε is the unitary operator in G, Theorem 8.2 and identity (10.5) imply the following
result.
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Theorem 10.1. Let Âε = b(D)∗gε(x)b(D), and let Â0 = b(D)∗g0b(D) be the effective

operator. Let Λε : G∗ → G be the operator of multiplication by the matrix-valued function

Λε(x) = Λ(ε−1x), where Λ(x) is the matrix defined in Subsection 5.1. Let Πε be the

pseudodifferential operator (10.4). Then

‖Â1/2
ε

(
(Âε + I)−1 − (Â0 + I)−1 − εΛεb(D)(Â0 + I)−1Πε

)
‖G→G ≤ C6ε,

0 < ε ≤ 1. (10.6)

The operator
K1(ε) := Λεb(D)(Â0 + I)−1Πε (10.7)

plays the role of the corrector.
Similarly, the following statement is deduced from Theorem 8.5.

Theorem 10.2. Suppose that conditions of Theorem 10.1 are satisfied. Suppose also that

Condition 8.4 is valid. Then

‖Â1/2
ε

(
(Âε + I)−1 − (Â0 + I)−1 − εΛεb(D)(Â0+I)−1

)
‖G→G ≤ C7ε,

0 < ε ≤ 1. (10.8)

The corrector
K0

1(ε) := Λεb(D)(Â0 + I)−1

in (10.8) does not contain the operator Πε.
Theorem 8.10 implies the following result, which distinguishes the case where the

corrector is equal to zero.

Theorem 10.3. Suppose that conditions of Theorem 10.1 are satisfied. Suppose also that

condition (6.25) is valid. Then

‖Â1/2
ε

(
(Âε + I)−1 − (Â0 + I)−1

)
‖G→G ≤ C◦

6ε, 0 < ε ≤ 1.

Theorem 8.11 yields approximation for the operator Â1/2
ε (Âε+I)

−1 with the three-term
corrector.

Theorem 10.4. Suppose that conditions of Theorem 10.1 are satisfied. We put

K̃(ε) = Λεb(D)(Â0 + I)−1Πε + (Â0 + I)−1Πεb(D)∗(Λε)∗

− (Â0 + I)−1b(D)∗L(D)b(D)(Â0 + I)−1. (10.9)

Then

‖Â1/2
ε

(
(Âε + I)−1 − (Â0 + I)−1 − εK̃(ε)

)
‖G→G ≤ C8ε, 0 < ε ≤ 1. (10.10)

Finally, Theorem 8.12 leads to the following result.

Theorem 10.5. Suppose that conditions of Theorem 10.1 are satisfied. Suppose also that

Condition 8.4 is valid. We put

K0(ε) = Λεb(D)(Â0 + I)−1 + (Â0 + I)−1b(D)∗(Λε)∗

− (Â0 + I)−1b(D)∗L(D)b(D)(Â0 + I)−1. (10.11)

Then

‖Â1/2
ε

(
(Âε + I)−1 − (Â0 + I)−1 − εK0(ε)

)
‖G→G ≤ C9ε, 0 < ε ≤ 1.
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10.2. Approximation for the resolvent (Âε + I)−1 in the (L2 → H1)-

norm

Consider the equation
Âεuε + uε = F, F ∈ G. (10.12)

We apply Theorem 10.1, in order to approximate the solution uε in G1 = H1(Rd; Cn).
Let u0 be the solution of the „homogenized“ equation

Â0u0 + u0 = F. (10.13)

Note that the operator (10.7) can be written as

K1(ε) = ΛεΠ(m)
ε b(D)(Â0 + I)−1,

where Π
(m)
ε is the pseudodifferential operator with the symbol χeΩ/ε(ξ) acting in G∗ =

L2(R
d; Cm). We put

u(1)
ε = K1(ε)F = ΛεΠ(m)

ε b(D)u0. (10.14)

The estimate (10.6) means that

‖Â1/2
ε (uε − u0 − εu(1)

ε )‖G ≤ C6ε‖F‖G, 0 < ε ≤ 1.

Since (see (4.2) and (6.7))

‖Â1/2
ε (uε − u0 − εu(1)

ε )‖2
G = ‖g1/2b(D)(uε − u0 − εu(1)

ε )‖2
G∗

≥ ĉ∗

∫

Rd

|D(uε − u0 − εu(1)
ε )|2 dx,

then ∫

Rd

|D(uε − u0 − εu(1)
ε )|2 dx ≤ ĉ−1

∗ C2
6ε

2‖F‖2
G, 0 < ε ≤ 1. (10.15)

Besides, as it was shown in [BSu2, Theorem 2.1 of Ch. 4], we have

‖uε − u0‖G ≤ Ĉ×ε‖F‖G, 0 < ε ≤ 1. (10.16)

The constant Ĉ× is defined by

Ĉ = ĉ−1/2
∗

(
β∗

1(t̂
0)−1 + β∗

2 ĉ
−1
∗ δ̂(t̂ 0)−3

)
,

Ĉ× = max
{
Ĉ + 2(3δ̂)−1, 2ĉ−1

∗ (t̂ 0)−2
}
.

Now we estimate the norm of the function (10.14) in G. The operator ΛεΠ
(m)
ε : G∗ →

G is unitarily equivalent to (see (10.2), (10.3)) the operator ΛΠ(m), where Π(m) is the
pseudodifferential operator in G∗ with the symbol χeΩ(ξ). In its turn, by the Gelfand
transformation, the operator ΛΠ(m) is decomposed in the direct integral of the operators
ΛP̂m acting from H∗ to H. Hence,

‖ΛεΠ(m)
ε ‖G∗→G = ‖ΛΠ(m)‖G∗→G = ‖ΛP̂m‖H∗→H

≤ |Ω|−1/2

(∫

Ω

|Λ(x)|2 dx
)1/2

.

47



As it was shown in [BSu4, Subsection 7.3], we have

(∫

Ω

|Λ(x)|2 dx
)1/2

≤ m1/2(2r0)
−1α

−1/2
0 |Ω|1/2‖g‖1/2

L∞
‖g−1‖1/2

L∞
,

whence
‖ΛεΠ(m)

ε ‖G∗→G ≤ m1/2(2r0)
−1α

−1/2
0 ‖g‖1/2

L∞
‖g−1‖1/2

L∞
. (10.17)

We estimate the norm of the function b(D)u0. From (10.13) it follows that

(g0b(D)u0, b(D)u0)G∗
+ ‖u0‖2

G = (F,u0)G ≤ ‖u0‖2
G +

1

4
‖F‖2

G.

Hence,

‖b(D)u0‖2
G∗

≤ 1

4
|(g0)−1|‖F‖2

G ≤ 1

4
‖g−1‖L∞

‖F‖2
G. (10.18)

Relations (10.17) and (10.18) imply the following estimate for the norm of the function
(10.14):

‖u(1)
ε ‖G ≤ m1/2(4r0)

−1α
−1/2
0 ‖g‖1/2

L∞
‖g−1‖L∞

‖F‖G. (10.19)

Now (10.16) and (10.19) imply that

‖uε − u0 − εu(1)
ε ‖G ≤

(
Ĉ× +m1/2(4r0)

−1α
−1/2
0 ‖g‖1/2

L∞
‖g−1‖L∞

)
ε‖F‖G,

0 < ε ≤ 1.

Combining this with (10.15), we obtain the estimate for the G1-norm of the function

(uε − u0 − εu
(1)
ε ):

‖uε − u0 − εu(1)
ε ‖G1 ≤ C10ε‖F‖G, 0 < ε ≤ 1,

where
C2

10 = ĉ−1
∗ C2

6 +
(
Ĉ× +m1/2(4r0)

−1α
−1/2
0 ‖g‖1/2

L∞
‖g−1‖L∞

)2
. (10.20)

Thus, we arrive at the following theorem.

Theorem 10.6. Under conditions of Theorem 10.1, we have

‖(Âε + I)−1 − (Â0 + I)−1 − εΛεb(D)(Â0 + I)−1Πε‖G→G1 ≤ C10ε,

0 < ε ≤ 1. (10.21)

The constant C10 is defined by (10.20) and depends only on m, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

,

and on parameters of the lattice Γ.

Remark 10.7. One can show that the functions εΛεb(D)Πεu0 weakly tend to zero in
G1. Then the result of Theorem 10.6 agrees with that of Theorem 4.4.1(1◦) from [BSu2]

about weak (G1)-convergence of the functions uε = (Âε + I)−1F to u0 = (Â0 + I)−1F,
where F ∈ G.
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10.3. Elimination of the operator Πε

Suppose now that Condition 8.4 is satisfied. Then estimate (10.8) is valid. We put

ũ(1)
ε = K0

1 (ε)F = Λεb(D)u0. (10.22)

Estimate (10.8) means that

‖Â1/2
ε (uε − u0 − εũ(1)

ε )‖G ≤ C7ε‖F‖G, 0 < ε ≤ 1. (10.23)

Similarly to (10.15), this implies that
∫

Rd

|D(uε − u0 − εũ(1)
ε )|2 dx ≤ ĉ−1

∗ C2
7ε

2‖F‖2
G, 0 < ε ≤ 1. (10.24)

We estimate the G-norm of the function ũ
(1)
ε . By (10.18), (10.22), and Condition 8.4,

we have:

‖ũ(1)
ε ‖G ≤ ‖Λ‖L∞

‖b(D)u0‖G∗
≤ 1

2
‖Λ‖L∞

‖g−1‖1/2
L∞

‖F‖G. (10.25)

From (10.16) and (10.25) it follows that

‖uε − u0 − εũ(1)
ε ‖G ≤

(
Ĉ× +

1

2
‖Λ‖L∞

‖g−1‖1/2
L∞

)
ε‖F‖G, 0 < ε ≤ 1. (10.26)

Now (10.24) and (10.26) imply that

‖uε − u0 − εũ(1)
ε ‖G1 ≤ C11ε‖F‖G, 0 < ε ≤ 1,

where

C2
11 = ĉ−1

∗ C2
7 +

(
Ĉ× +

1

2
‖Λ‖L∞

‖g−1‖1/2
L∞

)2

. (10.27)

We have proved the following result.

Theorem 10.8. Suppose that conditions of Theorem 10.1 are satisfied. Suppose also that

Condition 8.4 is valid. Then

‖(Âε + I)−1 − (Â0 + I)−1 − εΛεb(D)(Â0 + I)−1‖G→G1 ≤ C11ε, 0 < ε ≤ 1.

The constant C11 is defined by (10.27) and depends only on m, d, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

,

on parameters of the lattice Γ, and also on ‖Λ‖L∞
.

10.4. The case of zero corrector

Suppose that condition (6.25) is satisfied. Then, applying Theorem 10.3, we arrive at the
estimate

‖Â1/2
ε (uε − u0)‖G ≤ C◦

6ε‖F‖G, 0 < ε ≤ 1.

It follows that (cf. the proof of estimate (10.15))
∫

Rd

|D(uε − u0)|2 dx ≤ ĉ−1
∗ (C◦

6)
2ε2‖F‖2

G, 0 < ε ≤ 1.

Combining this with (10.16), we arrive at the inequality

‖uε − u0‖G1 ≤ C12ε‖F‖G, 0 < ε ≤ 1, (10.28)

where
C12 =

(
Ĉ2
× + ĉ−1

∗ (C◦
6)

2
)1/2

. (10.29)

Thus, we have proved the following theorem.
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Theorem 10.9. Suppose that conditions of Theorem 10.1 are satisfied. Suppose also that

condition (6.25) is valid. Then

‖(Âε + I)−1 − (Â0 + I)−1‖G→G1 ≤ C12ε, 0 < ε ≤ 1. (10.30)

The constant C12 is defined by (10.29) and depends only on α0, α1, ‖g‖L∞
, ‖g−1‖L∞

, and

on parameters of the lattice Γ.

Remark 10.10. Conditions of Theorem 10.9 are a fortiori valid, if g0 = g. In [BSu2,
Theorem 4.4.5] it was shown that, if g0 = g, then uε strongly converges in G1 to u0, as
ε → 0. Theorem 10.9 strengthens this statement giving estimate (10.28).

11 Approximation with the three-term corrector for

the resolvent (Âε + I)−1. Interpolation

11.1

Now we apply Theorem 10.4. By (10.10),

‖Â1/2
ε (uε − u0 − εK̃(ε)F)‖G ≤ C8ε‖F‖G, 0 < ε ≤ 1.

As above (cf. the proof of (10.15)), this yields the estimate

∫

Rd

|D(uε − u0 − εK̃(ε)F)|2 dx ≤ ĉ−1
∗ C2

8ε
2‖F‖2

G, 0 < ε ≤ 1. (11.1)

We estimate the G-norm of the function K̃(ε)F. Inequality (10.19) means that

‖Λεb(D)(Â0 + I)−1Πε‖G→G ≤ m1/2(4r0)
−1α

−1/2
0 ‖g‖1/2

L∞
‖g−1‖L∞

. (11.2)

The operator (Â0 + I)−1Πεb(D)∗(Λε)∗ is adjoint to the operator from (11.2). Therefore,
its norm satisfies the same estimate. Next, as it was shown in [BSu4, Subsection 6.3], we
have

|b(ξ)∗L(ξ)b(ξ)| ≤ |ξ|321/2r−1
0 α

−1/2
0 α

3/2
1 ‖g‖3/2

L∞
‖g−1‖1/2

L∞
, ξ ∈ R

d.

By (8.4), this implies that

‖(Â0 + I)−1b(D)∗L(D)b(D)(Â0 + I)−1‖G→G

= sup
ξ∈Rd

|(b(ξ)∗g0b(ξ) + 1n)−1b(ξ)∗L(ξ)b(ξ)(b(ξ)∗g0b(ξ) + 1n)−1|

≤ 21/2r−1
0 α

−1/2
0 α

3/2
1 ‖g‖3/2

L∞
‖g−1‖1/2

L∞
sup
ξ∈Rd

|ξ|3(ĉ∗|ξ|2 + 1)−2

≤ 21/2r−1
0 α

−1/2
0 α

3/2
1 ‖g‖3/2

L∞
‖g−1‖1/2

L∞
ĉ−3/2
∗ . (11.3)

From (10.9), (11.2), and (11.3) it follows that

‖K̃(ε)‖G→G ≤ m1/2(2r0)
−1α

−1/2
0 ‖g‖1/2

L∞
‖g−1‖L∞

+ 21/2r−1
0 α

−1/2
0 α

3/2
1 ‖g‖3/2

L∞
‖g−1‖1/2

L∞
ĉ−3/2
∗ .
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Combining this with (10.16) and (11.1), we obtain the estimate

‖uε − u0 − εK̃(ε)F‖G1 ≤ C13ε‖F‖G, 0 < ε ≤ 1,

where

C2
13 = ĉ−1

∗ C2
8

+
(
Ĉ× +m1/2(2r0)

−1α
−1/2
0 ‖g‖1/2

L∞
‖g−1‖L∞

+ 21/2r−1
0 α

−1/2
0 α

3/2
1 ‖g‖3/2

L∞
‖g−1‖1/2

L∞
ĉ−3/2
∗

)2
. (11.4)

We arrive at the following result.

Theorem 11.1. Under conditions of Theorem 10.4, we have

‖(Âε + I)−1 − (Â0 + I)−1 − εK̃(ε)‖G→G1 ≤ C13ε, 0 < ε ≤ 1. (11.5)

The constant C13 is defined by (11.4) and depends only on m, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

,

and on parameters of the lattice Γ.

11.2

Suppose now that Condition 8.4 is satisfied. Then, applying Theorem 10.5, we obtain:

‖Â1/2
ε (uε − u0 − εK0(ε)F)‖G ≤ C9ε‖F‖G, 0 < ε ≤ 1.

This implies the estimate
∫

Rd

|D(uε − u0 − εK0(ε)F)|2 dx ≤ ĉ−1
∗ C2

9ε
2‖F‖2

G, 0 < ε ≤ 1. (11.6)

Now we estimate the norm of the function K0(ε)F under Condition 8.4. Inequality (10.25)
means that

‖Λεb(D)(Â0 + I)−1‖G→G ≤ 1

2
‖Λ‖L∞

‖g−1‖1/2
L∞
. (11.7)

The adjoint operator (Â0 + I)−1b(D)∗(Λε)∗ admits the same estimate. Then (10.11),
(11.3), and (11.7) imply that

‖K0(ε)‖G→G ≤ ‖Λ‖L∞
‖g−1‖1/2

L∞
+ 21/2r−1

0 α
−1/2
0 α

3/2
1 ‖g‖3/2

L∞
‖g−1‖1/2

L∞
ĉ−3/2
∗ . (11.8)

Now, by (10.16), (11.6), and (11.8), we obtain:

‖uε − u0 − εK0(ε)F‖G1 ≤ C14ε‖F‖G, 0 < ε ≤ 1,

where

C2
14 = ĉ−1

∗ C2
9 +

(
Ĉ× + ‖Λ‖L∞

‖g−1‖1/2
L∞

+ 21/2r−1
0 α

−1/2
0 α

3/2
1 ‖g‖3/2

L∞
‖g−1‖1/2

L∞
ĉ−3/2
∗

)2
. (11.9)

As a result, we arrive at the following statement.

Theorem 11.2. Under conditions of Theorem 10.5, we have:

‖(Âε + I)−1 − (Â0 + I)−1 − εK0(ε)‖G→G1 ≤ C14ε, 0 < ε ≤ 1. (11.10)

The constant C14 is defined by (11.9) and depends on d, m, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

, on

parameters of the lattice Γ, and also on ‖Λ‖L∞
.
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11.3. Interpolation

In [BSu4, Theorem 8.1] it was proved that, under conditions of Theorem 10.4, we have

‖(Âε + I)−1 − (Â0 + I)−1 − εK̃(ε)‖G→G ≤ C1ε
2, 0 < ε ≤ 1. (11.11)

The constant C1 depends on α0, α1, ‖g‖L∞
, ‖g−1‖L∞

, and on parameters of the lattice Γ.
Interpolating between (11.11) and (11.5), we arrive at the following result.

Theorem 11.3. Under conditions of Theorem 10.4, for 0 ≤ s ≤ 1 we have

‖(Âε + I)−1 − (Â0 + I)−1 − εK̃(ε)‖G→Gs ≤ C1−s
1 Cs

13ε
2−s, 0 < ε ≤ 1.

As it follows from [BSu4, Theorem 8.2], under Condition 8.4 (precisely, under some
weaker condition), we have

‖(Âε + I)−1 − (Â0 + I)−1 − εK0(ε)‖G→G ≤ C2ε
2, 0 < ε ≤ 1. (11.12)

The constant C2 depends on α0, α1, ‖g‖L∞
, ‖g−1‖L∞

, on parameters of the lattice Γ, and
also on ‖Λ‖L∞

.
Interpolating between (11.12) and (11.10), we arrive at the following theorem.

Theorem 11.4. Under conditions of Theorem 10.5, for 0 ≤ s ≤ 1 we have

‖(Âε + I)−1 − (Â0 + I)−1 − εK0(ε)‖G→Gs ≤ C1−s
2 Cs

14ε
2−s, 0 < ε ≤ 1.

Condition (6.25) distinguishes the case, where the corrector is equal to zero. Then the
estimate (10.30), as well as the following estimate (cf. [BSu4, Theorem 8.3]), is satisfied:

‖(Âε + I)−1 − (Â0 + I)−1‖G→G ≤ C3ε
2, 0 < ε ≤ 1. (11.13)

The constant C3 depends on α0, α1, ‖g‖L∞
, ‖g−1‖L∞

, and on parameters of the lattice Γ.
Interpolating between (11.13) and (10.30), we arrive at the following result.

Theorem 11.5. Under condition (6.25), for 0 ≤ s ≤ 1 we have

‖(Âε + I)−1 − (Â0 + I)−1‖G→Gs ≤ C1−s
3 Cs

12ε
2−s, 0 < ε ≤ 1.

12 Approximation of the fluxes for (Âε + I)−1

12.1

In this section, we approximate the so called fluxes

pε = gεb(D)uε (12.1)

in the norm of G∗ = L2(R
d; Cm). Here uε is the solution of the equation (10.12). Now, it

is convenient to rely on Theorem 8.1 which, by the scaling transformation, implies that

‖Â1/2
ε

(
(Âε + I)−1 − (I + εΛεb(D))(Â0 + I)−1Πε

)
‖G→G ≤ C3ε, 0 < ε ≤ 1. (12.2)

We have: (Âε + I)−1F = uε, (Â0 + I)−1ΠεF = Πεu0. Then (12.2) means that

‖Â1/2
ε (uε − (I + εΛεb(D))Πεu0) ‖G ≤ C3ε‖F‖G, 0 < ε ≤ 1.
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This is equivalent to the estimate

‖(gε)1/2b(D) (uε − (I + εΛεb(D))Πεu0) ‖G∗
≤ C3ε‖F‖G, 0 < ε ≤ 1.

Then

‖gεb(D)uε − gεb(D)(Πεu0 + εΛεΠ(m)
ε b(D)u0)‖G∗

≤C3‖g‖1/2
L∞
ε‖F‖G,

0 < ε ≤ 1. (12.3)

We have (see (8.12)):

gεb(D)(εΛεΠ(m)
ε b(D)u0)

= εgε(b(D)Λε)Π(m)
ε b(D)u0 + εgε

d∑

l=1

blΛ
εDl(Π

(m)
ε b(D)u0)

= gε(b(D)Λ)εΠ(m)
ε b(D)u0 + εgε

d∑

l=1

blΛ
εΠ(m)

ε Dl(b(D)u0). (12.4)

Here we have used the obvious identity ε(b(D)Λε) = (b(D)Λ)ε. We estimate the second

term in the right-hand side of (12.4). The norm of the operator ΛεΠ
(m)
ε is estimated in

(10.17). We have:

Dl(b(D)u0) = Dlb(D)(Â0 + I)−1F.

Combining this with (8.5), we see that

‖Dl(b(D)u0)‖G∗
≤
(

sup
ξ∈Rd

|ξlb(ξ)(b(ξ)∗g0b(ξ) + 1n)−1|
)
‖F‖G ≤ α

1/2
1 ĉ−1

∗ ‖F‖G. (12.5)

From (10.17) and (12.5) it follows that

‖gε
d∑

l=1

blΛ
εΠ(m)

ε Dl(b(D)u0)‖G∗

≤ dm1/2(2r0)
−1α

−1/2
0 α1ĉ

−1
∗ ‖g‖3/2

L∞
‖g−1‖1/2

L∞
‖F‖G. (12.6)

Now (12.1), (12.3), (12.4), and (12.6) imply that

‖pε − gε (1m + (b(D)Λ)ε)Π(m)
ε b(D)u0‖G∗

≤ C15ε‖F‖G, (12.7)

where
C15 = C3‖g‖1/2

L∞
+ dm1/2(2r0)

−1α
−1/2
0 α1ĉ

−1
∗ ‖g‖3/2

L∞
‖g−1‖1/2

L∞
. (12.8)

Using the notation (5.5), we have gε(1m + (b(D)Λ)ε) = g̃ε. Then, by (12.7), we obtain
the following statement.

Theorem 12.1. Let uε = (Âε + I)−1F, u0 = (Â0 + I)−1F, where F ∈ G. We put

pε = gεb(D)uε and g̃ = g(1m + b(D)Λ). Let Π
(m)
ε be the pseudodifferential operator in G∗

with the symbol χeΩ/ε(ξ). Then

‖pε − g̃εΠ(m)
ε b(D)u0‖G∗

≤ C15ε‖F‖G, 0 < ε ≤ 1.

The constant C15 is defined by (12.8) and depends only on d, m, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

,

and on parameters of the lattice Γ.
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Note that the statement of Theorem 12.1 can be formulated in the operator terms.
Namely, we have

‖gεb(D)(Âε + I)−1 − g̃εΠ(m)
ε b(D)(Â0 + I)−1‖G→G∗

≤ C15ε, 0 < ε ≤ 1.

Remark 12.2. It can be shown that the functions g̃εΠ
(m)
ε b(D)u0 weakly converge in G∗

to p0 = g0b(D)u0. Therefore, the result of Theorem 12.1 agrees with Theorem 4.4.1(2◦)
from [BSu2] about the weak (G∗)-convergence of the fluxes pε to p0.

12.2

Suppose now that Condition 8.4 is satisfied. Then estimate (10.23) is valid. This estimate
is equivalent to the inequality

‖(gε)1/2b(D)(uε − u0 − εũ(1)
ε )‖G∗

≤ C7ε‖F‖G, 0 < ε ≤ 1.

By (10.22), it follows that

‖gεb(D)(uε − u0 − εΛεb(D)u0)‖G∗
≤ C7‖g‖1/2

L∞
ε‖F‖G, 0 < ε ≤ 1. (12.9)

Similarly to (12.4), we have:

gεb(D)(εΛεb(D)u0) = gε(b(D)Λ)εb(D)u0 + εgε

d∑

l=1

blΛ
εDl(b(D)u0). (12.10)

Under Condition 8.4, (12.5) implies that

‖ΛεDl(b(D)u0)‖G∗
≤ ‖Λ‖L∞

α
1/2
1 ĉ−1

∗ ‖F‖G.

Then

‖gε
d∑

l=1

blΛ
εDl(b(D)u0)‖G∗

≤ d α1‖g‖L∞
‖Λ‖L∞

ĉ−1
∗ ‖F‖G. (12.11)

From (12.1) and (12.9)–(12.11) it follows that

‖pε − gε(1m + (b(D)Λ)ε)b(D)u0‖G∗
≤ C16ε‖F‖G, 0 < ε ≤ 1,

where
C16 = C7‖g‖1/2

L∞
+ d α1ĉ

−1
∗ ‖g‖L∞

‖Λ‖L∞
. (12.12)

We arrive at the following result.

Theorem 12.3. Suppose that conditions of Theorem 12.1 are satisfied. Suppose also that

Condition 8.4 is valid. Then

‖pε − g̃εb(D)u0‖G∗
≤ C16ε‖F‖G, 0 < ε ≤ 1.

The constant C16 is defined by (12.12) and depends only on d, m, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

,

on parameters of the lattice Γ, and also on ‖Λ‖L∞
.
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12.3. The case where g0 = g

If g0 = g (i. e., conditions (5.9) are satisfied), then g̃(x) = g0 = g (see [BSu4, Remark
3.5]). Then Condition 8.4 is also valid, and the norm ‖Λ‖L∞

is estimated by the constant
depending only on α0, α1, ‖g‖L∞

, ‖g−1‖L∞
, m, n, d, and on parameters of the lattice Γ (see

Lemma 8.7 and Remark 8.8). Theorem 12.3 is applicable, and g̃εb(D)u0 = g0b(D)u0 =:
p0. We arrive at the following result.

Theorem 12.4. Let g0 = g, i. e., conditions (5.9) are satisfied. Let pε = gεb(D)uε,

p0 = g0b(D)u0. Then, as ε→ 0, the fluxes pε converge to p0 in the G∗-norm, and

‖pε − p0‖G∗
≤ C16ε‖F‖G, 0 < ε ≤ 1. (12.13)

The constant C16 depends only on d, m, n, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

, and on parameters

of the lattice Γ.

Remark 12.5. In [BSu2, Theorem 4.4.5(2◦)], it was proved that, if g0 = g, then the
fluxes pε tend to p0 strongly in G∗. Theorem 12.4 strengthens this statement giving
estimate (12.13).

13 Approximation for the generalized resolvent

(Âε +Qε)−1 in the (L2 → H1)-norm

13.1. Approximation of the operator Â1/2
ε (Âε +Qε)−1

The following result is deduced from Theorem 9.2, by the scaling transformation.

Theorem 13.1. Let Âε = b(D)∗gεb(D), and let Â0 = b(D)∗g0b(D) be the effective opera-

tor. Let Q(x) be the Γ-periodic positive (n×n)-matrix-valued function satisfying condition

(7.1). Let Qε be the operator of multiplication by the matrix Qε(x) = Q(ε−1x), and let Q
be the mean value of the matrix Q(x) over the cell Ω. Let Λε : G∗ → G be the operator of

multiplication by the matrix-valued function Λε(x) = Λ(ε−1x), where Λ(x) is the matrix

introduced in Subsection 5.1. Let Πε be the pseudodifferential operator (10.4). Then

‖Â1/2
ε

(
(Âε +Qε)−1 − (Â0 +Q)−1 − εΛεb(D)(Â0 +Q)−1Πε

)
‖G→G ≤ Č6ε,

0 < ε ≤ 1. (13.1)

Similarly, Theorem 9.3 implies the following statement.

Theorem 13.2. Suppose that conditions of Theorem 13.1 are satisfied. Besides, suppose

that Condition 8.4 is valid. Then

‖Â1/2
ε

(
(Âε +Qε)−1 − (Â0 +Q)−1 − εΛεb(D)(Â0+Q)−1

)
‖G→G ≤ Č7ε,

0 < ε ≤ 1. (13.2)

Theorem 9.4 implies the following statement, which distinguishes the case where the
corrector is equal to zero.

Theorem 13.3. Suppose that conditions of Theorem 13.1 are satisfied. Besides, suppose

that condition (6.25) is valid. Then

‖Â1/2
ε

(
(Âε +Qε)−1 − (Â0 +Q)−1

)
‖G→G ≤ Č◦

6ε, 0 < ε ≤ 1.
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Theorem 9.5 implies approximation for the operator Â1/2
ε (Âε+Q

ε)−1 with the three-
term corrector.

Theorem 13.4. Suppose that conditions of Theorem 13.1 are satisfied. Let

K̃Q(ε) = Λεb(D)(Â0 +Q)−1Πε + (Â0 +Q)−1Πεb(D)∗(Λε)∗

− (Â0 +Q)−1(b(D)∗L(D)b(D) + b(D)∗(QΛ)∗ + (QΛ)b(D))(Â0 +Q)−1. (13.3)

Then

‖Â1/2
ε

(
(Âε +Qε)−1 − (Â0 +Q)−1 − εK̃Q(ε)

)
‖G→G ≤ Č8ε, 0 < ε ≤ 1.

Finally, Theorem 9.6 yields the following statement.

Theorem 13.5. Suppose that conditions of Theorem 13.1 are satisfied. Besides, suppose

that Condition 8.4 is valid. We put

K0
Q(ε) = Λεb(D)(Â0 +Q)−1 + (Â0 +Q)−1b(D)∗(Λε)∗

− (Â0 +Q)−1
(
b(D)∗L(D)b(D) + b(D)∗(QΛ)∗ + (QΛ)b(D)

)
(Â0 +Q)−1. (13.4)

Then

‖Â1/2
ε

(
(Âε +Qε)−1 − (Â0 +Q)−1 − εK0

Q(ε)
)
‖G→G ≤ Č9ε, 0 < ε ≤ 1.

13.2. Approximation for the generalized resolvent (Âε + Qε)−1 in

the (L2 → H1)-norm.

Consider equation
Âεvε +Qεvε = F, F ∈ G. (13.5)

Now, we apply Theorem 13.1, in order to approximate the solution vε in G1. Let v0 be
the solution of the „homogenized“ equation

Â0v0 +Qv0 = F. (13.6)

We put
v(1)

ε = ΛεΠ(m)
ε b(D)v0. (13.7)

Estimate (13.1) means that

‖Â1/2
ε (vε − v0 − εv(1)

ε )‖G ≤ Č6ε‖F‖G, 0 < ε ≤ 1.

By analogy with the proof of (10.15), it follows that

∫

Rd

|D(vε − v0 − εv(1)
ε )|2 dx ≤ ĉ−1

∗ Č2
6ε

2‖F‖2
G, 0 < ε ≤ 1. (13.8)

Besides, as it was shown in [BSu2, Theorem 2.4 of Ch. 4], we have

‖vε − v0‖G ≤ ε C×‖Q−1‖L∞
‖F‖G, 0 < ε ≤ 1. (13.9)
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The constant C× is defined by the relations

C = c−1/2
∗

(
β∗

1(t
0)−1 + β∗

2c
−1
∗ δ(t0)−3

)
,

C× = max{C + 2(3δ)−1, 2c−1
∗ (t0)−2}.

We estimate the norm of the function v
(1)
ε in G. By (13.6), we have

(g0b(D)v0, b(D)v0)G∗
+ (Qv0,v0)G = (F,v0)G ≤ (Qv0,v0)G +

1

4
((Q)−1F,F)G.

Hence,

‖b(D)v0‖2
G∗

≤ 1

4
|(g0)−1||(Q)−1|‖F‖2

G ≤ 1

4
‖g−1‖L∞

‖Q−1‖L∞
‖F‖2

G. (13.10)

Combining this with (10.17), we obtain the following estimate for the norm of the function
(13.7):

‖v(1)
ε ‖G ≤ ‖ΛεΠ(m)

ε ‖G∗→G‖b(D)v0‖G∗

≤ m1/2(4r0)
−1α

−1/2
0 ‖g‖1/2

L∞
‖g−1‖L∞

‖Q−1‖1/2
L∞

‖F‖G. (13.11)

Now, from (13.9) and (13.11) for 0 < ε ≤ 1 it follows that

‖vε − v0 − εv(1)
ε ‖G

≤
(
C×‖Q−1‖L∞

+m1/2(4r0)
−1α

−1/2
0 ‖g‖1/2

L∞
‖g−1‖L∞

‖Q−1‖1/2
L∞

)
ε‖F‖G.

Combining this with (13.8), we arrive at the inequality

‖vε − v0 − εv(1)
ε ‖G1 ≤ Č10ε‖F‖G, 0 < ε ≤ 1,

where

Č2
10 = ĉ−1

∗ Č2
6 +

(
C×‖Q−1‖L∞

+m1/2(4r0)
−1α

−1/2
0 ‖g‖1/2

L∞
‖g−1‖L∞

‖Q−1‖1/2
L∞

)2
. (13.12)

Thus, we have proved the following theorem.

Theorem 13.6. Under the conditions of Theorem 13.1, we have

‖(Âε +Qε)−1 − (Â0 +Q)−1 − εΛεb(D)(Â0 +Q)−1Πε‖G→G1 ≤ Č10ε, 0 < ε ≤ 1. (13.13)

The constant Č10 is defined by (13.12) and depends only on m, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

,

‖Q‖L∞
, ‖Q−1‖L∞

, and on parameters of the lattice Γ.

Remark 13.7. It can be shown that, as ε → 0, the weak (G1)-limit of the functions
εΛεb(D)Πεv0 is equal to zero. Therefore, the result of Theorem 13.6 agrees with Theorem
4.4.1(1◦) of [BSu2] about the weak (G1)-convergence of vε to v0.
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13.3

Suppose now that Condition 8.4 is satisfied. Then the estimate (13.2) is valid. We put

ṽ(1)
ε = Λεb(D)v0. (13.14)

Estimate (13.2) means that

‖Â1/2
ε (vε − v0 − εṽ(1)

ε )‖G ≤ Č7ε‖F‖G, 0 < ε ≤ 1.

It follows that ∫

Rd

|D(vε − v0 − εṽ(1)
ε )|2 dx ≤ ĉ−1

∗ Č2
7ε

2‖F‖2
G, 0 < ε ≤ 1. (13.15)

Under Condition 8.4, by (13.14) and (13.10), we have

‖ṽ(1)
ε ‖G ≤ ‖Λ‖L∞

‖b(D)v0‖G ≤ 1

2
‖Λ‖L∞

‖g−1‖1/2
L∞

‖Q−1‖1/2
L∞

‖F‖G. (13.16)

Combining this with (13.9), for 0 < ε ≤ 1 we obtain that

‖vε − v0 − εṽ(1)
ε ‖G ≤ ε

(
C×‖Q−1‖L∞

+
1

2
‖Λ‖L∞

‖g−1‖1/2
L∞

‖Q−1‖1/2
L∞

)
‖F‖G. (13.17)

Now (13.15) and (13.17) imply that

‖vε − v0 − εṽ(1)
ε ‖G1 ≤ Č11ε‖F‖G, 0 < ε ≤ 1,

where

Č2
11 = ĉ−1

∗ Č2
7 +

(
C×‖Q−1‖L∞

+
1

2
‖Λ‖L∞

‖g−1‖1/2
L∞

‖Q−1‖1/2
L∞

)2

. (13.18)

As a result, we obtain the following theorem.

Theorem 13.8. Suppose that conditions of Theorem 13.1 are satisfied. Besides, suppose

that Condition 8.4 is valid. Then

‖(Âε +Qε)−1 − (Â0 +Q)−1 − εΛεb(D)(Â0 +Q)−1‖G→G1 ≤ Č11ε, 0 < ε ≤ 1.

The constant Č11 is defined by (13.18) and depends only on m, d, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

,

‖Q‖L∞
, ‖Q−1‖L∞

, on parameters of the lattice Γ, and also on ‖Λ‖L∞
.

13.4. The case of zero corrector

Suppose now that Condition (6.25) is satisfied. Then, by Theorem 13.3, we have

‖Â1/2
ε (vε − v0)‖G ≤ Č◦

6ε‖F‖G, 0 < ε ≤ 1,

whence ∫

Rd

|D(vε − v0)|2 dx ≤ ĉ−1
∗ (Č◦

6)
2ε2‖F‖2

G, 0 < ε ≤ 1.

Combining this with (13.9), we obtain

‖vε − v0‖G1 ≤ Č12ε‖F‖G, 0 < ε ≤ 1, (13.19)

where
Č2

12 = ĉ−1
∗ (Č◦

6)
2 + C2

×‖Q−1‖2
L∞
. (13.20)

We have proved the following theorem.
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Theorem 13.9. Suppose that conditions of Theorem 13.1 are satisfied. Besides, suppose

that condition (6.25) is valid. Then

‖(Âε +Qε)−1 − (Â0 +Q)−1‖G→G1 ≤ Č12ε, 0 < ε ≤ 1. (13.21)

The constant Č12 is defined by (13.20) and depends on α0, α1, ‖g‖L∞
, ‖g−1‖L∞

, ‖Q‖L∞
,

‖Q−1‖L∞
and on parameters of the lattice Γ.

Remark 13.10. In [BSu2, Theorem 4.4.5], it was shown that, if g0 = g, the solutions
vε strongly converge to v0 in G1. Theorem 13.9 gives a stronger result (i. e., estimate
(13.19)).

§14. Approximation with the three-term corrector

for the generalized resolvent (Âε +Qε)−1. Interpolation

14.1

By Theorem 13.4, we have

‖Â1/2
ε (vε − v0 − εK̃Q(ε)F)‖G ≤ Č8ε‖F‖G, 0 < ε ≤ 1.

It follows that
∫

Rd

|D(vε − v0 − εK̃Q(ε)F)|2 dx ≤ ĉ−1
∗ Č2

8ε
2‖F‖2

G, 0 < ε ≤ 1. (14.1)

We estimate the G-norm of the function K̃Q(ε)F. Combining (13.11) with (13.7), we see
that

‖Λεb(D)(Â0 +Q)−1Πε‖G→G ≤ m1/2(4r0)
−1α

−1/2
0 ‖g‖1/2

L∞
‖g−1‖L∞

‖Q−1‖1/2
L∞
. (14.2)

The operator (Â0 +Q)−1Πεb(D)∗(Λε)∗ is adjoint in G to the operator from (14.2). Hence,
it admits the same estimate. Next, similarly to (11.3), we have:

‖(Â0 +Q)−1b(D)∗L(D)b(D)(Â0 +Q)−1‖G→G

≤ 21/2r−1
0 α

−1/2
0 α

3/2
1 ‖g‖3/2

L∞
‖g−1‖1/2

L∞
ĉ−3/2
∗ ‖Q−1‖1/2

L∞
. (14.3)

Inequality (13.10) means that

‖b(D)(Â0 +Q)−1‖G→G∗
≤ 1

2
‖g−1‖1/2

L∞
‖Q−1‖1/2

L∞
. (14.4)

Obviously,
‖(Â0 +Q)−1‖G→G ≤ ‖Q−1‖L∞

. (14.5)

From (14.4), (14.5), and (7.10) it follows that

‖(Â0 +Q)−1(QΛ)b(D)(Â0 +Q)−1‖G→G

≤ m1/2(4r0)
−1α

−1/2
0 ‖g‖1/2

L∞
‖g−1‖L∞

‖Q‖L∞
‖Q−1‖3/2

L∞
. (14.6)
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The operator (Â0 +Q)−1b(D)∗(QΛ)∗(Â0 +Q)−1 admits the same estimate. As a result,
relations (13.3), (14.2), (14.3), and (14.6) yield the estimate

‖K̃Q(ε)‖G→G ≤ m1/2(2r0)
−1α

−1/2
0 ‖g‖1/2

L∞
‖g−1‖L∞

‖Q−1‖1/2
L∞

+ 21/2r−1
0 α

−1/2
0 α

3/2
1 ‖g‖3/2

L∞
‖g−1‖1/2

L∞
ĉ−3/2
∗ ‖Q−1‖1/2

L∞

+m1/2(2r0)
−1α

−1/2
0 ‖g‖1/2

L∞
‖g−1‖L∞

‖Q‖L∞
‖Q−1‖3/2

L∞
=: CQ.

Combining this with (13.9), we obtain that

‖vε − v0 − εK̃Q(ε)F‖G ≤ ε(C×‖Q−1‖L∞
+ CQ)‖F‖G, 0 < ε ≤ 1.

Taking (14.1) into account, we have

‖vε − v0 − εK̃Q(ε)F‖G1 ≤ Č13ε‖F‖G, 0 < ε ≤ 1,

where
Č2

13 = ĉ−1
∗ Č2

8 + (C×‖Q−1‖L∞
+ CQ)2. (14.7)

We have proved the following theorem.

Theorem 14.1. Under the conditions of Theorem 13.4, we have

‖(Âε +Qε)−1 − (Â0 +Q)−1 − εK̃Q(ε)‖G→G1 ≤ Č13ε, 0 < ε ≤ 1. (14.8)

The constant Č13 is defined by (14.7) and depends only on m, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

,

‖Q‖L∞
, ‖Q−1‖L∞

, and on parameters of the lattice Γ.

14.2

Suppose now that Condition 8.4 is satisfied. Then, by Theorem 13.5, we have

‖Â1/2
ε (vε − v0 − εK0

Q(ε)F)‖G ≤ Č9ε‖F‖G, 0 < ε ≤ 1.

It follows that
∫

Rd

|D(vε − v0 − εK0
Q(ε)F)|2 dx ≤ ĉ−1

∗ Č2
9ε

2‖F‖2
G, 0 < ε ≤ 1. (14.9)

We estimate the G-norm of the function K0
Q(ε)F, under Condition 8.4. By (13.14),

inequality (13.16) means that

‖Λεb(D)(Â0 +Q)−1‖G→G ≤ 1

2
‖Λ‖L∞

‖g−1‖1/2
L∞

‖Q−1‖1/2
L∞
. (14.10)

The adjoint operator (Â0 +Q)−1b(D)∗(Λε)∗ satisfies the same estimate. Relations (13.4),
(14.3), (14.6), and (14.10) imply the estimate

‖K0
Q(ε)‖G→G ≤ ‖Λ‖L∞

‖g−1‖1/2
L∞

‖Q−1‖1/2
L∞

+ 21/2r−1
0 α

−1/2
0 α

3/2
1 ‖g‖3/2

L∞
‖g−1‖1/2

L∞
ĉ−3/2
∗ ‖Q−1‖1/2

L∞

+m1/2(2r0)
−1α

−1/2
0 ‖g‖1/2

L∞
‖g−1‖L∞

‖Q‖L∞
‖Q−1‖3/2

L∞
=: C0

Q.
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Together with (13.9), this implies that

‖vε − v0 − εK0
Q(ε)F‖G ≤ (C×‖Q−1‖L∞

+ C0
Q)ε‖F‖G, 0 < ε ≤ 1.

Combining this with (14.9), we arrive at the estimate

‖vε − v0 − εK0
Q(ε)F‖G1 ≤ Č14ε‖F‖G, 0 < ε ≤ 1,

where
Č2

14 = ĉ−1
∗ Č2

9 + (C×‖Q−1‖L∞
+ C0

Q)2. (14.11)

Thus, we have proved the following theorem.

Theorem 14.2. Under the conditions of Theorem 13.5, we have

‖(Âε +Qε)−1 − (Â0 +Q)−1 − εK0
Q(ε)‖G→G1 ≤ Č14ε, 0 < ε ≤ 1. (14.12)

The constant Č14 is defined by (14.11) and depends on d, m, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

,

‖Q‖L∞
, ‖Q−1‖L∞

, on parameters of the lattice Γ, and also on ‖Λ‖L∞
.

14.3. Interpolation

In [BSu4, Theorem 9.1], it was shown that, under conditions of Theorem 13.4, we have

‖(Âε +Qε)−1 − (Â0 +Q)−1 − εK̃Q(ε)‖G→G ≤ Č1ε
2, 0 < ε ≤ 1. (14.13)

The constant Č1 depends on m, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

, ‖Q‖L∞
, ‖Q−1‖L∞

, and on
parameters of the lattice Γ.

Interpolating between (14.13) and (14.8), we arrive at the following result.

Theorem 14.3. Under conditions of Theorem 13.4, for 0 ≤ s ≤ 1 we have

‖(Âε +Qε)−1 − (Â0 +Q)−1 − εK̃Q(ε)‖G→Gs ≤ Č1−s
1 Čs

13ε
2−s, 0 < ε ≤ 1. (14.14)

Next, if Condition 8.4 is satisfied, then we have (see [BSu4, Theorem 9.3])

‖(Âε +Qε)−1 − (Â0 +Q)−1 − εK0
Q(ε)‖G→G ≤ Č2ε

2, 0 < ε ≤ 1. (14.15)

The constant Č2 depends on α0, α1, ‖g‖L∞
, ‖g−1‖L∞

, ‖Q‖L∞
, ‖Q−1‖L∞

, on parameters
of the lattice Γ, and also on ‖Λ‖L∞

.
Interpolating between (14.15) and (14.12), we obtain the following statement.

Theorem 14.4. Under conditions of Theorem 13.5, for 0 ≤ s ≤ 1 we have

‖(Âε +Qε)−1 − (Â0 +Q)−1 − εK0
Q(ε)‖G→Gs ≤ Č1−s

2 Čs
14ε

2−s, 0 < ε ≤ 1.

Condition (6.25) distinguishes the case, where the corrector is equal to zero. Then
estimate (13.21) and also the following estimate (see [BSu4, Theorem 9.2]) are satisfied:

‖(Âε +Qε)−1 − (Â0 +Q)−1‖G→G ≤ Č3ε
2, 0 < ε ≤ 1. (14.16)

The constant Č3 depends on α0, α1, ‖g‖L∞
, ‖g−1‖L∞

, ‖Q‖L∞
, ‖Q−1‖L∞

, and on parame-
ters of the lattice Γ.

Interpolating between (14.16) and (13.21), we obtain the following statement.

Theorem 14.5. Under condition (6.25), for 0 ≤ s ≤ 1 we have

‖(Âε +Qε)−1 − (Â0 +Q)−1‖G→Gs ≤ Č1−s
3 Čs

12ε
2−s, 0 < ε ≤ 1.
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§15. Approximation of the fluxes for the generalized

resolvent (Âε +Qε)−1

15.1

We consider the fluxes
qε = gεb(D)vε, (15.1)

where vε is the solution of the equation (13.5). By the scaling transformation, Theorem
9.1 implies that

‖Â1/2
ε

(
(Âε +Qε)−1 − (I + εΛεb(D))(Â0 +Q)−1Πε

)
‖G→G ≤ Č3ε, 0 < ε ≤ 1.

It means that

‖Â1/2
ε (vε − (I + εΛεb(D))Πεv0) ‖G ≤ Č3ε‖F‖G, 0 < ε ≤ 1.

Similarly to (12.3), this implies that

‖gεb(D)vε − gεb(D)(Πεv0 + εΛεΠ(m)
ε b(D)v0)‖G∗

≤ Č3‖g‖1/2
L∞
ε‖F‖G, 0 < ε ≤ 1. (15.2)

By analogy with (12.4), we have:

gεb(D)(εΛεΠ(m)
ε b(D)v0)

= gε(b(D)Λ)εΠ(m)
ε b(D)v0 + εgε

d∑

l=1

blΛ
εΠ(m)

ε Dl(b(D)v0). (15.3)

We estimate the second term on the right. Similarly to (12.5), we obtain:

‖Dl(b(D)v0)‖G∗
≤ α

1/2
1 ĉ−1

∗ ‖F‖G. (15.4)

From (10.17) and (15.4) it follows that

‖gε
d∑

l=1

blΛ
εΠ(m)

ε Dl(b(D)v0)‖G∗

≤ dm1/2(2r0)
−1α

−1/2
0 α1ĉ

−1
∗ ‖g‖3/2

L∞
‖g−1‖1/2

L∞
‖F‖G.

Combining this with (15.1)–(15.3), we have

‖qε − gε (1m + (b(D)Λ)ε)Π(m)
ε b(D)v0‖G∗

≤ Č15ε‖F‖G, 0 < ε ≤ 1,

where
Č15 = Č3‖g‖1/2

L∞
+ dm1/2(2r0)

−1α
−1/2
0 α1ĉ

−1
∗ ‖g‖3/2

L∞
‖g−1‖1/2

L∞
. (15.5)

We have proved the following theorem.

Theorem 15.1. Let vε = (Âε + Qε)−1F, v0 = (Â0 + Q)−1F, where F ∈ G. We put

qε = gεb(D)vε. Let g̃ be the matrix (5.5), and let Π
(m)
ε be a pseudodifferential operator in

G∗ with the symbol χeΩ/ε(ξ). Then

‖qε − g̃εΠ(m)
ε b(D)v0‖G∗

≤ Č15ε‖F‖G, 0 < ε ≤ 1. (15.6)

The constant Č15 is defined by (15.5) and depends only on d, m, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

,

‖Q‖L∞
, ‖Q−1‖L∞

, and on parameters of the lattice Γ.

Remark 15.2. It can be shown that the functions g̃εΠ
(m)
ε b(D)v0 weakly converge to

q0 = g0b(D)v0 in G∗. Therefore, the result of Theorem 15.1 agrees with Theorem 4.4.1(2◦)
from [BSu2], where the weak (G∗)-convergence of the fluxes qε to q0 was established.
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15.2

Suppose now that Condition 8.4 is satisfied. Then the estimate (13.2) is valid. Hence,

‖(gε)1/2b(D)(vε − v0 − εΛεb(D)v0)‖G∗
≤ Č7ε‖F‖G, 0 < ε ≤ 1.

Then
‖gεb(D)(vε − v0 − εΛεb(D)v0)‖G∗

≤ Č7‖g‖1/2
L∞
ε‖F‖G, 0 < ε ≤ 1. (15.7)

Similarly to (15.3), we have

gεb(D)(εΛεb(D)v0) = gε(b(D)Λ)εb(D)v0 + εgε
d∑

l=1

blΛ
εDl(b(D)v0). (15.8)

Under Condition 8.4, (15.4) implies that

‖ΛεDl(b(D)v0)‖G∗
≤ ‖Λ‖L∞

α
1/2
1 ĉ−1

∗ ‖F‖G. (15.9)

Now from (15.1) and (15.7)–(15.9) it follows that

‖qε − g̃εb(D)v0‖G∗
≤ Č16ε‖F‖G, 0 < ε ≤ 1, (15.10)

where
Č16 = Č7‖g‖1/2

L∞
+ d α1ĉ

−1
∗ ‖g‖L∞

‖Λ‖L∞
. (15.11)

We have proved the following theorem.

Theorem 15.3. Suppose that conditions of Theorem

5.1 are satisfied. Besides, suppose that Condition 8.4 is valid. Then the estimate

(15.10) holds, where the constant Č16 is defined by (15.11) and depends on d, m, α0, α1,

‖g‖L∞
, ‖g−1‖L∞

, ‖Q‖L∞
, ‖Q−1‖L∞

, on parameters of the lattice Γ, and also on ‖Λ‖L∞
.

15.3. The case where g0 = g

In this case we have g̃(x) = g0 = g. By analogy with Theorem 12.4, Theorem 15.3 implies
the following result.

Theorem 15.4. Let g0 = g, i. e., conditions

5.9) are satisfied. Let qε = gεb(D)vε, q0 = g0b(D)v0. Then, as ε → 0, the fluxes qε

tend to q0 in the G∗-norm, and

‖qε − q0‖G∗
≤ Č16ε‖F‖G, 0 < ε ≤ 1.

The constant Č16 depends only on d, m, n, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

, ‖Q‖L∞
, ‖Q−1‖L∞

,

and on parameters of the lattice Γ.

Remark 15.5. Theorem 15.4 strengthens the result of Theorem 4.4.5(2◦) of [BSu2], where
the strong G∗-convergence of the fluxes was established under the condition g0 = g.
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§16. The homogenization results for operators Aε

16.1

Now we consider the operator

Aε = (f ε)∗b(D)∗gεb(D)f ε = (f ε)∗Âεf
ε. (16.1)

We have
(Aε + I)−1 = (f ε)−1(Âε +Qε)−1((f ε)∗)−1. (16.2)

Here
Q(x) = (f(x)f(x)∗)−1. (16.3)

From Theorem 13.6, miltiplying the operators in (13.13) by ((f ε)∗)−1 from the right, for
0 < ε ≤ 1 we obtain

‖(Âε +Qε)−1((f ε)∗)−1 − (I + εΛεb(D)Πε)(Â0 +Q)−1((f ε)∗)−1‖G→G1

≤ Č10‖f−1‖L∞
ε. (16.4)

Relations (16.2) and (16.4) imply the following result.

Theorem 16.1. Let Aε be the operator (16.1), and let Â0 = b(D)∗g0b(D). Let Q(x) be

the matrix defined by (16.3), and let Q be the mean value of Q(x) over the cell Ω. Let

Λ(x) be the matrix defined in Subsection 5.1. Let Πε be the pseudodifferential operator

(10.4). Then for 0 < ε ≤ 1 we have

‖f ε(Aε + I)−1 − (I + εΛεb(D)Πε)(Â0 +Q)−1((f ε)∗)−1‖G→G1 ≤ Č10‖f−1‖L∞
ε. (16.5)

The constant Č10 is defined by (13.12) and depends on m, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

, ‖f‖L∞
,

‖f−1‖L∞
, and on parameters of the lattice Γ.

Now we formulate the result of Theorem 16.1 foe solutions of differential equations.
Let wε be the solution of the equation

Aεwε + wε = F, F ∈ G, (16.6)

and let w0
ε be the solution of the equation

Â0w0
ε +Qw0

ε = ((f ε)∗)−1F. (16.7)

Then (16.5) means that

‖f εwε − w0
ε − εΛεΠ(m)

ε b(D)w0
ε‖G1 ≤ Č10‖f−1‖L∞

ε‖F‖G, 0 < ε ≤ 1.

Remark 16.2. It can be shown that the functions εΛεΠ
(m)
ε b(D)w0

ε converge to zero

weakly in G1. Besides, the functions w0
ε tend to w0 = (Â0 +Q)−1(f ∗)−1F strongly in G1:

(G1)- lim
ε→0

(w0
ε − w0) = 0. (16.8)

Indeed,
w0

ε −w0 = (Â0 +Q)−1
(
((f ε)∗)−1 − (f∗)−1

)
F,
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whence
‖w0

ε − w0‖G1 ≤ 2‖(Â0 +Q)−1‖G→G1‖f−1‖L∞
‖F‖G.

Then it suffices to check (16.8) for F ∈ C∞
0 (Rd; Cn). We fix a function ζ ∈ C∞

0 (Rd) such
that Fζ = F. Then

w0
ε −w0 = (Â0 +Q)−1ζ

(
((f ε)∗)−1 − (f∗)−1

)
F.

By the „mean value property“, the functions
(
((f ε)∗)−1 − (f ∗)−1

)
F tend to zero weakly

in G. Since the operator (Â0 +Q)−1ζ compactly maps G to G1, then (16.8) holds. From
what was said it follows that the result of Theorem 16.1 agrees with the statement of
[BSu2, Theorem 4.4.2] about the weak (G1)-convergence of the functions f εwε to w0:

(w,G1)- lim
ε→0

f εwε = w0.

16.2

Under Condition 8.4, Theorem 13.8 implies the following result.

Theorem 16.3. Suppose that conditions of Theorem 16.1 are satisfied. Besides, suppose

that Condition 8.4 is valid. Then for 0 < ε ≤ 1 we have

‖f ε(Aε + I)−1 − (I + εΛεb(D))(Â0 +Q)−1((f ε)∗)−1‖G→G1 ≤ Č11‖f−1‖L∞
ε. (16.9)

The constant Č11 is defined by (13.18) and depends on m, d, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

,

‖f‖L∞
, ‖f−1‖L∞

, and on parameters of the lattice Γ, and also on ‖Λ‖L∞
.

In terms of solutions, the inequality (16.9) is equivalent to the estimate

‖f εwε −w0
ε − εΛεb(D)w0

ε‖G1 ≤ Č11‖f−1‖L∞
ε‖F‖G, 0 < ε ≤ 1. (16.10)

16.3. The case of zero corrector

The following result is deduced from Theorem 13.9.

Theorem 16.4. Suppose that conditions of Theorem 16.1 are satisfied. Suppose also that

condition (6.25) is valid. Then for 0 < ε ≤ 1 we have

‖f ε(Aε + I)−1 − (Â0 +Q)−1((f ε)∗)−1‖G→G1 ≤ Č12‖f−1‖L∞
ε. (16.11)

The constant Č12 is defined by (13.20) and depends on α0, α1, ‖g‖L∞
, ‖g−1‖L∞

, ‖f‖L∞
,

‖f−1‖L∞
, and on parameters of the lattice Γ.

The estimate (16.11) means that, under condition (6.25), we have

‖f εwε − w0
ε‖G1 ≤ Č12‖f−1‖L∞

ε‖F‖G, 0 < ε ≤ 1. (16.12)

Remark 16.5. In [BSu2, Ch. 4, Subsection 4.4], it was shown that, if g0 = g, then

(G1)- lim
ε→0

f εwε = w0, (16.13)

where w0 = (Â0 +Q)−1(f ∗)−1F. By (16.8), this agrees with (16.12).
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16.4. Interpolational results

From Theorem 14.3, multiplying operators in (14.14) by ((f ε)∗)−1 from the right, we
deduce the following result.

Theorem 16.6. Suppose that conditions of Theorem 16.1 are satisfied. Let K̃Q(ε) be the

operator defined by (13.3). Then for 0 ≤ s ≤ 1 we have

‖f ε(Aε + I)−1 −
(
(Â0 +Q)−1 + εK̃Q(ε)

)
((f ε)∗)−1‖G→Gs

≤ Č1−s
1 Čs

13‖f−1‖L∞
ε2−s, 0 < ε ≤ 1.

Similarly, Theorem 14.4 implies the following statement.

Theorem 16.7. Suppose that conditions of Theorem 16.1 are satisfied. Besides, let Con-

dition 8.4 be valid. Let K0
Q(ε) be the operator defined by (13.4). Then for 0 ≤ s ≤ 1 and

0 < ε ≤ 1 we have

‖f ε(Aε + I)−1 −
(
(Â0 +Q)−1 + εK0

Q(ε)
)

((f ε)∗)−1‖G→Gs

≤ Č1−s
2 Čs

14‖f−1‖L∞
ε2−s. (16.14)

Finally, Theorem 14.5 implies the following result.

Theorem 16.8. Suppose that conditions of Theorem 16.1 are satisfied. Besides, suppose

that condition (6.25) is valid. Then for 0 ≤ s ≤ 1 and 0 < ε ≤ 1 we have

‖f ε(Aε + I)−1 − (Â0 +Q)−1((f ε)∗)−1‖G→Gs ≤ Č1−s
3 Čs

12‖f−1‖L∞
ε2−s. (16.15)

The estimate (16.15) means that

‖f εwε − w0
ε‖Gs ≤ Č1−s

3 Čs
12‖f−1‖L∞

ε2−s‖F‖G, 0 < ε ≤ 1.

16.5. Approximation of the fluxes

Now the role of the flux is played by the vector-valued function

rε = gεb(D)f εwε = gεb(D)f ε(Aε + I)−1F. (16.16)

By Theorem 15.1 (see (15.6)),

‖gεb(D)(Âε +Qε)−1 − g̃εΠ(m)
ε b(D)(Â0 +Q)−1‖G→G∗

≤ Č15ε, 0 < ε ≤ 1. (16.17)

Multiplying operators in (16.17) by ((f ε)∗)−1 from the right and taking (16.2), (16.7), and
(16.16) into account, we obtain:

‖rε − g̃εΠ(m)
ε b(D)w0

ε‖G∗
≤ Č15‖f−1‖L∞

ε‖F‖G, 0 < ε ≤ 1. (16.18)

We have proved the following result.

Theorem 16.9. Let rε be defined by (16.16), and let w0
ε be defined by (16.7). Let g̃ be

the matrix defined by (5.5), and let Π
(m)
ε be a pseudodifferential operator in G∗ with the

symbol χeΩ/ε. Then the estimate (16.18) is valid.
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Remark 16.10. It can be shown that the functions g̃εΠ
(m)
ε b(D)w0

ε converge to
g0b(D)w0 =: r0 weakly in G∗. Therefore, the result of Theorem 16.9 agrees with the
statement of Theorem 4.4.2 from [BSu2] about weak (G∗)-convergence of fluxes rε to r0.

Similarly, Theorem 15.3 (see estimate (15.10)) implies the following theorem.

Theorem 16.11. Suppose that conditions of Theorem 16.9 are satisfied. Suppose also

that Condition 8.4 is valid. Then

‖rε − g̃εb(D)w0
ε‖G∗

≤ Č16‖f−1‖L∞
ε‖F‖G, 0 < ε ≤ 1. (16.19)

If g0 = g, then we have g̃ = g0 = g. Therefore, (16.19) implies the following theorem.

Theorem 16.12. Let g0 = g, i. e., conditions (5.9) are satisfied. Suppose that rε is

defined by (16.16), w0
ε is defined by (16.7), and r0

ε = g0b(D)w0
ε . Then

‖rε − r0
ε‖G∗

≤ Č16‖f−1‖L∞
ε‖F‖G, 0 < ε ≤ 1. (16.20)

Remark 16.13. In [BSu2, Theorem 4.4.8(2◦)], it was shown that, under condition g0 = g,
we have

(G∗)- lim
ε→0

rε = r0 := g0b(D)w0.

This agrees with estimate (16.20), since, by (16.8), we have

(G∗)- lim
ε→0

(r0
ε − r0) = (G∗)- lim

ε→0
g0b(D)(w0

ε − w0) = 0.

16.6. Approximation of the generalized resolvent for Aε

(Cf. [BSu4, Subsection 9.4].) In conclusion of this section, we consider the question of
approximation for the generalized resolvent of Aε. Let Q(x) be a Γ-periodic positive
(n× n)-matrix-valued function such that Q,Q−1 ∈ L∞. We factorize Q in the form

Q(x) = (ϕ(x)ϕ(x)∗)−1, (16.21)

where the matrix-valued function ϕ is Γ-periodic. We use the notation

ψ(x) := f(x)ϕ(x), Q∗(x) = (ψ(x)ψ(x)∗)−1 = (f(x)∗)−1Q(x)(f(x))−1. (16.22)

By the identity
(Aε + Qε)−1 = (f ε)−1(Âε +Qε

∗)
−1((f ε)∗)−1, (16.23)

it is possible to obtain the results about approximation for (Aε+Qε)−1 from the correspon-

ding results for the generalized resolvent (Âε+Q
ε
∗)

−1. The following statement is deduced
from Theorem 13.6 (cf. the proof of Theorem 16.1).

Theorem 16.14. Let Aε be the operator (16.1), and let Â0 = b(D)∗g0b(D). Let Q(x)
be a Γ-periodic positive (n× n)-matrix-valued function, such that Q,Q−1 ∈ L∞. Suppose

that relations (16.21), (16.22) are valid. Let Λ(x) be the matrix defined in Subsection 5.1.
Let Πε be the pseudodifferential operator (10.4). Then for 0 < ε ≤ 1 we have:

‖f ε(Aε + Qε)−1 − (I + εΛεb(D)Πε)(Â0 +Q∗)
−1((f ε)∗)−1‖G→G1 ≤ Č∗

10‖f−1‖L∞
ε. (16.24)

The constant Č∗
10 is the analog of the constant Č10 with Q replaced by Q∗. It depends on

m, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

, ‖f‖L∞
, ‖f−1‖L∞

, ‖Q‖L∞
, ‖Q−1‖L∞

, and on parameters of

the lattice Γ.
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Let zε be the solution of the equation

Aεzε + Qεzε = F, F ∈ G, (16.25)

and let z0
ε be the solution of the equation

Â0z0
ε +Q∗z

0
ε = ((f ε)∗)−1F. (16.26)

The estimate (16.24) means that

‖f εzε − z0
ε − εΛεΠ(m)

ε b(D)z0
ε‖G1 ≤ Č∗

10‖f−1‖L∞
ε‖F‖G, 0 < ε ≤ 1. (16.27)

By analogy with Remark 16.2, it can be shown that (16.27) agrees with the statement of
Theorem 4.4.2 from [BSu2] about the weak (G1)-convergence of the functions f εzε:

(w,G1)- lim
ε→0

f εzε = z0, (16.28)

where z0 is the solution of the equation

Â0z0 +Q∗z0 = (f ∗)−1F.

By the identity (16.23), Theorem 13.8 yields the following result.

Theorem 16.15. Suppose that conditions of Theorem 16.14 are satisfied. Besides, sup-

pose that Condition 8.4 is valid. Then for 0 < ε ≤ 1 we have:

‖f ε(Aε + Qε)−1 − (I + εΛεb(D))(Â0 +Q∗)
−1((f ε)∗)−1‖G→G1 ≤ Č∗

11‖f−1‖L∞
ε.

The constant Č∗
11 is the analog of the constant Č11 with Q replaced by Q∗. It depends on

m, α0, α1, ‖g‖L∞
, ‖g−1‖L∞

, ‖f‖L∞
, ‖f−1‖L∞

, ‖Q‖L∞
, ‖Q−1‖L∞

, on parameters of the

lattice Γ, and also on ‖Λ‖L∞
.

The following theorem is deduced from Theorem 13.9.

Theorem 16.16. Suppose that conditions of Theorem 16.14 are satisfied. Besides, sup-

pose that condition (6.25) is valid. Then for 0 < ε ≤ 1 we have

‖f ε(Aε + Qε)−1 − (Â0 +Q∗)
−1((f ε)∗)−1‖G→G1 ≤ Č∗

12‖f−1‖L∞
ε. (16.29)

The constant Č∗
12 is the analog of the constant Č12 with Q replaced by Q∗. It depends on

α0, α1, ‖g‖L∞
, ‖g−1‖L∞

, ‖f‖L∞
, ‖f−1‖L∞

, ‖Q‖L∞
, ‖Q−1‖L∞

, and on parameters of the

lattice Γ.

The estimate (16.29) means that, under condition (6.25), we have

‖f εzε − z0
ε‖G1 ≤ Č∗

12‖f−1‖L∞
ε‖F‖G, 0 < ε ≤ 1. (16.30)

Remark 16.17. Similarly to (16.8), it can be shown that the functions z0
ε strongly

converge in G1 to z0, as ε → 0. Therefore, (16.30) agrees with the statement of Theorem
4.4.8(1◦) from [BSu2] about the strong (G1)-convergence of the functions f εzε to z0 (under
the condition g0 = g):

(G1)- lim
ε→0

f εzε = z0, if g0 = g.
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16.7. Interpolational results for (Aε + Qε)−1

The following result is deduced from (interpolational) Theorem 14.3 and identity (16.23).

Theorem 16.18. Suppose that the conditions of Theorem 16.14 are satisfied. Let K̃Q∗
(ε)

be the corrector (13.3) with Q replaced by Q∗. Then for 0 ≤ s ≤ 1 and 0 < ε ≤ 1 we have:

‖f ε(Aε + Qε)−1 −
(
(Â0 +Q∗)

−1 + εK̃Q∗
(ε)
)

((f ε)∗)−1‖G→Gs

≤ (Č∗
1)

1−s(Č∗
13)

s‖f−1‖L∞
ε2−s.

Here Č∗
1 is the analog of the constant Č1, and Č∗

13 is the analog of Č13 with Q replaced by

Q∗.

Similarly, the following statement is deduced from Theorem 14.4.

Theorem 16.19. Suppose that conditions of Theorem 16.14 are satisfied. Suppose also

that Condition 8.4 is valid. Let K0
Q∗

(ε) be the corrector (13.4) with Q replaced by Q∗.

Then for 0 ≤ s ≤ 1 and 0 < ε ≤ 1 we have:

‖f ε(Aε + Qε)−1 −
(
(Â0 +Q∗)

−1 + εK0
Q∗

(ε)
)

((f ε)∗)−1‖G→Gs

≤ (Č∗
2)

1−s(Č∗
14)

s‖f−1‖L∞
ε2−s.

Here Č∗
2 is the analog of the constant Č2, and Č∗

14 is the analog of Č14 with Q replaced by

Q∗.

Theorem 14.5 leads to the following statement which distinguishes the case where the
corrector is equal to zero.

Theorem 16.20. Suppose that conditions of Theorem 16.14 are satisfied. Suppose also

that condition (6.25) is valid. Then for 0 ≤ s ≤ 1 and 0 < ε ≤ 1 we have

‖f ε(Aε + Qε)−1 − (Â0 +Q∗)
−1((f ε)∗)−1‖G→Gs ≤ (Č∗

3)
1−s(Č∗

12)
s‖f−1‖L∞

ε2−s.

Here Č∗
3 is the analog of the constant Č3 with Q replaced by Q∗.

16.8. Approximation of the fluxes for (Aε + Qε)−1

The role of the flux is now played by the vector-valued function

gεb(D)f εzε = gεb(D)f ε(Aε + Qε)−1F = gεb(D)(Âε +Qε
∗)

−1((f ε)∗)−1F.

In the last passage we used the identity (16.23).
Thr following statement is deduced from Theorem 15.1.

Theorem 16.21. Suppose that conditions of Theorem 16.14 are satisfied. Let zε be the

solution of the equation (16.25), and let z0
ε be the solution of the equation (16.26). Let g̃

be the matrix defined by (5.5), and let Π
(m)
ε be the pseudodifferential operator in G∗ with

the symbol χeΩ/ε. Then

‖gεb(D)f εzε − g̃εΠ(m)
ε b(D)z0

ε‖G∗
≤ Č∗

15‖f−1‖L∞
ε‖F‖G, 0 < ε ≤ 1.

Here Č∗
15 is the analog of the constant Č15 with Q replaced by Q∗.
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In can be shown that the functions g̃εΠ
(m)
ε b(D)z0

ε tend to g0b(D)z0 weakly in G∗.
Therefore, the result of Theorem 16.21 agrees with the statement of Theorem 4.4.2 from
[BSu2] about the weak (G∗)-convergence of the fluxes gεb(D)f εzε to g0b(D)z0.

Similarly, Theorem 15.3 implies the following theorem.

Theorem 16.22. Suppose that conditions of Theorem 16.21 are satisfied. Suppose also

that Condition 8.4 is valid. Then

‖gεb(D)f εzε − g̃εb(D)z0
ε‖G∗

≤ Č∗
16‖f−1‖L∞

ε‖F‖G, 0 < ε ≤ 1. (16.31)

Here Č∗
16 is the analog of the constant Č16 with Q replaced by Q∗.

If g0 = g, we have g̃ = g0 = g. Therefore, (16.31) implies the following statement.

Theorem 16.23. Suppose that conditions of Theorem 16.21 are satisfied. Let g0 = g, i.

e., conditions (5.9) are valid. Then

‖gεb(D)f εzε − g0b(D)z0
ε‖G∗

≤ Č∗
16‖f−1‖L∞

ε‖F‖G, 0 < ε ≤ 1.

Remark 16.24. As it has already been mentioned, the functions z0
ε converge to z0

strongly in G1 z0, whence the functions g0b(D)z0
ε strongly converge in G∗ to g0b(D)z0.

Therefore, the statement of Theorem 16.23 agrees with the result of [BSu2, Theorem
4.4.8(2◦)] about the strong (G∗)-convergence of the fluxes gεb(D)f εzε to g0b(D)z0 (under
the condition g0 = g).

Chapter 4. Applications

We proceed to applications of the general results to specific periodic operators of mathema-
tical physics. All the examples considered below have been studied before in [BSu4], where
approximation for the resolvent in the L2-operator norm with the three-term corrector
was found. Now we obtain approximation for the resolvent in the operator norm from L2

to H1. We obtain also the interpolational results and approximation for the fluxes in L2.

§17. The operator Â = D∗gD

17.1. The case where the matrix g(x) has real entries

We consider the operator

Â = D∗g(x)D = −div g(x)∇, (17.1)

acting in G = L2(R
d), d ≥ 1 (cf. [BSu2, §5.1] and [BSu4, §10]). Here g(x) is a Γ-periodic

(d× d)-matrix-valued function with real entries and such that

g(x) > 0, g, g−1 ∈ L∞. (17.2)

The operator (17.1) describes a periodic acoustical medium; this operator is also useful
in diffusion problems, etc. For us this example is also important as a basic object for
the study of the periodic Schrödinger operator. Now we have n = 1, m = d, b(ξ) = ξ,
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α0 = α1 = 1. The solutions vj ∈ H̃1(Ω) of the equation (5.4) with C = ej are pure

imaginary. Therefore, it is convenient to consider the solutions Φj ∈ H̃1(Ω) of the problem

div g(x)(∇Φj(x) + ej) = 0,

∫

Ω

Φj(x) dx = 0, (17.3)

j = 1, . . . , d. Then Φj(x) are real-valued functions, and vj(x) = iΦj(x). Herewith, Λ(x)
is a row-matrix:

Λ(x) = i(Φ1(x), . . . ,Φd(x)),

g̃(x) is the real (d× d)-matrix with the columns g(x)(∇Φj(x) + ej), j = 1, . . . , d, and the
effective matrix g0 is defined by

g0 = |Ω|−1

∫

Ω

g̃(x) dx.

Next, Λb(D) = ΛD =
∑d

j=1 Φj(x)∂j . For the solutions Φj , we have Φj ∈ L∞, and the

norms ‖Φj‖L∞
are estimated by the constant depending only on ‖g‖L∞

, ‖g−1‖L∞
, on d

and on parameters of the lattice Γ (see Remark 8.8).

We consider the operator Âε = D∗gε(x)D with rapidly oscillating matrix gε(x). Now
Condition 8.6(2◦), and then also Condition 8.4 is satisfied. Theorem 10.8 is applicable.
By Remark 8.8, this theorem leads to the following statement.

Theorem 17.1. Let Â(g) = D∗g(x)D, where g(x) is a Γ-periodic matrix with real entries

satisfying (17.2), and let Â0 = D∗g0D be the effective operator. Let Âε = Â(gε). Let

Φj(x) be the Γ-periodic solution of the problem (17.3), j = 1, . . . , d. Then

‖(Âε + I)−1 − (Â0 + I)−1 − ε
d∑

j=1

Φε
j∂j(Â0 + I)−1‖L2(Rd)→H1(Rd) ≤ C11ε,

0 < ε ≤ 1, (17.4)

where the constant C11 depends only on ‖g‖L∞
, ‖g−1‖L∞

, on d, and on parameters of the

lattice Γ.

We can also apply (interpolational) Theorem 11.4. Now the corrector K0(ε) (see
(10.11)) takes the form

K0(ε) =
d∑

j=1

Φε
j∂j(Â0 + I)−1 −

d∑

j=1

(Â0 + I)−1∂jΦ
ε
j , (17.5)

since the third term of the corrector (10.11) for the operator (17.1) is equal to zero (see
[BSu4, Proposition 8.4]). We arrive at the following result.

Theorem 17.2. Suppose that conditions of Theorem 17.1 are satisfied. Let K0(ε) be the

corrector defined by (17.5). Then for 0 ≤ s ≤ 1 we have

‖(Âε + I)−1 − (Â0 + I)−1 − εK0(ε)‖L2(Rd)→Hs(Rd) ≤ C0
sε

2−s, 0 < ε ≤ 1,

where the constant C0
s depends on s, ‖g‖L∞

, ‖g−1‖L∞
, on d, and on parameters of the

lattice Γ.
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Now we formulate the result of Theorem 17.1 in terms of solutions. Let uε be the
solution of the equation

−div gε(x)∇uε + uε = F, F ∈ L2(R
d), (17.6)

and let u0 be the solution of the „homogenized“ equation

−div g0∇u0 + u0 = F. (17.7)

Then (17.4) means that

‖uε − u0 − ε

d∑

j=1

Φε
j∂ju0‖H1(Rd) ≤ C11ε‖F‖L2(Rd), 0 < ε ≤ 1.

Note that uε weakly converges in H1(Rd) to u0, as ε → 0 (see Remark 10.7).
Theorem 12.3 gives the following result about convergence of the fluxes.

Theorem 17.3. Suppose that conditions of Theorem 17.1 are satisfied. Let uε be the

solution of the equation (17.6), and let u0 be the solution of the equation (17.7). Let g̃(x)
be the matrix with the columns g(x)(∇Φj(x) + ej), j = 1, . . . , d. Then

‖gε∇uε − g̃ε∇u0‖L2(Rd;Cd) ≤ C16ε‖F‖L2(Rd), 0 < ε ≤ 1,

where the constant C16 depends on ‖g‖L∞
, ‖g−1‖L∞

, on d, and on parameters of the lattice

Γ.

Note that the fluxes gε∇uε weakly converge in L2(R
d; Cd) to g0∇u0 as ε → 0 (see

Remark 12.2).

17.2. Approximation of the generalized resolvent

Let Q(x) be a real-valued Γ-periodic function such that

Q(x) > 0, Q,Q−1 ∈ L∞. (17.8)

We consider a question about approximation of the generalized resolvent

(D∗gεD +Qε)−1.

We apply Theorem 13.8, which leads to the following result.

Theorem 17.4. Suppose that conditions of Theorem 17.1 are satisfied. Let Q(x) be a

Γ-periodic function satisfying condition (17.8), and let Q be the mean value of Q(x) over

the cell Ω. Let Qε(x) = Q(ε−1x). Then

‖(Âε +Qε)−1 − (Â0 +Q)−1 − ε

d∑

j=1

Φε
j∂j(Â0 +Q)−1‖L2(Rd)→H1(Rd) ≤ Č11ε,

0 < ε ≤ 1, (17.9)

where the constant Č11 depends only on ‖g‖L∞
, ‖g−1‖L∞

, ‖Q‖L∞
, ‖Q−1‖L∞

, on d, and on

parameters of the lattice Γ.
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We can also apply (interpolational) Theorem 14.4. Now the corrector K0
Q(ε) (see

(13.4)) takes the form

K0
Q(ε) =

d∑

j=1

Φε
j∂j(Â0 +Q)−1 −

d∑

j=1

(Â0 +Q)−1∂jΦ
ε
j , (17.10)

since the third term of the corrector (13.4) for the operator (17.1) is equal to zero (see
[BSu4, Proposition 9.4]).

Theorem 17.5. Suppose that conditions of Theorem 17.4 are satisfied. Let K0
Q(ε) be the

corrector defined by (17.10). Then for 0 ≤ s ≤ 1 we have

‖(Âε +Qε)−1 − (Â0 +Q)−1 − εK0
Q(ε)‖L2(Rd)→Hs(Rd) ≤ C0

Q,sε
2−s, 0 < ε ≤ 1, (17.11)

where the constant C0
Q,s depends on s, ‖g‖L∞

, ‖g−1‖L∞
, ‖Q‖L∞

, ‖Q−1‖L∞
, on d, and on

parameters of the lattice Γ.

Now we formulate the result of Theorem 17.4 in terms of solutions. Let vε be the
solution of the equation

−div gε(x)∇vε +Qεvε = F, F ∈ L2(R
d), (17.12)

and let v0 be the solution of the „homogenized“ equation

−div g0∇v0 +Qv0 = F. (17.13)

Then (17.9) means that

‖vε − v0 − ε

d∑

j=1

Φε
j∂jv0‖H1(Rd) ≤ Č11ε‖F‖L2(Rd), 0 < ε ≤ 1.

Herewith, vε weakly converges in H1(Rd) to v0 as ε → 0 (see Remark 13.7).
Theorem 15.3 gives the following result about approximation of the fluxes.

Theorem 17.6. Suppose that conditions of Theorem 17.4 are satisfied. Let vε be the

solution of the equation (17.12), and let v0 be the solution of the equation (17.13). Let

g̃(x) be the matrix with the columns g(x)(∇Φj(x) + ej), j = 1, . . . , d. Then

‖gε∇vε − g̃ε∇v0‖L2(Rd;Cd) ≤ Č16ε‖F‖L2(Rd), 0 < ε ≤ 1, (17.14)

where Č16 depends on ‖g‖L∞
, ‖g−1‖L∞

, ‖Q‖L∞
, ‖Q−1‖L∞

, on d, and on parameters of the

lattice Γ.

As ε → 0, the weak (L2(R
d; Cd))-limit of the fluxes gε∇vε is equal to g0∇v0 (cf.

Remark 15.2).
The special cases (g0 = g and g0 = g) are considered below in Subsection 17.7 in the

general case of the matrix g(x) with complex entries.
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17.3. The case where the matrix g(x) has complex entries

Now we consider operator (17.1) assuming that g(x) is a periodic Hermitian matrix with
complex entries and such that condition (17.2) is satisfied. Now the solutions Φj(x) of
the problem (17.3) are complex-valued functions. Theorem 10.6 is applicable. Unlike the
case of the real matrix g(x), now we cannot rely on the boundedness of the solutions
Φj(x). Therefore, in general case, we cannot replace Πε by I in (10.21). Obviously,
such replacement is possible for d ≤ 2 (as well as for the general matrix operators), and
also if g0 = g. Besides, the boundedness of the solutions Φj(x) is preserved under some
additional conditions on Im g(x). We write the matrix g(x) as

g(x) = g1(x) + ig2(x),

where g1(x) is a symmetric matrix with real entries and g2(x) is an antisymmetric matrix
with real entries. The solutions Φj(x) of the problem (17.3) are also represented as

Φj(x) = Φ
(1)
j (x) + iΦ

(2)
j (x), where Φ

(1)
j (x), Φ

(2)
j (x) are real-valued functions. Then the

problem (17.3) can be rewritten as the system of equations with real coefficients for Φ
(1)
j

and Φ
(2)
j :

div g1(x)∇Φ
(1)
j (x) −

d∑

l=1

Al(x)∂lΦ
(2)
j (x) = −div g1(x)ej

d∑

l=1

Al(x)∂lΦ
(1)
j (x) + div g1(x)∇Φ

(2)
j (x) = −div g2(x)ej





(17.15)

under the conditions
∫
Ω

Φ
(1)
j (x) dx =

∫
Ω

Φ
(2)
j (x) dx = 0. Here

Al(x) =

d∑

k=1

∂kg
(kl)
2 (x) = divg

(l)
2 (x), l = 1, . . . , d,

where g
(l)
2 (x) are the columns of the matrix g2(x). Suppose that, for some q > d, we have

divg
(l)
2 ∈ Lq(Ω), q > d, l = 1, . . . , d. (17.16)

The system (17.15) is a system „with the diagonal principal part“. It satisfies conditions of
Theorem 2.1 from [LaU, Ch. VII, §2]. By this theorem, Φj ∈ L∞, and the norm ‖Φj‖L∞

is estimated by the constant which depends on ‖g1‖L∞
, ‖g−1

1 ‖L∞
, on d, Ω, and on the

norms ‖Al‖Lq(Ω), l = 1, . . . , d. Thus, conditions (17.16) guarantee that Condition 8.4 is
satisfied, and then Theorem 10.8 is applicable.

Applying Theorems 10.6 and 10.8 to the operator (17.1), we arrive at the following
statement.

Theorem 17.7. 1) Let Â(g) = D∗g(x)D, where g(x) is a Γ-periodic matrix-valued func-

tion with complex entries satisfying (17.2), and let Â0 = Â(g0) be the effective operator.

Let Âε = Â(gε). Let Φj ∈ H̃1(Ω) be the solution of the problem (17.3), j = 1, . . . , d. Let

Πε be the operator defined by (10.4). Then

‖(Âε + I)−1 − (Â0 + I)−1 − ε

d∑

j=1

Φε
j∂j(Â0 + I)−1Πε‖L2(Rd)→H1(Rd) ≤ C10ε,

0 < ε ≤ 1,
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where the constant C10 depends only on ‖g‖L∞
, ‖g−1‖L∞

, on d, and on parameters of the

lattice Γ.

2) Suppose that assumptions of statement 1) are satisfied. Suppose also that Φj ∈ L∞,

j = 1, . . . , d. (The latter condition is a fortiori valid if d ≤ 2, or if g0 = g, or if the

columns g
(l)
2 (x), l = 1, . . . , d, of the matrix g2(x) = Im g(x) satisfy condition (17.16).)

Then

‖(Âε + I)−1 − (Â0 + I)−1 − ε

d∑

j=1

Φε
j∂j(Â0 + I)−1‖L2(Rd)→H1(Rd) ≤ C11ε,

0 < ε ≤ 1,

where the constant C11 depends only on ‖g‖L∞
, ‖g−1‖L∞

, on d, on parameters of the lattice

Γ, and also on the norms ‖Φj‖L∞
, j = 1, . . . , d.

Note that, if d ≤ 2, or if g0 = g, the norms ‖Φj‖L∞
themselves can be estimated by

the constant depending only on the norms ‖g‖L∞
, ‖g−1‖L∞

, on d, and on parameters of
the lattice. While, under condition (17.16), the norms ‖Φj‖L∞

depend also on the norms

‖div g
(l)
2 ‖Lq(Ω), l = 1, . . . , d.

17.4. Interpolational results

We can apply (interpolational) Theorem 11.3 to the operator (17.1) with complex matrix
g(x), while, under the condition Φj ∈ L∞, j = 1, . . . , d, Theorem 11.4 is applicable. Now

the third term of the correctors K̃(ε) and K0(ε), in general, is non-zero. The corrector
(10.9) (see [BSu4, Subsection 10.3]) takes the form

K̃(ε) =

d∑

j=1

Φε
j∂j(Â0 + I)−1Πε −

d∑

j=1

(Â0 + I)−1Πε∂j(Φ
ε
j)

∗

−
d∑

j,l,s=1

(Â0 + I)−1(ajls − a∗jls)∂j∂l∂s(Â0 + I)−1, (17.17)

where

ajls = |Ω|−1

∫

Ω

Φj(x)∗〈g(x)(∇Φl(x) + el), es〉 dx, j, l, s = 1, . . . , d. (17.18)

The corrector (10.11) is given by

K0(ε) =
d∑

j=1

Φε
j∂j(Â0 + I)−1 −

d∑

j=1

(Â0 + I)−1∂j(Φ
ε
j)

∗

−
d∑

j,l,s=1

(Â0 + I)−1(ajls − a∗jls)∂j∂l∂s(Â0 + I)−1. (17.19)

Applying Theorems 11.3 and 11.4, we arrive at the following result.
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Theorem 17.8. 1) Suppose that conditions of Theorem 17.7(1) are satisfied. Let K̃(ε)
be the corrector defined by (17.17), (17.18). Then for 0 ≤ s ≤ 1 we have

‖(Âε + I)−1 − (Â0 + I)−1 − εK̃(ε)‖L2(Rd)→Hs(Rd) ≤ Csε
2−s, 0 < ε ≤ 1,

where the constant Cs depends on s, on ‖g‖L∞
, ‖g−1‖L∞

, on d, and on parameters of the

lattice Γ.

2) Suppose that conditions of Theorem 17.7(2) are satisfied. Let K0(ε) be the corrector

defined by (17.19). Then for 0 ≤ s ≤ 1 we have

‖(Âε + I)−1 − (Â0 + I)−1 − εK0(ε)‖L2(Rd)→Hs(Rd) ≤ C0
sε

2−s, 0 < ε ≤ 1,

where the constant C0
s depends on s, on ‖g‖L∞

, ‖g−1‖L∞
, on d, on parameters of the

lattice Γ, and also on the norms ‖Φj‖L∞
, j = 1, . . . , d.

17.5. Approximation of the fluxes

We can apply Theorem 12.1 for the fluxes, and if Φj ∈ L∞, j = 1, . . . , d, we can apply
Theorem 12.3. This leads to the following result.

Theorem 17.9. Let uε be the solution of the equation (17.6), and let u0 be the solution of

the equation (17.7). Let g̃(x) be the matrix with the columns g(x)(∇Φj +ej), j = 1, . . . , d.

1) Suppose that conditions of Theorem 17.7(1) are satisfied. Let Π
(d)
ε be the pseudodiffe-

rential operator in L2(R
d; Cd) with the symbol χeΩ/ε(ξ). Then

‖gε∇uε − g̃εΠ(d)
ε ∇u0‖L2(Rd;Cd) ≤ C15ε‖F‖L2(Rd), 0 < ε ≤ 1,

where the constant C15 depends on d, on ‖g‖L∞
, ‖g−1‖L∞

, and on parameters of the lattice

Γ.

2) Suppose that conditions of Theorem 17.7(2) are satisfied. Then

‖gε∇uε − g̃ε∇u0‖L2(Rd;Cd) ≤ C16ε‖F‖L2(Rd), 0 < ε ≤ 1,

where the constant C16 depends on d, on ‖g‖L∞
, ‖g−1‖L∞

, on parameters of the lattice Γ,

and also on the norms ‖Φj‖L∞
, j = 1, . . . , d.

Note that, under conditions of Theorem 17.9(1), as ε → 0, the solutions uε converge
to u0 weakly in H1(Rd), while the fluxes gε∇uε converge to g0∇u0 weakly in L2(R

d; Cd)
(see Remarks 10.7 and 12.2).

17.6. Approximation of the generalized resolvent

Let Q(x) be a real-valued Γ-periodic function satisfying condition (17.8). We consider
the question about approximation of the generalized resolvent (D∗gεD+Qε)−1. Applying
Theorems 13.6 and 13.8, we arrive at the following result.

Theorem 17.10. Let Q(x) be a Γ-periodic function satisfying condition (17.8), and let

Q be the mean value of Q(x) over the cell Ω. Let Qε(x) = Q(ε−1x).
1) Under conditions of Theorem 17.7(1), we have

‖(Âε +Qε)−1 − (Â0 +Q)−1 − ε

d∑

j=1

Φε
j∂j(Â0 +Q)−1Πε‖L2(Rd)→H1(Rd) ≤ Č10ε,

0 < ε ≤ 1,
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where the constant Č10 depends only on ‖g‖L∞
, ‖g−1‖L∞

, ‖Q‖L∞
, ‖Q−1‖L∞

, on d, and on

parameters of the lattice Γ.

2) Under conditions of Theorem 17.7(2), we have

‖(Âε +Qε)−1 − (Â0 +Q)−1 − ε

d∑

j=1

Φε
j∂j(Â0 +Q)−1‖L2(Rd)→H1(Rd) ≤ Č11ε,

0 < ε ≤ 1, (17.20)

where the constant Č11 depends only on ‖g‖L∞
, ‖g−1‖L∞

, ‖Q‖L∞
, ‖Q−1‖L∞

, on d, on

parameters of the lattice Γ, and also on the norms ‖Φj‖L∞
, j = 1, . . . , d.

We can apply (interpolational) Theorem 14.3 to the generalized resolvent (Âε +Qε)−1.
If Φj ∈ L∞, j = 1, . . . , d, then Theorem 14.4 is applicable. The corrector (13.3) takes the
form

K̃Q(ε) =
d∑

j=1

Φε
j∂j(Â0 +Q)−1Πε −

d∑

j=1

(Â0 +Q)−1Πε∂j(Φ
ε
j)

∗

− (Â0 +Q)−1

( d∑

j,l,s=1

(ajls − a∗jls)∂j∂l∂s + 2i
d∑

j=1

(ImQΦj)∂j

)
(Â0 +Q)−1,

(17.21)

and the corrector (13.4) is given by

K0
Q(ε) =

d∑

j=1

Φε
j∂j(Â0 +Q)−1 −

d∑

j=1

(Â0 +Q)−1∂j(Φ
ε
j)

∗

− (Â0 +Q)−1

( d∑

j,l,s=1

(ajls − a∗jls)∂j∂l∂s + 2i

d∑

j=1

(ImQΦj)∂j

)
(Â0 +Q)−1.

(17.22)

(See [BSu4, Theorem 10.6].) Here the values ajls are defined by (17.18).
Applying Theorems 14.3 and 14.4, we arrive at the following result.

Theorem 17.11. 1) Suppose that conditions of Theorem 17.10(1) are satisfied. Let K̃Q(ε)
be the corrector defined by (17.21). Then for 0 ≤ s ≤ 1 we have

‖(Âε +Qε)−1 − (Â0 +Q)−1 − εK̃Q(ε)‖L2(Rd)→Hs(Rd) ≤ CQ,sε
2−s, 0 < ε ≤ 1,

where the constant CQ,s depends on s, on ‖g‖L∞
, ‖g−1‖L∞

, ‖Q‖L∞
, ‖Q−1‖L∞

, on d, and

on parameters of the lattice Γ.

2) Suppose that conditions of Theorem 17.10(2) are satisfied. Let K0
Q(ε) be the correc-

tor defined by (17.22). Then for 0 ≤ s ≤ 1 we have

‖(Âε +Qε)−1 − (Â0 +Q)−1 − εK0
Q(ε)‖L2(Rd)→Hs(Rd) ≤ C0

Q,sε
2−s, 0 < ε ≤ 1, (17.23)

where the constant C0
Q,s depends on s, on ‖g‖L∞

, ‖g−1‖L∞
, ‖Q‖L∞

, ‖Q−1‖L∞
, on d, on

parameters of the lattice Γ, and also on the norms ‖Φj‖L∞
, j = 1, . . . , d.

We can apply Theorem 15.1 for the fluxes, and under the condition Φj ∈ L∞, j =
1, . . . , d, we can apply Theorem 15.3. We arrive at the following result.
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Theorem 17.12. Let vε be the solution of the equation (17.12), and let v0 be the solution

of the equation (17.13). Let g̃(x) be the matrix with the columns g(x)(∇Φj(x) + ej),
j = 1, . . . , d.

1) Suppose that conditions of Theorem 17.10(1) are satisfied. Let Π
(d)
ε be the pseudo-

differential operator in L2(R
d; Cd) with the symbol χeΩ/ε(ξ). Then

‖gε∇vε − g̃εΠ(d)
ε ∇v0‖L2(Rd;Cd) ≤ Č15ε‖F‖L2(Rd), 0 < ε ≤ 1,

where the constant Č15 depends on ‖g‖L∞
, ‖g−1‖L∞

, ‖Q‖L∞
, ‖Q−1‖L∞

, on d, and on

parameters of the lattice Γ.

2) Suppose that conditions of Theorem 17.10(2) are satisfied. Then

‖gε∇vε − g̃ε∇v0‖L2(Rd;Cd) ≤ Č16ε‖F‖L2(Rd), 0 < ε ≤ 1, (17.24)

where the constant Č16 depends on ‖g‖L∞
, ‖g−1‖L∞

, ‖Q‖L∞
, ‖Q−1‖L∞

, on d, on parame-

ters of the lattice Γ, and also on the norms ‖Φj‖L∞
, j = 1, . . . , d.

Note that, under conditions of Theorem 17.12(1), as ε→ 0, the solutions vε converge
to v0 weakly in H1(Rd), and the fluxes gε∇vε converge to g0∇v0 weakly in L2(R

d; Cd) (see
Remarks 13.7 and 15.2).

17.7. Special cases

The case where the corrector is equal to zero is distinguished by Theorem 10.9, and for
the generalized resolvent by Theorem 13.9. Condition g0 = g, which is equivalent to (5.8),
now means that the columns gk(x) of the matrix g(x) are solenoidal vectors:

divgk(x) = 0, k = 1, . . . , d. (17.25)

We arrive at the following result.

Theorem 17.13. Let Â(g) = D∗g(x)D, where g(x) is a Γ-periodic matrix-valued function

with complex entries satisfying conditions (17.2) and (17.25). Let Â0 = Â(g) be the

effective operator. Let Âε = Â(gε). Let Q(x) be a Γ-periodic function satisfying condition

(17.8), and let Q be the mean value of Q(x) over the cell Ω. Let Qε(x) = Q(ε−1x). Then

we have

‖(Âε + I)−1 − (Â0 + I)−1‖L2(Rd)→H1(Rd) ≤ C12ε, 0 < ε ≤ 1,

‖(Âε +Qε)−1 − (Â0 +Q)−1‖L2(Rd)→H1(Rd) ≤ Č12ε, 0 < ε ≤ 1, (17.26)

where the constant C12 depends only on ‖g‖L∞
, ‖g−1‖L∞

, on d, and on parameters of the

lattice Γ, while the constant Č12 depends on the same parameters and also on the norms

‖Q‖L∞
, ‖Q−1‖L∞

.

Applying (interpolational) Theorems 11.5 and 14.5, we arrive at the following result.

Theorem 17.14. Under conditions of Theorem 17.13, for 0 ≤ s ≤ 1 we have

‖(Âε + I)−1 − (Â0 + I)−1‖L2(Rd)→Hs(Rd) ≤ C ′
sε

2−s, 0 < ε ≤ 1,

‖(Âε +Qε)−1 − (Â0 +Q)−1‖L2(Rd)→Hs(Rd) ≤ C ′
Q,sε

2−s, 0 < ε ≤ 1, (17.27)

where the constant C ′
s depends on s, on ‖g‖L∞

, ‖g−1‖L∞
, and on parameters of the lattice

Γ, while the constant C ′
Q,s depends on the same parameters and also on ‖Q‖L∞

, ‖Q−1‖L∞
.
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Now we consider the case where g0 = g. Condition (5.9) means that the columns lk(x)
of the matrix g(x)−1 are potential vectors:

lk(x) = l0k + ∇φk, l0k ∈ C
d, φk ∈ H̃1(Ω), k = 1, . . . , d. (17.28)

Theorems 12.4 and 15.4 lead to the following result.

Theorem 17.15. Suppose that conditions of Theorem 17.10(1) are satisfied, and that

g0 = g, i. e., conditions (17.28) for the columns lk(x) of the matrix g(x)−1 are valid. Let

uε be the solution of the equation (17.6), and let u0 be the solution of the equation (17.7).
Let vε be the solution of the equation (17.12), and let v0 be the solution of the equation

(17.13). Then, as ε → 0, the fluxes gε∇uε tend to g0∇u0, and gε∇vε tend to g0∇v0 in

the L2(R
d; Cd)-norm. We have

‖gε∇uε − g0∇u0‖L2(Rd;Cd) ≤ C16ε‖F‖L2(Rd), 0 < ε ≤ 1,

‖gε∇vε − g0∇v0‖L2(Rd;Cd) ≤ Č16ε‖F‖L2(Rd), 0 < ε ≤ 1. (17.29)

The constant C16 depends on d, on ‖g‖L∞
, ‖g−1‖L∞

, and on parameters of the lattice Γ,

while the constant Č16 depends on the same parameters, and also on the norms ‖Q‖L∞
,

‖Q−1‖L∞
.

§18. The periodic Schrödinger operator

18.1. Preliminaries. Factorization

(See [BSu2, §6.1 and BSu4, §11].) In the space L2(R
d), d ≥ 1, we consider the periodic

Schrödinger operator with the metric g(x) and potential p(x):

H = D∗g(x)D + p(x), x ∈ R
d. (18.1)

Here g(x) is a Γ-periodic (d×d)-matrix with real entries satisfying the following conditions:

g(x) > 0, g, g−1 ∈ L∞, (18.2)

and p(x) is a real-valued Γ-periodic function such that

p ∈ Ls(Ω), 2s > d for d ≥ 2; s = 1 for d = 1. (18.3)

Adding an appropriate constant to p(x), we can always assume that the point λ = 0 is

the bottom of the spectrum of the operator H.
Let ω ∈ H̃1(Ω) be a (weak) periodic solution of the equation

D∗g(x)Dω + p(x)ω = 0.

Solution ω is defined up to a constant factor, which may be fixed so that

ω(x) > 0, x ∈ R
d,

∫

Ω

ω2(x) dx = |Ω|. (18.4)
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Under conditions (18.2) and (18.3), it turns out that ω, ω−1 ∈ Cα with some α > 0. The
operator (18.1) admits a factorization of the form

H = ω−1D∗ω2gDω−1. (18.5)

Thus, the operator H is reduced to the form

H = A(g, f), with b(D) = D, g = ω2g, f = ω−1.

Herewith, n = 1 and m = d.

Remark 18.1. We can view expression (18.5) as the definition of the operator H, as-
suming that ω(x) is an arbitrary Γ-periodic function such that

ω(x) > 0, ω, ω−1 ∈ L∞. (18.6)

We take this definition as the initial one. The form (18.1) can be recovered by the formula
p = −ω−1(D∗gDω). The corresponding potential p(x) may be strongly singular.

18.2. The homogenization problem for Hε

Now we consider the operator

Hε = (ωε)−1D∗(ωε)2gεD(ωε)−1 = (ωε)−1D∗gεD(ωε)−1 (18.7)

with rapidly oscillating coefficients. In terms of (18.1), the operator (18.7) takes the form

Hε = D∗gε(x)D + ε−2pε(x).

We are interested in the behavior of the resolvent (Hε + I)−1 for small ε.
Now Condition 8.6(2◦), and then also Condition 8.4, is satisfied. Theorem 16.3 is

applicable. Let Â(g) = D∗ω2gD = D∗gD, and let g0 be the effective matrix for the

operator Â(g). Let Â0 = Â(g0). Now Q(x) = ω2(x), and, by (18.4), Q = 1. Taking what
was said into account and applying Theorem 16.3, we obtain the following statement (cf.
Theorem 17.4).

Theorem 18.2. Let g(x) be a Γ-periodic (d× d)-matrix-valued function with real entries

satisfying conditions (18.2), and let ω(x) be a Γ-periodic function satisfying conditions

(18.6), (18.4). Let Hε be the operator defined by (18.7). We put g(x) := ω2(x)g(x). Let

g0 be the effective matrix for the operator D∗gD, and let Â0 = D∗g0D. Let Φj ∈ H̃1(Ω)
be the solution of the problem (17.3), j = 1, . . . , d. Then for 0 < ε ≤ 1 we have

‖(ωε)−1(Hε + I)−1 − (Â0 + I)−1ωε

− ε

d∑

j=1

Φε
j∂j(Â0 + I)−1ωε‖L2(Rd)→H1(Rd) ≤ C̃11ε, (18.8)

where the constant C̃11 = Č11‖ω‖L∞
depends on the norms ‖g‖L∞

, ‖g−1‖L∞
, ‖ω‖L∞

,

‖ω−1‖L∞
, on d, and on parameters of the lattice Γ. (Here Č11 is the constant from (17.9)

with Q = ω2.)

We can also apply (interpolational) Theorem 16.7. By (17.10) and by the identity
Q = 1, the operator K0

Q(ε) coincides now with K0(ε) and is given by (17.5). We arrive
at the following result (cf. Theorem 17.5).
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Theorem 18.3. Suppose that conditions of Theorem 18.2 are satisfied. Let K0(ε) be the

corrector defined by (17.5). Then for 0 ≤ s ≤ 1 and 0 < ε ≤ 1 we have

‖(ωε)−1(Hε + I)−1 −
(
(Â0 + I)−1 + εK0(ε)

)
ωε‖L2(Rd)→Hs(Rd) ≤ C̃sε

2−s, (18.9)

where the constant C̃s = C0
Q,s‖ω‖L∞

depends only on s, on ‖g‖L∞
, ‖g−1‖L∞

, ‖ω‖L∞
,

‖ω−1‖L∞
, on d, and on parameters of the lattice Γ. (Here C0

Q,s is the constant from

(17.11) with Q = ω2.)

Remark 18.4 If the operator H is given in the form (18.1) under conditions (18.2) and
(18.3), then the norms ‖ω‖L∞

, ‖ω−1‖L∞
are estimated by the constant depending only on

‖g‖L∞
, ‖g−1‖L∞

, on d, Ω, and on ‖p‖Ls(Ω). Then the constant C̃11 from (18.8) depends on

‖g‖L∞
, ‖g−1‖L∞

, on d, ‖p‖Ls(Ω) and on parameters of the lattice Γ, while the constant C̃s

from (18.9) depends on the same parameters and also on s.

18.3. Approximation of the fluxes

We consider the solution wε of the equation

Hεwε + wε = F, F ∈ L2(R
d). (18.10)

Let w0
ε be the solution of the equation

D∗g0Dw0
ε + w0

ε = ωεF. (18.11)

(Cf. (16.6) and (16.7).) Then (18.8) means that

‖(ωε)−1wε − w0
ε − ε

d∑

j=1

Φε
j∂jw

0
ε‖H1(Rd) ≤ C̃11ε‖F‖L2(Rd), 0 < ε ≤ 1.

By Remark 16.2, under conditions of Theorem 18.2, there exists a weak (H1)-limit of the
functions (ωε)−1wε:

(w,H1(Rd))- lim
ε→0

(ωε)−1wε = w0,

where w0 is the solution of the equation

D∗g0Dw0 + w0 = ωF. (18.12)

We can apply Theorem 16.11 for the fluxes. This leads to the following result.

Theorem 18.5. Suppose that conditions of Theorem 18.2 are satisfied. Let wε be the

solution of the equation (18.10), and let w0
ε be the solution of the equation (18.11). Let

g̃(x) be the matrix with the columns g(x)(∇Φj + ej), j = 1, . . . , d. Then

‖gε∇(ωε)−1wε − g̃ε∇w0
ε‖L2(Rd;Cd) ≤ C̃16ε‖F‖L2(Rd), 0 < ε ≤ 1,

where the constant C̃16 = Č16‖ω‖L∞
depends only on ‖g‖L∞

, ‖g−1‖L∞
, ‖ω‖L∞

, ‖ω−1‖L∞
,

on d, and on parameters of the lattice Γ. (Here Č16 is the constant from (17.14) with

Q = ω2.)

By Remark 16.10, under conditions of Theorem 18.5, the functions gε∇(ωε)−1wε con-
verge to g0∇w0 weakly in L2(R

d; Cd), where w0 is the solution of the equation (18.12).

81



18.4. Special cases

The case where the corrector is equal to zero is distinguished by Theorems 16.4 and 16.8.
We arrive at the following result.

Theorem 18.6. Suppose that conditions of Theorem 18.2 are satisfied, and that g0 = g,
i. e., condition (17.25) for the columns gk(x) of the matrix g(x) = g(x)ω(x)2 is valid.

Then we have

‖(ωε)−1(Hε + I)−1 − (Â0 + I)−1ωε‖L2(Rd)→H1(Rd) ≤ C̃12ε, 0 < ε ≤ 1. (18.13)

Besides, for 0 ≤ s ≤ 1 we have

‖(ωε)−1(Hε + I)−1 − (Â0 + I)−1ωε‖L2(Rd)→Hs(Rd) ≤ C̃ ′
sε

2−s, 0 < ε ≤ 1. (18.14)

The constant C̃12 = Č12‖ω‖L∞
depends on ‖g‖L∞

, ‖g−1‖L∞
, ‖ω‖L∞

, ‖ω−1‖L∞
, on d, and

on parameters of the lattice Γ. The constant C̃ ′
s = C ′

Q,s‖ω‖L∞
depends on the same

parameters and also on s. (Here Č12 is the constant from (17.26), and C ′
Q,s is the constant

from (17.27) with Q = ω2.)

Now we consider the case where g0 = g. We can apply Theorem 16.12, which leads to
the following statement.

Theorem 18.7. Suppose that conditions of Theorem 18.5 are satisfied, and that g0 = g,
i. e., relations (17.28) for the columns lk(x) of the matrix g(x)−1 are valid; here g = gω2.

Then we have

‖gε∇(ωε)−1wε − g0∇w0
ε‖L2(Rd;Cd) ≤ C̃16ε‖F‖L2(Rd), 0 < ε ≤ 1,

where the constant C̃16 = Č16‖ω‖L∞
depends on ‖g‖L∞

, ‖g−1‖L∞
, ‖ω‖L∞

, ‖ω−1‖L∞
, on d,

and on parameters of the lattice Γ. (Here Č16 is the constant from (17.29) with Q = ω2.)

By Remark 16.13, under conditions of Theorem 18.7, there exists a strong limit

(L2(R
d; Cd))- lim

ε→0
gε∇(ωε)−1wε = g0∇w0,

where w0 is the solution of the equation (18.12).

18.5. Approximation for the generalized resolvent

Now we consider the question about approximation of the generalized resolvent
(Hε + Qε)−1, where Q(x) is a Γ-periodic function such that

Q(x) > 0; Q,Q−1 ∈ L∞. (18.15)

We can apply Theorem 16.15, which gives the following result.

Theorem 18.8. Suppose that conditions of Theorem 18.2 are satisfied. Let Q(x) be the

Γ-periodic function satisfying conditions (18.15). Let Q∗(x) = Q(x)ω2(x). Then for

0 < ε ≤ 1 we have

‖(ωε)−1(Hε + Qε)−1 − (Â0 +Q∗)
−1ωε

− ε
d∑

j=1

Φε
j∂j(Â0 +Q∗)

−1ωε‖L2(Rd)→H1(Rd) ≤ C̃∗
11ε, (18.16)
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where the constant C̃∗
11 = Č∗

11‖ω‖L∞
depends on the norms ‖g‖L∞

, ‖g−1‖L∞
, ‖ω‖L∞

,

‖ω−1‖L∞
, ‖Q‖L∞

, ‖Q−1‖L∞
, on d, and on parameters of the lattice Γ. (Here the constant

Č∗
11 is the analog of the constant Č11 from (17.9) with Q replaced by Q∗.)

We can also apply (interpolational) Theorem 16.19. Now the corrector K0
Q∗

(ε) takes
the form (cf. (17.10)):

K0
Q∗

(ε) =

d∑

j=1

Φε
j∂j(Â0 +Q∗)

−1 −
d∑

j=1

(Â0 +Q∗)
−1∂jΦ

ε
j . (18.17)

We obtain the following result (cf. Theorem 17.5).

Theorem 18.9. Suppose that conditions of Theorem 18.8 are satisfied. Let K0
Q∗

(ε) be the

corrector defined by (18.17). Then for 0 ≤ s ≤ 1 and 0 < ε ≤ 1 we have

‖(ωε)−1(Hε + Qε)−1 −
(
(Â0 +Q∗)

−1 + εK0
Q∗

(ε)
)
ωε‖L2(Rd)→Hs(Rd) ≤ C̃∗

s ε
2−s, (18.18)

where the constant C̃∗
s = C0

Q∗,s‖ω‖L∞
depends only on s, on ‖g‖L∞

, ‖g−1‖L∞
, ‖ω‖L∞

,

‖ω−1‖L∞
, ‖Q‖L∞

, ‖Q−1‖L∞
, on d, and on parameters of the lattice Γ. (Here the constant

C0
Q∗,s is the analog of the constant C0

Q,s from (17.11) with Q replaced by Q∗.)

We consider the solution zε of the equation

Hεzε + Qεzε = F, F ∈ L2(R
d). (18.19)

Let z0
ε be the solution of the equation

Â0z0
ε +Q∗z

0
ε = ωεF. (18.20)

Estimate (18.16) shows that

‖(ωε)−1zε − z0
ε − ε

d∑

j=1

Φε
j∂jz

0
ε‖H1(Rd) ≤ C̃∗

11ε‖F‖L2(Rd), 0 < ε ≤ 1.

By (16.28), there exists a weak (H1)-limit of the functions (ωε)−1zε:

(w,H1(Rd))- lim
ε→0

(ωε)−1zε = z0,

where z0 is the solution of the equation

Â0z0 +Q∗z0 = ωF. (18.21)

We can apply Theorem 16.22 for the fluxes. This leads to the following result.

Theorem 18.10. Suppose that conditions of Theorem 18.8 are satisfied. Let zε be the

solution of the equation (18.19), and let z0
ε be the solution of the equation (18.20). Let

g̃(x) be the matrix with the columns g(x)(∇Φj + ej), j = 1, . . . , d. Then

‖gε∇(ωε)−1zε − g̃ε∇z0
ε‖L2(Rd;Cd) ≤ C̃∗

16ε‖F‖L2(Rd), 0 < ε ≤ 1,

where the constant C̃∗
16 = Č∗

16‖ω‖L∞
depends only on ‖g‖L∞

, ‖g−1‖L∞
, ‖ω‖L∞

, ‖ω−1‖L∞
,

‖Q‖L∞
, ‖Q−1‖L∞

, on d, and on parameters of the lattice Γ. (Here the constant Č∗
16 is the

analog of the constant Č16 from (17.14) with Q replaced by Q∗.)
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The fluxes gε∇(ωε)−1zε converge to g0∇z0 weakly in L2(R
d; Cd).

The case where the corrector in (18.16) and in (18.18) is equal to zero is distinguished
by Theorems 16.16 and 16.20. We obtain the folowing statement.

Theorem 18.11. Suppose that conditions of Theorem 18.8 are satisfied, and that g0 = g,
i. e., condition (17.25) for the columns gk(x) of the matrix g(x) = g(x)ω(x)2 is valid.

Then for 0 < ε ≤ 1 we have

‖(ωε)−1(Hε + Qε)−1 − (Â0 +Q∗)
−1ωε‖L2(Rd)→H1(Rd) ≤ C̃∗

12ε. (18.22)

Besides, for 0 ≤ s ≤ 1 and 0 < ε ≤ 1 we have

‖(ωε)−1(Hε + Qε)−1 − (Â0 +Q∗)
−1ωε‖L2(Rd)→Hs(Rd) ≤ C̃ ′

s,∗ε
2−s. (18.23)

The constant C̃∗
12 = Č∗

12‖ω‖L∞
from (18.22) depends on ‖g‖L∞

, ‖g−1‖L∞
, ‖ω‖L∞

, ‖ω−1‖L∞
,

‖Q‖L∞
, ‖Q−1‖L∞

, on d, and on parameters of the lattice Γ. The constant C̃ ′
s,∗ =

C ′
Q∗,s‖ω‖L∞

from (18.23) depends on the same parameters, and also on s. (Here Č∗
12

is the analog of the constant Č12 from (17.26), and C ′
Q∗,s is the analog of the constant C ′

Q,s

from (17.27) with Q replaced by Q∗.)

In the case where g0 = g, we can apply Theorem 16.23, which leads to the folowing
statement.

Theorem 18.12. Suppose that conditions of Theorem 18.10 are satisfied, and that g0 = g,
i. e., relations (17.28) for the columns lk(x) of the matrix g(x)−1 are valid, where g = gω2.

Then we have

‖gε∇(ωε)−1zε − g0∇z0
ε‖L2(Rd;Cd) ≤ C̃∗

16ε‖F‖L2(Rd), 0 < ε ≤ 1,

where the constant C̃∗
16 = Č∗

16‖ω‖L∞
depends on ‖g‖L∞

, ‖g−1‖L∞
, ‖ω‖L∞

, ‖ω−1‖L∞
,

‖Q‖L∞
, ‖Q−1‖L∞

, on d, and on parameters of the lattice Γ.

Note that, under conditions of Theorem 18.12, as ε → 0, the fluxes gε∇(ωε)−1zε

converge to g0∇z0 strongly in L2(R
d; Cd), where z0 is the solution of the equation (18.21).

§19. The magnetic Schrödinger operator

19.1

In L2(R
d), d ≥ 2, we consider the periodic magnetic Schrödinger operator M with the

metric g(x), magnetic potential A(x) and electric potential p(x):

M = (D− A(x))∗g(x)(D − A(x)) + p(x). (19.1)

(Cf. [BSu4, Subsection 11.3].) Here g(x) is a Γ-periodic (d × d)-matrix-valued function
with real entries satisfying conditions (18.2). Suppose also that, for d ≥ 3, we have

g ∈ Cα, 0 < α < 1, d ≥ 3, (19.2)

with some α ∈ (0, 1). The vector-valued potential A(x) and the scalar-valued potential
p(x) are real and Γ-periodic. Assume that

A ∈ L2s(Ω), p ∈ Ls(Ω), 2s > d. (19.3)
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Adding an appropriate constant to p(x), we can assume that

inf specM = 0. (19.4)

In the recent paper [Sh2] by R. G. Shterenberg, it was shown that, under the above
assumptions and for sufficiently small (in the L2s(Ω)-norm) magnetic potential A, the
operator M admits a factorization appropriate for our goals. Now we describe this factori-
zation. Let M(k) be the operators in L2(Ω) occuring in the direct integral expansion for

M. Condition (19.4) means that, for some k0 ∈ Ω̃, the point λ = 0 is an eigenvalue of the

operator M(k0). If the magnetic potential is sufficiently small, then this point k0 ∈ Ω̃ is
unique and the eigenvalue λ = 0 is simple. Let φ(x) be the corresponding eigenfunction
normalized by the condition ∫

Ω

|φ(x)|2 dx = |Ω| (19.5)

(the phase factor of φ does not matter). Then we have: φ∈H̃1(Ω), M(k0)φ=0, and

φ, φ−1 ∈ L∞. (19.6)

Moreover, as it was mentioned in [Sh2], we have

φ ∈ W̃ 1
2s(Ω), 2s > d, (19.7)

with the same number s, as in condition (19.3).
We denote

M̃ = [e−i〈k0,·〉]M[ei〈k0,·〉], (19.8)

where [e±i〈k0,·〉] is the operator in L2(R
d) of multiplication by the function e±i〈k0,x〉. By

Theorems 2.7 and 2.8 of [Sh2], if the norm ‖A‖L2s(Ω) is sufficiently small, then the periodic

operator M̃ admits the following factorization:

M̃ = (φ(x)∗)−1D∗g(x)D(φ(x))−1. (19.9)

Relation (19.9) is similar to factorization (18.5) for the Schrödinger operator H, but now
the Hermitian matrix g(x) has complex entries and the function φ(x) is complex-valued.
Herewith, g(x) is Γ-periodic and

g(x) > 0, g, g−1 ∈ L∞. (19.10)

The matrix g(x) has the form

g(x) = g(x)|φ(x)|2 + ig2(x),

where the Γ-periodic antisymmetric matrix g2(x) with real entries satisfies the equation

(div g2(x))t = −2|φ(x)|2g(x)(A(x) − k0) + 2Im (φ(x)∗g(x)∇φ(x)). (19.11)

Now we consider the homogenization problem for the operator M. We put

M̃ε = ((φε)∗)−1D∗gεD(φε)−1, Mε = [eiε−1〈k0,·〉]M̃ε[e
−iε−1〈k0,·〉]. (19.12)

In the initial terms,

Mε = (D − ε−1Aε)∗gε(D − ε−1Aε) + ε−2pε. (19.13)
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19.2

The behavior of the resolvent (M̃ε + I)−1 is regulated by Theorem 16.3. Indeed, now
f(x) = φ(x)−1, Q(x) = |φ(x)|2, and, by (19.5), Q = 1. Let g0 be the effective matrix

for the operator Â = D∗gD, and let Â0 = D∗g0D. The matrix g2(x) = Im g(x) satisfies
condition (17.16) with q = 2s > d, since the function in the right-hand side of (19.11)
belongs to L2s(Ω), by conditions (18.2), (19.3), (19.6), and (19.7). This guarantees (see
Subsection 17.3) that the solutions Φj of the problem (17.3) satisfy Φj ∈ L∞, j = 1, . . . , d.
Thus, Condition 8.4 is now satisfied, and, therefore, Theorem 16.3 is applicable. As a
result, we obtain the estimate

‖(φε)−1(M̃ε + I)−1

−
(
I + ε

d∑

j=1

Φε
j∂j

)
(Â0 + I)−1(φε)∗‖L2(Rd)→H1(Rd) ≤ C̃11ε, 0 < ε ≤ 1, (19.14)

where C̃11 = Č11‖φ‖L∞
. (Here Č11 is the constant from (17.20) with Q = |φ|2.) The

constant C̃11 depends on d, ‖g‖L∞
, ‖g−1‖L∞

, ‖φ‖L∞
, ‖φ−1‖L∞

, and also on ‖A‖L2s(Ω),
‖φ‖W 1

2s(Ω), and on parameters of the lattice Γ. We see that, for the operator Mε, it is
harder to control the constants in estimates explicitly.

By (19.12), we have

(M̃ε + I)−1 = [e−iε−1〈k0,·〉](Mε + I)−1[eiε−1〈k0,·〉]. (19.15)

Since the operator of multiplication by eiε−1〈k0,x〉 is unitary in L2(R
d), from (19.14) and

(19.15) it follows that

‖(φε)−1[e−iε−1〈k0,·〉](Mε + I)−1

−
(
I + ε

d∑

j=1

Φε
j∂j

)
(Â0 + I)−1(φε)∗[e−iε−1〈k0,·〉]‖L2(Rd)→H1(Rd)

≤ C̃11ε, 0 < ε ≤ 1. (19.16)

We summarize the results.

Theorem 19.1. Let M be the operator (19.1) with Γ-periodic real coefficients satisfying

conditions (18.2) and (19.2)–(19.4). Let the norm ‖A‖L2s(Ω) be sufficiently small, so that

factorization (19.9) for the operator (19.8) takes place, where the Γ-periodic matrix g(x)
and function φ(x) are subject to conditions (19.10) and (19.5), (19.6). Let Mε be the

operator defined by (19.13). Let g0 be the effective matrix for the operator D∗g(x)D, and

let Â0 = D∗g0D. Let Φj ∈ H̃1(Ω) be the solutions of the problem (17.3), j = 1, . . . , d.
Then for 0 < ε ≤ 1 estimate (19.16) is true.

Now we formulate (19.16) in terms of solutions. Let wε be the solution of the equation

Mεwε + wε = F, F ∈ L2(R
d), (19.17)

and let w0
ε be the solution of the equation

Â0w0
ε + w0

ε = (φε(x))∗e−iε−1〈k0,x〉F (x). (19.18)

Then

‖(φε)−1e−iε−1〈k0,·〉wε − w0
ε − ε

d∑

j=1

Φε
j∂jw

0
ε‖H1(Rd) ≤ C̃11ε‖F‖L2(Rd).
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19.3

We can apply (interpolational) Theorem 16.7 to the resolvent (M̃ε + I)−1. The operator
K0

Q(ε) is defined according to (17.22). By Q = |φ|2 and Q = 1, we have

K0
Q(ε) =

d∑

j=1

Φε
j∂j(Â0 + I)−1 −

d∑

j=1

(Â0 + I)−1∂j(Φ
ε
j)

∗

− (Â0 + I)−1

( d∑

j,l,s=1

(ajls − a∗jls)∂j∂l∂s + 2i

d∑

j=1

(Im |φ|2Φj)∂j

)
(Â0 + I)−1.

(19.19)

The values ajls are defined by (17.18).
Applying (16.14), for 0 ≤ s ≤ 1 and 0 < ε ≤ 1 we obtain:

‖(φε)−1(M̃ε + I)−1 −
(
(Â0 + I)−1 + εK0

Q(ε)
)

(φε)∗‖L2(Rd)→Hs(Rd) ≤ C̃sε
2−s.

Here C̃s = C0
Q,s‖φ‖L∞

, and C0
Q,s is the constant from (17.23) with Q = |φ|2. Using (19.15),

we arrive at the estimate

‖(φε)−1[e−iε−1〈k0,·〉](Mε + I)−1

−
(
(Â0 + I)−1 + εK0

Q(ε)
)

(φε)∗[e−iε−1〈k0,·〉]‖L2(Rd)→Hs(Rd) ≤ C̃sε
2−s. (19.20)

We have obtained the following statement.

Theorem 19.2. Suppose that conditions of Theorem 19.1 are satisfied. Let K0
Q(ε) be the

corrector defined by (19.19). Then for 0 ≤ s ≤ 1 and 0 < ε ≤ 1 estimate (19.20) is valid,

where the constant C̃s depends on s, d, ‖g‖L∞
, ‖g−1‖L∞

, ‖φ‖L∞
, ‖φ−1‖L∞

, ‖A‖L2s(Ω),

‖φ‖W 1
2s(Ω), and on parameters of the lattice Γ.

19.4

We can apply Theorem 16.11 for the fluxes. By this theorem, for 0 < ε ≤ 1 we have

‖gε∇(φε)−1(M̃ε + I)−1 − g̃ε∇(Â0 + I)−1(φε)∗‖L2(Rd)→L2(Rd;Cd) ≤ C̃16ε.

Here C̃16 = Č16‖φ‖L∞
, and Č16 is the constant from (17.24) with Q = |φ|2. By (19.15),

this implies that

‖gε∇(φε)−1[e−iε−1〈k0,·〉](Mε + I)−1

− g̃ε∇(Â0 + I)−1(φε)∗[e−iε−1〈k0,·〉]‖L2(Rd)→L2(Rd;Cd) ≤ C̃16ε, 0 < ε ≤ 1.

In other words,

‖gε∇(φε)−1e−iε−1〈k0,·〉wε − g̃ε∇w0
ε‖L2(Rd;Cd) ≤ C̃16ε‖F‖L2(Rd), 0 < ε ≤ 1. (19.21)

We arrive at the following result.

Theorem 19.3. Suppose that conditions of Theorem 19.1 are satisfied. Let wε be the

solution of the equation (19.17), and let w0
ε be the solution of the equation (19.18). Then

estimate (19.21) is true, where the constant C̃16 depends on d, ‖g‖L∞
, ‖g−1‖L∞

, ‖φ‖L∞
,

‖φ−1‖L∞
, ‖A‖L2s(Ω), ‖φ‖W 1

2s(Ω), and on parameters of the lattice Γ.
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19.5

Now we distinguish special cases. Under the condition g0 = g, Theorems 16.4 and 16.8
are applicable. This leads to the following result.

Theorem 19.4. Suppose that conditions of Theorem 19.1 are satisfied, and that g0 = g,
i. e., relations (17.25) are valid. Then for 0 < ε ≤ 1 we have

‖(φε)−1[e−iε−1〈k0,·〉](Mε + I)−1

− (Â0 + I)−1(φε)∗[e−iε−1〈k0,·〉]‖L2(Rd)→H1(Rd) ≤ C̃12ε,

where the constant C̃12 = Č12‖φ‖L∞
depends on d, ‖g‖L∞

, ‖g−1‖L∞
, ‖φ‖L∞

, ‖φ−1‖L∞
, and

on parameters of the lattice Γ. (Here Č12 is the constant from (17.26) with Q = |φ|2.) For

0 ≤ s ≤ 1 and 0 < ε ≤ 1 we have

‖(φε)−1[e−iε−1〈k0,·〉](Mε + I)−1

− (Â0 + I)−1(φε)∗[e−iε−1〈k0,·〉]‖L2(Rd)→Hs(Rd) ≤ C̃ ′
sε

2−s,

where the constant C̃ ′
s = C ′

Q,s‖φ‖L∞
depends on s, d, ‖g‖L∞

, ‖g−1‖L∞
, ‖φ‖L∞

, ‖φ−1‖L∞
,

and on parameters of the lattice Γ. (Here C ′
Q,s is the constant from (17.27) with Q = |φ|2.)

If g0 = g, then Theorem 16.12 is applicable. This leads to the following statement.

Theorem 19.5. Suppose that conditions of Theorem 19.3 are satisfied, and that g0 = g,
i. e., relations (17.28) for the columns of the matrix g(x)−1 are valid. Then for 0 < ε ≤ 1
we have

‖gε∇(φε)−1e−iε−1〈k0,·〉wε − g0∇w0
ε‖L2(Rd;Cd) ≤ C̃16ε‖F‖L2(Rd),

where the constant C̃16 = Č16‖φ‖L∞
depends on d, ‖g‖L∞

, ‖g−1‖L∞
, ‖φ‖L∞

, ‖φ−1‖L∞
, and

on parameters of the lattice Γ. (Here Č16 is the constant from (17.29) with Q = |φ|2.)

For the magnetic Schrödinger operator, general results of Subsections 16.6–16.8 about
approximation of the generalized resolvent (Mε + Qε)−1 can be realized. We shall not
dwell on the detailed formulations.

Remark 19.6. As it was shown in [Sh1], without the smallness condition on A, the
required factorization for the magnetic Schrödinger operator, in general, is destroyed.

§20. The twodimensional periodic Pauli operator

20.1. The operators B̂±

The examples considered in Subsections 20.1–20.4 (cf. [BSu2, Subsection 5.1.3], [BSu4,
Subsections 12.1, 12.2]) are of preliminary nature. They will be useful for the study of
the twodimensional Pauli operator in Subsections 20.5–20.7. However, these examples are
interesting themselves.

Within Subsections 20.1 and 20.2, all formulas and statements should be read indepen-
dently for upper and lower indices „±“.

Let d = 2, m = n = 1, and let ω±(x) be a Γ-periodic function such that

ω±(x) > 0; ω±, ω
−1
± ∈ L∞. (20.1±)

88



In L2(R
2), we consider the operator

B̂± = B̂±(ω2
±) = ∂±ω

2
±∂∓, (20.2±)

where ∂± = D1 ± iD2. (The operators B̂+ and B̂− are of the same type, and it is

convenient to consider them in parallel.) The operator B̂±(ω2
±) is of the form Â(g) with

b(D) = D1 ∓ iD2 and g = g± = ω2
±. Obviously, now we have α0 = α1 = 1. Since

m = n = 1, the effective constant g0
± for the operator B̂± is g±, i. e.,

g0
± = (ω2

±) =
(
|Ω|−1

∫

Ω

ω±(x)−2 dx
)−1

. (20.3±)

Then the effective operator B̂0
± for the operator B̂± is given by

B̂0
± = −g0

±∆. (20.4±)

The solution v± ∈ H̃1(Ω) of the problem

∂±ω
2
±(x)(∂∓v± + 1) = 0,

∫

Ω

v±(x) dx = 0,

is simultaneously (see [BSu4, §12]) the solution of the problem

∂∓v± = g0
±ω±(x)−2 − 1,

∫

Ω

v±(x) dx = 0. (20.5±)

For the operator B̂±, the role of the „matrix“ Λ(x) is played by the function v±(x).
We consider the operator

B̂±,ε = B̂±((ωε
±)2) = ∂±(ωε

±)2∂∓. (20.6±)

Now Condition 8.6 is satisfied, since d = 2 (however, we might also refer to the relation
g0
± = g±). Hence, Condition 8.4 is also satisfied. By Remark 8.8, the norm ‖v±‖L∞

is

estimated by the constant depending only on ‖ω±‖L∞
, ‖ω−1

± ‖L∞
, and on parameters of

the lattice Γ. Theorem 10.8 is applicable. This leads to the following result.

Theorem 20.1(±). Suppose that ω±(x) is a Γ-periodic function in R2 subject to condition

(20.1±), and let B̂±,ε be the operator (20.6±). Let B̂0
± = −g0

±∆, where g0
± is defined by

(20.3±). Let v± ∈ H̃1(Ω) be the solution of the problem (20.5±). Then for 0 < ε ≤ 1 we

have

‖(B̂±,ε + I)−1 − (B̂0
± + I)−1 − εvε

±∂∓(B̂0
± + I)−1‖L2(R2)→H1(R2) ≤ C(±)

11 ε, (20.7±)

where the constant C(±)
11 depends only on ‖ω±‖L∞

, ‖ω−1
± ‖L∞

, and on parameters of the

lattice Γ.

We can also apply (interpolational) Theorem 11.4. The corrector (10.11) for the

operator B̂±,ε is of the form (cf. [BSu4, Proposition 12.1(±)])

K0
±(ε) = vε

±∂∓(B̂0
± + I)−1 + (B̂0

± + I)−1∂±(vε
±)∗. (20.8±)

Note that the third term of the corrector (10.11) is now equal to zero. We arrive at the
following result.
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Theorem 20.2(±). Suppose that conditions of Theorem 20.1(±) are satisfied. Let K0
±(ε)

be the corrector defined by (20.8±). Then for 0 ≤ s ≤ 1 and 0 < ε ≤ 1 we have

‖(B̂±,ε + I)−1 − (B̂0
± + I)−1 − εK0

±(ε)‖L2(R2)→Hs(R2) ≤ C(±)
s ε2−s.

The constant C
(±)
s depends on s, on ‖ω±‖L∞

, ‖ω−1
± ‖L∞

, and on parameters of the lattice

Γ.

Let u±,ε be the solution of the equation

B̂±,εu±,ε + u±,ε = F±, F± ∈ L2(R
2), (20.9±)

and let u0
± be the solution of the „homogenized“ equation

B̂0
±u

0
± + u0

± = F±. (20.10±)

Estimate (20.7±) means that

‖u±,ε − u0
± − εvε

±∂∓u
0
±‖H1(R2) ≤ C(±)

11 ε‖F±‖L2(R2), 0 < ε ≤ 1.

Note that, as ε → 0, the functions u±,ε converge to u0
± weakly in H1(R2) (see Remark

10.7).
Since g0

± = g±, then we can apply Theorem 12.4 for the fluxes. This leads to the
following result.

Theorem 20.3(±). Suppose that conditions of Theorem 20.1(±) are satisfied. Let u±,ε be

the solution of the equation (20.9±), and let u0
± be the solution of the equation (20.10±).

We put

p±,ε = (ωε
±)2∂∓u±,ε, p0

± = g0
±∂∓u

0
±. (20.11±)

Then

‖p±,ε − p0
±‖L2(R2) ≤ C(±)

16 ε‖F±‖L2(R2), 0 < ε ≤ 1,

where the constant C(±)
16 depends on ‖ω±‖L∞

, ‖ω−1
± ‖L∞

, and on parameters of the lattice

Γ.

20.2

Now we consider the generalized resolvent (B̂±,ε + Qε
±)−1, where Q±(x) is a Γ-periodic

function such that
Q±(x) > 0; Q±, Q

−1
± ∈ L∞. (20.12±)

We apply Theorem 13.8, which leads to the folowing result.

Theorem 20.4(±). Suppose that conditions of Theorem 20.1(±) are satisfied. Let Q±(x)
be a Γ-periodic function satisfying conditions (20.12±), and let Q± be the mean value of

Q±(x) over the cell Ω. Then for 0 < ε ≤ 1 we have

‖(B̂±,ε +Qε
±)−1 − (B̂0

± +Q±)−1 − εvε
±∂∓(B̂0

± +Q±)−1‖L2(R2)→H1(R2) ≤ Č(±)
11 ε, (20.13±)

where the constant Č(±)
11 depends only on ‖ω±‖L∞

, ‖ω−1
± ‖L∞

, ‖Q±‖L∞
, ‖Q−1

± ‖L∞
, and on

parameters of the lattice Γ.
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We can apply (interpolational) Theorem 14.4. The corrector (13.4) for the operator

B̂±,ε takes the form (cf. [BSu4, Proposition 12.2(±)])

K0
±,Q±

(ε) = vε
±∂∓(B̂0

± +Q±)−1 + (B̂0
± +Q±)−1∂±(vε

±)∗

− (B̂0
± +Q±)−1

(
2D1(ReQ±v±) ± 2D2(ImQ±v±)

)
(B̂0

± +Q±)−1.
(20.14±)

As a result, we arrive at the following statement.

Theorem 20.5(±). Suppose that conditions of Theorem 20.4(±) are satisfied. Let

K0
±,Q±

(ε) be the corrector defined by (20.14±). Then for 0 ≤ s ≤ 1 and 0 < ε ≤ 1
we have

‖(B̂±,ε +Qε
±)−1 − (B̂0

± +Q±)−1 − εK0
±,Q±

(ε)‖L2(R2)→Hs(R2) ≤ C
(±)
s,Q±

ε2−s, (20.15±)

where the constant C
(±)
s,Q±

depends on s, on ‖ω±‖L∞
, ‖ω−1

± ‖L∞
, ‖Q±‖L∞

, ‖Q−1
± ‖L∞

, and

on parameters of the lattice Γ.

Let a±,ε be the solution of the equation

B̂±,εa±,ε +Qε
±a±,ε = F±, F± ∈ L2(R

2), (20.16±)

and let a0
± be the solution of the „homogenized“ equation

B̂0
±a

0
± +Q±a

0
± = F±. (20.17±)

Estimate (20.13±) means that

‖a±,ε − a0
± − εvε

±∂∓a
0
±‖H1(R2) ≤ Č(±)

11 ε‖F±‖L2(R2).

Note that, as ε → 0, the weak limit of the functions a±,ε in H1(R2) is equal to a0
± (see

Remark 13.7).
Since g0

± = g±, we can apply Theorem 15.4 for the fluxes. This leads to the following
result.

Theorem 20.6(±). Suppose that conditions of Theorem 20.4(±) are satisfied. Let a±,ε be

the solution of the equation (20.16±), and let a0
± be the solution of the equation (20.17±).

We put

q±,ε = (ωε
±)2∂∓a±,ε, q0

± = g0
±∂∓a

0
±.

Then

‖q±,ε − q0
±‖L2(R2) ≤ Č(±)

16 ε‖F±‖L2(R2), 0 < ε ≤ 1, (20.18±)

where the constant Č(±)
16 depends on ‖ω±‖L∞

, ‖ω−1
± ‖L∞

, ‖Q±‖L∞
, ‖Q−1

± ‖L∞
, and on para-

meters of the lattice Γ.

20.3. The operator B̂×

Now we consider the matrix operator consisting of the blocks B̂−(ω2
−), B̂+(ω2

+). We have
d = 2 and m = n = 2. Let ω±(x) be two Γ-periodic functions subject to conditions
(20.1±). We put

h× = diag {ω+, ω−}, g× = h2
× = diag {ω2

+, ω
2
−}. (20.19)
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In L2(R
2; C2), we consider the operators

b×(D) =

(
0 ∂−
∂+ 0

)
, B̂× = b×(D)g×b×(D). (20.20)

Then
B̂× = diag {∂−ω2

−∂+, ∂+ω
2
+∂−} = diag {B̂−(ω2

−), B̂+(ω2
+)}. (20.21)

The effective matrix for the operator (20.21) takes the form

g0
× = g× = diag {g0

+, g
0
−}, g0

± = (ω2
±), (20.22)

and the effective operator is given by

B̂0
× = b×(D)g0

×b×(D) = diag {B̂0
−, B̂0

+}, B̂0
± = −g0

±∆. (20.23)

The role of the matrix Λ(x) for the operator B̂× is played by the matrix

Λ×(x) =

(
0 v−(x)

v+(x) 0

)
, (20.24)

where v± is the Γ-periodic solution of the problem (20.5±).
Now we consider the operator

B̂×,ε = b×(D)gε
×b×(D) = diag {B̂−,ε, B̂+,ε}. (20.25)

We apply Theorem 10.8, which leads to the following result.

Theorem 20.7. Let ω± be two Γ-periodic functions in R2 suject to conditions (20.1±).

Let B̂×,ε be the operator defined according to (20.19), (20.20), (20.25), and let B̂0
× be the

effective operator defined by (20.22), (20.23). Let v± ∈ H̃1(Ω) be the solution of the

problem (20.5±), and let Λ×(x) be the matrix (20.24). Then for 0 < ε ≤ 1 we have

‖(B̂×,ε + I)−1 − (B̂0
× + I)−1 − εΛε

×b×(D)(B̂0
× + I)−1‖L2(R2;C2)→H1(R2;C2) ≤ C×

11ε. (20.26)

The constant C×
11 depends only on the norms ‖ω+‖L∞

, ‖ω−1
+ ‖L∞

, ‖ω−‖L∞
, ‖ω−1

− ‖L∞
, and

on parameters of the lattice Γ.

Note that all operators in (20.26) are diagonal:

(B̂×,ε + I)−1 − (I + εΛε
×b×(D))(B̂0

× + I)−1

= diag {(B̂−,ε + I)−1 − (I + εvε
−∂+)(B̂0

− + I)−1,

(B̂+,ε + I)−1 − (I + εvε
+∂−)(B̂0

+ + I)−1}. (20.27)

Therefore, the result of Theorem 20.7 could be also obtained from Theorems 20.1(+) and
20.1(−).

We can also apply (interpolational) Theorem 11.4 to the operator (20.25). The correc-

tor (10.11) for the operator B̂×,ε takes the form (cf. [BSu4, Proposition 12.3])

K0
×(ε) = Λε

×b×(D)(B̂0
× + I)−1 + (B̂0

× + I)−1b×(D)(Λε
×)∗. (20.28)

Note that
K0

×(ε) = diag {K0
−(ε), K0

+(ε)},
where the operators K0

±(ε) are defined by (20.8±). We arrive at the following statement.
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Theorem 20.8. Suppose that conditions of Theorem 20.7 are satisfied. Let K0
×(ε) be the

corrector defined by (20.28). Then for 0 ≤ s ≤ 1 and 0 < ε ≤ 1 we have

‖(B̂×,ε + I)−1 − (B̂0
× + I)−1 − εK0

×(ε)‖L2(R2;C2)→Hs(R2;C2) ≤ C×
s ε

2−s. (20.29)

The constant C×
s depends on s, on the norms ‖ω+‖L∞

, ‖ω−1
+ ‖L∞

, ‖ω−‖L∞
, ‖ω−1

− ‖L∞
, and

on parameters of the lattice Γ.

Similarly to (20.27), the operator under the norm sign in (20.29) is diagonal, and the
statement of Theorem 20.8 could be deduced from Theorems 20.2(+) and 20.2(−).

Let u×,ε be the solution of the equation

B̂×,εu×,ε + u×,ε = F, F =

(
F−

F+

)
∈ L2(R

2; C2), (20.30)

and let u0
× be the solution of the equation

B̂0
×u0

× + u0
× = F. (20.31)

Estimate (20.26) means that

‖u×,ε − u0
× − εΛε

×b×(D)u0
×‖H1(R2;C2) ≤ C×

11ε‖F‖L2(R2;C2), 0 < ε ≤ 1.

Note that, as ε → 0, the weak limit of the functions u×,ε in H1(R2; C2) is equal to u0
×.

Since g0
× = g×, we can apply Theorem 12.4 for the fluxes. This leads to the folowing

result.

Theorem 20.9. Suppose that conditions of Theorem 20.7 are satisfied. Let u×,ε be the

solution of the equation (20.30), and let u0
× be the solution of the equation (20.31). We

put

p×,ε = gε
×b×(D)u×,ε, p0

× = g0
×b×(D)u0

×.

Then

‖p×,ε − p0
×‖L2(R2;C2) ≤ C×

16ε‖F‖L2(R2;C2), 0 < ε ≤ 1. (20.32)

The constant C×
16 depends on the norms ‖ω+‖L∞

, ‖ω−1
+ ‖L∞

, ‖ω−‖L∞
, ‖ω−1

− ‖L∞
, and on

parameters of the lattice Γ.

Note that the fluxes p×,ε and p0
× are represented as

p×,ε =

(
p+,ε

p−,ε

)
, p0

× =

(
p0

+

p0
−

)
,

where p±,ε and p0
± are defined by (20.11±). Therefore, the statement of Theorem 20.9

could be deduced from Theorems 20.3(+) and 20.3(−).

20.4

We proceed to the problem of approximation for the generalized resolvent (B̂×,ε +Qε
×)−1,

where Q×(x) is a Γ-periodic Hermitian (2 × 2)-matrix (in general, with complex entries)
such that

Q×(x) > 0; Q×, Q
−1
× ∈ L∞. (20.33)

We apply Theorem 13.8, which yields the following result.
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Theorem 20.10. Suppose that conditions of Theorem 20.7 are satisfied. Let Q×(x) be

a Γ-periodic (2 × 2)-matrix-valued function subject to conditions (20.33). Let Q× be the

mean value of Q× over the cell Ω. Then for 0 < ε ≤ 1 we have

‖(B̂×,ε +Qε
×)−1 − (B̂0

× +Q×)−1

− εΛε
×b×(D)(B̂0

× +Q×)−1‖L2(R2;C2)→H1(R2;C2) ≤ Č×
11ε. (20.34)

The constant Č×
11 depends only on ‖ω+‖L∞

, ‖ω−1
+ ‖L∞

, ‖ω−‖L∞
, ‖ω−1

− ‖L∞
, ‖Q×‖L∞

,

‖Q−1
× ‖L∞

, and on parameters of the lattice Γ.

We also apply (interpolational) Theorem 14.4. The corrector (13.4) related to the

operator B̂× and to the matrix Q× has the form (cf. [BSu4, Proposition 12.4])

K0
×,Q×

(ε) = Λε
×b×(D)(B̂0

× +Q×)−1 + (B̂0
× +Q×)−1b×(D)(Λε

×)∗

− (B̂0
× +Q×)−1

(
b×(D)(Q×Λ×)∗ + (Q×Λ×)b×(D)

)
(B̂0

× +Q×)−1. (20.35)

We arrive at the following statement.

Theorem 20.11. Suppose that conditions of Theorem 20.10 are satisfied. Let K0
×,Q×

(ε)
be the corrector defined by (20.35). Then for 0 ≤ s ≤ 1 and 0 < ε ≤ 1 we have

‖(B̂×,ε +Qε
×)−1 − (B̂0

× +Q×)−1 − εK0
×,Q×

(ε)‖L2(R2;C2)→Hs(R2;C2) ≤ C×
s,Q×

ε2−s. (20.36)

The constant C×
s,Q×

depends on s, on ‖ω+‖L∞
, ‖ω−1

+ ‖L∞
, ‖ω−‖L∞

, ‖ω−1
− ‖L∞

, ‖Q×‖L∞
,

‖Q−1
× ‖L∞

, and on parameters of the lattice Γ.

Let a×,ε be the solution of the equation

B̂×,εa×,ε +Qε
×a×,ε = F, F ∈ L2(R

2; C2), (20.37)

and let a0
× be the solution of the homogenized equation

B̂0
×a0

× +Q×a0
× = F. (20.38)

Estimate (20.34) means that

‖a×,ε − a0
× − εΛε

×b×(D)a0
×‖H1(R2;C2) ≤ Č×

11ε‖F‖L2(R2;C2), 0 < ε ≤ 1.

Note that, as ε → 0, the weak limit of the functions a×,ε in H1(R2; C2) is equal to a0
×.

Since g0
× = g×, we can apply Theorem 15.4 for the fluxes. This implies the following

statement.

Theorem 20.12. Suppose that conditions of Theorem 20.10 are satisfied. Let a×,ε be the

solution of the equation (20.37), and let a0
× be the solution of the equation (20.38). We

put

q×,ε = gε
×b×(D)a×,ε, q0

× = g0
×b×(D)a0

×.

Then

‖q×,ε − q0
×‖L2(R2;C2) ≤ Č×

16ε‖F‖L2(R2;C2), 0 < ε ≤ 1. (20.39)

The constant Č×
16 depends on ‖ω+‖L∞

, ‖ω−1
+ ‖L∞

, ‖ω−‖L∞
, ‖ω−1

− ‖L∞
, ‖Q×‖L∞

, ‖Q−1
× ‖L∞

,

and on parameters of the lattice Γ.
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20.5. Definition and factorization for the Pauli operator

(See [BSu2, §6.2], [BSu4, Subsection 12.3].) Suppose that the magnetic potential A =
{A1, A2} is a Γ-periodic real vector-valued function in R2 such that

A ∈ Lp(Ω; C2), p > 2. (20.40)

Recall the standard notation for the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

In the space G = L2(R
2; C2), we consider the operator

D = (D1 − A1)σ1 + (D2 −A2)σ2, DomD = G1 = H1(R2; C2).

By definition, the Pauli operator P is the square of the operator D:

P = D2 =

(
P− 0
0 P+

)
. (20.41)

The precise definition of the operator P is given in terms of the quadratic form ‖Du‖2
G,

u ∈ DomD, which is closed in G. If the potential A is sufficiently smooth, then the
blocks P± of the operator (20.41) are given by

P± = (D − A)2 ±B, B = ∂1A2 − ∂2A1.

The expression B corresponds to the strength of the magnetic field.
We use the known (see, e. g., [BSu1,2]) factorization for the Pauli operator. A gauge

transformation allows us to assume that the potential A is subject to the conditions

div A = 0,

∫

Ω

A(x) dx = 0, (20.42)

and still satisfies (20.40). Under conditions (20.40) and (20.42), there exists a (unique)
Γ-periodic real-valued function ϕ such that

∇ϕ = {A2,−A1},
∫

Ω

ϕ(x) dx = 0.

It turns out that ϕ ∈ W̃ 1
p (Ω) ⊂ Cα, α = 1 − 2p−1.

We introduce the notation
ω±(x) = e±ϕ(x).

Then ω± ∈ W̃ 1
p (Ω), and we have

ω+(x)ω−(x) = 1, x ∈ R
2. (20.43)

We consider the matrices h× and g× defined by (20.19). The operators D and P admit
the factorization

D = h×b×(D)h×, (20.44)

P = h×b×(D)g×b×(D)h×. (20.45)
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The blocks P± of the operator P admit the representations

P+ = ω−∂+ω
2
+∂−ω−, P− = ω+∂−ω

2
−∂+ω+. (20.46)

It is convenient to view formulas (20.44)–(20.46) as the definition of the operators D, P,
and P±, assuming that the ω± are arbitrary Γ-periodic functions satisfying conditions
(20.1±) and condition (20.43). More precisely, the operator D is given by (20.44) on the
domain

DomD = {u ∈ G : h×u ∈ H1(R2; C2)}.
The operator P is defined via the quadratic form ‖Du‖2

G, u ∈ DomD. The blocks P± are
defined via the quadratic forms

‖ω±∂∓ω∓u‖2
L2(R2), ω∓u ∈ H1(R2).

Note that the operators P+ and P− are unitarily equivalent. Moreover, the operators
P+(k) and P−(k), occuring in the direct integral expansion for P±, are unitarily equivalent
for each quasimomentum k.

20.6. The operators P±

The operators P± are of the form A(g, f) with d = 2, m = n = 1, b(D) = ∂∓, g = ω2
±,

and f = ω∓. The role of the corresponding operator Â(g) is played by the operator B̂±

(see (20.2±)).
We consider the operators

P±,ε = ωε
∓∂±(ωε

±)2∂∓ω
ε
∓. (20.47±)

If the magnetic potential is sufficiently smooth, then

P±,ε = (D − ε−1Aε)2 ± ε−2Bε.

Theorem 16.3 is applicable. Now Q± = ω2
± and (cf. [BSu4, (12.30±)]) we have

(B̂0
± +Q±)−1 = (−ω2

±∆ + ω2
±)−1 = (ω2

±)−1(−γ∆ + I)−1, (20.48±)

where

γ = (ω2
+)−1(ω2

−)−1 = |Ω|2
(∫

Ω

ω2
+ dx

)−1(∫

Ω

ω2
− dx

)−1

. (20.49)

As a result, we arrive at the following statement.

Theorem 20.13. Let P±,ε be the operators (20.47±), where ω+ and ω− are two real-

valued Γ-periodic functions in R2 satisfying conditions (20.1±) and (20.43). Suppose that

γ is the number defined by (20.49), and that v± ∈ H̃1(Ω) is the solution of the problem

(20.5±). Then for 0 < ε ≤ 1 we have

‖ωε
∓(P±,ε + I)−1 − (I + εvε

±∂∓)(ω2
±)−1(−γ∆ + I)−1ωε

±‖L2(R2)→H1(R2) ≤ C̃(±)
11 ε. (20.50±)

The constant C̃(±)
11 = Č(±)

11 ‖ω±‖L∞
depends on ‖ω+‖L∞

, ‖ω−‖L∞
, and on parameters of the

lattice Γ. (Here Č(±)
11 is the constant from (20.13±) with Q± = ω2

±.)
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We can also apply (interpolational) Theorem 16.7. Now the corrector (13.4) is given
by relation (20.14±), and Q± = ω2

±. By (20.48±), we have

K0
±,Q±

(ε) = (ω2
±)−1

(
vε
±∂∓(−γ∆ + I)−1 + (−γ∆ + I)−1∂±(vε

±)∗
)

− (ω2
±)−2(−γ∆ + I)−1

(
2D1(Reω2

±v±) ± 2D2(Imω2
±v±)

)
(−γ∆ + I)−1.

(20.51±)

We arrive at the following result.

Theorem 20.14. Suppose that conditions of Theorem 20.13 are satisfied. Let K0
±,Q±

(ε)
be the corrector defined by (20.51±). Then for 0 ≤ s ≤ 1 and 0 < ε ≤ 1 we have

‖ωε
∓(P±,ε + I)−1

−
(
(ω2

±)−1(−γ∆ + I)−1 + εK0
±,Q±

(ε)
)
ωε
±‖L2(R2)→Hs(R2) ≤ C̃(±)

s ε2−s.

The constant C̃
(±)
s = C

(±)
s,Q±

‖ω±‖L∞
depends on s, on ‖ω+‖L∞

, ‖ω−‖L∞
, and on parameters

of the lattice Γ. (Here C
(±)
s,Q±

is the constant from (20.15±) with Q± = ω2
±.)

Let w±,ε be the solution of the equation

P±,εw±,ε + w±,ε = F±, F± ∈ L2(R
2), (20.52±)

and let w0
±,ε be the solution of the equation

−γ∆w0
±,ε + w0

±,ε = (ω2
±)−1ωε

±F±. (20.53±)

Estimate (20.50±) means that for 0 < ε ≤ 1 we have

‖ωε
∓w±,ε − w0

±,ε − εvε
±∂∓w

0
±,ε‖H1(R2) ≤ C̃(±)

11 ε‖F±‖L2(R2).

Note that (see Remark 16.2), as ε → 0, the weak (H1(R2))-limit of the functions ωε
∓w±,ε

is equal to w0
±, where w0

± is the solution of the equation

−γw0
± + w0

± = (ω2
±)−1ω±F±. (20.54±)

By relation (20.3±), we can apply Theorem 16.12 for the fluxes. The role of the fluxes
for equation (20.52±) is played by the functions

r±,ε = (ωε
±)2∂∓(ωε

∓w±,ε). (20.55±)

Theorem 16.12 implies the following result.

Theorem 20.15. Suppose that conditions of Theorem 20.13 are satisfied. Let w±,ε be the

solution of the equation (20.52±), and let w0
±,ε be the solution of the equation (20.53±).

Let r±,ε be defined by (20.55±). Then for 0 < ε ≤ 1 we have

‖r±,ε − (ω2
±)∂∓w

0
±,ε‖L2(R2) ≤ C̃(±)

16 ε‖F±‖L2(R2).

The constant C̃(±)
16 = Č(±)

16 ‖ω±‖L∞
depends on ‖ω+‖L∞

, ‖ω−‖L∞
, and on parameters of the

lattice Γ. (Here Č(±)
16 is the constant from (20.18±) with Q± = ω2

±.)

Note that (see Remark 16.13), under conditions of Theorem 20.15, there exists the
strong limit

(L2(R
2))- lim

ε→0
r±,ε = r0

± := (ω2
±)∂∓w

0
±,

where w0
± is the solution of the equation (20.54±).
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20.7. The operator P
The operator P (see (20.45)) is of the form A(g, f) with d = 2, m = n = 2, b(D) = b×(D),

g = g×, and f = h× (see (20.19), (20.20)). The role of the corresponding operator Â(g) is

played by the operator B̂× defined by (20.20). As above, we assume that the Γ-periodic
functions ω+, ω− are subject to conditions (20.1±) and (20.43).

We consider the operator

Pε = hε
×b×(D)gε

×b×(D)hε
×. (20.56)

Then

Pε =

(
P−,ε 0
0 P+,ε

)
, (20.57)

where the operators P±,ε are defined by (20.47±).
Theorem 16.3 is applicable. Now the role of Q is played by the matrix

Q× = g−1
× = diag {ω2

−, ω
2
+}. (20.58)

The operator (B̂0
× +Q×)−1 takes the form (see (20.3±), (20.4±), (20.23), (20.48±)):

R̂0
× := (B̂0

× +Q×)−1 = diag {(B̂0
− + ω2

−I)
−1, (B̂0

+ + ω2
+I)

−1}
= diag {(ω2

−)−1, (ω2
+)−1}(−γ∆ + I)−1. (20.59)

As a result, we arrive at the following theorem.

Theorem 20.16. Let ω+ and ω− be two Γ-periodic functions subject to conditions (20.1±)
and (20.43). Let b×(D) be the operator defined by (20.20), and let h×, g× be the matrices

defined by (20.19). Let Pε be the operator (20.56), and let Λ×(x) be the matrix (20.24).

Finally, let R̂0
× be the operator (20.59). Then for 0 < ε ≤ 1 we have

‖hε
×(Pε + I)−1 − (I + εΛε

×b×(D))R̂0
×(hε

×)−1‖L2(R2;C2)→H1(R2;C2) ≤ C̃×
11ε. (20.60)

The constant C̃×
11 = Č×

11‖h−1
× ‖L∞

depends only on ‖ω+‖L∞
, ‖ω−‖L∞

, and on parameters of

the lattice Γ. (Here Č×
11 is the constant from (20.34) with Q×=g−1

× .)

Note that the operator under the norm sign in (20.60) is diagonal:

hε
×(Pε + I)−1 − (I + εΛε

×b×(D))R̂0
×(hε

×)−1

= diag {ωε
+(P−,ε + I)−1 − (I + εvε

−∂+)(ω2
−)−1(−γ∆ + I)−1ωε

−,

ωε
−(P+,ε + I)−1 − (I + εvε

+∂−)(ω2
+)−1(−γ∆ + I)−1ωε

+}.

Therefore, the result of Theorem 20.16 could be obtained also from Theorem 20.13.
We can also apply (interpolational) Theorem 16.7. Now the corrector (13.4) is given

by relation (20.35), and Q× is defined by (20.58). Then

K0
×,Q×

(ε) = diag {K0
−,Q−

(ε), K0
+,Q+

(ε)}, (20.61)

where the operators K0
±,Q±

(ε) are given by (20.51±). We arrive at the following result.
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Theorem 20.17. Suppose that conditions of Theorem 20.16 are satisfied. Suppose that

K0
×,Q×

(ε) is the corrector defined according to (20.61), (20.51±). Then for 0 ≤ s ≤ 1 and

0 < ε ≤ 1 we have

‖hε
×(Pε + I)−1 − (R̂0

× + εK0
×,Q×

(ε))(hε
×)−1‖L2(R2;C2)→Hs(R2;C2) ≤ C̃×

s ε
2−s. (20.62)

The constant C̃×
s = C×

s,Q×
‖h−1

× ‖L∞
depends on s, on ‖ω+‖L∞

, ‖ω−‖L∞
, and on parameters

of the lattice Γ. (Here C×
s,Q×

is the constant from (20.36) with Q× = g−1
× .)

Taking relations (20.19), (20.57), (20.59), and (20.61) into account, we see that the
operator under the norm sign in (20.62) is diagonal:

hε
×(Pε + I)−1 − (R̂0

× + εK0
×,Q×

(ε))(hε
×)−1

= diag
{
ωε

+(P−,ε + I)−1 −
(
(ω2

−)−1(−γ∆ + I)−1 + εK0
−,Q−

(ε)
)
ωε
−,

ωε
−(P+,ε + I)−1 −

(
(ω2

+)−1(−γ∆ + I)−1 + εK0
+,Q+

(ε)
)
ωε

+

}
.

Therefore, the result of Theorem 20.17 could be deduced from Theorem 20.14.
Let w×,ε be the solution of the equation

Pεw×,ε + w×,ε = F, F =

(
F−

F+

)
∈ L2(R

2; C2), (20.63)

and let w0
×,ε be the solution of the equation

−γ∆w0
×,ε + w0

×,ε = diag {(ω2
−)−1, (ω2

+)−1}(hε
×)−1F. (20.64)

Note that

w×,ε =

(
w−,ε

w+,ε

)
, w0

×,ε =

(
w0

−,ε

w0
+,ε

)
, (20.65)

where w±,ε is the solution of the equation (20.52±), and w0
±,ε is the solution of the equation

(20.53±). Estimate (20.60) means that

‖hε
×w×,ε − w0

×,ε − εΛε
×b×(D)w0

×,ε‖H1(R2;C2) ≤ C̃×
11ε‖F‖L2(R2;C2).

Herewith, as ε→ 0, the weak (H1(R2; C2))-limit of the functions hε
×w×,ε is equal to w0

×,
where w0

× is the solution of the equation

−γw0
× + w0

× = diag {(ω2
−)−1ω−, (ω2

+)−1ω+}F. (20.66)

We can apply Theorem 16.12 for the fluxes. The role of the flux for equation (20.63)
is played by the vector-valued function

r×,ε = gε
×b×(D)(hε

×w×,ε). (20.67)

Note that

r×,ε =

(
r+,ε

r−,ε

)
, (20.68)

where the functions r±,ε are defined by (20.55±). We arrive at the following result.
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Theorem 20.18. Suppose that conditions of Theorem 20.16 are satisfied. Let w×,ε be the

solution of the equation (20.63), and let w0
×,ε be the solution of the equation (20.64). Let

r×,ε be defined by (20.67). Then for 0 < ε ≤ 1 we have

‖r×,ε − g0
×b×(D)w0

×,ε‖L2(R2;C2) ≤ C̃×
16ε‖F‖L2(R2;C2).

The constant C̃×
16 = Č×

16‖h−1
× ‖L∞

depends on ‖ω+‖L∞
, ‖ω−‖L∞

, and on parameters of the

lattice Γ. (Here Č×
16 is the constant from (20.39) with Q× = g−1

× .)

By (20.68), (20.65), (20.19), and (20.20), we have

r×,ε − g0
×b×(D)w0

×,ε =

(
r+,ε − (ω2

+)∂−w
0
+,ε

r−,ε − (ω2
−)∂+w

0
−,ε

)
,

and, therefore, the result of Theorem 20.18 could be deduced from Theorem 20.15.
By Remark 16.13, under conditions of Theorem 20.18, there exists the strong limit

(L2(R
2; C2))- lim

ε→0
r×,ε = r0

× := g0
×b×(D)w0

×,

where w0
× is the solution of the equation (20.66).

For the operators P±,ε and Pε, we could also apply the results of Subsections 16.6–
16.8 about approximation of the generalized resolvent. We shall not give the detailed
formulations here. We only note that, for the case of the general matrix potential Q(x),
we could not refer to diagonalization of the operator (Pε + Qε)−1.

In [BSu2], besides the ordinary Pauli operator P, the „Pauli operator with metric“
Pg = DgD was considered. The results of §16 can be applied also to this operator. We
shall not dwell on details.

§21. The operator of elasticity theory

21.1. Description of the operator

In this section, we assume that d ≥ 2. We represent the operator of elasticity theory
as in [BSu2, §5.2], [BSu4, §13]. Let ζ be an orthogonal second rank tensor in R

d; in
the standard orthonormal basis in Rd, it can be represented by a matrix ζ = {ζjl}d

j,l=1.
We shall consider symmetric tensors ζ , which will be identified with vectors ζ∗ ∈ Cm,
2m = d(d+1), by the following rule. The vector ζ∗ is formed by all components ζjl, j ≤ l,
and the pairs (j, l) are put in order in some fixed way.

For the displacement vector u ∈ G1 = H1(Rd; Cd), we introduce the deformation

tensor

e(u) =
1

2

{∂uj

∂xl
+
∂ul

∂xj

}
.

Let e∗(u) be the vector corresponding to the tensor e(u) in accordance with the rule
described above. The relation

b(D)u = −ie∗(u)

determines an (m× d)-matrix homogeneous DO b(D) uniquely; the symbol of this DO is
the matrix with real entries. For instance, with an appropriate ordering, we have

b(ξ) =



ξ1 0
1
2
ξ2 1

2
ξ1

0 ξ2


 , d = 2.
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Let σ(u) be the stress tensor, and let σ∗(u) be the corresponding vector. For the
accepted way of writing, the Hooke law about proportionality of stresses and deformations
can be expressed by the relation

σ∗(u) := g(x)e∗(u),

where g(x) is an (m×m)-matrix (which gives a „concise“ description of the Hooke tensor).
The matrix g(x) characterizes the parameters of elastic (in general, anisotropic) medium.
We assume that the matrix-valued function g(x) is Γ-periodic and such that

g(x) > 0; g, g−1 ∈ L∞.

The energy of elastic deformations is given by the quadratic form

w[u,u] =
1

2

∫

Rd

〈σ∗(u), e∗(u)〉Cm dx =
1

2

∫

Rd

〈g(x)b(D)u, b(D)u〉Cm dx, u ∈ G1. (21.1)

The operator W, acting in G = L2(R
d; Cd) and generated by this form, is the operator of

elasticity theory. Thus,
2W = b(D)∗gb(D) = Â(g).

Now n = d and m = d(d+ 1)/2.
In the case of isotropic medium, the matrix g(x) depends only on two functional

Lamé parameters λ(x) and µ(x). The parameter µ is the shear modulus. Often another
parameter K(x) is introduced instead of λ(x); K(x) is called the modulus of volume

compression. We shall need yet another modulus β(x). Here are the relations:

K(x) = λ(x) +
2µ(x)

d
, β(x) = µ(x) +

λ(x)

2
.

The modulus λ(x) may be negative. In the isotropic case, the conditions that ensure the
positive definiteness of the matrix g(x) are

µ(x) ≥ µ0 > 0, K(x) ≥ K0 > 0.

For instance, we write down the matrix g in the isotropic case for d = 2:

g(x) =



K + µ 0 K − µ

0 4µ 0
K − µ 0 K + µ


 , d = 2.

All general results related to operators of the form Â(g) can be applied to the operator
W: Theorems 10.6, 11.3, and 12.1 are applicable, and for d = 2 Theorems 10.8, 11.4, and
12.3 are applicable. No simplification in general formulations occurs (even for the isotropic
case with variable λ and µ).

21.2. The Hill body

In mechanics (see, e. g., [ZhKO]), the elastic isotropic medium with the constant shear
modulus µ(x) = µ0 = const is called the Hill body. In this case, a simpler factorization
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for the operator W is possible (see [BSu2, Subsection 5.2.3], [BSu4, Subsection 13.4]).
Now the energy form (21.1) can be represented as

w[u,u] = µ0

∫

Rd

|r(u)|2 dx +

∫

Rd

β(x)|divu|2 dx, u ∈ G1, (21.2)

where

r(u) =
1

2

{∂uj

∂xl
− ∂ul

∂xj

}
.

The form (21.2) admits (cf. [BSu2, §5.2]) more economic description than in general case:

w[u,u] =

∫

Rd

〈g∧b∧(D)u, b∧(D)u〉Cm∧ dx.

Here m∧ = 1+d(d−1)/2. The (m∧×d)-matrix b∧(ξ) can be described as follows. The first
row in b∧(ξ) is (ξ1, ξ2, . . . , ξd). The other rows correspond to (different) pairs of indices
(j, l), 1 ≤ j < l ≤ d. The element standing in the (j, l)-th row and the j-th column is
ξl, and the element in the (j, l)-th row and the l-th column is (−ξj); all other elements of
the (j, l)-th row are equal to zero. The order of the rows is irrelevant. Finally,

g∧(x) = diag {β(x), µ0/2, µ0/2, . . . , µ0/2}. (21.3)

Thus,
W = b∧(D)∗g∧(x)b∧(D).

As it was shown in [BSu2, Subsection 5.2.3], the effective matrix g0
∧ coincides with g∧:

g0
∧ = g∧ = diag {β, µ0/2, µ0/2, . . . , µ0/2}. (21.4)

The solutions vj ∈ H̃1(Ω; Cd), j = 1, . . . , m∧, of the problem

b∧(D)∗g∧(x)(b∧(D)vj + ej) = 0,

∫

Ω

vj(x) dx = 0,

are constructed in [BSu4, §13]. The role of the matrix Λ(x) is played by the (d ×m∧)-
matrix Λ∧(x). The first column of the matrix Λ∧(x) is v1 = i∇ϕ(x), where ϕ is the
periodic solution of the equation ∆ϕ = β(β(x))−1 − 1. The other columns are equal
to zero. Then Λ∧(x)b∧(D) = (∇ϕ(x))div . By (21.4), Condition 8.6(3◦), and then also
Condition 8.4, is satisfied . By Remark 8.8, the norm ‖Λ∧‖L∞

= ‖v1‖L∞
can be estimated

by the constant depending only on d, on ‖β‖L∞
, ‖β−1‖L∞

, and on parameters of the lattice
Γ. We are under assumptions of Theorem 10.8, which leads to the following statement.

Theorem 21.1. Let µ = µ0 = const, and let β(x) be a positive Γ-periodic function in Rd

such that β, β−1 ∈ L∞. Let g∧(x) be the matrix defined by (21.3). We put

Wε = b∧(D)∗gε
∧b∧(D).

Let W0 = b∧(D)∗g∧b∧(D). Let ϕ ∈ H̃1(Ω) be the solution of the equation ∆ϕ =
β(β(x))−1 − 1, and let p = ∇ϕ. Then for 0 < ε ≤ 1 we have

‖(Wε + I)−1 − (W0 + I)−1 − εpεdiv (W0 + I)−1‖G→G1 ≤ C∧
11ε. (21.5)

The constant C∧
11 depends on d, on the norms ‖β‖L∞

, ‖β−1‖L∞
, and on parameters of the

lattice Γ.
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We can also apply (interpolational) Theorem 11.4. The corrector (10.11) now takes
the form (cf. [BSu4, Theorem 13.1])

K0
∧(ε) = pεdiv (W0 + I)−1 − (W0 + I)−1∇(pε)t. (21.6)

Note that now the third term of the corrector (10.11) is equal to zero (because of (21.4)).
We arrive at the following result.

Theorem 21.2. Suppose that conditions of Theorem 21.1 are satisfied. Let K0
∧(ε) be the

corrector defined by (21.6). Then for 0 ≤ s ≤ 1 and 0 < ε ≤ 1 we have

‖(Wε + I)−1 − (W0 + I)−1 − εK0
∧(ε)‖G→Gs ≤ C∧

s ε.

Here Gs = Hs(Rd; Cd). The constant C∧
s depends on s, d, on the norms ‖β‖L∞

, ‖β−1‖L∞
,

and on parameters of the lattice Γ.

Let uε be the solution of the equation

Wεuε + uε = F, F ∈ G, (21.7)

and let u0 be the solution of the homogenized equation

W0u0 + u0 = F. (21.8)

Estimate (21.5) means that

‖uε − u0 − εpεdivu0‖G1 ≤ C∧
11ε‖F‖G, 0 < ε ≤ 1.

Note that (see Remark 10.7), as ε→ 0, the functions uε tend to u0 weakly in G1.
Due to relation (21.4), we can apply Theorem 12.4 for the fluxes. It gives the following

result.

Theorem 21.3. Suppose that conditions of Theorem 21.1 are satisfied. Let uε be the

solution of the equation (21.7), and let u0 be the solution of the equation (21.8). Then for

0 < ε ≤ 1 we have

‖gε
∧b∧(D)uε − g∧b∧(D)u0‖G∗

≤ C∧
16ε‖F‖G.

The constant C∧
16 depends on d, on the norms ‖β‖L∞

, ‖β−1‖L∞
, and on parameters of the

lattice Γ.

§22. The model operator of electrodynamics

22.1. Definition of the operator

In [BSu2, Chapter 7], in the study of the homogenization problem for the stationary
periodic Maxwell system, the auxiliary second order operator L was considered. This
operator was also studied in [BSu4, §14]. The operator L acts in the space G = L2(R

3; C3)
and is given by the expression

L = L(η, ν) = rot (η(x))−1rot −∇ν(x)div . (22.1)
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Here the (3×3)-matrix-valued function η(x) with real entries and the real-valued function
ν(x) are Γ-periodic and such that

η(x) > 0; η, η−1 ∈ L∞, (22.2)

ν(x) > 0; ν, ν−1 ∈ L∞. (22.3)

The precise definition of the operator L is given in terms of the closed quadratic form

∫

R3

(〈η(x)−1rotu, rotu〉 + ν(x)|divu|2) dx, u ∈ G1 = H1(R3; C3).

The operator L has the form Â(g) = b(D)∗g(x)b(D) with n = 3, m = 4,

b(D) =

(
−i rot
−i div

)
, g(x) =

(
(η(x))−1 0

0 ν(x)

)
.

The symbol b(ξ) of the operator b(D) is given by

b(ξ) =




0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0
ξ1 ξ2 ξ3


 .

The effective matrix g0 has the form (see [BSu2, §7.2])

g0 =

(
(η0)−1 0

0 ν

)
,

where η0 is the effective matrix for the scalar elliptic operator −div η∇ = D∗ηD, and ν
is defined by the formula

ν =
(
|Ω|−1

∫

Ω

ν(x)−1 dx
)−1

.

The effective operator L0 is given by

L0 = L(η0, ν) = rot (η0)−1rot −∇νdiv . (22.4)

Let vj ∈ H̃1(Ω; C3) be the Γ-periodic solution of the problem

b(D)∗g(x)(b(D)vj + ej) = 0,

∫

Ω

vj(x) dx = 0,

j = 1, 2, 3, 4. Here {ej} is the standard orthonormal basis in C4. As it was shown

in [BSu4, §14], the solutions vj , j = 1, 2, 3, are defined as follows. Let Φ̃j(x) be the
Γ-periodic solution of the problem

div η(x)(∇Φ̃j(x) + cj) = 0,

∫

Ω

Φ̃j(x) dx = 0, (22.5)
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j = 1, 2, 3, where cj = (η0)−1ẽj , and {ẽj} is the standard orthonormal basis in C3. Let
qj be the Γ-periodic solution of the problem

∆qj = η(∇Φ̃j + cj) − ẽj ,

∫

Ω

qj dx = 0. (22.6)

Then
vj = i rotqj, j = 1, 2, 3.

Next, we have
v4 = i∇ϕ,

where ϕ is the Γ-periodic solution of the problem

∆ϕ = ν(ν(x))−1 − 1,

∫

Ω

ϕdx = 0. (22.7)

The matrix Λ(x) is the (3 × 4)-matrix with the columns i rotq1, i rotq2, i rotq3, i∇ϕ.
By Ψ(x) we denote the real (3×3)-matrix with the columns rotq1, rotq2, rotq3. We put
w = ∇ϕ. Then

Λ(x)b(D) = Ψ(x)rot + w(x) div .

22.2

We apply Theorem 10.6, which gives the following result.

Theorem 22.1. Suppose that the matrix-valued function η(x) with real entries and the

real-valued function ν(x) are Γ-periodic and satisfy conditions (22.2) and (22.3). Let

L(η, ν) be the operator (22.1) and let

Lε = L(ηε, νε) = rot (ηε)−1rot −∇νεdiv .

Let L0 be the operator (22.4), where η0 is the effective matrix for the operator D∗ηD.

Let qj, j = 1, 2, 3, be the Γ-periodic solution of the problem (22.6), and let ϕ(x) be the

Γ-periodic solution of the problem (22.7). Let Ψ(x) be the (3×3)-matrix with the columns

rotqj, j = 1, 2, 3, and let w = ∇ϕ. Let Πε be the pseudodifferential operator (10.4) acting

in G = L2(R
3; C3). Then for 0 < ε ≤ 1 we have

‖(Lε + I)−1 − (L0 + I)−1 − ε(Ψεrot + wεdiv )(L0 + I)−1Πε‖G→G1 ≤ C10ε. (22.8)

Here G1 = H1(R3; C3). The constant C10 depends only on ‖η‖L∞
, ‖η−1‖L∞

, ‖ν‖L∞
,

‖ν−1‖L∞
, and on parameters of the lattice Γ.

We can also apply (interpolational) Theorem 11.3. Now the corrector (10.9) takes the
form (cf. [BSu4, Theorem 14.1])

K̃(ε) = (Ψεrot + wεdiv )(L0 + I)−1Πε + (L0 + I)−1Πε(rot (Ψε)t −∇(wε)t)

− (L0 + I)−1E(D)(L0 + I)−1, (22.9)

where

E(D) =

3∑

s=1

((α12s − α21s)∂3∂s + (α31s − α13s)∂2∂s + (α23s − α32s)∂1∂s) , (22.10)
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αjks = |Ω|−1

∫

Ω

Φ̃j(x)〈η(x)(∇Φ̃k(x) + ck), es〉 dx. (22.11)

We arrive at the following statement.

Theorem 22.2. Suppose that conditions of Theorem 22.1 are satisfied. Let K̃(ε) be the

corrector defined according to (22.9)–(22.11). Then for 0 ≤ s ≤ 1 and 0 < ε ≤ 1 we have

‖(Lε + I)−1 − (L0 + I)−1 − εK̃(ε)‖G→Gs ≤ Csε
2−s. (22.12)

Here Gs = Hs(R3; C3). The constant Cs depends only on s, on ‖η‖L∞
, ‖η−1‖L∞

, ‖ν‖L∞
,

‖ν−1‖L∞
, and on parameters of the lattice Γ.

22.3

Let uε be the solution of the equation

Lεuε + uε = F, F ∈ G, (22.13)

and let u0 be the solution of the homogenized equation

L0u0 + u0 = F. (22.14)

Estimate (22.8) means that

‖uε − u0 − ε(ΨεΠεrotu0 + wεΠ(1)
ε div u0)‖G1 ≤ C10ε‖F‖G, 0 < ε ≤ 1.

Herewith (see Remark 10.7), as ε→ 0, the functions uε converge to u0 weakly in G1.
The role of the flux for the equation (22.13) is played by the vector-valued function

pε = gεb(D)uε = −i
(

(ηε)−1rotuε

νεdivuε

)
.

We apply Theorem 12.1 about approximation of the fluxes. The matrix g̃ = g(1 + b(D)Λ)
has a block-diagonal structure (see [BSu4, Subsection 14.3]): the upper left (3× 3)-block

is represented by the matrix with the columns ∇Φ̃j(x) + cj, j = 1, 2, 3. We denote this
block by a(x). The element in the right lower corner is equal to ν. The other elements
are equal to zero. We denote

p̃ε = g̃εΠ(4)
ε b(D)u0 = −i

(
aεΠεrotu0

ν Π
(1)
ε div u0

)
.

Here Π
(4)
ε is the pseudodifferential operator in G∗ = L2(R

3; C4) with the symbol χeΩ/ε(ξ),

and Π
(1)
ε is the pseudodifferential operator in L2(R

3) with the same symbol. By Theorem
12.1, we have

‖pε − p̃ε‖G∗
≤ C15ε‖F‖G, 0 < ε ≤ 1. (22.15)

The constant C15 depends on ‖η‖L∞
, ‖η−1‖L∞

, ‖ν‖L∞
, ‖ν−1‖L∞

, and on parameters of
the lattice Γ. Estimate (22.15) means that

‖(ηε)−1rotuε − aεΠεrotu0‖G ≤ C15ε‖F‖G, 0 < ε ≤ 1, (22.16)
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‖νεdiv uε − νΠ(1)
ε div u0‖L2(R3) ≤ C15ε‖F‖G, 0 < ε ≤ 1. (22.17)

We show that in (22.16) and (22.17) the operator Πε can be eliminated (replaced by
I). Indeed, consider the operator

aε(I − Πε)rot (L0 + I)−1 = εT ∗
ε a(I − Π)rot (L0 + ε2I)−1Tε.

Here Tε is the scaling transformation defined by (10.1). We have used relations (10.2) and
(10.3). Since the operator Tε is unitary in G, then

‖aε(I − Πε)rot (L0 + I)−1‖G→G = ε‖a(I − Π)rot (L0 + ε2I)−1‖G→G. (22.18)

The operator (I−Π)rot (L0+ε2I)−1 is the pseudodifferential operator of order (−1) (with
constant coefficients), therefore, it maps G to G1 continuously:

‖(I − Π)rot (L0 + ε2I)−1‖G→G1 ≤ sup
|ξ|≥r0

|r(ξ)(b(ξ)∗g0b(ξ) + ε21)−1|(1 + |ξ|2)1/2. (22.19)

Here

r(ξ) =




0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0




is the symbol of the operator −irot . It can be elementarily checked that

|(b(ξ)∗g0b(ξ) + ε21)−1| ≤c(η0, ν)|ξ|−2, ξ ∈ R
3 \ {0},

c(η0, ν) = max{|η0|, ν−1}. (22.20)

Besides, |r(ξ)| ≤ |ξ|. Then (22.19) implies that

‖(I − Π)rot (L0 + ε2I)−1‖G→G1 ≤ c(η0, ν)(r−2
0 + 1)1/2. (22.21)

Next, by Proposition 8.2 of [Su2], the columns of the matrix a(x) (the vector-valued

functions ∇Φ̃j + cj, j = 1, 2, 3) are multipliers from H1 to L2. Thus,

‖[a]‖G1→G ≤ C∗, (22.22)

where the constant C∗ depends only on ‖η‖L∞
, ‖η−1‖L∞

, and on parameters of the lattice
Γ.

As a result, relations (22.18), (22.21), and (22.22) imply that

‖aε(I − Πε)rot (L0 + I)−1‖G→G ≤ C∗c(η
0, ν)(r−2

0 + 1)1/2ε.

This estimate allows us to replace Πε by I in (22.16):

‖(ηε)−1rotuε − aεrotu0‖G ≤ C̃15ε‖F‖G, 0 < ε ≤ 1,

C̃15 = C15 + C∗c(η
0, ν)(r−2

0 + 1)1/2.

It is yet easier to replace Π
(1)
ε by I in (22.17). We consider the operator

ν(I − Π(1)
ε )div (L0 + I)−1.

107



By analogy with (22.18), taking (22.20) into account, we have:

‖ν(I−Π(1)
ε )div (L0+I)−1‖G→L2(R3) = ε‖ν(I−Π(1))div (L0+ε2I)−1‖G→L2(R3)

≤ εν sup
|ξ|≥r0

|ξ||(b(ξ)∗g0b(ξ) + ε21)−1| ≤ εν c(η0, ν)r−1
0 . (22.23)

From (22.17) and (22.23) it follows that

‖νεdivuε − νdiv u0‖L2(R3) ≤ Ĉ15ε‖F‖G, 0 < ε ≤ 1,

Ĉ15 = C15 + νc(η0, ν)r−1
0 .

We arrive at the following statement.

Theorem 22.3. Suppose that conditions of Theorem 22.1 are satisfied. Let uε be the

solution of the equation (22.13), and let u0 be the solution of the homogenized equation

(22.14). Let a(x) be the (3 × 3)-matrix with the columns ∇Φ̃j(x) + cj, j = 1, 2, 3, where

Φ̃j is the Γ-periodic solution of the problem (22.5). Then for 0 < ε ≤ 1 we have

‖(ηε)−1rotuε − aεrotu0‖G ≤ C̃15ε‖F‖G, (22.24)

‖νεdiv uε − νdivu0‖L2(R3) ≤ Ĉ15ε‖F‖G.

The constants C̃15 and Ĉ15 depend only on ‖η‖L∞
, ‖η−1‖L∞

, ‖ν‖L∞
, ‖ν−1‖L∞

, and on

parameters of the lattice Γ.

Note that (see Remark 12.2) the weak G-limit of the functions (ηε)−1rotuε is equal to
(η0)−1rotu0.

22.4. Special cases

The case where g0 = g is realized, if ν = const and η0 = η, i. e., if the columns of the
matrix η−1 are potential vectors (representations of the form (17.28) are true). In this
case, Theorems 10.9 and 11.5 are applicable. This gives the following result.

Theorem 22.4. Suppose that conditions of Theorem 22.1 are satisfied. Suppose also that

ν = const and η0 = η. Then for 0 < ε ≤ 1 we have

‖(Lε + I)−1 − (L0 + I)−1‖G→G1 ≤ C12ε. (22.25)

Besides, for 0 ≤ s ≤ 1 and 0 < ε ≤ 1 we have

‖(Lε + I)−1 − (L0 + I)−1‖G→Gs ≤ C̃sε
2−s.

The constant C12 depends only on ‖η‖L∞
, ‖η−1‖L∞

, ‖ν‖L∞
, ‖ν−1‖L∞

, and on parameters

of the lattice Γ, while the constant C̃s depends on the same parameters and on s.

The case g0 = g is realized, if ν(x) is arbitrary and η0 = η (i. e., if the columns of the
matrix η(x) are solenoidal). Then we can apply Theorem 12.4, which gives the following
result.
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Theorem 22.5. Suppose that conditions of Theorem 22.1 are satisfied. Suppose also

that η0 = η (i. e., the columns of the matrix η(x) are solenoidal vectors). Let uε be the

solution of the equation (22.13), and let u0 be the solution of the equation (22.14). Then

for 0 < ε ≤ 1 we have

‖gεb(D)uε − g0b(D)u0‖G∗
≤ C16ε‖F‖G,

which implies two estimates

‖(ηε)−1rotuε − (η)−1rotu0‖G ≤ C16ε‖F‖G, (22.26)

‖νεdiv uε − νdivu0‖L2(R3) ≤ C16ε‖F‖G.

The constant C16 depends only on ‖η‖L∞
, ‖η−1‖L∞

, ‖ν‖L∞
, ‖ν−1‖L∞

, and on parameters

of the lattice Γ.

22.5. Splitting of the operator L
We put

J = {u ∈ G : divu = 0}.
We use the orthogonal Weyl decomposition

G = L2(R
3; C3) = J ⊕G, (22.27)

where
G = {u = ∇φ : φ ∈ H1

loc(R
3), ∇φ ∈ G}.

Decomposition (22.27) reduces the operator (22.1):

L = LJ ⊕LG.

The operator LJ acting in the subspace J corresponds to the differential expression
rot η−1rot , and the operator LG acting in G is given by the expression −∇νdiv . The
operators Lε and L0 are also reduced by decomposition (22.27):

Lε = LJ,ε ⊕ LG,ε, L0 = L0
J ⊕ L0

G.

(For applications to the Maxwell system), we are interested mainly in the operators
LJ , LJ,ε, and L0

J . Since they do not depend on the coefficient ν, it suffices to consider the
case where ν = 1.

Let P be the orthogonal projection of G onto J . Then (see [BSu2, Subsection 2.4 of
Ch. 7]) P (restricted to Gs) is also the orthogonal projection of the space Gs = Hs(R3; C3)
onto the subspace Js = Gs ∩ J , for all s > 0.

Restricting the operators in (22.8) onto the subspace J and multiplying them by P
from the left, we obtain:

‖(LJ,ε + IJ)−1 − (L0
J + IJ)−1 − εPΨεΠεrot (L0

J + IJ)−1‖J→J1 ≤ C′
10ε, 0 < ε ≤ 1. (22.28)

The constant C′
10 is equal to C10 with ν = 1, whence C′

10 depends only on ‖η‖L∞
, ‖η−1‖L∞

,
and on parameters of the lattice Γ.
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Similarly, restricting the operators in (22.12) onto the subspace J and multiplying
them by P from the left, we obtain:

‖(LJ,ε + IJ)−1 − (L0
J + IJ)−1 − εK̃J(ε)‖J→Js ≤ C′

sε
2−s, 0 ≤ s ≤ 1, 0 < ε ≤ 1, (22.29)

where

K̃J(ε) = PΨεΠεrot (L0
J + IJ)−1

+ (L0
J + IJ)−1Πεrot (Ψε)t − (L0

J + IJ)−1E(D)(L0
J + IJ)−1. (22.30)

The constant C′
s is equal to Cs with ν = 1, whence C′

s depends only on s, on ‖η‖L∞
,

‖η−1‖L∞
, and on parameters of the lattice Γ.

We arrive at the following result.

Theorem 22.6. Suppose that conditions of Theorem 22.1 are satisfied. Let LJ,ε =
rot (ηε)−1rot be the part of the operator Lε in the solenoidal subspace J . Let L0

J =
rot (η0)−1rot be the part of the effective operator L0 in J . Let P be the orthogonal pro-

jection of G onto the subspace J . Let K̃J(ε) be the corrector defined by (22.30). Then

estimate (22.28) is true, and for 0 ≤ s ≤ 1 estimate (22.29) is valid. The constant C′
10

from (22.28) depends on ‖η‖L∞
, ‖η−1‖L∞

, and on parameters of the lattice Γ, while the

constant C′
s from (22.29) depends on the same parameters and also on s.

Now we apply (22.24) with F ∈ J . Then, by the splitting of the operators Lε and L0,
we have:

uε = (LJ,ε + IJ)−1F, u0 = (L0
J + IJ)−1F, F ∈ J. (22.31)

By C̃′
15 we denote the constant C̃15 with ν = 1. We arrive at the following result.

Theorem 22.7. Suppose that conditions of Theorem 22.6 are satisfied. Let uε and u0

be the vector-valued functions defined by (22.31). Let a(x) be the (3 × 3)-matrix with the

columns ∇Φ̃j(x)+cj, j = 1, 2, 3, where Φ̃j is the Γ-periodic solution of the problem (22.5).
Then for 0 < ε ≤ 1 we have

‖(ηε)−1rotuε − aεrotu0‖G ≤ C̃′
15ε‖F‖G.

The constant C̃′
15 depends only on ‖η‖L∞

, ‖η−1‖L∞
, and on parameters of the lattice Γ.

Now we distinguish the special cases. Restricting the operators in (22.25) onto J and
using the notation C′

12 for the constant C12 with ν = 1, we arrive at the following result.

Theorem 22.8. Suppose that conditions of Theorem 22.6 are satisfied. Suppose also that

η0 = η. Then for 0 < ε ≤ 1 we have

‖(LJ,ε + IJ)−1 − (L0
J + IJ)−1‖J→J1 ≤ C′

12ε.

Besides, for 0 ≤ s ≤ 1 and 0 < ε ≤ 1 we have

‖(LJ,ε + IJ)−1 − (L0
J + IJ)−1‖J→Js ≤ C̃′

sε
2−s.

The constant C′
12 depends on ‖η‖L∞

, ‖η−1‖L∞
, and on parameters of the lattice Γ, while

the constant C̃′
s depends on the same parameters and on s.

The following statement is deduced from (22.26) with F ∈ J ; here we use the notation
C′

16 for the constant C16 with ν = 1.

Theorem 22.9. Suppose that conditions of Theorem 22.6 are satisfied. Suppose also that

η0 = η. Then for 0 < ε ≤ 1 we have

‖(ηε)−1rotuε − (η)−1rotu0‖G ≤ C′
16ε‖F‖G.

The constant C′
16 depends on ‖η‖L∞

, ‖η−1‖L∞
, and on parameters of the lattice Γ.
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§23. Comments

Along with the material of this section, it is useful to be acquainted with the similar §15
from [BSu4].

23.1

We did not consider the problem of approximations of higher order for the resolvent
(Âε + I)−1. The significance of such approximations for applications is scarcely big. We
also mention the following. Suppose that, using approximations of higher order, we want
to obtain the remainder estimates of „right“ order in the natural operator norms. Then
we may expect that these approximations will contain new terms besides the standard
ones, i. e., those that can be found by the twoscale expansions method of N. S. Bakhvalov
(see [BaPa]). As a result, the formulas will become yet more bulky.

The fear expressed above is indirectly confirmed by the observation related to the
homogenization problem for the stationary Maxwell system. In [Su1,2], for some physical
fields the following was clarified. In order to find approximation in the (L2 → L2)-norm
with the error term of order ε, it is not sufficient to take the resolvent of the homogenized
Maxwell system. We are forced to add terms of order O(1) (that are rapidly oscillating
as ε → 0) to it. In the weak limit procedures, these terms make no contribution and are
not noticed.

23.2

Often, in the homogenization theory, not the problem in the whole space is considered,
but the problem in a fixed bounded domain O (∂O is smooth), under an appropriate
classical boundary condition. Such problem is more difficult than the problem in the
whole space, since the homogenization effect itself interacts with the effects occuring in
the boundary layer. Sometimes, however, it is useful first to solve the homogenization
problem in Rd, and afterwards try to satisfy the boundary conditions on ∂O. It is this
way, that was used for the proof of the (L2 → H1)-estimates in O in the paper [ZhPas].
Herewith, the order of the error estimate worsens up to ε1/2.

Some results about H1-estimates in a bounded domain can be found in [Gr1,2].

23.3. Correctors. Smoothing operators

We emphasize once more that, a fortiori, the corrector is defined not uniquely. Herewith,
the extent of this non-uniqueness depends on the choice of the (operator) norm, in which
we wish to estimate the error of aproximation. This is already seen from comparence of
formulas (0.8)–(0.10), and also of (0.10) and (11.5). Note also that (see [BSu4, Proposition
8.8]) the operator K3 in the corrector (0.9) coincides with the weak L2-derivative of the

operator-valued function (Âε + I)−1 with respect to ε at ε = 0. Therefore, K3 is defined
uniquely. At the same time, (0.10) does not contain K3.

Usually, in the proof of estimates (0.8) or (0.10), we cannot avoid including of some
smoothing operator in the corrector (our smoothing operator is the pseudodifferential
operator Πε defined by (10.4)). The smoothing operator is also defined not uniquely.
Evidently, in general it is impossible to get rid of (some) smoothing operator. However,
sometimes it is possible to eliminate it, i. e., to replace it by I. We attentively looked
for the sufficient conditions for such elimination. As it has already been mentioned, the
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sufficient conditions for elimination of Πε in the case of estimate (0.8) are wider than in
the case of estimate (0.10). It is also interesting that, in the case of the model operator
of electrodynamics (see §22), in the approximation of the resolvent in the (L2 → H1)-
norm we did not succeed to eliminate the operator Πε in the corrector, while in the
approximation of the fluxes in the (L2 → L2)-norm we succeeded to eliminate Πε. The
latter fact is essential for applications to the Maxwell operator theory.

23.4. The stationary Maxwell system

From the point of view of homogenization problems, the stationary Maxwell system with
the periodic characteristics of the medium is of significant interest. Up to now, approxi-
mations with the error estimates of order ε in the (L2 → L2)-norm are not obtained for
all physical fields. The homogenization problem for the Maxwell operator can be reduced
to the similar problem for an appropriate elliptic second order DO. This operator admits
a factorization of the form X ∗X , where X is a homogeneous first order DO. In general,
the latter operator cannot be represented in the form X = hb(D)f (see Subsection 4.1).
(This representation is assumed in [BSu2,4] and also in the present paper.) However, our
abstract results are applicable to the DO X ∗X . On this basis, in a separate work [Su1,2],
approximations with the error estimates of order ε in the (L2 → L2)-norm were obtained,
but, unfortunately, not for all physical fields.

However, a little bit earlier, the following was mentioned (see [BSu2, Ch. 7]). If
one of two characteristics of the medium (for instance, the magnetic permeability µ) is
equal to identity (or is constant), then the corresponding second order DO belongs to the
class of operators of the form (0.5). On this way, in [BSu2], for the Maxwell operator
approximation in the (L2 → L2)-norm with the error estimate of order ε was found for
one (of six!) physical field. For two more fields, similar results directly follow from the
general statements of [Su1,2]; herewith, approximations contain the corrector of order
zero (with respect to ε), which is rapidly oscillating as ε→ 0.

Finally, using the results of §22 about approximation of the fluxes, we can deduce the
required approximations and estimates for the remaining three fields. Thus, for the case
where µ = 1, the required results about homogenization of the Maxwell operator are now
obtained. Note that all six approximations do not contain smoothing operators. The
results for µ = 1 will be written in details elsewhere. Up to now, the homogenization
problem for the Maxwell operator of general type is not studied completely.
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