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Homogenization with corrector
for periodic differential operators.
Approximation of solutions

in the Sobolev class H!(RY)

M. Sh. Birman*and T. A. Suslina'
December 22, 2006

Abstract

We continue to study a class of matrix periodic elliptic second order differential
operators A, in R? with rapidly oscillating coefficients (depending on x/e). This
class was considered in [BSul,2,4]. The homogenization problem in the small period
limit is studied. We obtain approximation for the resolvent (A, + I)~! in the op-
erator norm from Ly(RY) to H'(R?) with error of order . In this approximation,
the corrector is taken into accout. Besides, the (Ly — Lg)-approximations of the so
called fluxes are obtained.
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0 Introduction

0.1

The present paper is a continuation of a series of papers [BSu2-4] on homogenization
theory for one class of (matrix) differential operators (DO’s) acting in Lo(R?). This class
is rather wide, and it includes many applications. The operator-theoretic constructions
(see |[BSu2, Ch. 1|, [BSu3]| and Ch. 1 below) lie in the basis of our approach. The
work [Sul,2| about homogenization of the Maxwell system is based on the same abstract
material. However, in general case, the Maxwell operator can not be studied on the
basis of the class of DO’s considered in [BSu2,4] and in the present paper. Applications
of the operator-theoretic material to DO’s are based on using the Floquet-Bloch theory
(precisely, on applying the Gelfand transform) in combination with an elementary scale
transformation.

Formally, the present paper can be read independently of [BSu2-4|. The necessary
notions and objects are defined again, the necessary results from [BSu2-4]| are cited.

0.2. The class of operators

We consider elliptic positive second order matrix DO’s in Ly(R?; C") admitting a represen-
tation (factorization) of the form

A= Alg, f) = f(x)"0(D)"g(x)b(D) f (x). (0.1)

Here b(D) is a homogeneous matrix first order DO with constant coefficients. Its symbol
b(g) is an (m x n)-matrix of rank n (it is assumed that m > n). The matrix-valued



functions f(-) (of size n x n) and g¢(-) (of size m x m) are assumed to be periodic with
respect to some lattice I' in R? and such that

9(x)>0; ¢,9" €L, [ f'E L.

More precise description of the operators (0.1) can be found below in Subsection 4.1.
It is useful to start with the study of a more narrow class of operators of the form

~ ~

A= A(g) = b(D)"g(x)b(D). (0.2)

Correspondingly, we accept the ,two-level order of exposition.
The operators (0.1) and (0.2) are considered as selfadjoint operators in Ly(R%; C").
The bottom of the spectrum of A(g, f) is the point A = 0:

minspec A(g, f) = 0. (0.3)

Along with the operators (0.1) and (0.2), we consider the following operators, whose
coefficients are rapidly oscillating for small ¢ > 0:

A:(g, f) = f(e7'%)"0(D)"g(7'x)b(D) f(e"'x), >0, (0.4)
A-(9) = b(D)*g(e " x)b(D), &> 0.

0.3

The homogenization problem can be treated as the problem of the asymptotic description
of the behavior of the resolvent (A.(g,f) + I)”! as ¢ — 0. For simplicity, now we
shall speak about operators of the form (0.5). In the classical homogenization theory,
the following fact plays a crucial role: there exists an effective DO A" = ./T(go) of the
form (0.2) with the constant (effective) matrix ¢° such that the resolvent (A.(g) + I)~*
converges (in some sense) to the resolvent (./Zl\o + I)~!. Usually the strong (or even weak)
convergence is considered. Further correction terms to (ﬁo + I)~! are constructed. The
main of them is the term K () of order ¢, where the operator K () is called a corrector.
The error estimates are obtained under the smoothness conditions on the coefficients f
and ¢g and smoothness conditions on the right-hand sides of the corresponding equations.

The rule of constructing ¢° for a given matrix g is known. It is not quite elementary,
but is visible. Under our conditions, this rule is described below in §5.

For the first time in the homogenization theory, the error estimates of order ¢ (sharp-
order) in the Lo-norm uniform with respect to the right-hand sides were obtained in
[BSul,2]. In terms of the resolvents, these estimates have the following form:

”(le\g + [)71 - (./Zl\o + [)71|’L2(Rd;cn)—>L2(Rd;Cn) S CE. (O6>

The constant C' depends only on the lattice I', on the upper and lower bounds for the
matrix-valued function g and on the constants in the inequality (4.2) (see below). The
similar but somewhat more complicated approximations were obtained for operators of
the form (0.4).



0.4. The method of investigation

We put
(Tou)(y) = e¥u(ey), y e R%

The scaling operator T, is unitary in Ly(R%; C"). Obviously,

(A + 1)t =T (A + ) 'T,
(A° 4 I)7! = 2T (A° + £21) 7' T...

These identities allow us to deduce (0.6) from the estimate
1A+ 21)7F = (A% + €21) Y| Ly metsem o Loeseny) < el (0.7)

This way the inequality (0.6) has been obtained in [BSul,2|. The operators T;, T, have
no influence, when we ,return“ from (0.7) to (0.6), since they are unitary.

The passage from (0.7) to (0.6) is quite trivial. At the same time, it clearly illustrates
that the homogenization procedure is a manifestation of the spectral threshold effect: we
have to know the behavior of the resolvent of a periodic operator A = A(g) near the
bottom A = 0 (see (0.3)) of its spectrum. It is the latter problem that was solved in
[BSul,2].

In order to obtain estimate (0.7), we transform the operator A applying the (unitary)
Gelfand transformation V (see definition below in Subsection 4.3). Let Q be the cell
of the lattice I', and let k € R? be the parameter (the quasimomentum). Under the
Gelfand transformation V, the operator A turns into the operator of multiplication by an
appropriate operator-valued function A(k). For each k, the operators A(k) are selfadjoint
operators in Ly(€2; C™) with compact resolvent. The latter allows us to use the general
spectral analytic perturbation theory (with respect to the one-dimensional parameter
t = |k|) and to obtain some analog of the inequality (0.7) for the operator (A(k) + £2I)~*
with the constant independent of k. Then application of the inverse transformation V*
leads to (0.7).

The method described above may seem to be somewhat roundabout. But it is this
method that openes the way to delicate calculations and sharp-order estimates. This
method turned out to be effective also for obtaining more accurate approximation of the
resolvent (A, + I)7! in the (Ly(R?; C"))-operator norm with the error estimate of order
e? (see [BSu4|). For this, terms of order € must be included in approximation, i. e., the
corrector must be taken into account. Evidently, the corresponding constructions become
more complicated. R R

We emphasize that, if, for instance, one studies convergence of (A.+1)"! to (A°+1)~!
in the strong sense, then applying the scaling transformation gives nothing. Indeed, then
on the ,coming back” step the factors T;, T are the obstacles for the limit procedure as
e — 0.

0.5. The corrector

In [BSu4], the following estimate has been obtained:

1A+ 1) = (A 4+ 1) = e K ()| yitscn)— Loreseny < Ce2. (0.8)



As it was shown in [BSu4], the bounded operator K (¢) (the corrector), must contain three
terms:

K(e) = Ki(e) + Ky(e) + K. (0.9)

Note that Ks(e) = K;(e)* and that K3 does not depend on e. The expression for K (¢) is
given below in (10.9). Clearly, K (¢) is not defined uniquely, since we can add some terms
of order O(e) to it.

In the traditional homogenization theory, the corrector contains only one term, which
differs from our term K(e) by the absence of the additional smoothing operator. Our
smoothing operator II. is defined by (10.4); it is possible to use another smoothing opera-
tors. In [BSu4|, it was discussed in detail, when the smoothing operator can be eliminated;
it is not always possible, if we want to preserve estimate (0.8). Also in [BSu4]| the cases
where K3 = 0 were distinguished. At the same time, it was shown that in the vector prob-
lems of mathematical physics (elasticity theory, electrodynamics), in general, the term K
is nontrivial and should not be ignored.

0.6. The main goal of the present paper

is the proof of the estimate
||(Ag + I)_l - (./Zt\o + I)_l - 5K1(5)||L2(Rd;<cn)—>H1(Rd;(C") S 05. (010)

It is easily seen that the estimate (0.10) can be reduced to the inequality
|22 (A + D7 = (A + )7 = K@) Iryposcny i S Ce. (011)

This inequality can be obtained on the same way as the estimate (0.8). For this, one
should rely on the abstact results of §2.

Thus, we see that in (0.10) the role of corrector is played by the first term in (0.9). One
may also use the full corrector K (¢) in (0.10), (0.11); this will change only the constants
in the right-hand side. Using this version, one may interpolate between (0.10) and (0.8),
which leads to the estimate

”(./Zl\g + ])71 - (./Zl\o + ])71 - 826(8)HLQ(Rd;C")HHS(Rd;C") S 038273, 0 S S S 1.

In what follows, we distinguish the cases, where the smoothing operator II. in the
corrector in (0.10) may be eliminated. The required restrictions are harder than the
similar restrictions related to estimate (0.8).

Estimates of the type (0.10) give possibility to approximate the fluzes, i. e., the
operators (e 'x)b(D)(A. 4+ I)~!. The corresponding error estimate of order £ in the
(Ly(R% C™) — Lo(RY C™))-norm is given (in somewhat different form) below in Theo-
rem 12.1. In a number of important cases (acoustics, elasticity theory, electrodynamics),
the fluxes are of direct interest.

Note that estimates of the form (0.10) for the acoustics operator and the operator of
elasticity theory were obtained in recent papers [Zh, Pas, ZhPas|. In these papers, an
essentially different (non-spectral) method was used. This method is related to including
an additional parameter w in the problem, which corresponds to the shift of the vectors
of the lattice I' by an arbitrary vector w € ). This way leads to the appearance of the
Steklov averaging operator as a smoothing operator (different from our smoothing operator
I1.). However, as well as in our method, afterwards this smoothing operator is eliminated
for the acoustics operator and, in the case d = 2, also for the elasticity operator.
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0.7. The generalized resolvent

What was said in Subsections 0.3-0.6 is related to the resolvent (.,Zl\6 +1)7! of the operator
(0.5). Besides, we study similar questions also for the generalized resolvent of the operator
A.. Namely, let Q(x) be a positive [-periodic (n X n)-matrix-valued function such that
Q, Q! € Ly, and let Q°(x) = Q(c~'x). The operator (A. + Q)" is called a generalized
resolvent of the operator ./L. The analogs of all the statements already proved for the
ordinary resolvent (A. + I)~! are proved afterwards for the generalized resolvent. This
corresponds to the two-level“ order of exposition, which has already been mentioned.
Herewith, we rely on the abstract results of §3 and also on the corresponding material for
the ordinary resolvent. In is important to note that the study of the resolvent (A, + I)~1
for an arbitrary operator of the form (0.4) is reduced to the study of the generalized
resolvent (./TE +Q°)~! with the same matrix g and an appropriate matrix-valued function

. However, the generalized resolvent is of its own interest.

0.8. The structure of the paper

The paper consists of four chapters and a small concluding §23. The necessary operator
theoretic material is contained in Chapter 1 (§1-3). In Chapter 2 (§4-9) the threshold
approximations (i. e., as ¢ — 0) for AY2(A 4 ¢21)7! (in §8) and for AY2(A + £2Q)~!
(in §9) are studied. In Chapter 3 (§10-16), the homogenization results are deduced from
the threshold approximations. Namely, approximations of the resolvents (ﬁa + I)7! and
(le\ngQe )~tin the (Ly — H')-norm and approximations of the corresponding fluxes in the
(Ly — Ly)-norm are obtained. Besides, approximation for the operator f¢(A. + I)~! in
the (L, — H')-norm is obtained, where A. is of general type (0.4), and f¢(x) = f(e7'x).
In all cases, the corrector is taken into account in approximations, and the error term
is of order €. In Chapter 4 (§17-22), general results of Chapter 3 are interpreted for a
number of operators of mathematical physics. The choice of examples was motivated by
their own significance, as well as by the will to illustrate various exceptional and special
cases, which were distinguished in the general theory. In more details, the content of the
paper can be seen from the table of contents and from the prefaces in the beginnings of
the chapters. A small separate §23 is devoted to additional comments and references.

Below, the constants in estimates either are controlled explicitly, or admit such a
control (probably, bulky), in principal.

0.9. Notation

Let G, G. be separable Hilbert spaces. The symbols (-, -)g and || - ||g stand for the inner
product and the norm in G, correspondingly. The symbol || - ||g—g. stands for the norm of
a linear continuous operator acting from G to G,. Sometimes we omit indices, if this does
not lead to confusion. By I = Ig we denote the identity operator in G. If A : G — G,
is a linear operator, then Dom A stands for its domain. If 91 is a subspace in G, then
N+ .= GO N If P is the orthogonal projection of G onto N, then P+ is the orthogonal
projection onto 91+. The spectrum of a closed operator T'in G is denoted by spec T'. The
symbol (-,-) = (-, -}, is the standard inner product in C", | - | is the norm of a vector in
C™; 1 =1, is the unit (n x n)-matrix. For z € C, by z* we denote the complex conjugate
number; we use such non-standard notation, since notation g is used for the mean value
of the matrix-valued function g. For an (m X n)-matrix a, the symbol |a| stands for the



norm of the corresponding linear operator from C" to C™; the symbol a' denotes the
transposed matrix, and a* is the Hermitian adjoint (n x m)-matrix.

The L,-classes of C"-valued functions in domain @ C R? are denoted by L,(O;C"),
1 < p < oo. The Sobolev classes of C"-valued functions (in domain O C Rd) of order
s and summability index p are denoted by W;(O;C"). If p = 2, we use the notation
H*(O;C"), s € R. For n =1, we use the simplified notation L,(O), W;(0O), H*(O), etc.
But sometimes (if this does not lead to confusion), we use such simplified notation also
for the spaces of vector-valued or matrix-valued functions.

Next, x = (z!,...,2%) € R%, iD; = 0; =0/0x7, j =1,...,d, V = grad = (1, ..., 0a),
D =—-iV=(Dy,...,Dy).

Below C, ¢, C, € (probably, with indices and marks) denote various constants in
estimates. By (8 with indices and marks we denote various absolute constants.
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Chapter 1. The abstract method

This Chapter (§1-3) contains the facts of the abstract theory of selfadjoint operators.
These facts are basic for further constructions, and they are additional to the facts given in
[BSu2, Ch. 1] and [BSu3]. We still rely on the spectral perturbation theory for factorized
selfadjoint operator families which quadratically depend on the parameter. Part of the
material is borrowed from [BSu2,3| and is given without proofs. New facts are completely
proved.

The main results of Chapter 1 are contained in §2 and §3. Formally, the statements
of §3 contain the statements of §2. However, for the proof of the results of §3, as well as
for convenience of further applications, the two-level exposition is useful.

1 Preliminaries

1.1. A factorized family A(¢)

Let $ and $, be complex separable Hilbert spaces. Let Xy : § — $, be a densely defined
closed operator, and let X; : § — §, be a bounded operator. We put

X(t) == Xo+tX;, DomX(t) =DomX,, te€R.
The family of selfadjoint operators
A(t) = X()* X (t), teR, (1.1)
in § is our main object. The operator (1.1) is generated by the quadratic form

a(t)[u,u] = [ X(®)ul[§., v € Dom X,
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which is closed in $. We denote A(0) = XXy =: Ay,
MN:=Ker 4y = Ker X, M, := Ker Xj.

By P and P, we denote the orthogonal projections of § onto 91 and of $, onto N,
respectively. We use notation of the type P+ =1 — P, M+ = P19, etc.

It is assumed that the point \g = 0 is an isolated point of the spectrum of the operator
Ap (an eigenvalue), and that

0<n:=dimM<oo, n<n,:=dimMN, <oo.

By d° we denote the distance from the point Ay = 0 to the rest of the spectrum of A,.
Let F(t,s) be the spectral projection of the operator A(t) for an interval [0, s]. We fiz a
number § > 0 such that 86 < d°. It turns out that (see [BSu2, (1.1.3)])

F(t,8) = F(t,356), rank F(t,0) =n, for |t| <t°:= 2| Xy~ . (1.2)

Below we usually write F'(¢) instead of F'(t,9).

1.2. The operators Z and R

Let D := Dom X,NM*, and let v € §,. We consider the following equation for an element
¥ € D (cf. [BSu2, (1.1.7)]):

(XO,QZ))XOC)S* = (U, Xog)ﬁ*v v§ €D. (]‘3)

There exists a unique solution 1 of the equation (1.3), moreover, || Xo| g, < ||u|lg.. Now,
let

weMN, u=-Xw; (1.4)

the corresponding solution of the equation (1.3) is denoted by #(w). We define the
bounded operator Z : § — § by the following relations:

Zw=9YW), weN; Zxr=0, N (1.5)
Clearly, rank Z < n. As it was shown in [BSu3, (1.8)],
1Z]l5-5 < (80) 2| Xi1llg-s. = (2V2¢)) 1. (1.6)

Note that
ZP=7, PZ=0. (1.7)

Suppose now that (1.4) is satisfied, and 1 (w) is the solution of equation (1.3). We put
we = Xo¥(w) + Xqw
and introduce the operator R (see |[BSu2, Subsection 1.1.2]):
R:-N—-MN, Rw=uw,ecMN,.
Another description of R is given by the formula

R = P.X\|m. (1.8)



1.3. The spectral germ

The selfadjoint operator
S=RR:N—N (1.9)

is called the spectral germ of the operator family (1.1) at ¢ = 0 (see [BSu2, Subsection
1.1.3]). From (1.8) and (1.9) it follows that

S = PX:P.Xi|n.

The germ S is called non-degenerate if Ker S = {0}, or, equivalently, if rank R = n.
According to the general analytic perturbation theory (see [K]), for |t| < t° there exist
real-analytic functions \;(¢) and real-analytic $)-valued functions ,;(t) such that

At pi(t) = NO)pi(t), 1=1,....n, [t| <t

and the ¢;(t), [ = 1,...,n, form an orthonormal basis in F(¢)$). For sufficiently small
t. (< t°) and |t| < t,, we have the following convergent power series expansions:

NO =yttt >0, weER, I=1,...,n, (1.10)
gol(t):wl+tgol(1)+t2<pl(2)+~-~ , l=1,...,n. (1.11)
The elements w; = ¢;(0), I = 1,...,n, form an orthonormal basis in M. As it was shown in
[BSu2, Subsection 1.1.6], the numbers +; and the elements w;, [ = 1, ..., n, are eigenvalues

and eigenvectors of the operator S

Swy=vw, L=1,...,n.

1.4. Threshold approximations
In [BSu2, Theorem 1.4.1], it was shown that

F(t) — P = (1),

B (1.12)
12650 < Cult], [t <10, Cr= B0~ 2 X))

As it has already been mentioned, by 3 (with indices) we denote various absolute constants.
For instance, one can put 3; = 25(1 + 7~ 1)(1 + v/2)27%/2.
Next, in [BSu2, Theorem 1.4.3], it was shown that

A@)F(t) —t2SP = U(t),

) (1.13)
1) [g-n < Colt?,  [t] <% Co = G262 X",

1.5. The contour I's. The difference of resolvents

We put R (t) := (A(t)—=2I)"', R.(0) := (A(0)—=2I)~'. We need to integrate the difference
of resolvents over the complex contour I's that envelopes the interval [0, §] equidistantly
at the distance ¢. By (1.2), for |¢t| < t° the contour T’ is separated from the spectrum of
A(t) by the distance 6. Therefore,

IR ()55 <07 2 €T, [t <t (1.14)



We recall the notation introduced in [BSu2, §1.2, 1.3]|. Putting
Q.(0) =14 (2+20)R.(0), (1.15)
we have (see [BSu2, (1.3.3)])
12 (0)l9en <5 €Ty [ <t

As in [BSu2, Subsection 1.3.2|, by 9 we denote the Hilbert space Dom X with the metric
form
ull3 = [ Xou

2+ 26]ull%. (1.16)

Let T(S(l) and T(5(2) be the selfadjoint continuous operators in ? generated by the forms
2Re (Xou, X1u)s, and || Xjul|3, , u € 9, respectively. We have (see [BSu2, (1.3.7), (1.3.8)])

1 _ 2 _
1T oo < (26) V21X ], (1T [lamo < (20) 711X )12 (1.17)

Denote
Ty(t) = tT{) + 2T,

Then (see [BSu2, (1.3.9)])

V2+1 o
ITs@)lloa < = —IH6721Xall, [ < 7. (1.18)
We have the following representation (see [BSu2, (1.3.11)]):
R.(0) — R.(t) = Q,(0)Ts5(t)R.(t), =z€Ts. (1.19)

Iterating (1.19), we distinguish the term of order ¢ in the right-hand side:
R.(0) — R.(t) = t Q. (0)TYV R.(t) + 12Q.(0) Ty R.. ()
= tQ.(0)TV(R.(0) — Q.(0)T() R (1)) + 2. (0) TV R.(1).

Then
R.(0) — R.(t) = t Q. (0)T{V R.(0) + Wy (t, 2), (1.20)

where

Uy (t,2) = —t Q.(0)T Q. (0)T5 () R (t) + 2 (0) TV R.(1). (1.21)

1.6. Representation for the projection F'(t)

From the formula 1
Fit)— P=— (0) — R.(t)) d
()= P = o [ (R0) = R.(t)) d2
Ts

and representation (1.20) it follows that (cf. [BSu3, (2.10), (2.11)])
F(t) — P =tF, + Fx(t), (1.22)

where

Fy(t) = — / U (L, 2) dz. (1.23)



In [BSu3, (2.15)] it was shown that
Fy=ZP+ PZ". (1.24)
Combining (1.24) with (1.7), we see that

P = ZP. (1.25)

2 Approximation for the operator-valued function
A(t) 2 (A() + 1)

2.1

We assume that (cf. [BSu2, (1.5.1)]) for some ¢, > 0 we have

A(t) > eI, |t < t° (2.1)

This is equivalent to the fact that the eigenvalues \;(t) of the operator A(t) satisfy the
estimates
M) >cet? |t <t 1=1,...,n. (2.2)

Then (1.10) implies that
Y >c., L=1,...,n. (2.3)

Thus, the germ S is non-degenerate. We introduce the notation
= =Z(te) = (S + X ly) ' P. (2.4)
Obviously, (2.1) and (2.3) imply the estimates

I(A®) + 1) Mg < (eut® +5) 70, [t <1,
ISt )55 < (cut® +%) 7 (2.5)

2.2

In [BSul,2], it was shown that for small € > 0 operator (2.4) gives the principal term of
approximation for the resolvent (A(t) + &2I)~!. Herewith,

I(A(t) + 1) —Z(t, 6)||gms < Cse™!, 0<e<1, |t| <t (2.6)

Note that each of the operators (A(t) + £2I)~! and Z(t,¢) is of order €72, while the
difference is of order e~!. The constant C3 depends only on 6, || X;|| and c,, and is given
by

1
Cg = 010:1/2 + 5020;3/2 —+ (35)_1,

where C) and Cy are defined by (1.12), (1.13). The estimate (2.6) is order-sharp.

In [BSu3|, more accurate approximation with the ,corrector for the resolvent
(A(t) + €*I)~! has been found. Now we formulate the corresponding result. We introduce
the following operator in $) (see [BSu3, (4.13)]):

N = Z*X{RP + (RP)*X, Z. (2.7)
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Note that (see [BSu3, (4.16)])
[Nl < (26) 221X, (25)
By Theorem 5.1 from [BSu3|, we have
[(At) +e* ) =2 —t(ZZ2+EZ*) + PENZE||g5 < Oy, 0<e <1, [t| <t (2.9)
The constant Cy depends only on ¢, || X[ and on c¢,, and is given by
Cy =0 (B Xl + Boe X |1° + Bies | Xal* +1/3).

The terms
t(ZZ+22%) —t*ZNZE (2.10)

play the role of the ,corrector. We see that, in order to approximate the resolvent
(A(t) + £2I)~! in the operator norm in §) with error of order O(1), one has to add corrector
(2.10) which contains three terms to the principal term Z(¢,¢).

2.3
Now our goal is to approximate for small € the operator-valued function
A (1) == A)VHAR) + )7L, >0, (2.11)

in the operator norm in $) with error O(1). For this, it suffices to add only one term tZ=
to Z (instead of the three-term corrector (2.10)). The following theorem is true.

Theorem 2.1. Suppose that the operator family A(t) satisfies conditions of Subsection
1.1 and also condition (2.1). Let Z be the operator defined by (1.5), and let S be the
spectral germ of the family A(t) at t = 0. Let =(t,e) be the operator (2.4). Then for
[t| <t° and 0 < e <1 we have

LAWY ((A(t) + 1) — (L + L 2)2(t,€)) s < Cs. (2.12)

The constant Cs is defined below in (2.24); it depends only on §, || X1|| and c..

24
We start the proof of Theorem 2.1. By (2.2),
IO F B)ll5-5 = sup V/M(B)N(t) +2) 7 <V Je] <o (2.13)
1<i<n

Combining this with (1.12), we see that
|2 F(O)(F(t) = P)llgg < Cre 2, [t <1, (2.14)

Note that, by (1.2),
() F () (g0 < (30) 772, |t <1°. (2.15)

Now we write down the resolvent identity (see [BSu3, (5.1)])

F@t)(A®) +e*)7'P
= F(O)E(t,e) — F(t)(A(t) + 1) Y (A(t) F(t) — 2SP)E(t, e).
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Multiplying this identity by A(t)'/2, we obtain
A () F(t)P = F(t)At)V2Z(t, e) — A () F(t)(A(t)F(t) — t2SP)Z(t, €).
We estimate the second term on the right, using (2.13), (1.13), and (2.5). Then
[P ()P — F(HA®) 22(t, ) [o-s < Cocs ™2, [t <12 (2.16)
Next, by (1.22) and (1.25),

F(L)A()'?E(t,e) = A(t)/*(P + tFy + F>(t))E(t, )
= A(t)YA(E(t, ) +tZE(t, e) + Fa()=(t, €)). (2.17)

Obviously,
A(t) = A()F ()" +A()F () (F(t) — P) +A() F (1) P.

Combining this with (2.17) and using (2.11) and (2.14)-(2.16), for |¢| < t°, we obtain:

1A@®)2 ((A®) + D)7 = (I +t2)E(t,€)) [lg-5
< (30) V24 O M A CocBP H |JA P FRy(8)ZE( €) || 5 (2.18)

It remains to estimate the last term in the right-hand side of (2.18).

2.5. Estimate for the term A(t)Y/2Fy(t)Z(t, ¢)

We want to use representation (1.21), (1.23) for Fy(t). First, we prove four lemmas.

Lemma 2.2. We have
LA 2oy < V2, [t] <10, (2.19)

Proof. For u € 0, by (1.1), (1.2), and (1.16), we have:

JA® 2ullg = 1(Xo + X1 )ulls, < [ Xoulls, + 11X lullg
< [ Xoulls, + 6" ulls < VZIula, | < 8. O

Lemma 2.3. For z € ['s and [t| < t° the resolvent R,(t) = (A(t) — zI)™" satisfies the
estimate

IR ()]l 50 < V106712, (2.20)
Proof. For u € $) and |t| < 1°, by (1.1), (1.2), and (1.16), we have:
IR ()ully = [ XoR.(t)ull§, + 20| R.(t)ull
< (|(Xo + tX0) Ra(t)ulls, + [EIX1[[[| R=(8)ull)* + 28| R (8,
< 2(A()R.(t)u, Ra(t)u)g + (2(t°[|X1[1)* + 20) | R (t)ull
= 2(u+ 2R, (t)u, R.(t)u) s + 46| R.(t)ul|5.

Combining this with (1.14) and using the inequality |z| < 26 for z € I'5, we obtain:
1R (t)ully < 2l|ulls]| R (t)ulls + 83]| R=(t)ull§ < 1007 {|ulfg.

This proves estimate (2.20). O
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Lemma 2.4. For the operator (1.15) we have
12.(0)|[omo < 1+4V5, 2z €T (2.21)
Proof. By (1.15) and (2.20) (with ¢ = 0), for u € 9 and z € I's we have:
192:(0)ullo < [ullo + [z + 28| R-(0)uflo < [lullo +46V105 2 [ull.
Since ||ulg < (28)7Y2|Julfo, (2.21) follows. O
Lemma 2.5. Let V,(t, z) be the operator (1.21). Then for |t| < t° and z € T's we have:
LA@) 21t 2) [l 5-9 < 120582 X012, (2.22)
Proof. We have:
A2t 2) = AWM (<1 QO TV O)Ts(1) + (0T ) R 1)

Then " "
IA®) 21 (t, 2) lg—6 < TAME)? o | B2 (8) |50 /1€2:(0) oo

X (1192 ool T oo To®lloa + EIT oo
Combining this with (2.19)-(2.21), (1.17), and (1.18), we obtain:
A 2012, 2)ll 5 < 2V + 20)6 22
x (14 4VB) (V2 + 12792571 X0 |2 4 (20) X0 12) = £28582/2)1 X, ),

where 35 = (v/5 + 20)((1 + 4v5)(1 +271/2) + 1). O
Now, representation (1.23) and estimate (2.22) imply that

A2 Ea(t)] 56 < (2m) (26 + 278) 12336 /2|| X4 |2
=265 (1+ 7 Ho Y2 X412, |t < O (2.23)

Combining this with (2.5), we obtain:
1A R (D=(t )l g < Bs(L+ 7 ) 62 X2, J] < .
Together with (2.18), this implies estimate (2.12) with
Cs = (36) V2 + CLe, Y2 + Coc 32 + Bs(1 +  H)e 112 | X || (2.24)

This completes the proof of Theorem 2.1. O

2.6. Interpolation

In (2.12) the one-term corrector tZ= can be replaced by the ,full“ corrector (2.10). Only
the constant in estimate will change.

Theorem 2.6. Suppose that conditions of Theorem 2.1 are satisfied. Let N be the operator
(2.7). Then for 0 <e <1 and |t| < t° we have

JA®)Y? ((A(t) + ) =2 —HZE+EZ*) +*ENE) ||g—5 < Cs. (2.25)

The constant Cg is defined below in (2.29); it depends only on §, || X1|| and c..
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Proof. By (2.12), it suffices to estimate the terms tA(t)'/22Z* and t3A(t)'/?ZNZ. Note
that
IA®) 2 Pllgg < [t Xll, (2.26)

which follows from (1.1):

1A Pulls = [[(Xo + tX1) Pul

5. = [[tX1Pul

g. < [t[[Xulll[uls.
Since A(t)Y/2Z = A(t)Y/2PZ, then (2.26), (2.5), and (1.6) imply that
[EA@) 222 50 < £280) V21X 2 + )71 < (86 X2 (2.27)
By (2.26), (2.5), and (2.8), the term t3A(t)'/2ENZ = t* A(t)/2 PENZ satisfies the estimate
[P AWM PENE g < (120) X et + 272 < (20) 72X 02 (2.28)
Now, (2.12), (2.27), and (2.28) yield estimate (2.25) with the constant
Cs = Cs + (80) Y2 X1 |%cct + (20) V2| Xy ||*e; 2. O (2.29)
A simple interpolation between (2.9) and (2.25) implies the following result.
Theorem 2.7. Under conditions of Theorem 2.6, for 0 < e <1 and |t| < t° we have
JA®)? ((A(t) + ) = E = tH{(ZE + EZ*) + t*ENE) | gy < CL1°Cs,

0<s<1.

2.7. The case of zero corrector

We distinguish the case where Z = 0. Then the corrector in (2.12) is equal to zero. The
three-term corrector (2.10) is also equal to zero, since N = 0 in this case (see (2.7)).
Correspondingly, (2.12) turns into the estimate

JA®)Y2 (A®) + 1) =2t e)) lg—s < Cs, 0<e<1, [t| <t (2.30)
and (2.9) turns into
I(A(t) + ) = Z2(t,e)|lgng < Cy, 0<e <1, |t] <t (2.31)
Interpolating between (2.30) and (2.31), we obtain the following statement.

Theorem 2.8. Suppose that conditions of Theorem 2.1 are satisfied. Suppose also that
Z =0. Then for 0 < e <1 and |t| < t° we have

JA@)Y2 ((A() + 1) = Z(t,0)) 55 < CL*C5, 0<s< L.
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3 Approximation for the operator-valued function
A)PA(L) +£%Q)~
3.1. Preliminaries

(See [BSu2 Subsections 1.1.5 and 1.5. 3]) Let § be yet another Hilbert space, and let
M:9H— Y) be an isomorphism. Let X( ) = XO + tX1 : Y) — 9, be a family of the same
type as X (t). Suppose that

MDom Xy = Dom Xy, Xo= XM, X; =X, M. (3.1)
Then X (t) = X (¢)M. Consider the family of operators
AL =Xt X(t): H— 9. (3.2)

Obviously, R
A(t) = M*A(t) M. (3.3)

In what follows, all the objects corresponding to the family (3.2) are marked by the upper
index ,,~“. Note that

N MM, n=n,
~ ~ (3.4)
N, =N,, N.=n,, P.=DP,,

R=RM|y, S=PM'SM|y, S§=P(M")'SMs

Denote ~ o~
Q:=MM=(M)'M':H— 95 (3.5)
The operator () is positive and continuous together with Q1. R
Sometimes, it is convenient to assume that initially the operator A(t) of the form (3.2)
and the continuous positive definite operator @) in j% are given. Then, since () admits a
(non-unique) representation of the form (3.5), we can construct the operator A(t) by the

formula (3.3).
From condition (2.1) it follows that

Aty = a1, | <8, (3.6)
where ¢, = c,|| M| 2.
The selfadjoint operator R
(A(t) +°Q)™", >0, (3.7)

in § is called the generalized resolvent (Q-resolvent) of the family A(t). From (3.3) and
(3.5) it follows that

(A(t) + £2Q) " = M(A(t) + 1) M™. (3.8)
By (3.6), the germ S is non-degenerate (as well as ).
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3.2
Let Qg be the block of the operator @ in the subspace N

Qs, = PQlgy: M — M.

Then the operator

~ ~

(t2S + Q) M =N
exists. We put R R R
Eq(t,e) = (1*S +*Qg) ' P. (3.9)
Then the operators (2.4) and (3.9) satisfy the relation (cf. [BSu2, (1.5.18)])
MZ(t,e)M* = Eglt,e). (3.10)

In [BSu2, Subsection 1.5.3|, it was shown that the operator (3.9) gives the principal
term of approximation for the generalized resolvent (3.7). Herewith,

I(A(®) + Q)™ — Eq(t,e)llg_g < CslM|Pe™, 0<e<1, [ <t

In [BSu3, §6], more accurate approximation for the generahzed resolvent (3 7) was
found. Now we describe the correspondmg result. Let ZQ be the operator in Y) which
takes an element 7 € § to the solution sz of the equation

X3 (Xodg +X10) =0, Qdo L N,
where © = P € M. Then (sce [BSu3, Lemma 6.1])
Zo=MZM™'P, (3.11)
where Z is the operator (1.5). We put (see [BSu3, (6.18)])
No = P(M*)"'"NM~'P = Z5X;RP + (RP)*X, Zq.

(Recall that the operator N is defined by (2.7).)
By Theorem 6.3 from [BSu3|, for 0 < & < 1 and [t| <t we have

I(A(t) + Q)" — Zq — t(Zo=q + ZZg) + 2o No=all_g < CallM|1*,  (3.12)
where éQ is the operator (3.9), and Cj is the constant from (2.9). The terms

t(ZqZqg + ZqZ) — °ZgNo=q (3.13)

play the role of the ,corrector”. Thus, in order to approximate the generalized resolvent

(A(t) +£2Q)~" in the operator norm in § with error O(1), one should add the three-term
corrector (3.13) to the principal term Zg.
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3.3
Now we want to approximate the operator-valued function
AR'PAG +2Q)7, >0,
in the operator norm in § with error O(1). For this, it suffices to add only one term
tZg=Z¢g to Z¢ (instead of the three-term corrector (3.13)).
Theorem 3.1. Under the assumptions of Subsections 3.1 and 3.2, we have
1A 2(At) + £Q) " — Zq — tZo20) 55 < C5ll M.
0<e<l, [t| <t (3.14)

Proof follows from estimate (2.12) by recalculation. By (3.8), (3.10), (3.11), (3.1), and
(3.4), we have:

IA@®)2((A(t) + Q)" — Eq — tZ0Z0) 55
= [|(Xo + tX1) (M(A(t) + €2I) " M*~MEM*~tM ZM~* PMZM")
= [|(Xo + tX1) ((A(t) + 1)1 =2 —tZ2) M*||5_s.
< [ MI[|A@®)Y2 ((A®) + D)7 = E = tZE) [lg5-
Combining this with (2.12), we obtain (3.14). O

H%Hﬁ*

3.4. Interpolation

In (3.14), the one-term corrector tZQéQ can be replaced by the full corrector (3.13). The
next statement follows from (2.25) by recalculation.

Theorem 3.2. For 0 < e <1 and |t| < t° we have
IA®2((A®) +£°Q) ™" = 2o — HZo=q + EqZy) + t*2eNoZ0) 55 < Col M. (3.15)
Interpolating between (3.12) and (3.15), we arrive at the following result.
Theorem 3.3. For 0 <e <1, [t| <t° and 0 < s < 1 we have:
IA@6)*?((A(t) + £°Q) " — Zq — t(ZgZq + 0 25) + °2gNoZ0) 55
< Gy CgllM.

3.5. The case of zero corrector

In the case where EQ = 0 (which is equivalent to the condition Z = 0), the corrector in
(3.14) is equal to zero. Then the three-term corrector (3.13) is also equal to zero. In this
case (3.14) turns into the estimate

IA@®Y* (A1) + Q)" =) 55 < GslIM, 0<e<1, |t <1, (3.16)

and (3.12) turns into the estimate
IAW) +2°Q) " —Zallg 5 < CUIMIE, 0<e<1, [f <€ (3.17)
Interpolating between (3.16) and (3.17), we arrive at the following statement.

Theorem 3.4. Suppose that conditions of Theorem 3.1 are satisfied. Suppose also that
Zg =0 (or, equivalently, Z =0). Then for 0 <e <1 and |t] < t° we have

A2 ((A(t) + 2Q) " = Zg) 55 < CICSIM|*™>, 0<s<1.
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Chapter 2. Periodic differential operators in Lo(R% C").
Threshold approximations for the resolvents

In this Chapter, we consider periodic elliptic second order DO’s acting in the space
Ly(R%; C™). We study the behavior of the resolvent near the spectral threshold. In §4, 5,
we give the detailed description of the classes of periodic operators under consideration
and their images under the Gelfand transform; the definition and the properties of the
effective matrix ¢° are discussed. In §6, 7, the required threshold approximations for the

o~

operator family A(k) are obtained; this operator family acts in Ly(£2; C™) and depends on
the quasimomentum k. In §8, 9, from these approximations we deduce approximations
near the threshold for the resolvent and the generalized resolvent of the periodic operator
A acting in Ly(R% C"). The approximations are accompanied by the error estimates in
the operator norm.

4 Classes of periodic operators. Direct integral
expansion

Here we recall the description of a class of matrix second order differential operators
(DO’s) admitting a factorization of the form A = X*X, where & is a homogeneous first
order DO. This class was distinguished and studied in [BSul,2].

4.1. Factorized second order operators

Let (D) : Ly(R%C") — Ly(R4 C™) be a homogeneous first order DO with constant
coefficients. We always assume that m > n. The symbol b(g), & € R? of the operator
b(D) is an (m x n)-matrix-valued linear homogeneous function of &. Suppose that

rankb(g) =n, 0#¢&cR? (4.1)
From (4.1) it follows that
apl, <b(8)*b(8) < ayl,, 8€S"! 0<ay<a <o, (4.2)

with some constants aq, .
Suppose that an (n x n)-matrix-valued function f(x) and an (m x m)-matrix-valued
function h(x) are bounded, together with their inverses:

fo e Lo®Y); h, b € Lo(RY). (4.3)
We consider the DO

X = hb(D)f : Ly(R% C") — Ly(R%: C™),
Dom X : = {u € Ly(R%:C") : fue H'(R%,C™)}.

The operator X is closed. The selfadjoint operator A(g, f) = A := X*X in Ly(R% C") is
generated by the closed quadratic form

alu,u] := ||Xu||%2(Rd;Cm), u € Dom X.
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Formally,
Alg, f) = A= [(x)"0(D)"g(x)b(D) f(x), g(x) := h(x)"h(x). (4.4)

By using the Fourier transformation and conditions (4.2) and (4.3), it is easy to show that

o [ DGl <au <o [ DRl weDom,
R4 R4

where
co =l M2, a=al|hli.. (4.5)

4.2. Lattices T and '

In what follows, the matriz-valued functions f and h are assumed to be periodic with
respect to some lattice I' C R¢. By Q C H@d we denote the elementary cell of the lattice I'.
Next, let T be the dual lattice, and let € be the Brillouin zone of T'. (See [BSu2, Ch. 2,

Subsection 1.2].) Note that |Q[|€2] = (27)%. Let ro denote the radius of the ball inscribed
in closQ, and put r; = max,_,q |k|. Note that

2ro =min|b|, 0#bel. (4.6)

We denote B(r) = {k e R?: |k| < r}.
By H*(QY) we denote the subspace of all functions in H*(2) such that the T'-periodic
extension of them to R? belongs to HE (R?).

4.3. The Gelfand transformation

Initially, the Gelfand transformation V is defined on the functions v € S(R%; C") of the
Schwartz class by the formula

¥k, x) = (V) (k) = 3772 3 exp(—ilk, x + a))v(x + a),
acl
x € R4 keR4

//|V(k,x)|2dxdk:/|V(X)|2dx, v ="Vv,
Rd

Q Q

Since

the transformation V extends by continuity to a unitary mapping
V: Ly(R% C") — /EBLQ(Q; C")dk =: K. (4.7)
Q

The relation v € H'(R% C") is equivalent to the fact that v(k, -) € H(Q;C") for almost
every k € 2 and

// (D +k)v(k,x)> + |[v(k,x)|?) dxdk < oc.
5
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4.4. The forms a(k) and the operators A(k)

Putting
9= L(5C"), 9. = Ly(QC™),

we consider the operator
X(k) :‘6_)’53*7 keRda

defined by the formula
X (k) =hb(D +k)f

on the domain N
DomX(k) ={ue€$H: fuec H(Q;C")} =:0.
The operator X (k) is closed. The selfadjoint operator
Ak) =Xk)*X(k): 9 —9H
is generated by the closed quadratic form
a(k)[u, u] == [|X (k)ul
It is easy to check that (cf. [BSu2, (2.2.6)])

%*, uco.

co/ |(D 4+ k)v|*dx < a(k)[u,u] < ¢; / (D +k)v[?dx, v=fueH(Q;C"), (4.8)

where ¢y and ¢; are defined by (4.5). From (4.8) and the compactness of the embedding
of H'(Q;C™) in Ly(Q;C") it follows that the spectrum of A(k) is discrete. Observe also
that the resolvent of the operator A(k) is compact and depends on k € R? continuously
(in the operator norm). Let

N := Ker A(0) = Ker X(0). (4.9)
Relations (4.8) with k = 0 show that
MN={uel(®C"): fu=ceC"}, dimN=n. (4.10)

4.5. The direct integral for the operator A

The operators A(k) allow us to partially diagonalize the operator A in the direct integral
K. Let u = Vu, u € Doma. Then

uk,-)€d fora c ke, (4.11)
afu, u] = / a(K)[ii(k, ), fi(k, -)] dk. (4.12)

Conversely, if u € K satisfies (4.11) and the integral in (4.12) is finite, then u € Doma
and (4.12) is valid. The above arguments show that, in the direct integral IC, the operator

A turns into multiplication by the operator-valued function A(k), k € €. All this can be
expressed briefly by the formula

VAV = / DA(k) dk. (4.13)

Q
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4.6. Incorporation of the operators A(k) into the general scheme

For k € R? we put
k=to, t=k|, |o]=1,

and consider t as a perturbation parameter. At the same time, we have to make our
constructions and estimates uniform with respect to the parameter o.

We apply the method of §1, putting $ = Lo (Q; C"), 9, = L2(2; C™). The role of X (t)
is played by the operator

X(t,0) = X(to) = Xo +tX1(0),

where Xy = X(0) = hb(D) f, Dom X, = 0; X;(0) = hb(0)f. The role of A(t) is played by
A(t,0) = A(te). By (4.9) and (4.10),

N = Ker Xy = Ker X(0), dim N = n.

Condition m > n guarantees that n < n,; and the following alternative realizes: either
n, = oo (if m > n), or n, = n (if m = n); see |[BSu2, §2.3|. In [BSu2, §2.2, 2.3|, it was
shown that the distance d° from the point Ay = 0 to the rest of the spectrum of A(0)
satisfies the estimate

d’ > dearg, o= aol fHUIZZIRTHIZE (4.14)
In §1, it was required to choose § < d”/8. Recalling (4.14), we fix § so that
0 = carg/4 = (ro/2)%a0ll fTHIZZ IRTHIE2 - (4.15)
1/2

Next, the estimate || X1(0)|| < ay"||fllz..||R]|. allows us to choose t° (see (1.2)) equal
not to §'/2|X1(8)|| 7!, but to a smaller number independent of 8. Namely, we put

£ =62 FIZL IR,
= (ro/2)aq oy P AL N IZL IRIEL B IZL (4.16)
Observe that, by (4.16), t° < r4/2, whence B(1°) C B(ro/2) C €.

The next estimate easily follows from the variational estimates for the eigenvalues (see
[BSu2, (2.2.13)]):

AK) = A(t,0) > c,r’l, ke Q\B(r), 0<r<r,. (4.17)

4.7. Non-degeneracy of the germ of the family A(t,e)

The analytic in ¢ (see (1.10), (1.11)) branches of the eigenvalues (¢, 0) and the branches
of the eigenvectors ;(t,0), I =1,...,n, [t| <t° depend on 6. In [BSu2, §2.2, 2.3, it

was shown that
N(te)>ct?, 1=1,...,n, te€l0,t], (4.18)

where ¢, and t° are defined by (4.14) and (4.16). It is essential that in (4.18) ¢, and ¢°
do not depend on 8. From (4.18) it follows that condition (2.1) for A(¢,0) is satisfied,
whence the germ S(0) of the family A(t,8) is non-degenerate uniformly in @:

S(0) > c,ly, ©€ S (4.19)
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5 The effective matrix

The effective matrix g° (with constant coefficients) for the operator (4.4) is defined by the
rule known in the homogenization theory. In fact, the matrix ¢° does not depend on f;
therefore, it suffices to consider the operator (4.4) with f = 1,,.

5.1. The operator A(g) := A(g,1,) and the matrix ¢°

In the case where f = 1, we agree to mark all the objects by the upper index ,,~*. For
the operator

A= A(g) = b(D)"g(x)b(D),
the family A(k) = A(k; g) is denoted by A(t,0) = A(t,0;g). If f = 1,, the kernel (4.10)
takes the form R

M={ueH: u=ceC"}. (5.1)

Let P be the orthogonal projection of §) onto the subspace (5.1). Then

Pu = |Q|—1/u(x) dx, uef. (5.2)
Q

In other words, P is the operator of averaging over the cell. R
As it was shown in [BSu2, §3.1|, the spectral germ S(0) of the family A(t, @;g) acting
in M is represented as N
S(e) =b(e)*g%(e), ©c S
where ¢° is the constant positive (m x m)-matrix called the effective matriz. We shall
also use the notation

~ ~

S(k) :=t2S(e) = b(k)*¢°b(k), ke R% (5.3)

In order to define ¢°, we introduce the operator A : C™ — §, which takes a vector
C € C™ to the (weak) periodic solution vg € H'(Q; C") of the problem

b(D)*g(x)(b(D)ve(x) + C) = 0, /Vc dx = 0. (5.4)

Q
Let ey, ..., ey, be the standard orthonormal basis in C™, and let v; = v,,. In the standard
basis €1,...,€, in C" the vector-valued functions v;(x) can be written as columns of

length n. Let A(x) be the periodic (n x m)-matrix-valued function with the columns
vi(X),...,Vu(x). Then the operator A acts as multiplication by the matrix A(x). Note
that the mean value of A(x) over the cell 2 is equal to zero. We introduce the following
periodic (m x m)-matrix-valued function:

9(x) = g(x)(b(D)A (%) + 1), (5.5)

The effective matriz ¢° is defined by the relation

=101 " [ g ax.

Q
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We introduce the following operator with constant coefficients:
A’ = A(g°) = b(D)*¢°b(D), (5.6)
and the corresponding family
A°(k) = b(D + k)*¢°b(D + k).
It is essential that the germ S°(@) for the family ﬁo(a,e) = Xo(te) coincides with S(e).

The operator (5.6) is called the effective operator for A(g).

5.2. The properties of the effective matrix ¢°
(See |BSu2, §3.1].)

Proposition 5.1. The effective matriz satisfies the estimates
9<¢"<7, (5.7)

where

Q

=" / o) dx, g =0 / g(x) dx.
(9]
g

If m = n, the effective matriz ¢° coincides with g: ¢° =

For specific DO’s, estimates (5.7) are well known in the homogenization theory as the
Voight-Reuss bracketing.

We distinguish the cases where one of the inequalities in (5.7) becomes an identity.
The following statements were obtained in [BSu2, Propositions 3.1.6 and 3.1.7|.

Proposition 5.2. The identity ¢° = G is equivalent to the relations
b(D)'gr(x) =0, k=1,...,m, (5.8)
where gr(x), k =1,...,m, are the columns of the matriz g(x).
Note that, under condition (5.8), we have A(x) = 0.

Proposition 5.3. The identity ¢° = g 1s equivalent to the relations

I(x) =1 + b(D)ywy, 1€ C™, wpe H(Q:CY), k=1,...,m, (5.9)
where 1,(x), k =1,...,m, are the columns of the matriz g(x)~!.
6 Approximation for the operator A(k)"/?(A(k) + 1)

6.1. The main goal

of the present section is to prove the following theorem.

24



Theorem 6.1. We have

IA(K) 2 ((A(K) + 1) = (I + Ab(D + k) (A (k) +£21) " P)| 55 < Cs,
ke, 0<e<l. (6.1)

Here A : 9, — $ is the operator of multiplication by the matriz-valued functzon A(x)

defined in Subsection 5.1, and the orthogonal projection P onto the subspace N is defined
by (5.2). The constant Cg depends only on m, ag, a1, |9lzes 197 20, 70, and ry.

The explicit expression for C3 will be found in the proof; see formula (6.24) below.

The estimate (6.1) is more informative for [k| < #°, where the number #° is defined
according to (4.16) with f = 1, (see (6.9) below). The estimate for k € Q\ B(£°)
is rougher, since in this case each term in (6.1) is estimated separately; however, the
corresponding calculations also require attention.

Note that b(k)P = b(D + k)P, whence
th(0)P = b(k)P =b(D + k)P, ke . (6.2)
Next, by (5.3),
25(0)P = S(k)P = Pb(k)*¢°b(k)P = b(D + k)*¢°b(D + k)P = A°(k)P
k e, (6.3)
therefore, R R R R B
(S(k)+’I5) ' P = (A"(k)+)'P, keQ. (6.4)
6.2. Estimate for k| <"

We apply Theorem 2.1 to the operator A(t, 8) = A(k). Now the role of the operator (2.4)
is played by the operator

[I]>

— Z(t,0,¢) = E(k, &) := (125(8) + °I5) " 'P = (S(k) + £°I5) "' P, (6.5)
and the role of Z is played by the operator (see [BSu4, (4.2)])

Z(e) = Ab(e)P. (6.6)
We put Z(k) := tZ(8). Then Z(k) = Ab(k)P.

Estlmate (2.12) is applicable. We only have to specify the constants. The constants
2., 6, ©0 are defined according to (4.14)—(4.16) with f = 1. Namely,

& =aol L2, (6.7)

0 = (ro/2)%aollh L2, (6.8)

£ =0 a R, (6.9)
Taking the estimate HX1( ) < « v 2HhH L., into account, instead of the precise values
Ch(0) = 410 12|| X1(0)|| and Ca(0) = Bad/2|| X, (0)|? (see Subsection 1.4), we take the
values

C, = 51571/2(11/2”}1"%07 a2 = 52371/2(1?/2”}1”%@
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Instead of the precise constant C5(8) (see (2.24)), we take the higher value

~

Cs = (30) Y2 + Cyes V2 4 Coe %2 4 By(1 + 110 YV2ay |02 et

Thus, R R
Cs = Cs(ao, o1, |0l e, | e, 70)-

Now, estimate (2.12) implies that
1402 ((A) +221) 7" = (1 + Ab())(S(K) +=25) ' P) 50 < s,
k| <t°, 0<e<l.

By (6.2) and (6.4), the last inequality can be written as

JAK) 2 ((A(k) + 2I) ™ — (I + Ab(D + k) (A" (k) + £2I) 7' P) |5 < Cs,
k| <t°, 0<e<l. (6.10)

Thus, estimate (6.1) is proved for |k| < ¢°.

6.3. Estimate for k € Q\ B(£°)

Note that constants (6.7)—(6.9) are related not only to the family A(k), but also to the
family A°(k) (this follows from inequalities (5.7)). Then (4.17) with r = ° implies that

AK) > .9, A%k) > ()2, keQ\BE). (6.11)

The operator under the norm sign in (6.1) can be written as

E(k,e) = A(k)" 2 (A(k) + 1) 7" — (A(k)/*P)(A°(k) + 1)~
— (A(K)?AP,,)(b(D + k) P)(A°(k) + 1)~ (6.12)

Here ﬁm is the orthogonal projection of $). = Lo(€2; C™) onto the subspace of constants.
From (6.11) it follows that

A" 2(AlK) +£21) s <T2E) T k€ Q\BE), (6.13)
I(A°%) + €)M gmg < ET(E) 2 ke Q\BE). (6.14)
Now we estimate the norm of the operator ,Zl\(k)l/Qﬁ. We have:

| A(K) Y2 Pul| = [|(Xo + tX,1(8)) Pull?,
= K[| X, (0)Pul|, < au |3 |k[*ul2,

whence R R B
JAK) 2P| g < ot ?|| Bl pr, k€. (6.15)

Next, by (6.2) and (4.2),

[B(D + k) Pllgs < [KI[b(0)] < a7*r1, k€ Q. (6.16)
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It remains to estimate the norm of the operator le\(k)l/QAﬁm. Since A(x) is the matrix

with the columns v;(x), j = 1,...,m, it suffices to estimate the norm [|A(K)Y2v;||s.
Recall that the function v; satisfies the relation
(g(b(D)v; +€;),b(D)w)s. =0, Yw € H'(Q;C"), (6.17)
and also the normalization condition [, v;dx = 0. From (6.17) it follows that
la"*b(D)v,lls. < llgllZ10" (6.18)

Next, decomposing v; in the Fourier series under the normalization condition and taking
(4.6) and (4.2) into account, we obtain that

Vil < (2r0)2/\va|2dx < (2r0) ag ' [B(D)v; 5,

< (2r0) 205 |97 n [l /2B(D) ;2.
Combining this with (6.18), we obtain the estimate
—1 2 _ 1/2 1/2
1vills < (2ro) tag g 12 gl 12 19202, (6.19)
By (4.2) and (6.19),

19"26(k)v;ll6. < lglli>ar”ri|[v;]15
< (2ry)” nai” o Pla I gl 22, ke Q. (6.20)

1/2

Now, since

M) 2vjllg = [lg"*(D + k)v;ll5. < llg"20(D)vjlls. + [lgb(k)v,]l5..

relations (6.18) and (6.20) imply that

T 1/2 — 1/2 —1/2 1/2 —1111/2
LA vl < gl 21902 (1 + r1(2r0) oy %ag gl 2 g7 112) =: €,
ke Q. (6.21)

From (6.21) it directly follows that
A 20 Pulls. s < 210072 sup [ AGK)
Sjsm
<m'?C, Q|72 =.C;, ke (6.22)

The inequalities (6.13)—(6.16) and (6.22) lead to the following estimate for the norm
of the operator (6.12):

IE(K, &) |55 < &7 200 + 0P @) 2 (N9l 2 + Cr) = €,
ke Q\B(°). (6.23)

Combining estimates (6.10) and (6.23), we obtain (6.1) with the constant
Cs; = max{Cs, Co}. (6.24)

This completes the proof of Theorem 6.1. O
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6.4. The case of zero corrector

If
A(x)b(6) =0, x€Q, oS (6.25)

then 2(9) = 0 for all & (see (6.6)). In paricular, (6.25) is satisfied if ¢° = g (then
A(x) = 0). Under condition (6.25), the term in (6.1) which corresponds to the corrector
is equal to zero. Herewith, the constant in estimate (6.1) can be made more precise. In
this case, estimate (6.10) yields that
AR ((Ak) + 1) = (A°(K) + 1) ' P) |5 < Cs,
k| <t° 0<e<l.

For k € Q\ B(Y), we use estimates (6.13), (6.14), and (6.15). Then

~

A2 ((A(k) + 1)t — (A°(k) + 1) 7 P) 9oy
<EVPE) T 4 P @) 2 lgll?, ke Q\B(EY), 0<e<1.

As a result, we arrive at the following theorem.

Theorem 6.2. Under condition (6.25), we have:

IAK) Y2 ((A(k) + 1) — (A0(k) + €2) 71 P) [ g < C5,
ke, 0<e<l,

where
C3 = max{Cs, o7 V2() " + alr e (1) 2 g VY.

6.5. Approximation with the three-term corrector

In what follows (in order to obtain the interpolational results), besides Theorem 6.1 which
gives approximation for the operator A(k)Y/2(A(k)+2I)~! with the ,one-term corrector”,
we will need another approximation of this operator with the ,three-term corrector”. We
apply Theorem 2.6 to the operator A(t, ) = A(k). Now Z is the operator =(k, ¢) defined
by (6.5), and Z is the operator 2(9) (see (6.6)). The operator N is realized (see [BSu4,

(4.9)]) as

where

£(0) = 1927 [ (AGOBO)T06) + 70 (0)A (1)
Recall that g(x) is the matrix defined by (5.5). Then

N(k) := *N(0) = b(k)* L(k)b(k)P = b(D + k)*L(D + k)b(D + k) P. (6.26)

Now we specify the constant Cg from (2.25). Instead of the precise value Cy(8) (see
(2.29)), we can take the rougher value

66 2654—(85) 12z Ctaallglln., + (25) Ve 2”9HL00
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Now estimate (2.25) means that

AR ((Ak) + D)7 = (A(K) +°T) 7 P = K(k, ) [|5-0 < Cs,

k| <t°, 0<e<l. (6.27)
Here
K(k,e) = §<k>§< &) + E(k, €)Z(k)* -= =(k, e)Ngoé(k,e)
= Ab(K)E(k, ¢) + Z(k, £)b(k)*A* — E(k, £ )N (k)E(k, ¢). (6.28)

By (6.2), (6.4), (6.5), and (6.26

~—

, expression (6.28) can be rewritten as

)

K(k, ) = Ab(D + k)(
— (A1) + 1)

(k) + 1) 'P + (A°(k) + 1) "' Pb(D + k)*A*
b(D + k)*L(D + k)b(D + k)(A°(k) + £21) ' P. (6.29)

—~

Now we obtain the estimate of the form (6.27) for k € Q\ B(£"), estimating each term
n (6.27) separately. We write the operator under the norm sign in (6.27) as

Alk)?2 ((ﬁ(k) 4207 — (AV(k) + 1) P — K(k, 5))
= /T(k)l/Q((/T(k) +e20) — (A(k) + 21) P
— Z(K)(A(K) + 1) "' P — P(A°(k) + 1) Z(k)*
+

+ (A(K) + 1) N () (A(K) + £21) 7' P). (6.30)
First of all, using (6.12), we rewrite inequality (6.23) as
A0)"2 ((AK) +221) 7 = (A1) + 21) 7P
— Z(k)(A°(k) + 621)*113) oo < Co, ke Q\BEY).  (6.31)

Next, the norm of the operator Z(8) satisfies the estimate (see (1.6))
= N 120 0111/2
1Z(0)ll5-5 < (89)~ 1 Xi(0)]] < (85) a1 gll12

whence
5 5 /2 1 2 ~
1Z(K) |55 = K[ Z(8) |55 < r1(85) ey ?|lgll}2. ke Q. (6.32)

As it was shown in [BSu4, (4.27)],
IN(8)l5—s5 < (20)2a||g]}2,

whence
. = N 3/21 113 2 ~
IN(K)[lg—5 = |K]PIIN(0)] g < 73(20) 72} ||g]|}?, ke Q. (6.33)

The term (A(k)Y/2P)(A°(K) + £2I)~'Z(k)* can be estimated by using (6.14), (6.15),
and (6.32):

IA) 2 P(A(K) + 1) ' Z (k)" [l 50 < 11(80) s (£°) gl 1o
ke Q\B(#). (6.34)

29



Finally, relations (6.14), (6.15), and (6.33) imply that

| A(K)2P(A° (k) + £21) 7 N (k) (A% (k) + 1) 7 Pl
< r{(20) 22210 |92, ke Q\B@EY). (6.35)

Now, (6.31), (6.34), and (6.35) yield the following estimate for the operator (6.30):
A2 ((Alk) +£21) 7 = (A1) + )7 P = Kk, ) -5 < Ca,
ke Q\ B, (6.36)

where

-~

Ci = Co+11(80) e (1°) gl n + 71(20) 7 20tE () g
Relations (6.27) and (6.36) imply the following result.
Theorem 6.3. Let K(k,e) be the operator defined by (6.29). Then
IAR) Y ((Ak) + D)7 = (A(k) + 1) 7'P = K(k, ) |99
< max{é\ﬁ,@} =:C5, ke fl, 0<e<l.

7 Approximation for the operator A(k)"2(A(k)+£2Q)~
7.1

Now we obtain approximation for the operator-valued function
AQ)2(Ak) +£°Q) !

Here @) is the operator of multiplication by the I'-periodic positive (n X n)-matrix-valued
function Q(x) such that

Q,Q7" € L. (7.1)
Let Q be the mean value of the matrix Q(x) over the cell 2. The following theorem is
the main result of this section.

Theorem 7.1. We have
A1) (A1) +£2Q) '~ (I+Ab(D + k) (A°(k)+<2Q) ' P) - < Cs.
keQ, 0<e<l. (7.2)

Here A : 9, — $ is the operator of multiplication by the matriz-valued function A(x )

introduced in Subsection 5.1, and P s the orthogonal projection onto the subspace N
defined by (5.2). The constant Cs is defined below in (7.17) and depends only on m, a,

ar, 9llews 197 s QN Locs Q7 s 70, and 7.

We use the following representation (cf. (3.5)) for the matrix Q(x):

Qx) = (f(x)f(x)) 7"

Here f(x) is a I-periodic (n x n)-matrix-valued function such that f, f~! € L.,. Suppose

that the number ¢ is defined by (4.16) (and corresponds to the operator A(k) = f*A(k)f).
Estimate (7.2) for [k| < ¢° is obtained by applying Theorem 3.1, and the estimate for
k € Q\ B(t°) is rougher, since each term is estimated separately.
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7.2. The estimate for |k| < ¢

We apply Theorem 3.1 to the family A\(t, 0) = le\(k) and the operator (). The block Qg

of the operator of multiplication by Q(x) in the subspace [ (see (5.1)) is the operator of
multiplication by the constant matrix

The operator éQ (see (3.9)) now takes the form
Z4(1,0,¢) = Zq(k,¢) = (125(6) + Q) P = (S(k) + Q) 'P. (1)

The role of the operator Z\Q is played by the operator (see [BSu4, §5])

Zo(0) = Agh(e)P. (7.4)
Here Ag is the operator of multiplication by the periodic (n x m)-matrix Ag(x) with the
columns (Q)( ), j =1,...,m, which are the I-periodic solutions of the problem
WD) g(x) DIV (x) + ;) / Qv (x) dx = 0.

Then (see [BSu4, (5.4)])
Ao(x) = A(x) + Ay, Ay =—(Q)(QN). (7.5)

By the presence of the projection P and by (6.2) and (6.3), relations (7.3) and (7.4) imply
that

(I +tZo(0))Z0(t, 0,6)P = (I + Agh(D +k))(A°(k) + £2Q) ' P. (7.6)

The estimate (3.14) is applicable. We should only specify the constants. The constants

¢., 8, t° correspond to the operator A(k) = f*A(k)f and are defined by (4.14)—(4.16).

Using the estimate || X1(0)| < ozl/2||h||Loo||f||Loo, instead of more precise values C1(0) =
B16712|| X1 (0)]| and Cy(8) = 26~ /2||X1(08)||® (see Subsection 1.4), we take the following
values:

Cr =167 Bl f e
Cy = 525_1/2ai1)’/2||h||L00||f||Loo-
Instead of C5(0) (see (2.24)), we take the overstated value
Cs = (30) 12 + Cre, 2 4 Cocl P 4 By(L+ )02 taul|RIIZ I FI1 (7.7)

Thus,
Cs = Cs(ag, o, 9l re, 197 s QN 1Q7 |z 70).-

Then the constant in the right-hand side of (3.14) can be replaced by the rougher value
Csllfllo. = C’5||Q*1||1L/j. Applying Theorem 3.1 and taking (7.6) into account, we obtain:

IA®) ((A(k) + Q)™ — (I + Agh(D + k)) (A (k) +£°Q) ' P)||55
<GIQMZ, k< 0<e<. (7.8)
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Using (7.5), show that one can replace Ag by A in (7.8). This will influence only on
the constant in estimate. We have:

| A(k) 2AGb(D + k) (A (k) + £°Q) Pl
= [lg"*b(D + k) AQH(D + k) (A°(k) +£°Q) " Pl 5.
< g2 sup [pOAGI (B(K) + Q)| < gl 2o 4G (79)
We have taken into account the following relation, which is valid because of the presence
of the projection P:
b(D + k)ASH(D + k) (A°(k) + £2Q) 1P = b(k) ADb(k) (S (k) + £2Q) "
and used the estimates |b(k)| < oy/?|k| and |(S(k)+£2Q) | < & 'k| 2 (see (4.2), (4.19),

and (5.3)). _
Next, we have |[(Q)™'| < [|QY|1... Besides, as it was shown in [BSu4, (7.14)],

[QA| < mY2(2r) Lag gl g 12 1Q b - (7.10)
Then, by (7.9) and (7.5), we obtain:
| AK)2AQH(D + k) (A (k) + £2Q) ' Plg—s,
< m'2(2r0) enag e gl g AN QN Q7 e (7.11)
Now, relations (7.8), (7.11), and (7.5) imply that
1AX) 2 ((A(K) + 22Q) " — (I + Ab(D + k))(A°(k) + £2Q) "' P) [
/

< Gl|Q Y12 + m 2 (2r0) anag e gl el 2 1R 1Q 2
=Gy, |k|<t 0<e<1. (7.12)

7.3. The estimate for k € O\ B(t")
The operator under the norm sign in (7.2) can be represented as
Eolk,€) == A(k)2(A(k) +£%Q) " — (A(k)"/2P)(A°(k) +£2Q) !
— (A(K)'2AP,)(b(D + k) P)(A°(k) + £2Q) . (7.13)
By (4.17) with r = ¢°, we have (cf. (6.11))
Ak) >t A%k) > (), ke Q\BE).

Hence, R B
AR (Ak) + Q) Mlgn < & V21 ke Q\B(E), (7.14)
[(A°() + Q) M lgn <217 k€ Q\B(). (7.15)
The operator A(k)Y2P is estimated in (6.15), the operator b(D + k)P is estimated in

(6.16), while (6.22) gives the estimate for the operator A(k)Y/2AP,,. As a result, using
(7.13)—(7.15), we obtain:

I1€a(k,&)|l9s < E7V2(t°) 7 + aPre ()2 (||g]l}2 + C1) =: Ca

ke Q\B(). (7.16)
Combining estimates (7.12) and (7.16), we arrive at (7.2) with
C3 = max{Cy, C}. (7.17)
This completes the proof of Theorem 7.1. O
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7.4. The case of zero corrector

If condition (6.25) is satisfied, then the term in (7.2) which corresponds to the corrector
is equal to zero. Herewith, the constant in estimate (7.2) can be refined. Under condition
(6.25), relation (7.5) implies that

Ao(x)b(8) =0, x€Q, oS
Then (7.8) turns into the estimate

JAK) 2 ((A(k) + £2Q) " — (A°(k) + £2Q) ' P) | 9 < C5llQ7 112,
k| <t 0<e<l.

For k € O\ B(t"), we use estimates (7.14), (7.15), and (6.15):
A2 ((Ak) +£2Q) ™" = (A(k) + Q) P) |55
<E ) o PrE ) Pl ke Q\B(E).
As a result, we arrive at the following theorem.
Theorem 7.2. Under condition (6.25), we have

LA 2 ((A(k) +£2Q) ™ — (A(k) +£2Q) ' P) || < C5,
ke, 0<e<l,

where
Cs = max{Cs[|Q112, & 2(1%) " + ayPrE  (19) 72 gl 2

7.5. Approximation with the three-term corrector

In what follows (with a view to interpolation), besides approximation (7.2), we will need
another approximation for the operator A(k)2(A(k) + £2Q)~*, namely, the approxima-
tion with the ,,three term corrector. We apply Theorem 3.2 to the operator A(t 0) =
A(k). Now = Eq = HQ(k g) is the operator (7.3), and ZQ = ZQ( ) is the operator (7.4).
The operator NQ is realized (see [BSu4, (5.13)]) as

~ ~

Ng(e) = b(e)"Lq(e)b(e) P,

where

Lo(e) =0 /(AQ(X)*b(G)*E(X) +9(x)"0(0)Ag(x)) dx.

Q

~

We put EQ(k) = |k|2Q(B), Nok) = |k|3]vQ(e). Instead of the value
Co(0) = Cs(0) + (80) "2 Xa(0)[Pert + (20) 2] Xu(0)] "
(see (2.29)), we take the value
Cs = Cs + (80) ¢ anllgll o |Q ewe + (28) 2 %0 gl Q7.

where the constant Cj is defined by (7.7).
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Applying Theorem 3.2, we obtain the estimate
14002 ((Alk) +£2Q) ™ = (A(k) +£2Q) P — Ka(k.€) ) lls-s
<Gl Q7MLZ, k[ <t 0<e<1. (7.18)
Here

Ko(k,€) = Zo(k)Zg(k.€) + Eq(k, ) Zo(k)* — Eql(k, e)iv <k>§ (k, e)

= Aoh(D + K)(A°(k) + £2Q) ' P + (A°(k) + £°Q) ' Pb(D )
— (A°(K) + £2Q)'b(D + k)* Ly (D + k)b(D + k) (A°(k) + £2Q)~ 1P.

This expression can be transformed to the following form (cf. [BSu4, (7.6)|):

Ko(k,e) = Ab(D + k)(A°(k) + c2Q) ' P + (A°(k) + £2Q) ' Pb(D + k)*A*

— (A°(K) + £2Q)"b(D + k)*L(D + k)b(D + k)(A"(k) + £2Q) ' P

— (A(k)+%Q) ! (*b(D+K)* (QR) +e*(QA)b(D+K)) (A (k) +£2Q) ' P.  (7.19)
Representation (7.19) contains A and L(D + k) instead of Ag and Lo(D + k).

Now we obtain the estimate of the form (7.18) for k € ©\ B(t°). Inequality (7.16) in
combination with (7.13) means that

IAX)2((AK) + £2Q) ™ — (I + Ab(D + k)) (A (k) +£%Q) ' P) [|lg—g < Ca,
ke Q\B(). (7.20)

The estimate for the term
A(k)2 (A (k) + 2Q) ' Ph(D + k)"A" = (A(k)/2P)(A° (k) + £2Q) ' Z (k)"

can be obtained on the basis of (6.15), (7.15) and (6.32):

~

| A(K) V2 (A° (k) + Q)" Ph(D + k)* A"l 5
< r2(88) V2a||gllr 7 (#0) 2, ke Q\ B(tO). (7.21)

The term

AK) V(A (k) + £2Q) 'b(D + k)*L(D + k)b(D + k) (A°(k) + £2Q)
= (A(k)"/?*P)(A°(k) + £2Q) ' N (k) (A (k) + Q) "' P

is estimated with the help of (6.15), (7.15), and (6.33):

~

| A(K) 2 (A° (k) +£2Q) ~'b(D+k)* L(D+k)b(D+k) (A (k) +£2Q) ' P 5
< r428)7 22| gl12_E72(10)7Y, ke Q\ B(O). (7.22)

Loo*

Finally, the operator

A)? (A (k) +°Q) "
x (£26(D + k) (QR)* + 2(QA)b(D + k)) (A°(k) + Q) ' P
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is estimated by using of (6.15), (6.16), (7.10), and (7.15):

IA®K) 2 (A (k) + Q) !
x ( b(D + k)" (QR)* + 2(QA)b(D + k)) (A°(k) + £2Q) ' P|s—
< rirgtanag Pm P (1) Mgl 21 Qe
ke Q\B(), 0<e<1. (7.23)
As a result, combining (7.20)—(7.23) with (7.19), we obtain the estimate

AK) > ((A(k) +°Q) 7" = (A()+"Q) ' P — Kq(k,2)) 59 < Ci,
ke Q\B(t’, 0<e<l, (7.24)

where

Ci = Co +72(80) e || gl @M (10) 72 + 1 (20) V22| g || e 2 (¢°)
+ ey tanag Pm 210 Y gllello T2 QN b -

Relations (7.18) and (7.24) imply the following theorem.
Theorem 7.3. Let Kg(k,e) be the operator defined by (7.19). We have

IAK) 2 ((A(K) + Q)" — (A°(k) +£%Q) ' P — Ko(k,)) 55
<max{Cs|Q7Y}2,Ci} =G5, keQ, 0<e<1,

8 Approximation for the operator Al 2(./21\ + 2l

8.1

We put
® = Ly(R%:CY), &, = Ly(R%C™).

Now we return to the operator A = b(D)*g(x)b(D) acting in the space &. Let g be
the effective matrix, and let A% = b(D)*¢°b(D) be the effective operator. Let V be the
Gelfand transform defined in Subsection 4.3. Using decomposition (4.13) for the operator

-~

A, we represent the resolvent (A + £2I)~! as

(A+e2)"t = v—1</@(ﬁ(k) +521)‘1dk) V.

Q

The similar expansion is valid for (A° 4 £2I)~!. Under the Gelfand transformation, the
operator b(D) turns into [ @®b(D + k) dk, while the operator of multiplication by the
periodic matrix-valued function A(x) turns into the operator of multiplication by the
same matrix in the fibers of the direct integral I (see (4.7)). Besides, we will need the
operator

I1:= V'[P,

acting in &. Here [ﬁ] is the projection in A, which acts in the fibers as the operator P (the
operator of averaging over 2). As it was shown in [BSu4, (6.8)], II is a pseudodifferential
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operator in & with the symbol x&(&), where xg is the characteristic function of the set Q.
Thus,
II = F*[xslF, (8.1)

where F is the Fourier operator in &.
Applying the Gelfand transformation to the operators in (6.1), we arrive at the fol-
lowing result.

Theorem 8.1. Let A = b(D)*g(x)b(D), and let A = b(D)*g°b(D) be the effective
operator. Let A : &, — & be the operator of multiplication by the matriz-valued function
A(x) introduced in Subsection 5.1. Let II be the operator (8.1). Then we have

JAY2((A+ 1)~ = (I + A(D))(A° + e2) M) [lpne <C5, 0<e<1.  (82)

The constant Cz is defined by (6.24) and depends only on m, ag, a1, |9z |97 2 7o,
and 1.

8.2. ,Elimination“ of the operator II

Now our goal is to find conditions, under which the pseudodifferential operator II in (8.2)
can be replaced by I. It turns out that, in the principal term of approximation, i. e., in
the operator AY2(A°+£2I) I, such replacement is always possible (only the constant in
the remainder estimate will change), while in the corrector term it is not always possible
to replace II by I.

We consider the operator

AV(A° + 20T —T). (8.3)
The operator (A\O + e2I)~}(I —TI) is the pseudodifferential operator of order (—2) with
the symbol
(1= xa(£)(b(8)"g"b(g) +"1,)
We estimate the norm of the operator (8.3). According to (4.19) and (5.3), we have
b(£)*g%b(g) > C.|el*1,, &€ R (8.4)
Together with (4.2), this implies that
[b(£)(b(£)"9°b(&) +£°1,) "] < oy e[ (8.5)
Then for u € & we have:
| AVA(A° +21)7H (1 — Tule
= lg"*p(D)(A° + 1)1 — M)ulle.
< llglli2 sup [b(z)(b(z)"g"b(&) + 1) | [[u]e

|&|>r0

1/2 1/2~_-1
< lglli? a?e g Yo

Thus,
JAYV2(A° 4+ 21) " (] — D) || ee < |9l 2 en/* e gt (8.6)

*

Now Theorem 8.1 and estimate (8.6) lead to the following result.
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Theorem 8.2. Under the conditions of Theorem 8.1, we have
JAY2((A+ 1) — (A% + 1) — ABD)(A° + 1)) ||
<Cy+ gl 2P e gt =G, 0<e< 1.

In order to eliminate I in the corrector, we need additional assumptions on A(x)
(which in a number of cases are valid automatically). The operator

$(e) == b(D)(A° + 211 (I — 10
continuously maps & = Ly(R% C") to 81 = H(R% C™). By (8.5), we have

IB(e) lo—er = sup (1+[&*)2[b() (b(£)"g°b(&) + 1) 7 |(1 — xg(2))

Ecrd
< ay* et sup (1+ g2 < e (1 4+ 2V (8.7)
|&|>r0

Thus, for the replacement of I by I in the term AY2Ab(D)(A° + £21)~'T1, it suffices

to assume that the operator ALV2N continuosly maps &! to &. The last condition is
equivalent to the condition that the operator g'/2b(D)A continuously maps ®! to &.,.

Since A(x) is the matrix with the columns v;(x), j =1,...,m, then
m 1/2
lg'2b(D)A |61 —o. < (Z ||91/25(D)[Vj]||§{1(Rd)_>@*) : (8.8)
j=1

We prove the following lemma (cf. [Su2, Proposition 8.2]).

Lemma 8.3. Suppose that the solutions v; of the problem (5.4) with C = e; satisfy
condition

Vi€ Ly, j=1,...,m. (8.9)

Then the operator g*/?b(D)[v;] continuously maps H'(R?) to &,, and
g 26(D) vl 111 ) —e. < C7 (8.10)
CF = llally? (V2+ (VB + Dl 202w, + VBT 02 [12) . (s1)

Proof. We have

d
b(D)=> bD;, (8.12)
=1

where b, are constant (m x n)-matrices. From (4.2) it follows that |b;| < al?1=1,....d
Let u € HY(R?). Then

d
g"*0(D)(vsu) = g"* D)V, u + g'* Y (b Du)v;. (8.13)

=1

By (8.9),

. d 1/2
||gl/2 Z(lelu)V]| &, S ||g||2/oi||vj||Loo (Z |bl|2) HuHHl(]Rd)

=1 =1
1 1/2
<Nl 2 1Vl st d2 ]| g1 gy (8.14)
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Next, relation (5.4) with C = e; implies the following identity:

/ (9(x)(B(D)v,; + &;), b(D)w) dx = 0 (8.15)

R4

for arbitrary w € ! = H'(R%; C") such that w(x) = 0 for |x| > R (with some R > 0).
Let u € C§°(R?). We put w(x) = |u(x)|?>v;(x). Then

d
b(D)w = [ul*>b(D)v; + > by(Dylul’)v;.
I=1
Substituting this in (8.15), we obtain that

(o BD)v, + e aPHD)v; + 3 (D)) dx =

R4

Hence,

/|g1/2b(D)Vj\2|u|2dX: _/<91/261791/25(D)Vj>|u|2dx
R4 Re
d

= [ta D)y g S D) dx — [tges > D) i

=1 =1

R4 R4

The first term on the right can be estimated by
1
[ (192 + 719280y ) uf i
Rd

1
<ol [ P x5 [lg"HD)v,Pluf i,
R4

R4

and the second term is estimated by

d
loli? | |gl/2b<D>vj|(Z2|bl||Dzu||u|)|vj|dx
R =1

d

1 2
<1 [l Pl -+ gl [ (S0 mlioud) v Rax
R4

ha 1=

1
<5 [ 1Dl dx+ gl sl od [ [Fuf i
R4 Rd
The third term is estimated by

d
lol.. [ (ZmblHDluuu\)wdx <ol lvilal [+ aluf?) i

=1

R4 R4
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As a result, we obtain:

1
5 [ 18Dy Pluf? dx < gl [ Tuf i
R4

Rd
A gl v 12 and / IVl dxtHlglo v, loal? / (IVul+dJul?) dx.
Rd Rd
Hence,
/ 19M26(D ), 2 dx < Cull2p g,
Rd

1/2
O} = 2lgll (1 + dendllv; 7.+ dlv; 1)
Combining this with (8.13) and (8.14), we obtain that

1 1/2
la"2b(D)(vyu)lle. < (9172 Vsll el a2 + (C9)"2) ] s ey,

which yields (8.10) and (8.11). O
We introduce the following condition.

Condition 8.4. Suppose that the solutions v; of the problem (5.4) with C = e; satisfy
Vi€ Ly, j=1,...,m. (8.16)
Consider the operator
AV2AD(D)(A° + £21) (I — 1) = AV2AS(e).
Using (8.7), (8.8), and Lemma 8.3, under Condition 8.4, we obtain the following estimate:

|A2AS(e) ]| oo = [|g/2b(D)AS(E)] oo
< |12(e)lo—et|lg"/2b(D)A]

6Bl -8,
m 1/2
< e N1 4 g )2 ( Z(cjv)ﬁ) . (8.17)
j=1
Combining this with Theorem 8.2, we arrive at the following result.

Theorem 8.5. Suppose that conditions of Theorem 8.1 are satisfied. Suppose also that
Condition 8.4 is valid. Then

|AY2((A+21)7 = (1 + AB(D))(A° + £2) V) |lo e
m 1/2
< Co+ oy ’c 1+ rgz)l/Q(Z(cf)Q) = C;, 0<e<l.

j=1
Now we find conditions which guarantee the validity of Condition 8.4.

Condition 8.6. Suppose that at least one of the following assumptions is true:
1°) d < 2;
2°) d > 1 and A = D*g(x)D, where the matriz g(x) has real entries;
3°) d>1 and g° = g (i. e., representations (5.9) are valid).
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Lemma 8.7. Condition 8.6 guarantees that Condition 8.4 is satisfied.

Proof. 1°. The solutions v; satisfy condition v; € WI}(Q) with some p > 2 (see [G]). If
d < 2, then (8.16) follows, by the embedding W (Q) C L.

2°. For the operator A = D*g(x)D, where the matrix g(x) has real entries, the bounded-
ness of the solutions v; follows from Theorem 13.1 of Chapter III in the book [LaU].

3°. In the case where g° = g, the relation (8.16) was proved in Proposition 6.9 of [BSu4]|.
O

Remark 8.8. Under Condition 8.6(2°), the norms ||v,| 1., are estimated by the constant
depending only on [|g|| .., |97 |1, d, and Q. Under Condition 8.6(3°), the norms ||v;|| 1.,
can be estimated by the constant depending on ap, a1, |9z, 197 2., M, n, d, and on
parameters of the lattice I'.

Remark 8.9. Condition 8.4 can be also guaranteed by some smoothness assumptions on
the matrix-valued function g(x).

8.3. The case of zero corrector

Under condition (6.25), by the Gelfand transformation, Theorem 6.2 yields the following
estimate: R N
|AY2 (A + &)t — (A + &) ') lgne < C5, 0 <e<L. (8.18)

Using (8.6), we can ,eliminate* the operator II in (8.18). As a result, we obtain the
following theorem.

Theorem 8.10. Under condition (6.25), we have

JAY2 (A + )7 — (A + 1)) || o—s

<Cs+ gl 2 e e gt = c5, 0<e<1.

8.4. Approximation with the three-term corrector
By the Gelfand transformation, the following estimate is deduced from Theorem 6.3:
|AYV2 (A4 2" — (A + D)7 = K(e)) lene < Cs, 0<e<1, (8.19)
where
K(g) = Ab(D)(A° + £21) T + (A° + £21) ' TIh(D)* A*
— (A" + €21)~'D(D)* L(D)b(D) (A° + £21) I (8.20)

Using (8.6), we can replace II by I in the term AY2(A° + £21)~II in (8.19). This will
change only the constant in the estimate. We have:

[A2((A+ D7 = (A 4+ = K(0)) oo
<G+ gl 2e e gt 0<e<l (8.21)

Similarly, IT can be replaced by I in the last term in /C(¢). Indeed, we denote (cf. [BSu4,

(6.16)])
o (£)=(1—xg(&))(b(£)"g°b(£)+e1,,) ' b(&)* L(£)b(£) (b(£)" g b(£)+€°1,,) ",
£ c R
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As it was shown in [BSu4, Subsection 6.3],
lo(8)] < V2lel gt ey %ag 2l 2 g2 el > .
and (&) = 0 for |g| < ro. We have:
|AY2(A° + e21)~'b(D)* L(D)b(D)(A” + 1)~ (I — II) | s
= [lg"/*b(D)(A° + £21)~'b(D)* L(D)b(D) (A" + 1) ~H(I — II) || 5.
Smﬁﬁi@wﬁw@ﬂﬁ¢%oaﬂ$”MMJm1W” (8.22)

The following result is a consequence of (8.20)—(8.22).
Theorem 8.11. We have
JAY2((A+21)71 = (A° + 2) 7' = K(e))[lene < Cs, 0<e<T1,
where
K() = Ab(D)(A° + £21)"'T1 + (A° + £21) ' TIb(D)*A*
— (A" + 21)~p(D)* L(D)b(D) (A° + £21) 2,

1/2 1 /QA,

Cs =Cs + [lgll /- ro !+ \/_7’0 ajag e

—115/2
lgll2_1lg~ 132

It is possible to ,eliminate the projection II in the first two terms of the operator
K(g) under Condition 8.4. As for the first term, estimate (8.17) required for this has been
already obtained. In order to do this in the second term, we consider the operator

AV2(A° + 21)~H(T — T)b(D)* A,

Under Condition 8.4, the operator of multiplication by A*(x) continuously maps & to &,
and
A oo, = Al Lo (8.23)

The operator (A” + ¢21)~1(I — I)b(D)* is the pseudodifferential operator of order (—1)

with the symbol
(1= xa(2))(b(8)"¢"b(&) +£"1) "' b(e)",
therefore, it continuously maps &, to ! = H'(R% C"), and (cf. (8.7))
I(A° + 1) (I = THH(D)" |6, e

= zs,up |(b(£)"¢%b(€) + €21,) 7'b(£)* (1 + )2 < ayPe (1 + 1522 (8.24)
|E|>70

Finally, the operator A2 is continuous from &! to &, and

ulls = g *b(D)ulle. < lgll; ey [lulle,

whence
JAY2]| g e <y 9]} (8.25)

From (8.23)—(8.25) it follows that
JAY2(A° + 1)~ (1 = TBD) Al|s s < an, (14752 [l 2 Al (8:26)

Combining Theorem 8.11 with estimates (8.17) and (8.26), we arrive at the following
result.
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Theorem 8.12. Under Condition 8.4, we have:
JAY2((A+21)7 = (A% + 2) 7 = K°e)) [lo~e < Cy, 0<e<1,

where
KO(e) = AB(D) (A" + £21) ! + (A + 21) (D) A"
— (A° +21)7'B(D)* L(D)b(D) (A + £21) 7,
m 1/2
Co=Cs+ 0l ?E (1 + r?)lﬂ(z(cf)?) i (1 + 7)1 A
j=1

9 Approximation for the operator A/ 2(¢1 +e%Q)~

9.1

Using Theorem 7.1 and applying the Gelfand transformation, we arrive at the following
result.

Theorem 9.1. Let A = b(D)*g(x)b(D), and let A° = b(D)*¢°b(D) be the effective
operator. Let () be the operator of multiplication by the I'-periodic positive (n X n)-matriz-
valued function Q(x) satisfying condition (7.1). Let Q be the mean value of the matriz
Q(x) over the cell Q. Let A : &, — & be the operator of multiplication by the matriz-
valued function A(x) introduced in Subsection 5.1. Let I1 be the operator (8.1). Then

|AY2((A+e2Q)™! — (I + Ab(D))(A° + Q) ') o6 < C5, 0<e<1,

The constant Cs is defined by (7.17) and depends only on m, ap, a1, ||9]lz., g7 o,
”QHLoo; HQ_lHchn To, and ri.

9.2. Elimination of the operator II
The following estimate is obtained in the same way as estimate (8.6):
JAYV (A + £2Q) (I — ) |e—e < llgll /2 en/*e Mg (9-1)
Combining Theorem 9.1 with (9.1), we arrive at the following statement.

Theorem 9.2. Under conditions of Theorem 9.1, we have:

JA2((A+ Q)1 = (A +£2Q) ! — Ab(D)(A + £2Q) 1) [l o
<Cy+ gl 2P e gt =Cs, 0<e<1.
Next, similarly to (8.7), we obtain:
16D (A” + £2Q) (I = T)|emer < oy/*8, (1 +15%)"2. 9:2)

Under Condition 8.4, relations (9.2), (8.8), and Lemma 8.3 imply the following estimate
(cf. (8.17)):

JA2AB(D)(A” + £2Q) (1 — T1) |65
m 1/2
<o e7 1+ W(Z ) . (9.3)

Jj=1

Combining this with Theorem 9.2, we obtain the following result.
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Theorem 9.3. Suppose that conditions of Theorem 9.1 are satisfied. Besides, suppose
that Condition 8.4 is valid. Then

|AY2((A+e2Q) ™" — (I + Ab(D))(A° + £2Q) Y [le—o <Cr, 0<e<1,

m 1/2
Cr=Cs+ a7 (1 +ry )1/Q(Z(cjv)2) .

j=1

9.3. The case of zero corrector

Under condition (6.25), using Theorem 7.2 and applying the Gelfand transformation, we
obtain the following estimate:

JAY2 (A +£2Q) " — (A +£2Q) ') ||o—e < C5, 0<e<1.
Applying (9.1), we arrive at the following result.
Theorem 9.4. Under condition (6.25), we have

JAY2 (A + Q)™ — (A +£2Q) ) oo
<G+ |lgl2ate gt =G, 0<e< 1.

9.4. Approximation with the three-term corrector

Using Theorem 7.3, with the help of the Gelfand transformation, we obtain the following
estimate:

A ((A+ Q)™ = (A +£°Q) ' = Ko(e)) oo < G5, 0<e <1, (9-4)
where
Ko(e) = Ab(D)(A° + £2Q) I + (A° + Q) 'TIh(D)*A*
— (A" +£°Q) 7 (4(D)* L(D)H(D) + £b(D)* (QA)" + £*(@R)b(D))
x (A°+%Q) L. (9.5)

Using (9.1), we can replace IT by I in the term AY2(A° 4 £2Q) "I in (9.4):
JA (A + Q)™ = (A" +£°Q) " = Ko(e)) oo

<Cs+ g2 eyt 0<e<1. (9.6)

Now we show that it is possible to replace II by [ also in the last term of the corrector
(9.5). By analogy with (8.22), we have

|AY2(A° + £2Q)~b(D)* L(D)b(D)(A° + £2Q) 11 — )|l o— e
< V2rgtaday g3 llg7H3 2 (9.7)
Relations (4.2) and (8.4) imply that

1b(D)(A° + £2Q) (I — 1) |6 —e.
< sup [b(£)(b(2)*g"b(e) +2Q) 7| < )P g
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Combining this with (9.1) and (7.10), we obtain:
|A2(A + £2Q) 1 (@MBD)A +£°Q) (1 ~ )llo o
<2 'anag m e g gl el 2 QN ., 0 <e <1, (9-8)

The term B o _

AL +22Q)7 (D) (QA) (A +°Q) ™! (1 - 1)
admits a similar estimate (with the same constant as in (9.8)). Combining this with
(9.6)—(9.8), we obtain the following result.

Theorem 9.5. We have

H.,Zl\l/z((ﬁjL £2Q) ™ — (A" 4+ 2Q) ! — IEQ(E»HLSH@ <G, 0<e<l,

where
Kq(e) = Ab(D)(A° + £2Q) I + (A° + £2Q) ' Ib(D)" A"
— (A" +%Q) "' (H(D)" L(D)b(D) + £2b(D)*(QA)" + £2(@A)b(D))
x (A°+62Q) 7,

Cs = Cs + |||l 2 e e gt + Varg ta2ag P lgl2 _Ilg Y132
o~ _ 1/2
+anag P22 gl o 1 Qb

It is possible to ,eliminate I in the first two terms in (9.5) under Condition 8.4. For
this, we apply estimate (9.3) and the estimate

|AY2(A° + £2Q) (I — TB(D) A ||e—e < e (1 + 1522 gl 2 1Al 1o

which can be proved in the same way as (8.26). As a result, we arrive at the following
theorem.

Theorem 9.6. Under Condition 8.4, we have

AV (A +2Q) " = (A + Q) = Kg(e)) le—s < Coy 0 <e <1,

where
K(e) = AMD)(A + Q)" + (A" + 20)~'b(D) A"
(A + 2Q) " (b(D) LKD) + (D) (@R) + (QR)HD))
x (A" +£2Q) !
m 1/2
Gy = Gy + all?e W(Z ) a2 (14 g g2 A

J=1
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Chapter 3. Homogenization with corrector for periodic
differential operators

We proceed to the homogenization problems in the small period limit for periodic DO’s
acting in & = Lo(R?%; C"). If ¢(x) is a measurable I-periodic function in R?, we agree to
denote ¢°(x) = ¢(e7'x), e > 0. We consider the operators

A. = A(g°) = b(D)*¢°b(D),
Ac = A(g", f7) = (f9)"b(D)"g°b(D) f*

with rapidly oscillating (as € — 0) coefficients. Recall the notation &' = H(R%,C"). I
§10, we obtain approximation for the resolvent (.A€ +1)~! in the operator norm from (’5 to
(’51. In §11, by interpolation, we obtain approximation with the three-term corrector for
(A.+I)~! in the operator norm from & to &* = H*(R% C"), 0 < s < 1. In §12, we study
approximation for the fluxes in &, = Ly(R% C™). Next, §13-15 are devoted to the study
of the generalized resolvent (/TE + Q°)~': in §13, approximation in the operator norm
from & to &! is obtained, §14 contains the interpolational results, and §15 is devoted
to approximation of the corresponding fluxes in &,. Finally, the resolvent (A, + I)~!
studied in §16.

s

10 Approximation for the resolvent (A. + I)~! in the
(Ly — H')-norm

~

10.1. Approximation for the operator A\;/Q(Ag + 1)1
Let 7. be the unitary scaling transformation in &:
(Tu)(y) = =u(zy), y € R (10.1)

Then we have: R R
-/45 — 5—2];247767 A\;/Q _1T*A\1/2T€7

AVA(A, + 1) = TP AV (A + )T

(10.2)
AV A 4 1) = TP AVA(AC + 21) 7T,
b(D) = e ' TPH(D)T., [A] = TX[A]T
Putting
I, := T/, (10.3)

and taking (8.1) into account, we see that I, is the pseudodifferential operator in & with
the symbol xg . (€), 1. e,
I, = f*[Xﬁ/a(')]}—' (10.4)

From (10.2) and (10.3) it follows that
AV (A + )7 = (A 4+ )" — eA*B(D)(A° + 1) 'IL,)
= T AV (A + 1)t — (A° + £21)7! — Ab(D) (A + £21) ') 7. (10.5)

Since T is the unitary operator in &, Theorem 8.2 and identity (10.5) imply the following
result.
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Theorem 10.1. Let A. = b(D)*¢¢(x)b(D), and let A° = b(D)*¢°b(D) be the effective
operator. Let A® : &, — & be the operator of multiplication by the matriz-valued function
A(x) = Ale7'x), where A(x) is the matriz defined in Subsection 5.1. Let I, be the
pseudodifferential operator (10.4). Then

JAY2 (A + 1) = (A" + 1) — eA*B(D) (A° + 1) 'L oo < Cee,
0<e<l. (10.6)

The operator
Ki(g) := A°B(D)(A° + 1)~ 'II, (10.7)

plays the role of the corrector.
Similarly, the following statement is deduced from Theorem 8.5.

Theorem 10.2. Suppose that conditions of Theorem 10.1 are satisfied. Suppose also that
Condition 8.4 is valid. Then

JAY2 (A + D)™ = (A 4 1) = eABD)(A+D) ) oms < Cre,
0<e<l. (10.8)

The corrector
K%(e) := A°b(D)(A° + 1)

in (10.8) does not contain the operator Il..
Theorem 8.10 implies the following result, which distinguishes the case where the
corrector is equal to zero.

Theorem 10.3. Suppose that conditions of Theorem 10.1 are satisfied. Suppose also that
condition (6.25) is valid. Then

JAY2 (A + )7 = (A°+ 1) [lome < Coe, 0<e<1.

Theorem 8.11 yields approximation for the operator AY 2(ﬁ5+] )~! with the three-term
corrector.

Theorem 10.4. Suppose that conditions of Theorem 10.1 are satisfied. We put
K(g) = A°(D)(A° + 1) 7ML + (A° + 1) "' ILb(D)*(A%)"
— (A" + 1) 'B(D)*L(D)b(D)(A° + 1), (10.9)
Then
JAY2 (A + D)7 = (A" + 1)t = eK())]Jone < Cse, 0<e<1. (10.10)
Finally, Theorem 8.12 leads to the following result.

Theorem 10.5. Suppose that conditions of Theorem 10.1 are satisfied. Suppose also that
Condition 8.4 is valid. We put

K°e) = AB(D)(A° + 1)~ + (A° + I)~'p(D)* (A%)*
— (A" + 1) (D) L(D)b(D)(A° + 1), (10.11)
Then

~

JAY2 (A + D) = (A + 1) — eKe))|Joe < Coe, 0<e<1.
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10.2. Approximation for the resolvent (A. + 1)~ in the (L, — H')-
norm

Consider the equation R
Au. +u.=F, Feob. (10.12)

We apply Theorem 10.1, in order to approximate the solution u. in &' = H!(R% C").
Let uy be the solution of the ,homogenized“ equation

A +uy = F. (10.13)
Note that the operator (10.7) can be written as
Ki() = AT b(D)(A° + 1)~

where 11 is the pseudodifferential operator with the symbol x5 / _(&) acting in &, =
Ly(R4; C™). We put
ul) = K, (e)F = AT b(D)uy. (10.14)

The estimate (10.6) means that
J A2 (0. =y — cul) o < Coe|[Flle, 0< =<1,

Since (see (4.2) and (6.7))

IAY2(u. — 1o — euM) |5 = [|g"/*b(D) (1. — up — culV)|[3,
> Gy / ID(u. —ug — z—:ugl))|2 dx,
Rd
then
/|D(u6 —ug — eugl))|2dx < c_lc2 2||F||®, 0<e<l. (10.15)

Besides, as it was shown in [BSu2, Theorem 2.1 of Ch. 4], we have
Ju. — ulle < Cre|Flle, 0<e<1. (10.16)

The constant é\x is defined by

~

C =27 (Bi(E") ™" + e 10 (1)),
C. = max {C +2(38)"" 20;1( )72}
Now we estimate the norm of the function (10.14) in &. The operator A‘fHém) G, —
® is unitarily equivalent to (see (10.2), (10.3)) the operator AII'™ where I1(™ is the
pseudodifferential operator in &, with the symbol xg(&). In its turn, by the Gelfand

transformation, the operator ATI'™ is decomposed in the direct integral of the operators
AP, acting from $, to $. Hence,

IATIO |6, — = | AII™ |6, = | AP,
1/2
<fo 2 [1apopax)
Q
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As it was shown in [BSu4, Subsection 7.3|, we have
1/2
(/ |A<x>\2dx) < m! 2 (2r0) g 101 g1 2 gL

whence
AT |6, 6 < mY2(2r0) oy 2|l gll 2 g 12 (10.17)

We estimate the norm of the function b(D)uy. From (10.13) it follows that
1
(9"0(D)uy, b(D)ug)e. + [[uolle = (F,uo)e < [[uole + 7/Fle.

Hence,
1 _ 1, =
bD)wlls, < Z1(g") " MIFle < Zllg™ e lF e (10.18)

Relations (10.17) and (10.18) imply the following estimate for the norm of the function
(10.14):

[uM e < mY2(4r0) Ly a2 1o~ ow | Fle- (10.19)
Now (10.16) and (10.19) imply that

[ue —ug — eull||g < (Cx +m2(4r0) g (gl 21197 2 )€l F o,
0<e<l.

Combining this with (10.15), we obtain the estimate for the &'-norm of the function

(ue —ug — 5u§1)):

|u: —ug — culM || g1 < Croe||Flle, 0<e <1,

where R
C2 = 27'C2 + (Co +m"2(4r0) g gl 2 g ) (10.20)

Thus, we arrive at the following theorem.
Theorem 10.6. Under conditions of Theorem 10.1, we have

[(A.4+ 1) = (A + 1) — cAYD)(A° + 1) L. ||¢—e1 < Cioc,
0<e<l. (10.21)

The constant Cyg is defined by (10.20) and depends only on m, ag, a1, |9l 197 1o
and on parameters of the lattice T'.

Remark 10.7. One can show that the functions eA®b(D)II.uy weakly tend to zero in
®!. Then the result of Theorem 10.6 agrees with that of Theorem 4.4.1(1°) from [BSu2)
about weak (®')-convergence of the functions u. = (A. + I)~'F to uy = (A" + I)~'F,
where F € 6.
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10.3. Elimination of the operator II.
Suppose now that Condition 8.4 is satisfied. Then estimate (10.8) is valid. We put
ulY = K%¢)F = A*b(D)uy. (10.22)
Estimate (10.8) means that
IAY2(u, — ug — euM)||o < Cre||Flle, 0<e<1. (10.23)
Similarly to (10.15), this implies that

/|D —uy —euM)Pdx < 'CZEPF|%, 0<e<l1. (10.24)

We estimate the ®-norm of the function ul". By (10.18), (10.22), and Condition 8.4,
we have:

~ —111/2
[500e < I 6ol < 3lAIE g™ [Z21F e (10.25)
From (10.16) and (10.25) it follows that
- ~ 1
. = — 0o < (Cc + 5IAlL g 12 )l Flle, 0<e<1. (1026)

Now (10.24) and (10.26) imply that
|u; —ug — eaV| g1 < Crie||Flle, 0<e <1,
where
Ch =G+ (Gt Ml llg132) (10.27)
We have proved the following result.

Theorem 10.8. Suppose that conditions of Theorem 10.1 are satisfied. Suppose also that
Condition 8.4 is valid. Then

[(Ae+ D)7 = (A + 1) — eABD)(A° + 1) goer < Ciie, 0<e<1.

The constant C1y is defined by (10.27) and depends only onm, d, ag, a1, [|9]lz, 197 1o
on parameters of the lattice ', and also on ||A| L.,

10.4. The case of zero corrector

Suppose that condition (6.25) is satisfied. Then, applying Theorem 10.3, we arrive at the

estimate
IAY? (0. — o)l < Ce||Flls, 0<e<1.

It follows that (cf. the proof of estimate (10.15))

/\D(u€ )P dx < N C2FIL, 0<c< .

Combining this with (10.16), we arrive at the inequality
lu. — wpl|gr < Ciae||Flle, 0<e <1, (10.28)

where
Cio = (C2+2M (). (10.29)

Thus, we have proved the following theorem.
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Theorem 10.9. Suppose that conditions of Theorem 10.1 are satisfied. Suppose also that
condition (6.25) is valid. Then

A+ D) = (A + 1) Y goet < Cioe, 0<e<1. (10.30)

The constant Cio is defined by (10.29) and depends only on oy, a1, |91, |97 1., and
on parameters of the lattice T.

Remark 10.10. Conditions of Theorem 10.9 are a fortiori valid, if ¢° = g. In |[BSu2,
Theorem 4.4.5] it was shown that, if ¢° = g, then u. strongly converges in &' to uy, as
e — 0. Theorem 10.9 strengthens this statement giving estimate (10.28).

11 Approximation with the three-term corrector for
the resolvent (A. + I)~'. Interpolation

11.1
Now we apply Theorem 10.4. By (10.10),

| AV (u, — ug — eK (e)F)||e < Cse||F|le, 0<e<1.

As above (cf. the proof of (10.15)), this yields the estimate

/|D(u6 —uy—eK(e)F)Pdx < 'C22|F|%, 0<e<l1. (11.1)

We estimate the &-norm of the function K (¢)F. Inequality (10.19) means that
[ABD)A” + 1) el oo < ! (4r0) g gl Nl e (112)

The operator (A° + I)~'TI.b(D)*(A%)* is adjoint to the operator from (11.2). Therefore,
its norm satisfies the same estimate. Next, as it was shown in [BSu4, Subsection 6.3], we

have
* —1/2 3/2 3/2 _ 1/2
b(£)* L(£)b(2)] < [e212r5 ag 2| g]1 21197112, & e RL

By (8.4), this implies that

I(A° + 1)~'6(D)* L(D)HD) (A° + 1) o
= sup |(b(&)*¢°b(€) + 1,,)'b(&)*L(£)b(&) (b(£) g b(£) + 1) |

Ecrd
1/2 3/2

< 225 ag el gl 2

lg~1172 sup |g]*@.]g]? + 1)
EcRrd

Pllg e, (11.3)

Loo*

—~1/2 3/2 3/2

< 2% lgllz

From (10.9), (11.2), and (11.3) it follows that

1/2 1/2

1K ()l 6—e < m'*(2r0)'a
—-1/2 3/2

gl 2l e

-1 1/2A 3/2.
HLOO *

+ 21/2r o 3/2

lgllz2llg
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Combining this with (10.16) and (11.1), we obtain the estimate

Ju, — ug — eK(e)F|ler < Cise||Flle, 0<e<1,

where
Ch=¢c.'Cs
+ (Coc + m2(2r0) g g 2 g N 2
+ 2215 ag el g 72 g 2 )" (11.4)

We arrive at the following result.

Theorem 11.1. Under conditions of Theorem 10.4, we have
[(A.4+ 1) = (A + 1) — cK(e)||ger < Cize, 0<e<L. (11.5)
The constant Cy3 is defined by (11.4) and depends only on m, ag, a1, [|9llz., 1971
and on parameters of the lattice T'.
11.2
Suppose now that Condition 8.4 is satisfied. Then, applying Theorem 10.5, we obtain:
| A2 (u. — ug — eK°(e)F)||6 < Cocl|Flle, 0<e<1.

This implies the estimate

/ ID(u. —up — eK°(e)F)|?dx < ¢, 'C3e®||F||%, 0<e<l1. (11.6)

Now we estimate the norm of the function K°(¢)F under Condition 8.4. Inequality (10.25)
means that

IABD) (A + 1) oo < —HAHLmHg‘lH”2 (11.7)

The adjoint operator (A° + I)~'p(D)*(A¢)* admits the same estimate. Then (10.11),
(11.3), and (11.7) imply that
1K) oo < [Mlnallg™ 12 + 25 ag Pad g 221~ I 2e*2 (118)

Now, by (10.16), (11.6), and (11.8), we obtain:

lu. —ug — eK%(e)F||er < Cric||Flle, 0<e <1,

where
Ch=2C5 4+ (Co + Al llg 112 + 242 g e gl 2 N9 128 %2)" (119)
As a result, we arrive at the following statement.
Theorem 11.2. Under conditions of Theorem 10.5, we have:
N(A+ 1) = (A + )" — K6 |l < Crae, 0<e<1. (11.10)

The constant C14 is defined by (11.9) and depends on d, m, oo, a1, |9l 197 1, on
parameters of the lattice ', and also on |A|L,

51



11.3. Interpolation
In [BSu4, Theorem 8.1] it was proved that, under conditions of Theorem 10.4, we have
[(A.+ D) = (A + 1) —eK(e)|oms < 1%, 0<e< 1. (11.11)

The constant €; depends on ag, oy, ||g]r.., [l97"]|1.., and on parameters of the lattice T'.
Interpolating between (11.11) and (11.5), we arrive at the following result.

Theorem 11.3. Under conditions of Theorem 10.4, for 0 < s <1 we have
[(A.+ 1) = (A + 1) — K (e)|lomes < €9CHL>", 0<e< 1.

As it follows from [BSu4, Theorem 8.2], under Condition 8.4 (precisely, under some
weaker condition), we have

N(A+ 1) = (A + )" — K6 |loms < €262, 0<e<1. (11.12)

The constant €; depends on ag, a1, [|g]|z., |97 ||z, on parameters of the lattice I', and
also on ||A||z.. -
Interpolating between (11.12) and (11.10), we arrive at the following theorem.

Theorem 11.4. Under conditions of Theorem 10.5, for 0 < s <1 we have
[(Ac+ 1) = (A + D)7 — K6 |lome < €L°C5%°, 0<e<1.

Condition (6.25) distinguishes the case, where the corrector is equal to zero. Then the
estimate (10.30), as well as the following estimate (cf. [BSu4, Theorem 8.3|), is satisfied:

[A.+ D) = (A + 1) Meos < €62, 0<e< 1. (11.13)

The constant €3 depends on ag, a1, ||g]r.., [|97]|1.., and on parameters of the lattice T
Interpolating between (11.13) and (10.30), we arrive at the following result.

Theorem 11.5. Under condition (6.25), for 0 < s < 1 we have

[(Ac+ D)7 = (A + 1) Memer < EL°CHLE>™, 0<e<1.

12 Approximation of the fluxes for («Zl\g +1)7!

12.1

In this section, we approximate the so called fluxes
p: = ¢°b(D)u. (12.1)

in the norm of &, = Ly(R?% C™). Here u, is the solution of the equation (10.12). Now, it
is convenient to rely on Theorem 8.1 which, by the scaling transformation, implies that

| AL ((Xe + D)7 = (I +eAH(D))(A + z)ﬂns) loms < Cse, 0<e<1. (12.2)

We have: (A. + I)"'F = u., (A° + I)"'II.F = Il.uy. Then (12.2) means that

|AY2 (u, — (I 4 eA*B(D))Lug) || < Csel|Flle, 0<e<1.
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This is equivalent to the estimate
1(9°)"/%6(D) (u. — (I + eA*b(D))ILuo) [|s. < Cael|Flls, 0<e <1
Then

lg°b(D)u. — g°b(D)(Meug + eATLB(D)wo) |, <Csllgll; <] F]le:

0<e<l. (12.3)

We have (see (8.12)):

geb(D)(eAeﬂgm)b(D)uo)
d
= £g*(b(D)A ) B(D)ug + £g° > bA*Dy (T b(D)up)
=1
d

= g°((D)A)TIb(D)ug + £g° Y~ bATII™ Dy(b(D)uy). (12.4)
=1
Here we have used the obvious identity (b(D)A®) = (b(D)A)?. We estimate the second

term in the right-hand side of (12.4). The norm of the operator ATTIC™ s estimated in
(10.17). We have:

Dy(b(D)uy) = Db(D)(A° + I)"'F.
Combining this with (8.5), we see that
| DibD)wo) 6. < ( sup [b(2) (b(£)7¢°b(2) + 1) 1) [Flle < 0y *e 7 |Flle.  (12.5)

EcRrd

From (10.17) and (12.5) it follows that

d
lg® > AT Dy (b(D)uo)|

=1
< dm"?(2ro) oy Pone gl Y2 g7 12 IF e (12.6)

B

Now (12.1), (12.3), (12.4), and (12.6) imply that

P = g7 (L + (b(D)A)) T b(D)uglle, < Cuse|[Fle, (12.7)
where
1/2 — -1/2 ~ 2 —111/2
Cis = Callgll}/2 + dm'*(2ro) " ag Pen g7 2 g7 12 (12.8)

Using the notation (5.5), we have ¢°(1,, + (b(D)A)®) = g°. Then, by (12.7), we obtain
the following statement.
Theorem 12.1. Let u. = (A. + I)'F, uy = (A° + I)"'F, where F € &. We put

pe = ¢°6(D)u. and g = g(1,, +b(D)A). Let 11" be the pseudodifferential operator in &,
with the symbol xg . (€). Then

”p€ — ﬁeﬂ(m)b(D)uoH@* < CmEHFH@, 0<e<1.

€

The constant Cy5 is defined by (12.8) and depends only on d, m, ap, a1, ||gllz., 197 1
and on parameters of the lattice T'.
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Note that the statement of Theorem 12.1 can be formulated in the operator terms.
Namely, we have

lg"b(D)(A: + 1) = FIBD) A + 1) lome. < Cise, 0<e< 1.

Remark 12.2. It can be shown that the functions §FII™b(D)u, weakly converge in &,
to po = ¢°b(D)ug. Therefore, the result of Theorem 12.1 agrees with Theorem 4.4.1(2°)
from [BSu2| about the weak (®,)-convergence of the fluxes p. to py.

12.2

Suppose now that Condition 8.4 is satisfied. Then estimate (10.23) is valid. This estimate
is equivalent to the inequality

I(g°)/*b(D) (- — ug — eulV) 6. < Cre||Flle, 0<e <1
By (10.22), it follows that
¢°B(D) (. — uy — AB(D)uo) o, < CrllgllY el Flls, 0 < <1 (129)

Similarly to (12.4), we have:

g°b(D)(eA°b(D)uo) = g*(b(D)A)*B(D)ug + £g° > biADy(b(D)ug). (12.10)

=1

Under Condition 8.4, (12.5) implies that

1A Dy(b(D)u)||s. < |Allrar*e || F|e.

— *

Then .
lg™> A Dy(b(D)uo) |6, < donllgllro Al L. |F e (12.11)
I=1

From (12.1) and (12.9)—(12.11) it follows that

[pe = g7 (1 + (b(D)A))b(D)uy|

6. < Ciee||Flle, 0<e<1,

where
Cio = Crllgll 2 + dore Mgl o Al e (12.12)

We arrive at the following result.

Theorem 12.3. Suppose that conditions of Theorem 12.1 are satisfied. Suppose also that
Condition 8.4 is valid. Then

[pe — g7b(D)uy|

s, < Cieel|Flle, 0<e< 1

The constant Cig is defined by (12.12) and depends only on d, m, ag, a1, [|9]lz., 197 1o
on parameters of the lattice I', and also on ||Al|L.. .
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12.3. The case where ¢ = g

If ¢° = g (i. e., conditions (5.9) are satisfied), then g(x) = ¢° = g (see [BSu4, Remark
3.5]). Then Condition 8.4 is also valid, and the norm ||A||.. is estimated by the constant
depending only on ag, i, ||9]lz..; [|97 |z, ™, 1, d, and on parameters of the lattice T' (see
Lemma 8.7 and Remark 8.8). Theorem 12.3 is applicable, and g°b(D)uy = ¢°b(D)uy =:
Po- We arrive at the following result.

Theorem 12.4. Let ¢° = g, i. e., conditions (5.9) are satisfied. Let p. = g°b(D)u.,
po = ¢°0(D)ugy. Then, as ¢ — 0, the fluzes p. converge to py in the &,-norm, and

IP: — Polle. < Cieel|Flle, 0<e<1 (12.13)

The constant Cis depends only on d, m, n, ag, a1, ||9llz., |97 1., and on parameters
of the lattice T'.

Remark 12.5. In [BSu2, Theorem 4.4.5(2°)|, it was proved that, if g° = g, then the
fluxes p. tend to pp strongly in &,.. Theorem 12.4 strengthens this statement giving
estimate (12.13).

13 Approximation for the generalized resolvent
(A. +Q°)7! in the (Ly — H')-norm

13.1. Approximation of the operator .Z;/Q(.ZE + Q)1
The following result is deduced from Theorem 9.2, by the scaling transformation.

Theorem 13.1. Let A. = b(D)*¢°b(D), and let A° = b(D)*¢°b(D) be the effective opera-
tor. Let Q(x) be the I'-periodic positive (n X n)-matriz-valued function satisfying condition
(7.1). Let Q¢ be the operator of multiplication by the matriz Q°(x) = Q(¢71x), and let Q

be the mean value of the matriz Q(x) over the cell Q). Let A® : &, — & be the operator of

multiplication by the matriz-valued function A°(x) = A(e7'x), where A(x) is the matriz

introduced in Subsection 5.1. Let T1. be the pseudodifferential operator (10.4). Then
A2 (A + Q)7 = (A + Q)" = eABD)(A + Q)7 oo < Coe
0<e<1. (13.1)
Similarly, Theorem 9.3 implies the following statement.

Theorem 13.2. Suppose that conditions of Theorem 13.1 are satisfied. Besides, suppose
that Condition 8.4 is valid. Then

JAY2 (A + Q)™ — (A + Q)L — eAD(D)(A+Q) ) lo—e < Cre,
0<e<l. (13.2)

Theorem 9.4 implies the following statement, which distinguishes the case where the
corrector is equal to zero.

Theorem 13.3. Suppose that conditions of Theorem 13.1 are satisfied. Besides, suppose
that condition (6.25) is valid. Then

JA2 (A + Q) = (A 4+ Q) lows <Cle, 0<e< 1.
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Theorem 9.5 implies approximation for the operator AY Q(A\EJrQa)_l with the three-
term corrector.

Theorem 13.4. Suppose that conditions of Theorem 13.1 are satisfied. Let

Kole)

= A*H(D)(A° + Q) I + (A° + Q) 'ILH(D)* (A%)*
— (A" + Q)

(b(D)*L(D)b(D) + b(D)*(QA)* + (QR)bD))(A° + Q)" (13.3)
Then

I (A + Q) = (B + Q)" — eKgle)) lowo < Gz, 0 << 1.

Finally, Theorem 9.6 yields the following statement.

Theorem 13.5. Suppose that conditions of Theorem 13.1 are satisfied. Besides, suppose
that Condition 8.4 is valid. We put

Ko(e) = ADD)(A° + Q)" + (A° + Q) 'b(D)"(A%)*
— (A’ + Q)" (4(D)* LD)B(D) + b(D)*(QA)* + (QA)H(D)) (A + Q)" (134)

Then

HfTé/Q((/TE + Q) - (./TO +Q) ' —eKp(9) le—e < Coe, 0<e<1.

13.2. Approximation for the generalized resolvent (A\E + Q%)
the (Ly — H!)-norm.

Consider equation R
Av. +Q°v. =F, F e 6. (13.5)

Now, we apply Theorem 13.1, in order to approximate the solution v, in &!. Let v, be
the solution of the ,homogenized” equation

A’vo+ Qvy = F. (13.6)

We put
vi) = ATIMH(D) vy, (13.7)

Estimate (13.1) means that
[ A2 (ve = vo = evl) o < Coe|[Fllo, 0 << 1.

By analogy with the proof of (10.15), it follows that

/\D(V6 —vo—evi)2dx < e 1C2EP|F|3, O<e<l. (13.8)

Besides, as it was shown in [BSu2, Theorem 2.4 of Ch. 4], we have

Ve = volle < eCul|Q 7 |z [Flle, 0<e <1 (13.9)
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The constant Cy is defined by the relations

€ = T (B0 + B a(1) ).
Cy = max{C +2(36)7 %, 2,1 (t") 2}

We estimate the norm of the function v\ in &. By (13.6), we have

(4°b(D)vo, b(D)vo)e. + (Qvo, vo)e = (F,vo)e < (Qvo, Vo)s + ~ (@) 'F.F)e.

Hence,

1

A L, _
16(D) < 7@ @ TFle < 7197 Q7 e [F e

(13.10)

Combining this with (10.17), we obtain the following estimate for the norm of the function

(13.7):

IVl < AT g, o ]|b(D)Vol|6.
712 1/2 1/2
< m2(4ro) oy gl g e lQ T IF .

Now, from (13.9) and (13.11) for 0 < e < 1 it follows that

|ve — vo — ev H®

_ —1/2 1/2 _ 1/2
< (CelQ Y1 + m2(4r0) g gl g e lQ 72 )| F |-

Combining this with (13.8), we arrive at the inequality
|v. — vo — evl||gr < Croe||Flle, 0<e <1,
where
Clo =G+ (CullQ Ml + 2 (o) gl 2 g e 1QHE2) "
Thus, we have proved the following theorem.

Theorem 13.6. Under the conditions of Theorem 13.1, we have

(13.11)

(13.12)

(A + Q) ' = (A°+ Q)" — eA°b(D)(A° + Q) 'L ||l < Croz, 0<e<1. (13.13)

The constant Cyo is defined by (13.12) and depends only on m, ag, a1, ||gllz., |97 loe,

Qe s 1Q L, and on parameters of the lattice T.

Remark 13.7. It can be shown that, as ¢ — 0, the weak (&!)-limit of the functions
eA°b(D)II. vy is equal to zero. Therefore, the result of Theorem 13.6 agrees with Theorem

4.4.1(1°) of |BSu2| about the weak (&'!)-convergence of v. to vy.
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13.3
Suppose now that Condition 8.4 is satisfied. Then the estimate (13.2) is valid. We put
vl = A°b(D)vy. (13.14)
Estimate (13.2) means that
|AY2 (v, = vo — ¥ D) |le < Cre|[Flls, 0<e<1.
It follows that

/ ID(v. — vo — eV dx < 7 'C2E2|F||A, 0<e<1. (13.15)
Rd

Under Condition 8.4, by (13.14) and (13.10), we have
B 1 —11/2 1 ~—1111/2
[¥9e < 1Al [6(D)volle < S 1A ]2l 2@ IZZIF . (13.16)

Combining this with (13.9), for 0 < e <1 we obtain that

Ive = vo — 0o < =(CxQ nw + glANE g 1E21Q7 1Y) IFls. (18.17)
Now (13.15) and (13.17) imply that
|ve = vo — eV || < Crie||Flle, 0<e<1,
where ] )
G =27+ (ClIQ o + 1ALl IF2IQ7E2) . (1338)
As a result, we obtain the following theorem.

Theorem 13.8. Suppose that conditions of Theorem 13.1 are satisfied. Besides, suppose
that Condition 8.4 is valid. Then

[(Ac 4+ Q) ' = (A2 + Q) — eAD(DY (A + Q) Y|ooer < Crie, 0<e<1.

The constant Cy, is defined by (13.18) and depends only on'm, d, ag, a1, |9/, |97 2w,
Q. IQ 7 L., on parameters of the lattice T, and also on ||A||L.. -

13.4. The case of zero corrector
Suppose now that Condition (6.25) is satisfied. Then, by Theorem 13.3, we have
IAY*(ve = vo)le < Cel[Flls, 0<e<1,

whence
/|D(v€ Cvo)Pdx < E)2FIL, 0<e< .
R4

Combining this with (13.9), we obtain

|ve — voller < Croe||Flle, 0<e<1, (13.19)
where ) )
Chr =G> + Q717 . (13.20)

We have proved the following theorem.
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Theorem 13.9. Suppose that conditions of Theorem 13.1 are satisfied. Besides, suppose
that condition (6.25) is valid. Then

[(A:+ Q) = (A’ + Q) Yoo < Croe, 0<e<l1. (13.21)

The constant Cys is defined by (13.20) and depends on ap, a1, |g9llee, |7 e, 1@l
QY| and on parameters of the lattice T.

Remark 13.10. In [BSu2, Theorem 4.4.5|, it was shown that, if ¢° = g, the solutions
v. strongly converge to vo in &'. Theorem 13.9 gives a stronger result (i. e., estimate

(13.19)).

§14. Approximation with the three-term corrector
for the generalized resolvent (A. + Q°)~!. Interpolation

14.1
By Theorem 13.4, we have

JAY2 (v, — vy — eKo(e)F)||e < Cse||Flle, 0<e<1.
It follows that

/|D(v6 — vy —eKo(e)F)Pdx < 'C2|F|)%, 0<e<1. (14.1)

We estimate the &-norm of the function Kq(e)F. Combining (13.11) with (13.7), we see
that

1A%B(D) (A + Q) ML lee < m2(4ro) oy gl 2 lg e |QH2. (14.2)

The operator (A\O +Q)MI.b(D)*(A%)* is adjoint in & to the operator from (14.2). Hence,
it admits the same estimate. Next, similarly to (11.3), we have:

(A +Q)'b(D)* LD)HD) (A + Q) lo—e

_ 1/2 3 2 3/2 —1111/2~— —111/2
< 225 tag 2l g 2 g I 2E Q2 (14.3)
Inequality (13.10) means that
J6(D)A + Q) Moo < gllg 12 1Q 2 (14.4)
Obviously, _
1A+ Q) M los < Q| 1ne- (14.5)

From (14.4), (14.5), and (7.10) it follows that

I(A° + Q) H@QR)BD) (A + Q) oo
< m2(4ro) ag gl 2 g e QN L QY. (14.6)
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The operator (A° + Q) 'b(D)*(QA)*(A° + Q)~! admits the same estimate. As a result,
relations (13.3), (14.2), (14.3), and (14.6) yield the estimate

iyt —1 2 1/2 _ 1/2
1Ko(e)le—e < m2(2r0) Lag gl 2 lg™ e QM2
—1/2 3 2 3/2 _ 1 2/\_ 1/2
+ 225 2ad g ||g e

Loo Cx
+ m!(2r) ‘”2||g||”2||g—1||Lw||@||Lw||@ e
Combining this with (13.9), we obtain that
Ive = vo = eKq(e)Flle < (Cx[|Q 1w +Co)|Flle, 0<e<1.
Taking (14.1) into account, we have

[ve — vo — eKg(e)F||ler < Cise||Flle, 0<e <1,

where

Chs =G + (Cxll Q7 1w + Co)*. (14.7)

We have proved the following theorem.

Theorem 14.1. Under the conditions of Theorem 13.4, we have
(A + Q) ' — (A°+Q) ' — eKo(e)|emer < Cise, 0<e<1. (14.8)

The constant Cy3 is defined by (14.7) and depends only on m, ay, ai, |9/, 197 oe,
Qe s 1Q L., and on parameters of the lattice T.

14.2
Suppose now that Condition 8.4 is satisfied. Then, by Theorem 13.5, we have

|AY2 (v, — vy — eK3(e)F)|le < Coc||Flle, 0<e<1.
It follows that

/ ID(ve — vo — eKy(e)F)[Pdx < CICEEY|IF)A, 0<e<1. (14.9)

We estimate the ®-norm of the function K§(e)F, under Condition 8.4. By (13.14),
inequality (13.16) means that

— 1 B
1A°6D)(A” + Q) Moo < Sl Al llg ™ 12 1@ (14.10)

The adjoint operator (ﬁo + Q)" 'b(D)*(A®)* satisfies the same estimate. Relations (13.4),
(14.3), (14.6), and (14.10) imply the estimate

_ 1/2 1/2

1K () loe < 1A llg 2 1Q 72
_ —1/2 32 3/2 _ 12/\_ 1/2
+ 2V g PP g |3 g P Y

Loo*

1 2 1/2 _ 3 2
+mY2(2rg) Lag ||g||/ g~ e QN QY2 =: CY.
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Together with (13.9), this implies that
Ve = vo — eKg(e)Fls < (Cx Q7 [l + ColellFlle, 0 <e<1.
Combining this with (14.9), we arrive at the estimate
V. = vo — eKg(e)F|er < Cue||Flle, 0<e<1,

where ) )
Cti =0.'Co + (CullQ M +CO)*. (14.11)

Thus, we have proved the following theorem.

Theorem 14.2. Under the conditions of Theorem 13.5, we have
(A + Q) ' — (A + Q)" — eKQ(E)|e—er < Cue, 0<e<1. (14.12)

The constant Cyy is defined by (14.11) and depends on d, m, ag, o1, ||9)les 197 2w,
1Qll., IQ .., on parameters of the lattice T, and also on ||A||L.. -

14.3. Interpolation
In [BSu4, Theorem 9.1], it was shown that, under conditions of Theorem 13.4, we have
1A + Q) — (A + Q) — eKg(e) s < &%, 0<e<1. (14.13)

The constant € depends on m, ao, a1, |gllre, l97 2ws [Qllze, 1@z, and on
parameters of the lattice I'.
Interpolating between (14.13) and (14.8), we arrive at the following result.

Theorem 14.3. Under conditions of Theorem 13.4, for 0 < s <1 we have
[(Ac+ Q) ' = (A" + Q) — eKo(e)||omes < E15CHe>S, 0<e<1.  (14.14)
Next, if Condition 8.4 is satisfied, then we have (see [BSu4, Theorem 9.3])
1A+ Q) — (A + Q) —eK)(e)lome < &%, 0<e<1, (14.15)

The constant €, depends on ag, o1, ||9llze, 19 2w 1QNlzes |Q |2, on parameters
of the lattice I', and also on ||A||L., .
Interpolating between (14.15) and (14.12), we obtain the following statement.

Theorem 14.4. Under conditions of Theorem 13.5, for 0 < s <1 we have
||(.ZE + Q) — (.ZO + Q) - 5K82(5)||g5_,@s <elECie™, 0<e<1.

Condition (6.25) distinguishes the case, where the corrector is equal to zero. Then
estimate (13.21) and also the following estimate (see [BSu4, Theorem 9.2|) are satisfied:

[(A:+ Q) ' = (A" + Q) oow < €362, 0<e<1. (14.16)

The constant €3 depends on ag, a1, ||9llws 19 s Q2w |Q L., and on parame-
ters of the lattice I'.
Interpolating between (14.16) and (13.21), we obtain the following statement.

Theorem 14.5. Under condition (6.25), for 0 < s <1 we have

[(A. + Q) ' — (A2 + Q) Yooe < ELoCL>", 0<e< 1.
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§15. Approximation of the fluxes for the generalized
resolvent (A. + Q°)~!

15.1

We consider the fluxes
q: = ¢°b(D)v,, (15.1)

where v, is the solution of the equation (13.5). By the scaling transformation, Theorem
9.1 implies that

A2 (A + Q)™ = (I +eABD) (A + QL) flome < oz, 0<c< L.
It means that
ALY (ve — (I + eAD(D))vo) ||e < Cse||Flle, 0<e < 1.
Similarly to (12.3), this implies that
lg°b(D)v. — g*b(D)(Tvo + eATIIVB(D)vo) . < Collgll2e]|Flle, 0<e<1. (15.2)
By analogy with (12.4), we have:
9°b(D)(eATTIIb(D)vy)
d
= g (l(D)A)TIb(D)vo + £g° > HATII™ Dy(b(D)vo). (15.3)

=1

We estimate the second term on the right. Similarly to (12.5), we obtain:
| DibD)vo) s < 1’2 [F e (15.4)
From (10.17) and (15.4) it follows that

d
lg® >~ ATTIE Dy (b(D)vo) .

1=1
< dm'2(2r0) g PPaae gl 2 1o 12 IF e
Combining this with (15.1)—(15.3), we have
la: = g% (L + (O(D)A)) LD vols., < Cr5el|Flle, 0<e <1,
where
Cus = Callg |12 + dm*?(2r0) " ag e, gl 2o 12 (15.5)
We have proved the following theorem.
Theorem 15.1. Let v. = (A. + Q°)"'F, vy = (A° + Q)~'F, where F € &. We put
q: = ¢°b(D)v.. Let g be the matriz (5.5), and let 18 be a pseudodifferential operator in
&, with the symbol xg,.(€). Then
la: — g B(D)volle. < Cisel|Flle, 0<e<1. (15.6)

The constant Cys is defined by (15.5) and depends only on d, m, ag, o1, ||9lles 197 o,
1Oz, 1Q 7 .., and on parameters of the lattice T.

Remark 15.2. It can be shown that the functions ﬁeﬂgm)b(D)vo weakly converge to
qo = ¢°b(D)vy in &,. Therefore, the result of Theorem 15.1 agrees with Theorem 4.4.1(2°)
from [BSu2|, where the weak (®,)-convergence of the fluxes q. to qo was established.
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15.2
Suppose now that Condition 8.4 is satisfied. Then the estimate (13.2) is valid. Hence,
1(°)!26(D) (v = vo — eAD(D)vo)[le. < Cre||Flls, 0<e <1,

Then
19°b(D) (v. — vy — eAB(D)vo)||e, < Crllgll} cllFlle, 0<e<1. (15.7)

Similarly to (15.3), we have

g°b(D)(eA°b(D)vo) = " (b(D)A)*H(D)vo + £g° Y _ A Dy(b(D)vy). (15.8)

=1

Under Condition 8.4, (15.4) implies that

IA“D(b(D)vo) . < [IA]l1.0}*, " [Fe. (15.9)

*

Now from (15.1) and (15.7)—(15.9) it follows that

lae — 7°6(D)volle, < Cigel|Flle, 0<e <1, (15.10)

where
5 5 1/2 ~
Cis = Crllgll > + dan Y|gll o Al .. (15.11)

We have proved the following theorem.
Theorem 15.3. Suppose that conditions of Theorem

5.1 are satisfied. Besides, suppose that Condition 8.4 is valid. Then the estimate
(15.10) holds, where the constant Cig is defined by (15.11) and depends on d, m, «p, a1,
lgllzws 197 2ms 1QNLws 1Q Lo, on parameters of the lattice T, and also on | AL, -

15.3. The case where ¢ = g

In this case we have g(x) = ¢° = g. By analogy with Theorem 12.4, Theorem 15.3 implies
the following result.

Theorem 15.4. Let ¢° = g, i. e., conditions

5.9) are satisfied. Let q. = g°b(D)v., qo = ¢°b(D)vy. Then, as € — 0, the fluzes q.
tend to qg in the &,-norm, and

6. < Cioe||Flls, 0<e<1.

||q6 - q0|

The constant Cig depends only on d, m, n, ag, a1, |9z, |97 e 1@z, 1Q Lo,
and on parameters of the lattice T'.

Remark 15.5. Theorem 15.4 strengthens the result of Theorem 4.4.5(2°) of [BSu2|, where
the strong &,-convergence of the fluxes was established under the condition ¢° = g
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§16. The homogenization results for operators A,

16.1
Now we consider the operator
A = (f7)7b(D) g"b(D) f* = ()" Af. (16.1)
We have ~
(A + D)7 = ()7 A+ Q)TN (16.2)
Here
Qx) = (f(x)f(x))" (16.3)

From Theorem 13.6, miltiplying the operators in (13.13) by ((f¢)*)~! from the right, for
0 < e <1 we obtain

ICA-+ Q) ()™ = (1 + MDD (A + Q) ()) oo
< Crollf Y Lot (16.4)

Relations (16.2) and (16.4) imply the following result.

Theorem 16.1. Let A. be the operator (16.1), and let A° = b(D)*¢°b(D). Let Q(x) be
the matriz defined by (16.3), and let Q be the mean value of Q(x) over the cell Q. Let
A(x) be the matriz defined in Subsection 5.1. Let Il be the pseudodifferential operator
(10.4). Then for 0 <e <1 we have

1 (Ac+ D)7 = (I + eABD)TL) (A + Q) (/) Moot < Crollf " lrwe:  (165)

The constant Cyo is defined by (13.12) and depends onm, ag, a1, |9l es |97 s 1S |l2o s
1o, and on parameters of the lattice T.

Now we formulate the result of Theorem 16.1 foe solutions of differential equations.
Let w. be the solution of the equation

Aw.+w.=F, Feco, (16.6)
and let w2 be the solution of the equation

A'w? + Qw? = ((f°)")'F. (16.7)
Then (16.5) means that

1fow. — wl — eATIIb(D)wl|| e < Crollf |z Flle, 0<e<1.

Remark 16.2. It can be shown that the functions eAaﬂgm)b(D)Wg converge to zero
weakly in &'. Besides, the functions w? tend to wo = (A" + Q) (f*)'F strongly in &

(&H)-lim(w? — wq) = 0. (16.8)

e—0
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whence B
W2 = woller < 2(A° + Q) Moot £ |2 |F |-

Then it suffices to check (16.8) for F € Cg°(R%; C"). We fix a function ¢ € Cg°(R?) such
that F( = F. Then

w? —wo = (A + Q)1 (((f)) = (f) ) F.

By the ,mean value property”, the functions (((f%)*)™* — (f*)™') F tend to zero weakly

in . Since the operator (./TO +Q)~!¢ compactly maps & to &', then (16.8) holds. From
what was said it follows that the result of Theorem 16.1 agrees with the statement of
[BSu2, Theorem 4.4.2] about the weak (&')-convergence of the functions fw. to wy:

(w, &1)- ll_r)% few. = wy.

16.2
Under Condition 8.4, Theorem 13.8 implies the following result.

Theorem 16.3. Suppose that conditions of Theorem 16.1 are satisfied. Besides, suppose
that Condition 8.4 is valid. Then for 0 < e <1 we have

1 (A + D)7 = (T +eABD) A+ Q) () Mlemer < CullfMlpwe:  (16.9)

The constant Cyy is defined by (13.18) and depends on m, d, ag, o1, ||9)les 197 loe,
W fllzws 1z, and on parameters of the lattice T, and also on |Al|L.. .

In terms of solutions, the inequality (16.9) is equivalent to the estimate

Ifowe = wl = eADD)Wler < Cuallf T enelFlle, 0<e <1 (16.10)

16.3. The case of zero corrector

The following result is deduced from Theorem 13.9.

Theorem 16.4. Suppose that conditions of Theorem 16.1 are satisfied. Suppose also that
condition (6.25) is valid. Then for 0 < e <1 we have

/(A + 1)~ - (A\o + Q) (f)) Mewer < CvlefAHLooE- (16.11)

The constant Cio is defined by (13.20) and depends on ag, o, |gllze, |67 e, If e,
Il 1o, and on parameters of the lattice T.

The estimate (16.11) means that, under condition (6.25), we have

I fowe = wlller < Ciall flzelFlle, 0<e<1. (16.12)
Remark 16.5. In [BSu2, Ch. 4, Subsection 4.4], it was shown that, if ¢° =g, then
(&h)- lim f*w. = wo, (16.13)
where wy = (A° + Q)'(f*)"'F. By (16.8), this agrees with (16.12).
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16.4. Interpolational results

From Theorem 14.3, multiplying operators in (14.14) by ((f¢)*)~! from the right, we
deduce the following result.

Theorem 16.6. Suppose that conditions of Theorem 16.1 are satisfied. Let I?Q(e) be the
operator defined by (13.3). Then for 0 < s <1 we have

1A+ D7 = (A + Q)+ 2Ko()) (1)) o
<SGTC T " 0<e<
Similarly, Theorem 14.4 implies the following statement.

Theorem 16.7. Suppose that conditions of Theorem 16.1 are satisfied. Besides, let Con-
dition 8.4 be valid. Let K{(e) be the operator defined by (13.4). Then for 0 < s <1 and
0 < e <1 we have

1720+ 1) = (A4 Q)7 +2K5(E0)) () e
< & Ol f T e (16.14)
Finally, Theorem 14.5 implies the following result.

Theorem 16.8. Suppose that conditions of Theorem 16.1 are satisfied. Besides, suppose
that condition (6.25) is valid. Then for 0 < s <1 and 0 < e <1 we have

1A+ D7 = (A + Q) H(F)) Mlomer < EChallf T lpne™. (16.15)
The estimate (16.15) means that

o < & Chllf e " Flle, 0<e<1.

| fow. — Wg|

16.5. Approximation of the fluxes
Now the role of the flux is played by the vector-valued function
r. = g°b(D) fw. = ¢°b(D) f(A. + I)'F. (16.16)
By Theorem 15.1 (see (15.6)),
lg°b(D)(A: + Q) ! = FIMBD)(A° + Q) ome, <Cise, 0<e<1.  (16.17)

Multiplying operators in (16.17) by ((f¢)*)~! from the right and taking (16.2), (16.7), and
(16.16) into account, we obtain:

Ir: = I B(D)Wlle. < CisllfllnellFlle, 0<e< L. (16.18)

We have proved the following result.

Theorem 16.9. Let r. be defined by (16.16), and let w° be defined by (16.7). Let g be

the matriz defined by (5.5), and let 1 be a pseudodifferential operator in &, with the
symbol xg .. Then the estimate (16.18) is valid.
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Remark 16.10. It can be shown that the functions ﬁaﬂgm)b(D)wg converge to
g°b(D)wy =: 1y weakly in &,. Therefore, the result of Theorem 16.9 agrees with the
statement of Theorem 4.4.2 from [BSu2| about weak (®,)-convergence of fluxes r. to ry.

Similarly, Theorem 15.3 (see estimate (15.10)) implies the following theorem.

Theorem 16.11. Suppose that conditions of Theorem 16.9 are satisfied. Suppose also
that Condition 8.4 is valid. Then

e = FoD)w[le. < Cillf el Flls, 0<e<1. (16.19)
If ° = g, then we have g = g’ = g. Therefore, (16.19) implies the following theorem.

Theorem 16.12. Let ¢° = g, i. e., conditions (5.9) are satisfied. Suppose that r. is
defined by (16.16), w? is defined by (16.7), and r¥ = ¢°b(D)w?. Then

&€ £

o, < CislfHzoellFlle, 0<e<1. (16.20)

re — x|

Remark 16.13. In [BSu2, Theorem 4.4.8(2°)|, it was shown that, under condition ¢° = g,
we have
(8,)- hH(l] r. = 1o := ¢°b(D)wy.

This agrees with estimate (16.20), since, by (16.8), we have

(6.)-lmn(x? — o) = (&.)- lim ¢°b(D)(w? — w) = 0.

16.6. Approximation of the generalized resolvent for A.

(Cf. [BSu4, Subsection 9.4].) In conclusion of this section, we consider the question of
approximation for the generalized resolvent of A.. Let Q(x) be a I'-periodic positive
(n X n)-matrix-valued function such that Q,9Q7! € L. We factorize 9 in the form

A(x) = ((x)e(x)") 7, (16.21)

where the matrix-valued function ¢ is I'-periodic. We use the notation

h(x) = f(X)p(x), Qu(x) = (Y(x)p(x)) " = (f(x)) 7 Q(x)(f(x) " (16.22)

By the identity N
(A +9°) 7" = (f) 1A+ Q) (), (16.23)
it is possible to obtain the results about approximation for (A.+£Q%)~! from the correspon-

ding results for the generalized resolvent (ﬁ€+Qi)_1. The following statement is deduced
from Theorem 13.6 (cf. the proof of Theorem 16.1).

Theorem 16.14. Let A. be the operator (16.1), and let A° = b(D)*¢°b(D). Let Q(x)
be a T-periodic positive (n x n)-matriz-valued function, such that Q, Q' € L.,. Suppose
that relations (16.21), (16.22) are valid. Let A(x) be the matrix defined in Subsection 5.1.
Let 11, be the pseudodifferential operator (10.4). Then for 0 < e < 1 we have:

15 (A+2°) 7 = (T + eABDIL) (A" + Qo) (f)) Moo < CollF e (16.24)

The constant (ffo is the analog of the constant Cio with Q replaced by Q.. It depends on

m, a0, @1, |9llzes 197 s [f i 1f  Niws Q2w 1Q 7 i, and on parameters of
the lattice T'.
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Let z. be the solution of the equation
Az, +Q°z. =F, Fed, (16.25)
and let z¥ be the solution of the equation
A°20 + Q.20 = ((f)")'F. (16.26)
The estimate (16.24) means that
£ — 2 — eATIB(D) e < Cigllf el Flls, 0<c<1.  (16.27)

By analogy with Remark 16.2, it can be shown that (16.27) agrees with the statement of
Theorem 4.4.2 from [BSu2| about the weak (&!)-convergence of the functions f°z.:

(w, BY)-1lim fez. = z, (16.28)

e—0

where z, is the solution of the equation
A\OZQ + @ZO = (i*)ilF
By the identity (16.23), Theorem 13.8 yields the following result.

Theorem 16.15. Suppose that conditions of Theorem 16.14 are satisfied. Besides, sup-
pose that Condition 8.4 is valid. Then for 0 < e <1 we have:

17 (A + )71 = (1 +eADD)) (A" + Q) () Nloer < CillF e

The constant (ffl is the analog of the constant Cy with Q replaced by Q.. It depends on

m, a0, o1, |9llzee: 197 M rws 12w 1f 7 zws QM2 197 |2, on parameters of the
lattice T', and also on ||A||L.. -

The following theorem is deduced from Theorem 13.9.

Theorem 16.16. Suppose that conditions of Theorem 16.14 are satisfied. Besides, sup-
pose that condition (6.25) is valid. Then for 0 < e <1 we have

12 (A +29) 7 = (A + Q) () Mlemer < Challf lnwe. (16.29)

The constant Ct, is the analog of the constant Cyo with Q replaced by Q.. It depends on

a0, a1, [9l1Las 197 N imes 1 ows 1 ows 1920, Q7 Lo, and on parameters of the
lattice T.

The estimate (16.29) means that, under condition (6.25), we have
If°z — 2]l < Clollf M raelFlle, 0<e<1. (16.30)

Remark 16.17. Similarly to (16.8), it can be shown that the functions z° strongly
converge in &' to zg, as € — 0. Therefore, (16.30) agrees with the statement of Theorem
4.4.8(1°) from |BSu2| about the strong (&')-convergence of the functions f°z. to z (under
the condition ¢° = 7):

(051)-?_1% ffz. =29, ifg°=7.
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16.7. Interpolational results for (A, + Q°)!
The following result is deduced from (interpolational) Theorem 14.3 and identity (16.23).

Theorem 16.18. Suppose that the conditions of Theorem 16.14 are satisfied. Let I?Q*(s)
be the corrector (13.3) with Q replaced by Q.. Then for0 < s <1 and0 < e < 1 we have:
1750+ 297! = (A + Qo) 4+ K. () (F)) e

< (@) C N e
Here €} is the analog of the constant €1, and Cly is the analog of Ci3 with Q replaced by
Qs
Similarly, the following statement is deduced from Theorem 14.4.

Theorem 16.19. Suppose that conditions of Theorem 16.14 are satisfied. Suppose also
that Condition 8.4 is valid. Let K§ (g) be the corrector (13.4) with Q replaced by Q..
Then for 0 < s <1 and 0 <e <1 we have:
1720+ 297 = (A Qo) 4+ eKG.()) ((F)) oo
< (@) )N e
Here & is the analog of the constant €y, and C?, is the analog of C4 with Q replaced by
Q-

Theorem 14.5 leads to the following statement which distinguishes the case where the
corrector is equal to zero.

Theorem 16.20. Suppose that conditions of Theorem 16.14 are satisfied. Suppose also
that condition (6.25) is valid. Then for 0 < s <1 and 0 < e <1 we have

1A+ 997 = (A + Q) H()) Mleer < (€)' (Ch)*llf Nlnwe™™.

Here Qvﬁjé, is the analog of the constant €5 with Q replaced by Q..

16.8. Approximation of the fluxes for (A. + Q°)~!

The role of the flux is now played by the vector-valued function
g°b(D) [z = g°b(D) f*(A: + Q°)'F = g°b(D)(A: + Q5) " (f))'F.

In the last passage we used the identity (16.23).
Thr following statement is deduced from Theorem 15.1.

Theorem 16.21. Suppose that conditions of Theorem 16.14 are satisfied. Let z. be the
solution of the equation (16.25), and let z0 be the solution of the equation (16.26). Let g
be the matriz defined by (5.5), and let 1Y be the pseudodifferential operator in &, with
the symbol X&/e- Then

lg°b(D) f°ze — gL (D)2

€

o. <Cilf M raelFlle, 0<e<l.

Here (ff5 is the analog of the constant Ci5 with Q replaced by Q..
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In can be shown that the functions g’fﬂgm)b(D)zg tend to ¢°b(D)zo weakly in ®,.
Therefore, the result of Theorem 16.21 agrees with the statement of Theorem 4.4.2 from
[BSu2] about the weak (&,)-convergence of the fluxes g°b(D) f¢z. to ¢g°b(D)z.

Similarly, Theorem 15.3 implies the following theorem.

Theorem 16.22. Suppose that conditions of Theorem 16.21 are satisfied. Suppose also
that Condition 8.4 is valid. Then

l9°b(D) foz — g°0(D)zl 6. < Cigllf |z cllFlle, 0<e<1. (16.31)
Here Cv'f6 is the analog of the constant Cig with Q replaced by Q..
If ¢° = g, we have g = g’ = g. Therefore, (16.31) implies the following statement.

Theorem 16.23. Suppose that conditions of Theorem 16.21 are satisfied. Let ¢° = g, i
e., conditions (5.9) are valid. Then

l9°b(D) fz — g°b(D)2L|s. < Cigllf |z Fllo, 0<e<L.

Remark 16.24. As it has already been mentioned, the functions z? converge to zg

strongly in &' z,, whence the functions ¢°b(D)z? strongly converge in &, to g°b(D)z.
Therefore, the statement of Theorem 16.23 agrees with the result of [BSu2, Theorem
4.4.8(2°)] about the strong (&, )-convergence of the fluxes ¢°b(D) f¢z. to ¢°b(D)zy (under
the condition ¢° = g).

Chapter 4. Applications

We proceed to applications of the general results to specific periodic operators of mathema-
tical physics. All the examples considered below have been studied before in [BSu4|, where
approximation for the resolvent in the Lo-operator norm with the three-term corrector
was found. Now we obtain approximation for the resolvent in the operator norm from L,
to H'. We obtain also the interpolational results and approximation for the fluxes in Ls.

AN

§17. The operator A = D*¢gD

17.1. The case where the matrix g(x) has real entries

We consider the operator
A =D*g(x)D = —divg(x)V, (17.1)

acting in & = Ly(RY), d > 1 (cf. [BSu2, §5.1] and |[BSu4, §10]). Here g(x) is a [-periodic
(d x d)-matrix-valued function with real entries and such that

9(x) >0, ¢,97" € Loo. (17.2)

The operator (17.1) describes a periodic acoustical medium; this operator is also useful
in diffusion problems, etc. For us this example is also important as a basic object for
the study of the periodic Schrodinger operator. Now we have n = 1, m = d, b(g) = &,
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ap = a3 = 1. The solutions v; € H(Q) of the equation (5.4) with C = e; are pure
imaginary. Therefore, it is convenient to consider the solutions ®; € H'(Q) of the problem

divg(x)(V®,(x) +e;) =0, /<I>j(x) dx =0, (17.3)
Q
j=1,...,d. Then ®;(x) are real-valued functions, and v;(x) = i®;(x). Herewith, A(x)
is a row-matrix:
A(x) = i(P1(x),...,Pq(x)),

g(x) is the real (d x d)-matrix with the columns ¢(x)(V®;(x) +e;), j =1,...,d, and the
effective matrix ¢° is defined by

& = / 5(x) dx.

Next, Ab(D) = AD = Z;l:l ®;(x)0;. For the solutions ®;, we have ®; € L., and the
norms ||®,||... are estimated by the constant depending only on ||g/z.., [[97 |1, on d
and on parameters of the lattice I (see Remark 8.8).

We consider the operator A = D*¢°(x)D with rapidly oscillating matrix ¢°(x). Now
Condition 8.6(2°), and then also Condition 8.4 is satisfied. Theorem 10.8 is applicable.
By Remark 8.8, this theorem leads to the following statement.

Theorem 17.1. Let A(g) = D*g(x)D, where g(x) is a T-periodic matriz with real entries
satisfying (17.2), and let A = D*¢°D be the effective operator. Let A. = A(g®). Let
®;(x) be the I'-periodic solution of the problem (17.3), j =1,...,d. Then

d
N+ 1) = (B + D)7 =3 850,(8° + 1)y o) < Curc,

j=1

0<e<l, (17.4)

where the constant C1y depends only on ||gllz.., |97 |z, on d, and on parameters of the
lattice T'.

We can also apply (interpolational) Theorem 11.4. Now the corrector K°(g) (see
(10.11)) takes the form

d d
K%)= @0;(A° + 1)~ = > (A + 1)719,0%, (17.5)

J=1 J=1

since the third term of the corrector (10.11) for the operator (17.1) is equal to zero (see
[BSu4, Proposition 8.4]). We arrive at the following result.

Theorem 17.2. Suppose that conditions of Theorem 17.1 are satisfied. Let K°(g) be the
corrector defined by (17.5). Then for 0 < s <1 we have

||(A\5 + ])_1 - (A\O + ])_1 — €KO(E)||L2(Rd)_)Hs(Rd) S 0252_8, 0<e S 1,

where the constant CO depends on s, ||gllz.., |7 |z, on d, and on parameters of the
lattice I'.
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Now we formulate the result of Theorem 17.1 in terms of solutions. Let u. be the
solution of the equation

—div¢*(x)Vu, +u. = F, F € Ly(R?), (17.6)
and let ug be the solution of the ,homogenized* equation
—div ¢°Vug + ug = F. (17.7)

Then (17.4) means that

d
||U5 — Ug — €Z¢§8jUQ||H1(Rd) S Cllg||F||L2(Rd)a O<e S 1.

J=1

Note that u. weakly converges in H'(R?) to ug, as € — 0 (see Remark 10.7).
Theorem 12.3 gives the following result about convergence of the fluxes.

Theorem 17.3. Suppose that conditions of Theorem 17.1 are satisfied. Let u. be the
solution of the equation (17.6), and let uy be the solution of the equation (17.7). Let g(x)
be the matriz with the columns g(x)(V®;(x)+e;), j=1,...,d. Then

||Q€VU5 - §€VUO||L2(Rd;Cd) < 6165||F||L2(Rd)7 0<e<,

where the constant Ci depends on ||g||r.., |¢7 |z, on d, and on parameters of the lattice
I.

Note that the fluxes g°Vu, weakly converge in Ly(R% C%) to ¢°Vug as ¢ — 0 (see
Remark 12.2).

17.2. Approximation of the generalized resolvent

Let Q(x) be a real-valued I'-periodic function such that

Qx)>0, QQ"€ L. (17.8)
We consider a question about approximation of the generalized resolvent
(D*¢°D + Q°) !
We apply Theorem 13.8, which leads to the following result.

Theorem 17.4. Suppose that conditions of Theorem 17.1 are satisfied. Let Q(x) be a
[-periodic function satisfying condition (17.8), and let Q) be the mean value of Q(X) over
the cell Q. Let Q°(x) = Q(¢7'x). Then

IA+Q) 7 — (A +Q) —52@56 + Q) leagwsy e < Crie,
0<e<l, (17.9)

where the constant C1y depends only on ||gllw, 19w, 1Qiw, 1Q Nz, on d, and on
parameters of the lattice T.
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We can also apply (interpolational) Theorem 14.4. Now the corrector K§(e) (see
(13.4)) takes the form

d
Z %0, Z Q) 19,0, (17.10)
7j=1

since the third term of the corrector (13.4) for the operator (17.1) is equal to zero (see
[BSu4, Proposition 9.4]).

Theorem 17.5. Suppose that conditions of Theorem 17.4 are satisfied. Let K§(e) be the
corrector defined by (17.10). Then for 0 < s < 1 we have

”(./Zl\g + Qe)il - (A\O +@)71 - 8Kg<8)"L2(Rd)~>H5(Rd) S Cg7s€2is, O<e S 1, (1711)

where the constant Cg ; depends on s, ||gllLe, |97 e Qe 1Q L, on d, and on
parameters of the lattice T'.

Now we formulate the result of Theorem 17.4 in terms of solutions. Let v. be the
solution of the equation

—div ¢°(x)Vv. + Qv. = F, F € Ly(RY), (17.12)
and let vy be the solution of the ,homogenized* equation
—div ¢V + Quy = F. (17.13)

Then (17.9) means that

d
HUE — Vg — EZ ®§8JUOHH1(R¢1) < éu&'”F”LQ(Rd), 0<e<1.
j=1

Herewith, v. weakly converges in H*(R?) to vy as € — 0 (see Remark 13.7).
Theorem 15.3 gives the following result about approximation of the fluxes.

Theorem 17.6. Suppose that conditions of Theorem 17.4 are satisfied. Let v. be the
solution of the equation (17.12), and let vy be the solution of the equation (17.13). Let
g(x) be the matriz with the columns g(x)(V®,(x) +e;), j=1,...,d. Then

||g€Vv5 — gEVUQHLQ(Rd;Cd) < CleEHFHLQ(]Rd)a 0<e<L 1, (1714)

where Cyg depends on ||gllre, 19 e, 1Qlzw, 1Q 2., on d, and on parameters of the
lattice T'.

As ¢ — 0, the weak (Ly(R%; C?))-limit of the fluxes ¢°Vu, is equal to ¢°Vwy (cf.
Remark 15.2).

The special cases (¢° = g and ¢° = g) are considered below in Subsection 17.7 in the
general case of the matrix g(x) with complex entries.
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17.3. The case where the matrix g(x) has complex entries

Now we consider operator (17.1) assuming that g(x) is a periodic Hermitian matrix with
complex entries and such that condition (17.2) is satisfied. Now the solutions ®;(x) of
the problem (17.3) are complex-valued functions. Theorem 10.6 is applicable. Unlike the
case of the real matrix g(x), now we cannot rely on the boundedness of the solutions
®;(x). Therefore, in general case, we cannot replace II. by I in (10.21). Obviously,
such replacement is possible for d < 2 (as well as for the general matrix operators), and
also if ¢° = ¢. Besides, the boundedness of the solutions ®;(x) is preserved under some
additional conditions on Im g(x). We write the matrix g(x) as

9(x) = g1(x) + ig2(x),

where ¢;(x) is a symmetric matrix with real entries and go(x) is an antisymmetric matrix
with real entries. The solutions ®;(x) of the problem (17.3) are also represented as

P,(x) = CIDE»U(X) + i@f) (x), where q)§1)(x), <I>§2) (x) are real-valued functions. Then the
)

problem (17.3) can be rewritten as the system of equations with real coefficients for <I>§»1
and (135-2):

J

d
div gy (x) VO (x) = > A(x)90} (x) = —div g1 (x)e;
=1

) (17.15)

Z Qll(x)alq)§1)(x) + div g1 (x) VO (x) = —div ga(x)e;

J
=1 V.

» 1 2
under the conditions [, (I>§- )(X) dx = [, (I>§- )(X) dx = 0. Here

d
U(x) =Y Ghgt"(x) = divegl(x), 1=1,....d,
k=1

where gél)(x) are the columns of the matrix go(x). Suppose that, for some q > d, we have

divgl) € L,(Q), ¢>d, 1=1,...,d. (17.16)

The system (17.15) is a system ,with the diagonal principal part®. It satisfies conditions of
Theorem 2.1 from [LaU, Ch. VII, §2|. By this theorem, ®; € L, and the norm ||®,|[.
is estimated by the constant which depends on ||g1||z.., |l91 |z, on d, €, and on the
norms |||\, I = 1,...,d. Thus, conditions (17.16) guarantee that Condition 8.4 is
satisfied, and then Theorem 10.8 is applicable.

Applying Theorems 10.6 and 10.8 to the operator (17.1), we arrive at the following
statement.

Theorem 17.7. 1) Let A(g) = D*g(x)D, where g(x) is a T-periodic matriz-valued func-
tion with complex entries satisfying (17.2), and let A0 = .,Zl\(go) be the effective operator.
Let A, = A(g°). Let Q; € HY(Q) be the solution of the problem (17.3), j =1,...,d. Let
II. be the operator defined by (10.4). Then

d
I(A+ D7 = (A + D)7 =& @20, (A° + 1) 7ML |1y mey— i mety < Caoe,
j=1
0<e<,
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where the constant Cyg depends only on ||g||z.., l¢7 |z, on d, and on parameters of the
lattice T'.

2) Suppose that assumptions of statement 1) are satisfied. Suppose also that ®; € Ly,
j = 1,...,d. (The latter condition is a fortiori valid if d < 2, or if ¢° = g, or if the
columns gé)( ), L =1,....d, of the matriz go(x) = Im g(x) satisfy condition (17.16).)
Then

(A + D)= (A + 1)t — 52@5 Y py@a)— @y < Cuie,
0<e<,

where the constant Cy; depends only on ||gllz.., |97 |1, on d, on parameters of the lattice
I', and also on the norms ||®;||..., 7 =1,....d.

Note that, if d < 2, or if ¢° = g, the norms ||®;|..., themselves can be estimated by
the constant depending only on the norms ||g||z.., |[¢7 ||z, on d, and on parameters of
the lattice. While, under condition (17.16), the norms ||®;||;.. depend also on the norms

Idived| L@, L =1,...,d.

17.4. Interpolational results

We can apply (interpolational) Theorem 11.3 to the operator (17.1) with complex matrix
g(x), while, under the condition ®; € Lo, j =1,...,d, Theorem 11.4 is applicable. Now
the third term of the correctors K(¢) and K°(¢), in general, is non-zero. The corrector
(10.9) (see [BSu4, Subsection 10.3]) takes the form

d
Z 50, )7L = (A 1) L0, (5)°
7j=1
d
= 3 (A + D) ajis — a3,) 0,00, (A + 1) 7, (17.17)
7,l,s=1
where
ajis = |Q|1/®j(x)*<g(x)(v<bl(x) +e),e)dx, jlis=1,....d. (17.18)
Q
The corrector (10.11) is given by
d d
) =Y @0, (A + )7 = (A + 1)7L0y(95)*
j=1 j=1
d
= N (A D) Mg — aly)0;005(A° + 1) (17.19)

j7l78:1

Applying Theorems 11.3 and 11.4, we arrive at the following result.

75



Theorem 17.8. 1) Suppose that conditions of Theorem 17.7(1) are satisfied. Let K (¢)
be the corrector defined by (17.17), (17.18). Then for 0 < s < 1 we have

||(./Zt\5 + I)il - (./Zt\o + I)il — 51}(5)||L2(]Rd)—>HS(Rd) S 085273, 0<e S ].,

where the constant Cy depends on s, on ||gllr., |97 |z, on d, and on parameters of the
lattice I'.

2) Suppose that conditions of Theorem 17.7(2) are satisfied. Let K°(g) be the corrector
defined by (17.19). Then for 0 < s < 1 we have

(A + D)7 = (A + 1) = e K)oty promey < CO2°, 0 <e <1,

where the constant CO depends on s, on ||gllz.., |97 .., on d, on parameters of the
lattice I', and also on the norms ||®, ||LOO, j=1,...,d.

17.5. Approximation of the fluxes

We can apply Theorem 12.1 for the fluxes, and if ®; € L, j = 1,...,d, we can apply
Theorem 12.3. This leads to the following result.

Theorem 17.9. Let u. be the solution of the equation (17.6), and let ug be the solution of
the equation (17.7). Let g(x) be the matriz with the columns g(x )(V(IJ +ej) j=1,...,d

1) Suppose that conditions of Theorem 17.7(1) are satisfied. Let 1Y be the pseudodiffe-
rential operator in Ly(RY; CY) with the symbol X/ (). Then

||96VU5 VU0||L2 Re;C) < 6155||F||L2(]Rd O0<e S ].,

where the constant Cy5 depends on d, on ||gllz.., [|97 1., and on parameters of the lattice
I.
2) Suppose that conditions of Theorem 17.7(2) are satisfied. Then

|]g€Vu€ — §€VUOHL2(R(1;@) < C165HF”L2(R‘1)7 0<e< 1,

where the constant C1¢ depends on d, on ||g||r.., [|97 1., on parameters of the lattice T,
and also on the norms || ®;||r.., j=1,....d.

Note that, under conditions of Theorem 17.9(1), as € — 0, the solutions u. converge
to ug weakly in H'(R?), while the fluxes g°Vu,. converge to ¢°Vug weakly in Ly(R%; C?)
(see Remarks 10.7 and 12.2).

17.6. Approximation of the generalized resolvent

Let Q(x) be a real-valued I'-periodic function satisfying condition (17.8). We consider
the question about approximation of the generalized resolvent (D*¢*D+Q°)~. Applying
Theorems 13.6 and 13.8, we arrive at the following result.

Theorem 17.10. Let Q(x) be a I'-periodic function satisfying condition (17.8), and let
Q be the mean value of Q(x) over the cell Q. Let Q*(x) = Q(e¢7'x).
1) Under conditions of Theorem 17.7(1), we have

||(,,2f€ +Q°) 7 - ( - EZ 30, )11, (RY)—HL(RD) < Cioe,

0<e<,
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where the constant Cyo depends only on ||g|lr.., |97 e, |1QllLes 1Q 2, on d, and on
parameters of the lattice T.
2) Under conditions of Theorem 17.7(2), we have

(A + Q) — (A T —¢ Z 020;(A” + Q) Ml pora)— i mey < Cui,
0<e<l, (17.20)

where the constant Ciy depends only on ||glle, 19 e, 1Qze, 1Q  ze, on d, on
parameters of the lattice ', and also on the norms ||®;||r.., j=1,...,d.

We can apply (interpolational) Theorem 14.3 to the generalized resolvent (.,Zl\6 +Q°)L.
If &, € Lo, j=1,...,d, then Theorem 14.4 is applicable. The corrector (13.3) takes the
form

d d
Kole) =Y @50;(A° + Q) 'L — > (A° + Q) 'IL.9;(®%)"
j=1 ) 7= ; (17.21)
@+ (3 (- 00,00+ 6 Y (@0, ) (A + Q)
g, l,s=1 J=1
and the corrector (13.4) is given by
d d
Ed(e) =Y 050;(A°+ Q) = > (A + Q) o;(e)"
j=1 ) =1 (17.22)
(A4 ( > (s — a5,,)0;00, + 2i Z(ImQTy)@j) (A +Q)™
gls=1 J=1

(See [BSu4, Theorem 10.6].) Here the values a5 are defined by (17.18).
Applying Theorems 14.3 and 14.4, we arrive at the following result.

Theorem 17.11. 1) Suppose that conditions of Theorem 17.10(1) are satisfied. Let Ko (¢)
be the corrector defined by (17.21). Then for 0 < s <1 we have

||(./Zl\5 + Qe)_l - (A\O ‘|‘©)_1 — 5KQ(£)||L2(Rd)—>HS(Rd) < CQ7852_S, O0<e<L 1,

where the constant Cg s depends on s, on ||gllre, 19w 1QlLws 1Q 1o, on d, and
on parameters of the lattice T.

2) Suppose that conditions of Theorem 17.10(2) are satisfied. Let Kg(e) be the correc-
tor defined by (17.22). Then for 0 < s <1 we have

1A+ Q) = (A + Q)L — e K)oty o mromey < CO 2%, 0<e<1, (17.23)

where the constant C§ , depends on s, on ||glle, 197 2w 1QlLe, 1Q L, on d, on
parameters of the lattice I', and also on the norms ||®;||r.., 7 =1,...,d.

We can apply Theorem 15.1 for the fluxes, and under the condition ®; € Lo, j =
1,...,d, we can apply Theorem 15.3. We arrive at the following result.
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Theorem 17.12. Let v. be the solution of the equation (17.12), and let vy be the solution
of the equation (17.13). Let g(x) be the matriz with the columns g(x)(V®;(x) + e;),
i=1,....d

1) Suppose that conditions of Theorem 17.10(1) are satisfied. Let 1 be the pseudo-
differential operator in Lo(R%; C?) with the symbol Xaye(&). Then

||QSV’U5 — gangd)VUQHLQ(Rd;Cd) < 6155||F||L2(Rd)7 O0<e<L 1,

where the constant Ci5 depends on ||gllr.., 119 i, 1Qliw, 1Q e, on d, and on
parameters of the lattice T'.
2) Suppose that conditions of Theorem 17.10(2) are satisfied. Then

||gEva - §€Vvo||L2(Rd;Cd) < 616€||F||L2(Rd), 0<e< 1, (1724)

where the constant Cyg depends on ||gllow, |9 12wy 1Qlze, 1Q |z, on d, on parame-
ters of the lattice I', and also on the norms ||®;||r., j=1,....,d.

Note that, under conditions of Theorem 17.12(1), as € — 0, the solutions v. converge
to vy weakly in H*(R?), and the fluxes ¢°Vuv, converge to ¢°Vuy weakly in Lo (R%; C?) (see
Remarks 13.7 and 15.2).

17.7. Special cases

The case where the corrector is equal to zero is distinguished by Theorem 10.9, and for
the generalized resolvent by Theorem 13.9. Condition ¢ = g, which is equivalent to (5.8),
now means that the columns gy (x) of the matrix g(x) are solenoidal vectors:

divgr(x) =0, k=1,...,d. (17.25)
We arrive at the following result.

Theorem 17.13. Let A(g) = D*g(x)D, where g(x) is a T-periodic matriz-valued function

~

with complex entries satisfying conditions (17.2) and (17.25). Let A’ = A(g) be the
effective operator. Let A. = A(g%). Let Q(x) be a I'-periodic function satisfying condition
(17.8), and let Q be the mean value of Q(x) over the cell Q. Let Q°(x) = Q(e7'x). Then

we have ~
H(-Ag + [)71 — (A\O + I)il”LQ(Rd)HHl(Rd) <Cpe, 0<e<1,

1A+ Q)" = (A% + Q) Y| oty mety < Crog, 0<e <1, (17.26)

where the constant C15 depends only on ||gllz.., |97 |z, on d, and on parameters of the
lattice T, while the constant Cio depends on the same parameters and also on the norms

1@l e 1Q7 I 1we
Applying (interpolational) Theorems 11.5 and 14.5, we arrive at the following result.

Theorem 17.14. Under conditions of Theorem 17.13, for 0 < s <1 we have
||(./Zt\5 + ])_1 - (A\O + ])_1||L2(Rd)—>HS(Rd) < 0252_8, O<e<L 1,

1A + Q%)™ = (A% + Q) Yyt omey < Choe®™*, 0<e <1, (17.27)

where the constant C'. depends on s, on ||g|lz., |g7 L., and on parameters of the lattice
I, while the constant C, , depends on the same parameters and also on ||Q|r, |Q " L. -
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Now we consider the case where ¢° = g. Condition (5.9) means that the columns 1 (x)
of the matrix g(x)~! are potential vectors:

L(x) =10+ Ve, 19eCl ¢, H(Q), k=1,...,d. (17.28)
Theorems 12.4 and 15.4 lead to the following result.

Theorem 17.15. Suppose that conditions of Theorem 17.10(1) are satisfied, and that
¢’ =g, i. e., conditions (17.28) for the columns 1;(x) of the matriz g(x)~! are valid. Let
u. be the solution of the equation (17.6), and let ug be the solution of the equation (17.7).
Let v, be the solution of the equation (17.12), and let vy be the solution of the equation
(17.13). Then, as € — 0, the flures ¢°Vu. tend to g°Vug, and ¢g°Vv. tend to g°Vuy in
the Ly(R%; C4)-norm. We have

||gavue - QOVUOHLQ(Rd;@) < ClGEHFHLQ(Rd)a 0<e<,

||g€Vv€ — gOVUO||L2(Rd;Cd) < 616€||F||L2(Rd), 0<e< 1. (1729)

The constant Cis depends on d, on ||g||r.., g7 |5, and on parameters of the lattice T,
while the constant Cig depends on the same parameters, and also on the norms ||Q||L.,

”Q_l”Loo'

§18. The periodic Schrodinger operator

18.1. Preliminaries. Factorization

(See [BSu2, §6.1 and BSu4, §11].) In the space Ly(R%), d > 1, we consider the periodic
Schrodinger operator with the metric g(x) and potential p(x):

H =D*g(x)D + p(x), xR (18.1)
Here g(x) is a I'-periodic (d xd)-matrix with real entries satisfying the following conditions:
9(x) >0, g,9"'€ L, (18.2)

and p(x) is a real-valued I'-periodic function such that
pe L), 2s>d ford>2; s=1 ford=1. (18.3)

Adding an appropriate constant to p(x), we can always assume that the point A = 0 is
the bottom of the spectrum of the operator 'H.
Let w € H*() be a (weak) periodic solution of the equation

D*g(x)Dw + p(x)w = 0.
Solution w is defined up to a constant factor, which may be fixed so that

w(x) >0, xcRY

/wQ(X) dx = 9. (18.4)
Q
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Under conditions (18.2) and (18.3), it turns out that w,w™! € C* with some o > 0. The
operator (18.1) admits a factorization of the form

H=w 'D*w*gDw . (18.5)
Thus, the operator H is reduced to the form
H=A(g, f), with 6(D)=D, g=uw?g, f=w'

Herewith, n =1 and m = d.

Remark 18.1. We can view expression (18.5) as the definition of the operator H, as-
suming that w(x) is an arbitrary I'-periodic function such that

w(x) >0, w,w € Ly. (18.6)

We take this definition as the initial one. The form (18.1) can be recovered by the formula
p = —w (D*gDw). The corresponding potential p(x) may be strongly singular.

18.2. The homogenization problem for H.

Now we consider the operator
M. = () 'D* (@)% D(w") ! = (&) 'D*¢D(w?)"! (18.7
with rapidly oscillating coefficients. In terms of (18.1), the operator (18.7) takes the form
H. = D'@(x)D + &% (x).

We are interested in the behavior of the resolvent (H. + I)~! for small ¢.

Now Condition 8.6(2°), and then also Condition 8.4, is satisfied. Theorem 16.3 is
applicable. Let ./T(g) = D*w?gD = D*¢D, and let ¢° be the effective matrix for the
operator A(g). Let A° = A(¢°). Now Q(x) = w?(x), and, by (18.4), Q = 1. Taking what
was said into account and applying Theorem 16.3, we obtain the following statement (cf.
Theorem 17.4).

Theorem 18.2. Let g(x) be a I'-periodic (d x d)-matriz-valued function with real entries
satisfying conditions (18.2), and let w(x) be a T'-periodic function satisfying conditions
(18.6), (18.4). Let H. be the operator defined by (18.7). We put g(x) := w?(x)g(x). Let
g° be the effective matrixz for the operator D*¢gD, and let A0 = D*¢'D. Let ®; € ﬁ]l(Q)
be the solution of the problem (17.3), j=1,...,d. Then for 0 < e <1 we have

@) (He + D)7 = (A 4 1)l

d
—e )P0 (A° + 1)y ray— i ey < Crie, (18.8)

j=1
where the constant Ciy = Ciy||w||p. depends on the norms [|gllre, 187 e, lwllie,

lw™|z., on d, and on parameters of the lattice T. (Here Cyy is the constant from (17.9)
with Q = w?.)

_ We can also apply (interpolational) Theorem 16.7. By (17.10) and by the identity
Q = 1, the operator K (e) coincides now with K°(¢) and is given by (17.5). We arrive
at the following result (cf. Theorem 17.5).
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Theorem 18.3. Suppose that conditions of Theorem 18.2 are satisfied. Let K°(g) be the
corrector defined by (17.5). Then for 0 < s <1 and 0 < e <1 we have

”(W€>71(H5 + [)71 — ((./Zl\o + [)71 + €K0<€)> wEHLQ(Rd)*)HS(Rd) S 558273, (189)

where the constant Cy = Collwlln depends only on s, on ||gllie, 197 e, [|@lliw.
|w™|zw, on d, and on parameters of the lattice T'. (Here Cg , is the constant from
(17.11) with Q = w*.)

Remark 18.4 If the operator H is given in the form (18.1) under conditions (18.2) and
(18.3), then the norms ||wl|z.., [|w ™| L., are estimated by the constant depending only on
gl o 1167 2o, o0 d, Q, and on ||p]|1, (). Then the constant C11 from (18.8) depends on
lollee, 187 1o, o0 d, ||Ip] 1y (0) and on parameters of the lattice T, while the constant C,
from (18.9) depends on the same parameters and also on s.

18.3. Approximation of the fluxes

We consider the solution w. of the equation
How, +w. = F, F € Ly(R%). (18.10)
Let w? be the solution of the equation
D*¢"Duw? + w? = w°F. (18.11)

(Cf. (16.6) and (16.7).) Then (18.8) means that

d
1(w) " Mwe = w? — Y B0l || 1 (e < Crael|Fllpymey, 0 <e <1
j=1

By Remark 16.2, under conditions of Theorem 18.2, there exists a weak (H')-limit of the
functions (w®)tw,:
(w, HY(R%))-lim (w®) " w. = wo,

e—0

where wy is the solution of the equation
D*¢"Dwg + wy = WF. (18.12)
We can apply Theorem 16.11 for the fluxes. This leads to the following result.

Theorem 18.5. Suppose that conditions of Theorem 18.2 are satisfied. Let w. be the
solution of the equation (18.10), and let w? be the solution of the equation (18.11). Let
g(x) be the matriz with the columns g(x)(V®; +e;), j=1,...,d. Then

19°V (w°) " we — GVl Ly acay < Cioel| Fllpy@ay, 0<e <1,

where the constant Crg = Cis||wl||z.. depends only on lollw, 1o e lwllzew, lw e,
on d, and on parameters of the lattice I'. (Here Cyg is the constant from (17.14) with

Q =t

By Remark 16.10, under conditions of Theorem 18.5, the functions ¢°V (w®)*w,. con-
verge to g"Vwy weakly in Ly(R%; C?), where wy is the solution of the equation (18.12).
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18.4. Special cases

The case where the corrector is equal to zero is distinguished by Theorems 16.4 and 16.8.
We arrive at the following result.

Theorem 18.6. Suppose that conditions of Theorem 18.2 are satisfied, and that ¢° = g,
i. e., condition (17.25) for the columns gi(x) of the matriz g(x) = g(x)w(x)? is valid.
Then we have

||(w€)_1(H5 + I)_l - (A\O + I)_leHLQ(Rd)—»Hl(Rd) S 5125, 0 <é€ S 1 (1813)
Besides, for 0 < s <1 we have

H(WE)71<H5 + [)71 - (./Zl\o + I)ilu)eHLQ(Rd)HHs(Rd) S 5;8273, O<e S 1. (1814)

The constant Ciy = Cra||w||r. depends on ||g|lz, 19 Nows lwllw, lw™oe,s ond, and
on parameters of the lattice I'.  The constant C; = Cq [||w||r., depends on the same
parameters and also on s. (Here C15 is the constant from (17.26), and Cq.s s the constant

from (17.27) with Q = w?.)

Now we consider the case where ¢° = g- We can apply Theorem 16.12, which leads to
the following statement.

Theorem 18.7. Suppose that conditions of Theorem 18.5 are satisfied, and that ¢° = g,
i. e., relations (17.28) for the columns 1(x) of the matriz g(x)~! are valid; here g = gw?.
Then we have

||gEV(w5)_1w5 — govngLQ(Rd;Cd) < ClG€||F||L2(Rd)7 O<e<L 1,

where the constant Crg = Cig|lw]| . depends on @), 197 Mzes l@llze, o™ Iz, on d,
and on parameters of the lattice T'. (Here Cig is the constant from (17.29) with Q = w?.)

By Remark 16.13, under conditions of Theorem 18.7, there exists a strong limit

(La(R% CY))-lim g°V (w*) " w. = g°Vuy,

e—0

where wy is the solution of the equation (18.12).

18.5. Approximation for the generalized resolvent

Now we consider the question about approximation of the generalized resolvent
(H. + 9Q°)~ !, where Q(x) is a I-periodic function such that

Q(x)>0; 9Q,9"'€ L. (18.15)
We can apply Theorem 16.15, which gives the following result.

Theorem 18.8. Suppose that conditions of Theorem 18.2 are satisfied. Let Q(x) be the
[-periodic function satisfying conditions (18.15). Let Q.(x) = Q(x)w?(x). Then for
0 < e <1 we have

1(w) ™ (He +9°) 7 = (A° + Qy)~lwf

d
—e > 00 (A° + Q) ' paray— i rey < Crie, (18.16)
j=1
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where the constant C;;, = Cyllw|lp. depends on the norms ||gllre, o e, ol
W™ ™M Los 1Ql] 20 197 |2, 0n d, and on parameters of the lattice T'. (Here the constant
Ci, is the analog of the constant Cyy from (17.9) with Q replaced by Q..)

We can also apply (interpolational) Theorem 16.19. Now the corrector K%*(e) takes
the form (cf. (17.10)):

d d

E) (e) =Y @50;(A°+ Q) =) (A +Q,) 19,95, (18.17)

Jj=1 j=1
We obtain the following result (cf. Theorem 17.5).
Theorem 18.9. Suppose that conditions of Theorem 18.8 are satisfied. Let K§, (¢) be the
corrector defined by (18.17). Then for 0 < s <1 and 0 < e <1 we have
H(we)il(l{g + De)il - ((-/Zl\o + @)71 + EK%* (8)) weHLQ(Rd)—»Hs(Rd) S 5:8278, (1818)

where the constant C* = C, JllwllL.. depends only on s, on ||gllre, 187 e, [|w]lLe
lo ™ e, 1Q0e, 127 e, on d, and on parameters of the lattice T'. (Here the constant
CY s the analog of the constant C'%’S from (17.11) with Q replaced by Q.)

We consider the solution z. of the equation
Heze + Q%2 = F, F € Ly(RY). (18.19)
Let 22 be the solution of the equation
A2 +Q,20 = F, (18.20)

Estimate (18.16) shows that

d
Iw) e = 20 — 2> 050,20 | ingay < CriellFllpymey, 0<e < 1.

=1
By (16.28), there exists a weak (H')-limit of the functions (w®)™!z.:

(w, H'(R))- lim(w) ™'z = 2,

e—0

where zg is the solution of the equation
Az + Q.2 = WF. (18.21)
We can apply Theorem 16.22 for the fluxes. This leads to the following result.

Theorem 18.10. Suppose that conditions of Theorem 18.8 are satisfied. Let z. be the
solution of the equation (18.19), and let 2° be the solution of the equation (18.20). Let
g(x) be the matriz with the columns g(x)(V®;+e;), j=1,...,d. Then

679w 2~ TV paquacny < Choel| Fll a0 < < 1.

where the constant Cly = Cisl|w|| 1. depends only on ||gllr, e loe, llwllie, lw™ M Lo
1920, 1Q o, on d, and on parameters of the lattice T'. (Here the constant Cis is the
analog of the constant Cyg from (17.14) with Q replaced by Q,.)
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The fluxes ¢°V (w®) !z, converge to ¢°Vzy weakly in Ly(R%; C?).
The case where the corrector in (18.16) and in (18.18) is equal to zero is distinguished
by Theorems 16.16 and 16.20. We obtain the folowing statement.

Theorem 18.11. Suppose that conditions of Theorem 18.8 are satisfied, and that ¢° = g,

i. e., condition (17.25) for the columns gi(x) of the matriz g(x) = g(x)w(x)? is valid.
Then for 0 < e <1 we have
() (e + 257 = (A + @) "l < Gz (18.22)
Besides, for 0 < s <1 and 0 <e <1 we have
@) (He 4+ 9) 7 = (A + Q0) 7w ey roqrey < CLo™™ (18.23)

The constant Ciy = Ciy||w||1,. from (18.22) depends on ||g|l. 87 1w: [9llzo [l lzne
1Qllz., Q7 Yz, on d, and on parameters of the lattice T. The constant C’;,* =
Co. slwlle from (18.23) depends on the same parameters, and also on s. (Here Cr,

is the analog of the constant Cyy from (17.26), and Cp. s 18 the analog of the constant C,
from (17.27) with Q replaced by Q..)

In the case where ¢° = g, we can apply Theorem 16.23, which leads to the folowing
statement.

Theorem 18.12. Suppose that conditions of Theorem 18.10 are satisfied, and that ¢° = g,
i. e., relations (17.28) for the columns 1;(x) of the matriz g(x)~! are valid, where g = gw?.
Then we have

97V ()2 — "Vl ety < Cooel Fllamey, 0 < <1,

where the constant Cy = Cigllw|r.. depends on |lgllne, 1187 |rws ol o™ |1,
1Qllz., 127 1, on d, and on parameters of the lattice T.

Note that, under conditions of Theorem 18.12, as ¢ — 0, the fluxes ¢°V(w®) !z,
converge to g°Vzy strongly in Lo (R%; C%), where z, is the solution of the equation (18.21).

§19. The magnetic Schrodinger operator

19.1

In Ly(R%), d > 2, we consider the periodic magnetic Schrédinger operator M with the
metric g(x), magnetic potential A(x) and electric potential p(x):

M = (D - A(x))"g(x)(D — A(x)) + p(x). (19.1)

(Cf. [BSu4, Subsection 11.3].) Here g(x) is a I-periodic (d x d)-matrix-valued function
with real entries satisfying conditions (18.2). Suppose also that, for d > 3, we have

geC O<a<l, d>3, (19.2)

with some «a € (0,1). The vector-valued potential A(x) and the scalar-valued potential
p(x) are real and I'-periodic. Assume that

A€ Ly(Q), peLyQ), 25> d. (19.3)
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Adding an appropriate constant to p(x), we can assume that
inf spec M = 0. (19.4)

In the recent paper [Sh2] by R. G. Shterenberg, it was shown that, under the above
assumptions and for sufficiently small (in the Los(€2)-norm) magnetic potential A, the
operator M admits a factorization appropriate for our goals. Now we describe this factori-
zation. Let M (k) be the operators in Ly(€2) occuring in the direct integral expansion for
M. Condition (19.4) means that, for some k, € Q, the point A = 0 is an eigenvalue of the
operator M(kg). If the magnetic potential is sufficiently small, then this point kg € Q is
unique and the eigenvalue A = 0 is simple. Let ¢(x) be the corresponding eigenfunction
normalized by the condition

/ 600 dx = | (19.5)
Q

(the phase factor of ¢ does not matter). Then we have: p€H(Q), M (ko)$=0, and
¢, ¢ € Lo (19.6)
Moreover, as it was mentioned in [Sh2|, we have
€ WL(Q), 2s>d, (19.7)

with the same number s, as in condition (19.3).
We denote . A '
M = [e7 ko] pM etk (19.8)

where [e¥*k0-)] is the operator in Ly(R?) of multiplication by the function e*ito:x By
Theorems 2.7 and 2.8 of [Sh2], if the norm ||A||L,, ) is sufficiently small, then the periodic

operator M admits the following factorization:

M = (¢(x)") ' D"g(x)D((x)) . (19.9)

Relation (19.9) is similar to factorization (18.5) for the Schrédinger operator H, but now
the Hermitian matrix g(x) has complex entries and the function ¢(x) is complex-valued.
Herewith, ¢g(x) is I-periodic and

g(x) >0, ¢,9" € Ly (19.10)

The matrix g(x) has the form

g(x) = g(x)|o(x)|* + iga(x),
where the I'-periodic antisymmetric matrix go(x) with real entries satisfies the equation
(div g2(x))" = —2/6(x) Pa(x)(A(x) — ko) + 2 (6(x)9(X)Vo(x)).  (19.11)
Now we consider the homogenization problem for the operator M. We put
M. = (¢°)) D¢ D(6) ), M. = [ 0 B [ o] (19.12)
In the initial terms,

M. = (D — 'A% g (D — e 1A®) + e %~ (19.13)
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19.2

The behavior of the resolvent (Mvg + I)7! is regulated by Theorem 16.3. Indeed, now
f(x) = ¢(x)7!, Q(x) = |o(x)|?, and, by (19.5), @ = 1. Let ¢° be the effective matrix
for the operator A= D*¢D, and let A0 = D*¢°D. The matrix g(x) = Im g(x) satisfies
condition (17.16) with ¢ = 2s > d, since the function in the right-hand side of (19.11)
belongs to Lo (€2), by conditions (18.2), (19.3), (19.6), and (19.7). This guarantees (see
Subsection 17.3) that the solutions ®; of the problem (17.3) satisfy ®; € L., j =1,...,d.
Thus, Condition 8.4 is now satisfied, and, therefore, Theorem 16.3 is applicable. As a
result, we obtain the estimate

1(¢°) " (M. + 1)~

d
—~ (1 +e) cpjaj) (A + )X ) | oty ray < Ciie, 0<e<1,  (19.14)

j=1

where Cy; = Ciy||¢||.. (Here Cyp is the constant from (17.20) with Q = |¢[2) The
constant Cyy depends on d, [lgllLe, 197" 2w [19llLe, 107 ]2, and also on [[A]lL,, @),
|9[lwy, ), and on parameters of the lattice I. We see that, for the operator M., it is

harder to control the constants in estimates explicitly.
By (19.12), we have

(Mo + 1)~ = [e7= ko) (M, + 1) el ko), (19.15)

Since the operator of multiplication by e &%) is unitary in Lo(R?), from (19.14) and
(19.15) it follows that

(&%) e TN (M. + 1)
d
- (I +e Z q)j@j) (A" + 1)~} (¢7)*[e7 o] | Lo (Re)— H1 (R
j=1

<Cpe, 0<e<l. (19.16)
We summarize the results.

Theorem 19.1. Let M be the operator (19.1) with I'-periodic real coefficients satisfying
conditions (18.2) and (19.2)—(19.4). Let the norm ||A| 1, ) be sufficiently small, so that
factorization (19.9) for the operator (19.8) takes place, where the I'-periodic matriz g(x)
and function ¢(x) are subject to conditions (19.10) and (19.5), (19.6). Let M. be the
operator defined by (19.13). Let ¢° be the effective matriz for the operator D*g(x)D, and
let A° = D*¢°D. Let ®; € H(Q) be the solutions of the problem (17.3), j = 1,....d.
Then for 0 < e <1 estimate (19.16) is true.

Now we formulate (19.16) in terms of solutions. Let w. be the solution of the equation

Mow, +w. =F, F € Ly(RY), (19.17)
and let w? be the solution of the equation
Aw? 4wl = (¢°(x))7e ™ ¥ P(x). (19.18)
Then ;
H(¢€)71€7i€_1<k°">ws —w —¢ Z ®§ang|’H1(Rd) < 5115”F|’L2(Rd)-
j=1
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19.3

We can apply (interpolational) Theorem 16.7 to the resolvent (Mve + I)~1. The operator
K3 (e) is defined according to (17.22). By Q = |¢|* and @ = 1, we have

d d
=) O (A + 1) =D (A1) 710, (®5)”
j=1

J=1

(19.19)
d
— (A + 1)1< > (ajs — aj) 9,00, + QiZ(Im \¢\2@j)3j) (A°+ 1)~

Jils=1 =1

The values aj;; are defined by (17.18).
Applying (16.14), for 0 < s <1 and 0 < ¢ < 1 we obtain:

(67 (Me+ D)7 = (A4 D)7+ eKB(E) ) (6) o -mocry < O™

Here C, = CO 9l Lo, and CP , is the constant from (17.23) with @ = |¢[*. Using (19.15),
we arrive at the estimate

() Hem= R (M. + 1)
- ((jlb + )+ eK%(e)) (%) [e" 7->]HL2(Rd)*}Hs(Rd) < O (19.20)
We have obtained the following statement.

Theorem 19.2. Suppose that conditions of Theorem 19.1 are satisfied. Let K%(e) be the
corrector defined by (19.19). Then for 0 < s <1 and 0 < e <1 estimate (19.20) is valid,
where the constant C depends on s, d, ||gllie, 1197 zwr [10llee: 167 1w [AllLoue)

[¢llwy () and on parameters of the lattice I'.

19.4

We can apply Theorem 16.11 for the fluxes. By this theorem, for 0 < ¢ < 1 we have
19V (¢°) (M + ) 7' = GV(A" + 1) 71 (6°) || y(t)— Laresce) < Croe.

Here Cig = Cigl|¢||1., and Cig is the constant from (17.24) with Q = |¢|2. By (19.15),
this implies that

lgV (6%~ e R (M. +I>*1
V(A + D7) e * Ny amacs) < Cioe, 0 <e < L.
In other words,
"g€V(¢€) ! 726 <k°">w€ - §€ngHL2(Rd;Cd) S 516€”FHL2(Rd)7 O<e S 1. (1921)
We arrive at the following result.

Theorem 19.3. Suppose that conditions of Theorem 19.1 are satisfied. Let w. be the
solution of the equation (19.17), and let w? be the solution of the equation (19.18). Then

estimate (19.21) is true, where the constant C1g depends on d, ||g|lre, 19w, |0le,
oY ro Al Lo, ) ||¢>||W213(Q), and on parameters of the lattice I
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19.5

Now we distinguish special cases. Under the condition ¢° = g, Theorems 16.4 and 16.8
are applicable. This leads to the following result.

Theorem 19.4. Suppose that conditions of Theorem 19.1 are satisfied, and that ¢° = g,
i. e., relations (17.25) are valid. Then for 0 < e <1 we have

(%)~ e o) (M. + 1)~
_ (ﬁo + [)71<¢€)*[€7i€71<k07->]HLg(Rd)HHl(Rd) < 51257

where the constant Ciy = Cis|¢| 1., depends on d, ||gllz, 97 zw: 0] 1n- I67 ]2 and
on parameters of the lattice T'. (Here Cy is the constant from (17.26) with Q = |¢|*.) For
0<s<1land0<e<1 wehave

1(¢°) e oM, + 1)
_ (A\O + [>71<¢€)*[67i€71<k0,.>]”LQ(Rd)*?H‘S(Rd) S 528278,

where the constant C; = Cq 8|1, depends on s, d, (|l |97 1w [0l1ecs 167 11ce
and on parameters of the lattice I'. (Here Cy, , is the constant from (17.27) with Q = [¢|>.)

If ¢° = g, then Theorem 16.12 is applicable. This leads to the following statement.

Theorem 19.5. Suppose that conditions of Theorem 19.3 are satisfied, and that ¢° = 9g;
i. e., relations (17.28) for the columns of the matriz g(x)~' are valid. Then for 0 < e <1

we have
—1 —ge—1 . g
19V (¢°) e <k°’>we - govngLg(Rd;(Cd) < 6165||F||L2(]Rd)7

where the constant Cig = Cig|| 6|1 depends on d, |gllz.. 197 e [6llres 16 Iz, and
on parameters of the lattice T. (Here Cyg is the constant from (17.29) with Q = |¢]?.)

For the magnetic Schrédinger operator, general results of Subsections 16.6-16.8 about
approximation of the generalized resolvent (M, + Q°)~! can be realized. We shall not
dwell on the detailed formulations.

Remark 19.6. As it was shown in [Shl|, without the smallness condition on A, the
required factorization for the magnetic Schrédinger operator, in general, is destroyed.

§20. The twodimensional periodic Pauli operator

20.1. The operators B\i

The examples considered in Subsections 20.1-20.4 (cf. [BSu2, Subsection 5.1.3|, [BSu4,
Subsections 12.1, 12.2]) are of preliminary nature. They will be useful for the study of
the twodimensional Pauli operator in Subsections 20.5-20.7. However, these examples are
interesting themselves.

Within Subsections 20.1 and 20.2, all formulas and statements should be read indepen-
dently for upper and lower indices ,,+*.

Let d =2, m =n =1, and let wi(x) be a I-periodic function such that

wi(x) >0; wi,wi' € Ly, (20.14)
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In L,(R?), we consider the operator
By = By(w?) = 0:w2 0, (20.2+)

where 0 = D; + iD,. (The operators B\+ and B_ are of the same type, and it is
convenient to consider them in parallel.) The operator By (w?2) is of the form A(g) with
b(D) = D, FiDy and g = g+ = w%. Obviously, now we have oy = a; = 1. Since
m = n = 1, the effective constant g} for the operator B, is g+, 1. €,

gi = (i) = (|Q|‘1 /Wi(x)_Q dX>1. (20.3+)

Q

Then the effective operator g?t for the operator B\i is given by
B) = —glA. (20.4+)
The solution v € H'(2) of the problem

Orw? (x)(Ozvs + 1) = 0, ve(x)dx =0,

SEN

is simultaneously (see [BSu4, §12|) the solution of the problem

Ozvy = glwi(x) 2 — 1, /Ui<X) dx = 0. (20.5+)
0

For the operator By, the role of the ,matrix* A(x) is played by the function vy (x).
We consider the operator

Bi. = Bi((w)?) = 0u(w?)?0,. (20.6+)

Now Condition 8.6 is satisfied, since d = 2 (however, we might also refer to the relation
9% = g+). Hence, Condition 8.4 is also satisfied. By Remark 8.8, the norm |v4|z,, is

estimated by the constant depending only on ||w|/z., [[wi'|lz.., and on parameters of
the lattice I'. Theorem 10.8 is applicable. This leads to the following result.

Theorem 20.1(4). Suppose that wi(x) is a T'-periodic function in R? subject to condition
(20.1+), and let By . be the operator (20.6%). Let B = —gl A, where g% is defined by

(20.3+). Let ve € H'() be the solution of the problem (20.54). Then for 0 < e < 1 we
have

[(Bee+ D)7t = (BY + 1) = cvi02(BY + 1) 7 M|ps@e—mee) < Cle,  (20.74)

where the constant Cﬁc) depends only on ||w||r., |wi'llz., and on parameters of the
lattice T'.

We can also apply (interpolational) Theorem 11.4. The corrector (10.11) for the
operator By . is of the form (cf. [BSu4, Proposition 12.1(+)|)

Ko@) = v20- (B + 1) "' + (BY + 1) 0. (v5)". (20.8%)

Note that the third term of the corrector (10.11) is now equal to zero. We arrive at the
following result.
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Theorem 20.2(+). Suppose that conditions of Theorem 20.1(%) are satisfied. Let K9 (e)
be the corrector defined by (20.8+). Then for 0 < s <1 and 0 <& <1 we have

1(Bee+ 1) = (BL+ 1) = eK9(6) | Larr)—rr(r2) < CH.

The constant Ct) depends on s, on lwiliw, lwitllz., and on parameters of the lattice
I.

Let u4 . be the solution of the equation

Bits.+ur.=Fy, Fi€ LyR?), (20.94)
and let uJ. be the solution of the ,homogenized* equation
BluS +u) = Fy. (20.10+)
Estimate (20.7+) means that
s —ul — eviozul || mge) < C§f)s||Fi||L2(R2), 0<e<l.

Note that, as ¢ — 0, the functions ug . converge to u. weakly in H'(R?) (see Remark
10.7).

Since ¢ = g+, then we can apply Theorem 12.4 for the fluxes. This leads to the
following result.

Theorem 20.3(=£). Suppose that conditions of Theorem 20.1(%) are satisfied. Let uy . be
the solution of the equation (20.94), and let u%. be the solution of the equation (20.10+).
We put
pie= (W) 0rus., poL = glozull. (20.114)
Then
Ipc = Pillnaee) < Cig el Fallme), 0<e<1,

where the constant Cfﬁi) depends on ||wi||r., |lwitllL., and on parameters of the lattice
r.

20.2

Now we consider the generalized resolvent (gi,e + Q%) where Q+(x) is a -periodic
function such that

Q+(x) > 0;  Qx, Q%' € Lec. (20.12+)
We apply Theorem 13.8, which leads to the folowing result.

Theorem 20.4(=%). Suppose that conditions of Theorem 20.1(+) are satisfied. Let Q+(x)
be a T'-periodic function satisfying conditions (20.12+), and let Q1 be the mean value of
Q+(x) over the cell Q). Then for 0 < e <1 we have

I(Bee + Q)™ = (B + Qo)™ — 030:(BY + Qo) oy me) < Cli'e, (20.13+)

where the constant C\3) depends only on lwillzws lwitllie, 1Q<lre, 1QF L, and on
parameters of the lattice T.
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We can apply (interpolational) Theorem 14.4. The corrector (13.4) for the operator
B, . takes the form (cf. [BSu4, Proposition 12.2(+)])

KY g.(6) = 030z (B + Q) + (BYL + Qi) '0x(v3)" 20.144)
— (BY + Q1) (2D1(Re Q1vx) + 2D5(Im Qrvs) ) (BL + Q).
As a result, we arrive at the following statement.

Theorem 20.5(+). Suppose that conditions of Theorem 20.4(%) are satisfied. Let
K2 o, (g) be the corrector defined by (20.14%). Then for 0 < s < 1 and 0 < e < 1
we have

~ o —_ + —s
(Bee+Q5) " = (BL+Qx) " — K2 g, ()l o) —morry < Cg,6% ", (20.154)

where the constant C’s(,jgi depends on s, on ||wx| e, llwitlloe, 1Q<lie, QL L., and
on parameters of the lattice T'.

Let a4 . be the solution of the equation
B\:I:,aazl:,e + Qia:t,e - F:I:a F:I: S LZ(Rz)a (2016:t)
and let a% be the solution of the ,homogenized* equation
l’gh 0 .,/ ,0 _
1ay + Qray = Fy. (20.17+)
Estimate (20.13+) means that
s — af — eviozal|lmme) < el Fell o).

Note that, as € — 0, the weak limit of the functions a4 . in H'(R?) is equal to a% (see
Remark 13.7).

Since ¢4 = g+, we can apply Theorem 15.4 for the fluxes. This leads to the following
result.

Theorem 20.6(=£). Suppose that conditions of Theorem 20.4(%) are satisfied. Let ay . be
the solution of the equation (20.16=%), and let a%. be the solution of the equation (20.17+).
We put
Gt = (W) 0zas., ¢% = glo+al.
Then
lgsz = ad sy < Cig el Pallryeey, 0<e <1, (20.18+)

where the constant CV'%) depends on ||lwx|r, lwitlie, 1Qtlie, 1QZ L., and on para-
meters of the lattice T'.

20.3. The operator B\x

Now we consider the matrix operator consisting of the blocks B_ (w2 ), B, (w?). We have
d=2and m = n = 2. Let wy(x) be two I'-periodic functions subject to conditions
(20.14). We put

hy = diag {w;,w-}, gx = h% = diag {w?,w?}. (20.19)
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In Ly(R?* C?), we consider the operators

0 o0- -
b.(D) = . B. = b.(D)g.bu (D). (20.20)
o+ 0
Then R R R
By = diag {0-w? 0, 0,wr0_} = diag {B_(w?), By (w2)}. (20.21)
The effective matrix for the operator (20.21) takes the form
gx = gx = diag{gy, g}, g = (2), (20.22)
and the effective operator is given by
B =b.(D)glb (D) = diag {B’, B1}, B =—g2A. (20.23)

The role of the matrix A(x) for the operator By is played by the matrix

Au(x) = (U+?X) “éx)) , (20.24)

where vy is the I'-periodic solution of the problem (20.5+).
Now we consider the operator

B, .= b.(D)g b (D) = diag {B_., B, .}. (20.25)
We apply Theorem 10.8, which leads to the following result.

Theorem 20.7. Let wy be two T-periodic functions in R? suject to conditions (20.14).
Let By . be the operator defined according to (20.19), (20.20), (20.25), and let B% be the

effective operator defined by (20.22), (20.23). Let v € HY(Q) be the solution of the
problem (20.5+), and let Ay (x) be the matriz (20.24). Then for 0 < e <1 we have

||(B\><75 + I)_l i (B\g + ])_1 - EAibX (D)(B\?< + I)_l||L2(R2;C2)—>H1(R2;C2) S C1><1€. (2026)

The constant Cj; depends only on the norms ||wi ||z, |witllze, lw-|lze, lwZ'r., and
on parameters of the lattice T'.

Note that all operators in (20.26) are diagonal:
(Bue +1)7 = (I + A5 b (D)(BY + 1)
= diag {(B_. + 1) = (I + v 0,) (B> + )",
(Bie+ 1) = (I+ev50)(BL+ 1)1} (20.27)

Therefore, the result of Theorem 20.7 could be also obtained from Theorems 20.1(+) and
20.1(-).

We can also apply (interpolational) Theorem 11.4 to the operator (20.25). The correc-
tor (10.11) for the operator By . takes the form (cf. [BSu4, Proposition 12.3|)

K%(e) = ASby (D)(BY + )™ + (B + I) by (D)(AS)". (20.28)

Note that
KY(e) = diag {K°(¢), K2 ()},

where the operators K9 (¢) are defined by (20.8%). We arrive at the following statement.
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Theorem 20.8. Suppose that conditions of Theorem 20.7 are satisfied. Let K9 (g) be the
corrector defined by (20.28). Then for 0 < s <1 and 0 <& <1 we have

||(B\><75 + I)_l — (B\g + I)_l — €K>O< (€)||L2(R2;C2)HHS(R2;(CQ) < CSXEQ_S. (20.29)

The constant O depends on s, on the norms ||wy o, |witllze, lo-|liw, 0= 1y, and
on parameters of the lattice T'.

Similarly to (20.27), the operator under the norm sign in (20.29) is diagonal, and the
statement of Theorem 20.8 could be deduced from Theorems 20.2(+4) and 20.2(—).
Let uy . be the solution of the equation

Biu.+u.,.=F, F= (?) € Ly(R% C?), (20.30)
+

and let u’, be the solution of the equation
Bl +u’ =F. (20.31)
Estimate (20.26) means that
e —ul — eASDu (D) [l rece) < Crie||Flrumecs), 0<e <1

Note that, as € — 0, the weak limit of the functions uy . in H'(R?* C?) is equal to u?.
Since ¢% = gx, we can apply Theorem 12.4 for the fluxes. This leads to the folowing
result.

Theorem 20.9. Suppose that conditions of Theorem 20.7 are satisfied. Let u, . be the
solution of the equation (20.30), and let u®, be the solution of the equation (20.31). We
put
P = gxbx(D)use, P = glbx(D)ul.
Then
IPx.c = Pl llameice) < Cleel|Fllarace), 0<e<l. (20.32)

The constant CJ5 depends on the norms ||lwillr., |wi' e, lw-llze, lwZ'lr., and on
parameters of the lattice T.

Note that the fluxes py . and p) are represented as

0
P+, _ [P
p><,€ = (pi—;> ) p(>]< - <p§_) )

where py . and pY are defined by (20.114). Therefore, the statement of Theorem 20.9
could be deduced from Theorems 20.3(+) and 20.3(—).

20.4

We proceed to the problem of approximation for the generalized resolvent (gx e+ Q%)
where @« (x) is a I'-periodic Hermitian (2 x 2)-matrix (in general, with complex entries)
such that

—1
)

Qx(x)>0; Qu, Q%' € Luo. (20.33)
We apply Theorem 13.8, which yields the following result.
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Theorem 20.10. Suppose that conditions of Theorem 20.7 are satisfied. Let )« (x) be
a T'-periodic (2 x 2)-matriz-valued function subject to conditions (20.33). Let Q. be the
mean value of Q« over the cell Q). Then for 0 < e <1 we have

(Bxe +Q5) ™" = (BY +Q)7"
— eASb (D) (BY + Q) Y| paeicr) i w22y < Clle (20.34)

The constant Cii depends only on willrw, o7 loe, llo-llre, o7 e, 1@xlin,
Q% oo, and on parameters of the lattice T.

We also apply (interpolational) Theorem 14.4. The corrector (13.4) related to the
operator By and to the matrix @y has the form (cf. [BSu4, Proposition 12.4|)

K% o (€) = ASbu (D) (B2 + Q)™ + (B2 + Qx) " '0x (D) (AS)"
— (B% + Q)" (b (D)(@xAx)" + (@ A)bx (D)) (B% + Q)7 (20.35)

We arrive at the following statement.

Theorem 20.11. Suppose that conditions of Theorem 20.10 are satisfied. Let K>O<7QX<E)
be the corrector defined by (20.35). Then for 0 < s <1 and 0 < e <1 we have

[Bae +Q5) ™" — (BY + @)™ — oK% g (o)l aeictyiroccy < Clig, & (20.36)

The constant O~ depends on s, on ||wi||L.., i N iws lwlliws lwte, 1Qxlia,
1Q% |2, and on parameters of the lattice T.

Let a, . be the solution of the equation
Bi.a,.+@Qa..=F, FelLy(R*C?), (20.37)
and let a% be the solution of the homogenized equation
B%a% + Q,a’ =F. (20.38)
Estimate (20.34) means that
lax. —a% — eA%be(D)al | m@zce) < Criel|Fllarecey, 0<e<1.

Note that, as ¢ — 0, the weak limit of the functions a, . in H*(R?;C?) is equal to a%.
Since ¢% = gx, we can apply Theorem 15.4 for the fluxes. This implies the following
statement.

Theorem 20.12. Suppose that conditions of Theorem 20.10 are satisfied. Let ay . be the
solution of the equation (20.37), and let a% be the solution of the equation (20.38). We
put

qx.e = gibx (D)ax,ea q(>)< = g(>)<b>< (D)ag
Then 5
||q><7€ — q(>]< ||L2(R2;<C2) S Cl><6€||F||L2(R2;C2)> O0<e S 1. (2039)

The constant Ciy depends on [lws||ro, |3 | rws Nlo-llrws 07 s 1@xllms 1Q% 12w
and on parameters of the lattice T'.
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20.5. Definition and factorization for the Pauli operator

(See [BSu2, §6.2], [BSu4, Subsection 12.3].) Suppose that the magnetic potential A =
{A;, Ay} is a T-periodic real vector-valued function in R? such that

A€ L,(2C%, p>2. (20.40)

Recall the standard notation for the Pauli matrices:

(01 (0 —i (1 0
1=\1 0/ 27\ o) 7 \0o -1/

In the space ® = Ly(R?; C?), we consider the operator
D = (Dl — Al)al + (D2 — AQ)O'Q, DomD = 61 = Hl(Rz, Cz)

By definition, the Pauli operator P is the square of the operator D:

P=D°= (i— Ji) : (20.41)

The precise definition of the operator P is given in terms of the quadratic form || Dul|%,
u € Dom D, which is closed in &. If the potential A is sufficiently smooth, then the
blocks Py of the operator (20.41) are given by

P.=(D—-A)*+ B, B=0,4;— 0A;.

The expression B corresponds to the strength of the magnetic field.
We use the known (see, e. g., [BSul,2|) factorization for the Pauli operator. A gauge
transformation allows us to assume that the potential A is subject to the conditions

divA =0, /A(X) dx =0, (20.42)
Q

and still satisfies (20.40). Under conditions (20.40) and (20.42), there exists a (unique)
[-periodic real-valued function ¢ such that

Vo ={Ay, —A1}, /gp(x) dx = 0.

Q

It turns out that ¢ € WI}(Q) cCY a=1-2pt
We introduce the notation
wy (x) = e

Then wy € WI}(Q), and we have
wy (X)w_(x) =1, xR (20.43)

We consider the matrices hy and gy« defined by (20.19). The operators D and P admit
the factorization
D = hyby(D)hy, (20.44)

P = by (D) gy by (D). (20.45)
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The blocks Py of the operator P admit the representations
P=w 0,wid w_, P.=w;0 wdw,. (20.46)

It is convenient to view formulas (20.44)—(20.46) as the definition of the operators D, P,
and Py, assuming that the wy are arbitrary ['-periodic functions satisfying conditions
(20.14) and condition (20.43). More precisely, the operator D is given by (20.44) on the
domain

DomD = {ue ®: houc H(R*C?}.

The operator P is defined via the quadratic form ||Dul|%, u € Dom D. The blocks Py are
defined via the quadratic forms

HwiaﬂFwﬂFuH%Q(ﬂ@)a wru € H'(R?).

Note that the operators P, and P_ are unitarily equivalent. Moreover, the operators
P, (k) and P_(k), occuring in the direct integral expansion for P, , are unitarily equivalent
for each quasimomentum k.

20.6. The operators P.

The operators Py are of the form A(g, f) with d = 2, m =n = 1, b(D) = 04, g = w3,

and f = wx. The role of the corresponding operator A(g) is played by the operator By
(see (20.24)).
We consider the operators

Py = ws0y(wl)? 05wt (20.47+)
If the magnetic potential is sufficiently smooth, then

Pi.=(D—-ec 'A% £ %P
Theorem 16.3 is applicable. Now Q4 = w? and (cf. [BSu4, (12.304)]) we have

(BL+Q1) ' = (—wiA+wl) ' = (W) (A + D)7, (20.48+)

=@ @ = op( [ora) ([era) (20.49)

As a result, we arrive at the following statement.

where

Theorem 20.13. Let P.. be the operators (20.47%), where wy and w_ are two real-
valued T-periodic functions in R? satisfying conditions (20.14) and (20.43). Suppose that
v is the number defined by (20.49), and that v. € HY(Q) is the solution of the problem
(20.5+). Then for 0 <e <1 we have

| (Pee + 1) = (1 + e05.02) (@3) " (—7A + 1) 7w || py@ey i@y < C e (20.50+)

The constant (?ﬁ[) = Cvfli)HwiHLoo depends on ||w L., [|w-| L., and on parameters of the
lattice T". (Here éfli) is the constant from (20.13%) with Q1 = wl.)
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We can also apply (interpolational) Theorem 16.7. Now the corrector (13.4) is given
by relation (20.14+), and Q4 = w?. By (20.48+), we have

K. (e) = (1) (v20=(—yA + 1)+ (—7A + 1) 7102 (v1)")

- - (20.514)
(@) (A ) (2D1(Re W2v4) £ 2D5(Im wivi)) (A + )7L,

We arrive at the following result.

Theorem 20.14. Suppose that conditions of Theorem 20.13 are satisfied. Let KiQi(e)
be the corrector defined by (20.51%). Then for 0 < s <1 and 0 < e <1 we have

w3 (Pee+ 1)~
— (@D A+ D7 42K 0, (6)) Wi lname) ey < O,
The constant C) = C’iginiHLw depends on s, on ||wi| o, |w-|L., and on parameters
of the lattice T'. (Here ngi is the constant from (20.15+) with Q1 = w?l.)
Let wy . be the solution of the equation
Piws,+we,=Fy, Fy€ Ly(R?), (20.52+)
and let w9 _ be the solution of the equation
—yAwl, +uwl, = (i) 'wiFy. (20.53+)
Estimate (20.50+) means that for 0 < e <1 we have
lwwse —wl, — g0zl lmes) < O el Felli.
Note that (see Remark 16.2), as ¢ — 0, the weak (H'(R?))-limit of the functions w:w. .
is equal to w9, where w{ is the solution of the equation
—yw + wl = (W) T Fy. (20.54+)

By relation (20.3+), we can apply Theorem 16.12 for the fluxes. The role of the fluxes
for equation (20.52+) is played by the functions

ree = (W3)*0x(wiwa ). (20.55+)
Theorem 16.12 implies the following result.

Theorem 20.15. Suppose that conditions of Theorem 20.13 are satisfied. Let wy . be the
solution of the equation (20.52=%), and let wQ . be the solution of the equation (20.53+).
Let vy . be defined by (20.55%). Then for 0 < e <1 we have

e = (@DORS N rae) < Cig el Fellracee)
The constant 5%) = Cv%)HwiHLoo depends on ||w L., [|w-|r., and on parameters of the
lattice T". (Here Cv%) is the constant from (20.18%) with Q1 = wl.)

Note that (see Remark 16.13), under conditions of Theorem 20.15, there exists the
strong limit
(Lo(R)-lim g o =18 = (w2)D5ul

where w9 is the solution of the equation (20.54+).
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20.7. The operator P

The operator P (see (20.45)) is of the form A(g, f) with d = 2, m =n = 2, (D) = by (D),
g = gx, and f = hy (see (20.19), (20.20)). The role of the corresponding operator A(g) is
played by the operator l§x defined by (20.20). As above, we assume that the I-periodic
functions w,, w_ are subject to conditions (20.14) and (20.43).

We consider the operator

P. = h3 by (D)gs by (D)RS,. (20.56)
Then
P, 0
P. = ( 0 P+,e) , (20.57)

where the operators Py . are defined by (20.47+).
Theorem 16.3 is applicable. Now the role of @) is played by the matrix

Qx = g;' = diag {w? w2 }. (20.58)

The operator ( + Q)" takes the form (see (20.34), (20.4+), (20.23), (20.484)):

RY = (B + Q)" = ding {(BY + D) (B +wiD) '}
= diag {(w?) ™", (W) " H(—yA+ D)7 (20.59)
As a result, we arrive at the following theorem.

Theorem 20.16. Let wy andw_ be two I'-periodic functions subject to conditions (20.1%)
and (20.43). Let by (D) be the operator defined by (20.20), and let hy, gx be the matrices
defined by (20.19). Let P- be the operator (20.56), and let Ay (x) be the matriz (20.24).
Finally, let R, be the operator (20.59). Then for 0 < ¢ < 1 we have

||hi< (Pg + ])_1 — (I + EAibX( ))RO (h ) ||L2(R2 .C2)— H1(R2;C2) < 6116 (2060)

The constant CJ, = C3||h|| 1. depends only on ||w||r.., |w_|lr., and on parameters of
the lattice I'. (Here C1X1 is the constant from (20.34) with Q,=gy".)

Note that the operator under the norm sign in (20.60) is diagonal:
B (Pt 1)7H = (I + eASbu (D) RY (h) !

= diag {wS (P_. + I)7F — (I 4+ 070, ) (w2) (A + 1) w
W (P4 D)™ = (I +ev20 ) (w2) H(—yA+1)7!

Therefore, the result of Theorem 20.16 could be obtained also from Theorem 20.13.
We can also apply (interpolational) Theorem 16.7. Now the corrector (13.4) is given
by relation (20.35), and Q) is defined by (20.58). Then

K o (e) = diag{K? (), K 5. (e)}, (20.61)

where the operators K9 ,, () are given by (20.514). We arrive at the following result.
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Theorem 20.17. Suppose that conditions of Theorem 20.16 are satisfied. Suppose that
K9 o, (€) is the corrector defined according to (20.61), (20.51%). Then for 0 < s <1 and
0 <e <1 we have

”hi< (Pg + [)71 — (7%?( —+ €K>O<7QX(8))(}7/‘;)71HLQ(RQ;(CQ)HHs(RQ;(CQ) S 5?8273. (2062)

The constant CX = Cio. At | po, depends on s, on ||lwi|lr., [|w_|lz.., and on parameters
of the lattice T'. (Here CJ, is the constant from (20.36) with Qx = )

Taking relations (20.19), (20.57), (20.59), and (20.61) into account, we see that the
operator under the norm sign in (20.62) is diagonal:

Therefore, the result of Theorem 20.17 could be deduced from Theorem 20.14.
Let wy . be the solution of the equation

Pwy.+wy.=F, F= (§_> € Ly(R?C?), (20.63)
+
and let w9, _ be the solution of the equation
AW W = diag {(27) 1, (@3) 1 H(kS)F. (20.64)

Note that

w_ w’
Wy e = <w+’i) , W?<7€ = <w3_’6) , (2065)
3 ,€

where wy . is the solution of the equation (20.52+), and wiﬁ is the solution of the equation
(20.53+). Estimate (20.60) means that

75w = WY o = eASDx (D)WY L eeicz) < Clie|[Flaecoy.

Herewith, as € — 0, the weak (H'(R?*; C?))-limit of the functions hS,wy . is equal to w2,
where w? is the solution of the equation

—ywd +wl = diag {(@2)"'5, (F) @I, (20.66)

We can apply Theorem 16.12 for the fluxes. The role of the flux for equation (20.63)
is played by the vector-valued function

e = g3 bx(D)(R Wy o). (20.67)
Note that

Iy = (Tﬂ) , (20.68)

T— ¢

where the functions 74 . are defined by (20.55+). We arrive at the following result.

99



Theorem 20.18. Suppose that conditions of Theorem 20.16 are satisfied. Let w . be the
solution of the equation (20.63), and let W), _ be the solution of the equation (20.64). Let
ry . be defined by (20.67). Then for 0 < e <1 we have

T e — 920 (D)W |l Lamzic) < Clsell P Lagezicoy.

The constant CX6 = CX |\t L.. depends on ||wy ||, [Jw- ||LOO, and on parameters of the
lattice . (Here CJ5 is the constant from (20.39) with Q. = gx'.)

By (20.68), (20.65), (20.19), and (20.20), we have

Tye— (w?l—)a*wg—,é
Ixe— ggbx (D)nge - (7’ e (W_z)aerO ’

and, therefore, the result of Theorem 20.18 could be deduced from Theorem 20.15.
By Remark 16.13, under conditions of Theorem 20.18, there exists the strong limit

(Ly(R%; C?))- hm ry . =1" = g2by (D)W,
where w9 is the solution of the equation (20.66).

For the operators Py . and P., we could also apply the results of Subsections 16.6-
16.8 about approximation of the generalized resolvent. We shall not give the detailed
formulations here. We only note that, for the case of the general matrix potential Q(x),
we could not refer to diagonalization of the operator (P. + Q°)~!

In [BSu2|, besides the ordinary Pauli operator P, the ,Pauli operator with metric*
Py = DgD was considered. The results of §16 can be applied also to this operator. We
shall not dwell on details.

§21. The operator of elasticity theory

21.1. Description of the operator

In this section, we assume that d > 2. We represent the operator of elasticity theory
as in [BSu2, §5.2|, [BSu4, §13|. Let ¢ be an orthogonal second rank tensor in R? in
the standard orthonormal basis in R?, it can be represented by a matrix ¢ = {le}ﬁlzl.
We shall consider symmetric tensors ¢, which will be identified with vectors (, € C™,
2m = d(d+1), by the following rule. The vector (, is formed by all components (;;, j <,
and the pairs (j,1) are put in order in some fixed way.

For the displacement vector u € &' = H'(R% CY), we introduce the deformation

tensor 9 5
uj O
e(u) = {&'El + Oz, }

Let e,(u) be the vector corresponding to the tensor e(u) in accordance with the rule
described above. The relation

b(D)u = —ie.(u)

determines an (m X d)-matrix homogeneous DO b(D) uniquely; the symbol of this DO is
the matrix with real entries. For instance, with an appropriate ordering, we have

S
be) = | 3% 3], d=2.
0 ¢
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Let o(u) be the stress tensor, and let o,(u) be the corresponding vector. For the
accepted way of writing, the Hooke law about proportionality of stresses and deformations
can be expressed by the relation

o.(u) := g(x)ex(u),

where g(x) is an (m xm)-matrix (which gives a ,concise description of the Hooke tensor).
The matrix g(x) characterizes the parameters of elastic (in general, anisotropic) medium.
We assume that the matrix-valued function g(x) is I-periodic and such that

9(x)>0; g,9" € L.

The energy of elastic deformations is given by the quadratic form

1 1

wlu,u] = 5 /(a*(u),e*(u))cm dx = 5 /(g(x)b(D)u, b(D)u)cm dx, uec & (21.1)

R4 R4

The operator W, acting in & = Ly(R?; C?) and generated by this form, is the operator of
elasticity theory. Thus, R
2W = b(D)"gb(D) = A(g).

Now n=d and m =d(d+1)/2.

In the case of isotropic medium, the matrix g(x) depends only on two functional
Lamé parameters A(x) and p(x). The parameter u is the shear modulus. Often another
parameter K (x) is introduced instead of A(x); K(x) is called the modulus of volume
compression. We shall need yet another modulus 5(x). Here are the relations:

A(x)

B(x) = p(x) + 5

The modulus A(x) may be negative. In the isotropic case, the conditions that ensure the
positive definiteness of the matrix g(x) are

u(x) > po >0, K(x)> Ky >0.
For instance, we write down the matrix g in the isotropic case for d = 2:

Ktu 0 K—p
g(x) = 0 4p 0 , d=2.
K—p 0 K+up

All general results related to operators of the form ./T(g) can be applied to the operator
W: Theorems 10.6, 11.3, and 12.1 are applicable, and for d = 2 Theorems 10.8, 11.4, and
12.3 are applicable. No simplification in general formulations occurs (even for the isotropic
case with variable A and pu).

21.2. The Hill body

In mechanics (see, e. g., [ZhKO|), the elastic isotropic medium with the constant shear
modulus p(x) = pp = const is called the Hill body. In this case, a simpler factorization
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for the operator W is possible (see [BSu2, Subsection 5.2.3|, [BSu4, Subsection 13.4]).
Now the energy form (21.1) can be represented as

wlu, u] :,uo/|r(u)|2dx+/ﬁ(x)|divu|2dx, uc 6 (21.2)
R R
where L8 9
L e ]
r(u) = 2{0561 @:L’j}'

The form (21.2) admits (cf. [BSu2, §5.2]) more economic description than in general case:

wlu,u] = /(gAbA(D)u, ba(D)u)cma dx.

R4
Here my = 14d(d—1)/2. The (ms x d)-matrix b, (&) can be described as follows. The first
row in b (&) is (£1,&,...,&). The other rows correspond to (different) pairs of indices

(7,0), 1 < j <1< d. The element standing in the (j,)-th row and the j-th column is
&, and the element in the (j,[)-th row and the [-th column is (—¢;); all other elements of
the (4,1)-th row are equal to zero. The order of the rows is irrelevant. Finally,

ga(x) = diag {B(x), po/2, to/2, . . . , p1o/2}. (21.3)

Thus,
W =b,(D)*ga(x)ba(D).

As it was shown in [BSu2, Subsection 5.2.3|, the effective matrix g} coincides with gx:
gn = gp = diag {8, po/2, ho/2, . - po/2}. (21.4)

The solutions v; € FII(Q; C%), j=1,...,mp, of the problem

bA(D)*ga(x)(bA(D)v; +€;) =0, /Vj (x)dx =0,
Q
are constructed in [BSu4, §13|. The role of the matrix A(x) is played by the (d x mp,)-
matrix A(x). The first column of the matrix A,(x) is vi = iVp(x), where ¢ is the
periodic solution of the equation Ay = B(8(x))™' — 1. The other columns are equal
to zero. Then A, (x)by(D) = (Ve(x))div. By (21.4), Condition 8.6(3°), and then also
Condition 8.4, is satisfied . By Remark 8.8, the norm ||AA||.., = ||V1||z.. can be estimated
by the constant depending only on d, on ||3||z_, |67} |1, and on parameters of the lattice
I'. We are under assumptions of Theorem 10.8, which leads to the following statement.

Theorem 21.1. Let u = pig = const, and let 3(x) be a positive I'-periodic function in R?
such that 3,37 € Loo. Let gr(X) be the matriz defined by (21.3). We put

We = bA(D)"g3ba(D).

Let WP = by(D)*gaba(D). Let ¢ € HY(Q) be the solution of the equation Ap =
B(B(x))" =1, and let p = V. Then for 0 < e < 1 we have

IOV + D)= W+ 1) —ep®div WV + 1) Homer < Chie. (21.5)

The constant C7\ depends on d, on the norms ||3||r.., 1837 |1, and on parameters of the
lattice I'.
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We can also apply (interpolational) Theorem 11.4. The corrector (10.11) now takes
the form (cf. [BSu4, Theorem 13.1])

KO(e) = pdiv OV + 1) — (W + 1) 7'V (p)" (21.6)

Note that now the third term of the corrector (10.11) is equal to zero (because of (21.4)).
We arrive at the following result.

Theorem 21.2. Suppose that conditions of Theorem 21.1 are satisfied. Let K°(g) be the
corrector defined by (21.6). Then for 0 < s <1 and 0 < e <1 we have

IOV, + 1) = WO+ 1) — eK2 (6)]|ews < Cc.

Here ° = H*(R% C?). The constant C? depends on s, d, on the norms ||B||L., |67 |1,
and on parameters of the lattice T'.

Let u. be the solution of the equation
W.u.+u. =F, F e, (21.7)
and let uy be the solution of the homogenized equation
W uy + uy = F. (21.8)
Estimate (21.5) means that
Ju: —ug —epdivugller < Cliel|Flle, 0<e <1

Note that (see Remark 10.7), as € — 0, the functions u. tend to uy weakly in &1
Due to relation (21.4), we can apply Theorem 12.4 for the fluxes. It gives the following
result.

Theorem 21.3. Suppose that conditions of Theorem 21.1 are satisfied. Let u. be the
solution of the equation (21.7), and let ug be the solution of the equation (21.8). Then for
0 < e <1 we have

19707 (D) — gaba(D)uy|

The constant Cjy depends on d, on the norms ||||r.., |6 1., and on parameters of the
lattice T

6. < Clee||Flle-

§22. The model operator of electrodynamics

22.1. Definition of the operator

In [BSu2, Chapter 7], in the study of the homogenization problem for the stationary
periodic Maxwell system, the auxiliary second order operator £ was considered. This
operator was also studied in [BSu4, §14]. The operator £ acts in the space & = Ly(R3; C3)
and is given by the expression

L = L(n,v) = rot (n(x)) 'rot — Vy(x)div. (22.1)
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Here the (3 x 3)-matrix-valued function 7(x) with real entries and the real-valued function
v(x) are I'-periodic and such that

n(x) > 0; 7,77 € Lo, (22.2)
v(x)>0; v,v € L. (22.3)
The precise definition of the operator £ is given in terms of the closed quadratic form
/(<77(X)_1r0t u,rot u) + v(x)|divul?) dx, ue &' = H'(R* C?).
R3

The operator £ has the form A(g) = b(D)*g(x)b(D) with n = 3, m = 4,

1= () - (9 0

The symbol b(g) of the operator b(D) is given by

0 =& &
o[855
& & &

The effective matrix ¢° has the form (see [BSu2, §7.2|)

9’ = <<?70())_1 2) ,

where 1n° is the effective matrix for the scalar elliptic operator —divnV = D*yD, and v

is defined by the formula
—1
v= <|Q|_1/1/(X)_1dx> :

Q

The effective operator £° is given by
L0 = L1 v) =10t (n°) 'rot — Vudiv. (22.4)
Let v; € HY(£; C?) be the D-periodic solution of the problem

b(D)*g(x)(b(D)v; +e;) =0, /Vj(X) dx =0,

j = 1,2,3,4. Here {e;} is the standard orthonormal basis in C*. As it was shown
in [BSu4, §14|, the solutions v;, 7 = 1,2,3, are defined as follows. Let ®;(x) be the
[-periodic solution of the problem

div n(x) (Y, (x) + ¢;) = 0, /Elsj(x) dx — 0, (22.5)
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j =1,2,3, where ¢; = (n)7'¢;, and {€;} is the standard orthonormal basis in C*. Let
q; be the I'-periodic solution of the problem

Aq; =n(V®; +c;) — &, /Qj dx = 0. (22.6)
Q

Then
v;=1irotq;, j=1,23.

Next, we have
Vy4 = 'LV()O,

where ¢ is the I'-periodic solution of the problem

Ap =v(vx)) " -1, pdx =0. (22.7)
/

The matrix A(x) is the (3 x 4)-matrix with the columns irot qi, irot qs, irot qs, i V.
By U (x) we denote the real (3 x 3)-matrix with the columns rot ¢y, rot qs, rot q3. We put
w = V. Then

A(x)b(D) = ¥(x)rot + w(x) div.

22.2

We apply Theorem 10.6, which gives the following result.

Theorem 22.1. Suppose that the matriz-valued function n(x) with real entries and the
real-valued function v(x) are I'-periodic and satisfy conditions (22.2) and (22.3). Let
L(n,v) be the operator (22.1) and let

L. = L(n°,v°) =rot (n°) 'rot — Vridiv.

Let LY be the operator (22.4), where n° is the effective matriz for the operator D*nD.
Let q;, j = 1,2,3, be the I'-periodic solution of the problem (22.6), and let p(x) be the
[-periodic solution of the problem (22.7). Let W(x) be the (3 x 3)-matriz with the columns
rotq;, j =1,2,3, and let w = V. Let I1. be the pseudodifferential operator (10.4) acting
in & = Ly(R3,C3). Then for 0 < e <1 we have

[(Le+ D)7 = (L2 + 1) — (ot + wodiv ) (L + 1) 'L ||e_e < Cioe. (22.8)

Here &' = H'(R3;C?). The constant Cio depends only on |nllre, |11 e V|,
lv=Y|L.., and on parameters of the lattice T.

We can also apply (interpolational) Theorem 11.3. Now the corrector (10.9) takes the
form (cf. [BSu4, Theorem 14.1])
K(e) = (Trot + wodiv (L0 + I) ML + (L0 + )M (rot (U°)! — V(w*)?)
—(L°4+DED)(L+ )7, (22.9)

3
ED) = Z (25 — 215) 0305 + (315 — Q135) 0205 + (235 — Q325)0105) (22.10)

s=1
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Qjps = |Q|—1/<T>j(x)<n(x)(v&>k(x) + i), €,) dx. (22.11)
Q

We arrive at the following statement.

Theorem 22.2. Suppose that conditions of Theorem 22.1 are satisfied. Let I?(s) be the
corrector defined according to (22.9)—(22.11). Then for 0 < s <1 and 0 < e <1 we have

[(Le+ D)= (L0417 —eK(e)]|ome < Cie® " (22.12)

Here &° = H*(R3,C?). The constant C, depends only on s, on |n|lr, In e, Ve,
lv=Y|L.., and on parameters of the lattice T.

22.3
Let u. be the solution of the equation
Lou.+u.=F, Fed, (22.13)
and let uy be the solution of the homogenized equation
L% +uy =F. (22.14)
Estimate (22.8) means that
Ju. — ug — e(PeTrot ug + w M div ug)||er < Croe||Flle, 0 <e < 1.

Herewith (see Remark 10.7), as ¢ — 0, the functions u. converge to uy weakly in &*.
The role of the flux for the equation (22.13) is played by the vector-valued function

p. = °b(D)u. = —i <(77€)1r0t ua) |

vedivu,

We apply Theorem 12.1 about approximation of the fluxes. The matrix g = g(1 + b(D)A)
has a block-diagonal structure (see [BSu4, Subsection 14.3]): the upper left (3 x 3)-block
is represented by the matrix with the columns V:IVDJ»(X) +cj, 7 =1,2,3. We denote this
block by a(x). The element in the right lower corner is equal to v. The other elements
are equal to zero. We denote

b. = FINDIu =i (e ).

v Hgl)div Ug

Here II%Y is the pseudodifferential operator in &, = Ly(R?* C*) with the symbol xg / (&),

and 111 is the pseudodifferential operator in Lo (R?) with the same symbol. By Theorem
12.1, we have

[P = Pelle. < Cise|[Flle, 0<e<1. (22.15)

The constant Ci5 depends on |[9llz., 7 e, ¥z, 77 L., and on parameters of
the lattice I'. Estimate (22.15) means that

(%) 'rotu, — aT.rot gl < Cise||Flle, 0<e <1, (22.16)
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[vdivu, — vIIVdiv g ,ms) < Cisel|Flle, 0<e < 1. (22.17)

We show that in (22.16) and (22.17) the operator II. can be eliminated (replaced by
I). Indeed, consider the operator

af(I — I)rot (£° + 1)~ = eTa(l — I)rot (£° + 1)1

Here T is the scaling transformation defined by (10.1). We have used relations (10.2) and
(10.3). Since the operator 7} is unitary in &, then

la*(I — TL)rot (£° + )" e = £]|a(I — ot (L0 + 1)~ oo (22.18)

The operator (I —I)rot (£°+I)~! is the pseudodifferential operator of order (—1) (with
constant coefficients), therefore, it maps & to &' continuously:

17 = Mot (L0 + €21) loan < sup [r(£)((E)"g°B(E) + 1) M|(1 + [/)1/2. (22.19)

|E|>r0
Here
0 & &
r(e) =1 & 0 =&
& & 0

is the symbol of the operator —irot. It can be elementarily checked that

|(b(&)"g"0(e) +*1) 71 <e(n’,p)|e| ™, &€ R\ {0},
c(n°,v) = max{|n"|, v '}. (22.20)

Besides, [r(&)| < |g|. Then (22.19) implies that
(I = )rot (£° 4 2I) H|goet < c(n®,v)(ry? + 1)Y2. (22.21)

Next, by Proposition 8.2 of [Su2|, the columns of the matrix a(x) (the vector-valued
functions V&, + ¢;, j = 1,2,3) are multipliers from H' to L,. Thus,

lalller—e < C.. (22.99)

where the constant C, depends only on ||1]|z.., [[77}]|z.., and on parameters of the lattice
I

As a result, relations (22.18), (22.21), and (22.22) imply that
|af(I = TI)rot (£° + 1) Heoe < Cuc(n®,v)(ry? + 1) /2.
This estimate allows us to replace II. by I in (22.16):

[(n°) "ot u. — a‘rot ug|e < C~15€||F||Qs, 0<e<l,
C15 = C15 + C*C<T]O,Z)(7’O_2 —+ 1)1/2.

It is yet easier to replace ) by I in (22.17). We consider the operator

v(I —TIW)div (£° 4 1)L,
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By analogy with (22.18), taking (22.20) into account, we have:

I (T~TIO)div (L041) o) = ellT—TO)div (£7421) " g1
< ev sup [el|(b(2)"g"b(e) + €21) 7] < eve(n®, )y (22.23)

|€1>70
From (22.17) and (22.23) it follows that

[v5divu, — pdivug|| py@s) < Cise||Flle, 0<e <1,
Ci5 = Cis + ve(n®, )y .
We arrive at the following statement.

Theorem 22.3. Suppose that conditions of Theorem 22.1 are satisfied. Let u. be the
solution of the equation (22.13), and let uy be the solution of the homogenized equation

(22.14). Let a(x) be the (3 x 3)-matriz with the columns Véj(x) +c;, 7 =1,2,3, where

®; is the I'-periodic solution of the problem (22.5). Then for 0 < e < 1 we have
1(7°) " rot 1z — a“rot ugl|s < Cise|[Fs, (22.24)

”VadiV u: — ZdiV uOHLQ(Rs) < CmEHFH@.

The constants Cs and Cys depend only on ||, I re, IWllie, v s, and on
parameters of the lattice T'.

Note that (see Remark 12.2) the weak &-limit of the functions (n°) 'rot u. is equal to

(n°)"trot uy.

22.4. Special cases

The case where ¢° = 7 is realized, if ¥ = const and n° = 7, i. e., if the columns of the
matrix 7! are potential vectors (representations of the form (17.28) are true). In this
case, Theorems 10.9 and 11.5 are applicable. This gives the following result.

Theorem 22.4. Suppose that conditions of Theorem 22.1 are satisfied. Suppose also that
v = const and n° = n. Then for 0 <e <1 we have

N(Le+ 1) — (L2 1) oo <Croe. (22.25)
Besides, for 0 < s <1 and 0 < e <1 we have
1(Le+ D)7 = (L0+ 1) ooe: < Cye*.

The constant Cyo depends only on 0|z, 10" Hre, e, IV 2e, and on parameters
of the lattice I, while the constant Cs depends on the same parameters and on s.

The case ¢g° = g is realized, if v(x) is arbitrary and 7 =7 (i. e., if the columns of the
matrix 7(x) are solenoidal). Then we can apply Theorem 12.4, which gives the following
result.
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Theorem 22.5. Suppose that conditions of Theorem 22.1 are satisfied. Suppose also
that n° =7 (i. e., the columns of the matriz n(x) are solenoidal vectors). Let u. be the
solution of the equation (22.13), and let ugy be the solution of the equation (22.14). Then
for 0 < e <1 we have

lg°0(D)u. — g°b(D)uplle. < Cioel|F e,
which tmplies two estimates
(%) 'rotu. — (7)) 'rot up||e < Cige||F|| s, (22.26)

||I/€diV u: — Zle uO||L2(R3) S ClG€||F||Q§-

The constant Cyg depends only on 0|z, 10 i, WWlee, IV e, and on parameters
of the lattice T'.

22.5. Splitting of the operator L

We put
J={ue®: divu=0}.

We use the orthogonal Weyl decomposition
& =L,R*C*=JpG, (22.27)

where

G={u=Vé: ¢€H. (R, Voe &}
Decomposition (22.27) reduces the operator (22.1):

L=L;® L.

The operator L£; acting in the subspace J corresponds to the differential expression
rot n~rot, and the operator Lg acting in G is given by the expression —Vvdiv. The
operators £, and £° are also reduced by decomposition (22.27):

L.=L;.® L., LO=LSD LY.

(For applications to the Maxwell system), we are interested mainly in the operators
Ly, Ly, and E?,. Since they do not depend on the coefficient v, it suffices to consider the
case where v = 1.

Let P be the orthogonal projection of & onto J. Then (see [BSu2, Subsection 2.4 of
Ch. 7]) P (restricted to &%) is also the orthogonal projection of the space &°* = H*(R3; C?)
onto the subspace J* = &* N J, for all s > 0.

Restricting the operators in (22.8) onto the subspace J and multiplying them by P
from the left, we obtain:

[(Lge+ 1) = (LY + 1) —ePUTLrot (LS4 1) ymm < Cle, 0<e<1. (22.28)

The constant Cj, is equal to Cjp with v = 1, whence C}, depends only on ||n]|z_, |77 1.,
and on parameters of the lattice I'.
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Similarly, restricting the operators in (22.12) onto the subspace J and multiplying
them by P from the left, we obtain:

[(Lye+ 1)) = (LS + 1) —eKy(e)|lymys <Ce¥*, 0<s<1, 0<e<1, (22.29)
where
K () = PUIrot (L9 + I,)~"
+ (LY + L) Mrot (W) — (£ + 1) ' &M (LY + 1) . (22.30)
The constant C. is equal to Cs with v = 1, whence C. depends only on s, on |9 ..,

Iz, and on parameters of the lattice T
We arrive at the following result.

Theorem 22.6. Suppose that conditions of Theorem 22.1 are satisfied. Let L. =
rot (n°)~'rot be the part of the operator L. in the solenoidal subspace J. Let LY =
rot (n°)~trot be the part of the effective operator L° in J. Let P be the orthogonal pro-
jection of & onto the subspace J. Let K,(¢) be the corrector defined by (22.30). Then
estimate (22.28) is true, and for 0 < s < 1 estimate (22.29) is valid. The constant Ci,
from (22.28) depends on ||n|r.., 107 1., and on parameters of the lattice T, while the
constant C. from (22.29) depends on the same parameters and also on s.

Now we apply (22.24) with F € J. Then, by the splitting of the operators £, and L°,
we have:
w. = (L;.+1;)7'F, ug=(LY+1,)7'F, Fel (22.31)
By 5{5 we denote the constant 615 with v = 1. We arrive at the following result.

Theorem 22.7. Suppose that conditions of Theorem 22.6 are satisfied. Let u. and ug
be the vector-valued functions defined by (22.31). Let a(x) be the (3 X 3)-matriz with the
columns v5j<x)+c‘7’, j=1,2,3, where 215]» is the I'-periodic solution of the problem (22.5).
Then for 0 < e <1 we have

|(r°) " rot u. — arot uofle < Cise|[Fle:
The constant 5{5 depends only on ||nllz.., |1z, and on parameters of the lattice T.

Now we distinguish the special cases. Restricting the operators in (22.25) onto J and
using the notation Cj, for the constant Cyo with v = 1, we arrive at the following result.

Theorem 22.8. Suppose that conditions of Theorem 22.6 are satisfied. Suppose also that
n' = n. Then for 0 < e <1 we have

I(Lge+ 1) = (L5 + L)l < Chae
Besides, for 0 < s <1 and 0 <e <1 we have
(Lo + 1) = (LS + 1) Y soss < Cle?.

The constant Cjy depends on ||nllz., |10 5., and on parameters of the lattice T, while
the constant C, depends on the same parameters and on s.

The following statement is deduced from (22.26) with F' € J; here we use the notation
Ci¢ for the constant Cig with v = 1.

Theorem 22.9. Suppose that conditions of Theorem 22.6 are satisfied. Suppose also that
n® =7. Then for 0 < e <1 we have

1(n°)~"rot ue — (7))~ 'rot uglle < Cige[[Flle-

The constant Cig depends on |||, (|07 L., and on parameters of the lattice T
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§23. Comments

Along with the material of this section, it is useful to be acquainted with the similar §15
from [BSu4].

23.1

We did not consider the problem of approximations of higher order for the resolvent
(A. + I)~'. The significance of such approximations for applications is scarcely big. We
also mention the following. Suppose that, using approximations of higher order, we want
to obtain the remainder estimates of ,right order in the natural operator norms. Then
we may expect that these approximations will contain new terms besides the standard
ones, i. e., those that can be found by the twoscale expansions method of N. S. Bakhvalov
(see [BaPa|). As a result, the formulas will become yet more bulky.

The fear expressed above is indirectly confirmed by the observation related to the
homogenization problem for the stationary Maxwell system. In [Sul,2|, for some physical
fields the following was clarified. In order to find approximation in the (Ls — Ls)-norm
with the error term of order ¢, it is not sufficient to take the resolvent of the homogenized
Maxwell system. We are forced to add terms of order O(1) (that are rapidly oscillating
as € — 0) to it. In the weak limit procedures, these terms make no contribution and are
not noticed.

23.2

Often, in the homogenization theory, not the problem in the whole space is considered,
but the problem in a fixed bounded domain O (9O is smooth), under an appropriate
classical boundary condition. Such problem is more difficult than the problem in the
whole space, since the homogenization effect itself interacts with the effects occuring in
the boundary layer. Sometimes, however, it is useful first to solve the homogenization
problem in R?, and afterwards try to satisfy the boundary conditions on 9O. It is this
way, that was used for the proof of the (Ly — H!)-estimates in O in the paper |ZhPas].
Herewith, the order of the error estimate worsens up to £'/2.
Some results about H'-estimates in a bounded domain can be found in [Gr1,2|.

23.3. Correctors. Smoothing operators

We emphasize once more that, a fortiori, the corrector is defined not uniquely. Herewith,
the extent of this non-uniqueness depends on the choice of the (operator) norm, in which
we wish to estimate the error of aproximation. This is already seen from comparence of
formulas (0.8)—(0.10), and also of (0.10) and (11.5). Note also that (see [BSu4, Proposition
8.8]) the operator K3 in the corrector (0.9) coincides with the weak Lo-derivative of the
operator-valued function (.,Zl\6 + I)~! with respect to ¢ at € = 0. Therefore, K3 is defined
uniquely. At the same time, (0.10) does not contain Kj.

Usually, in the proof of estimates (0.8) or (0.10), we cannot avoid including of some
smoothing operator in the corrector (our smoothing operator is the pseudodifferential
operator II. defined by (10.4)). The smoothing operator is also defined not uniquely.
Evidently, in general it is impossible to get rid of (some) smoothing operator. However,
sometimes it is possible to eliminate it, i. e., to replace it by I. We attentively looked
for the sufficient conditions for such elimination. As it has already been mentioned, the
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sufficient conditions for elimination of II. in the case of estimate (0.8) are wider than in
the case of estimate (0.10). It is also interesting that, in the case of the model operator
of electrodynamics (see §22), in the approximation of the resolvent in the (L, — H®)-
norm we did not succeed to eliminate the operator II. in the corrector, while in the
approximation of the fluxes in the (Ly — Ls)-norm we succeeded to eliminate II.. The
latter fact is essential for applications to the Maxwell operator theory.

23.4. The stationary Maxwell system

From the point of view of homogenization problems, the stationary Maxwell system with
the periodic characteristics of the medium is of significant interest. Up to now, approxi-
mations with the error estimates of order ¢ in the (Ly — Lg)-norm are not obtained for
all physical fields. The homogenization problem for the Maxwell operator can be reduced
to the similar problem for an appropriate elliptic second order DO. This operator admits
a factorization of the form A*X | where X is a homogeneous first order DO. In general,
the latter operator cannot be represented in the form X = hb(D)f (see Subsection 4.1).
(This representation is assumed in [BSu2,4| and also in the present paper.) However, our
abstract results are applicable to the DO X*X. On this basis, in a separate work [Sul,2],
approximations with the error estimates of order € in the (Ly — Ls)-norm were obtained,
but, unfortunately, not for all physical fields.

However, a little bit earlier, the following was mentioned (see [BSu2, Ch. 7]). If
one of two characteristics of the medium (for instance, the magnetic permeability p) is
equal to identity (or is constant), then the corresponding second order DO belongs to the
class of operators of the form (0.5). On this way, in [BSu2|, for the Maxwell operator
approximation in the (Ly — Lo)-norm with the error estimate of order ¢ was found for
one (of six!) physical field. For two more fields, similar results directly follow from the
general statements of [Sul,2|; herewith, approximations contain the corrector of order
zero (with respect to ¢), which is rapidly oscillating as ¢ — 0.

Finally, using the results of §22 about approximation of the fluxes, we can deduce the
required approximations and estimates for the remaining three fields. Thus, for the case
where p = 1, the required results about homogenization of the Maxwell operator are now
obtained. Note that all six approximations do not contain smoothing operators. The
results for u = 1 will be written in details elsewhere. Up to now, the homogenization
problem for the Maxwell operator of general type is not studied completely.
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