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Deconvolution from Fourier-oscillating error densities under
decay and smoothness restrictions

Alexander Meister

Institut für Stochastik und Anwendungen,
Universität Stuttgart

D-70569 Stuttgart, Germany

Abstract: This paper is concerned with deconvolution from error or blurring densities whose
Fourier transforms have isolated zeros and show oscillatory behaviour; unlike conventional ap-
proaches where the Fourier transform decays about monotonously. We introduce specific estima-
tion procedures based on local polynomial approximation in the Fourier domain. Under combined
moment and smoothness conditions, we are able to improve the convergence rates compared to
existing methods in density deconvolution. The corresponding minimax theory is derived. In
compactly supported models as in signal deblurring and Berkson regression, nearly optimal rates
are achieved under conditions which are significantly weaker than those assumed in earlier papers.

Keywords: Berkson regression; density estimation; image deblurring; nonparametric statistics;
optimal convergence rates; statistical inverse problems.
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1. Introduction

Many problems in nonparametric statistics require application of deconvolution procedures,
e.g. density estimation based on contaminated data, errors-in-variables problems in nonparametric
regression, image deblurring.

Fourier techniques are the dominating method in deconvolution problems as, in the Fourier
domain, convolution with a known error density g changes into simple multiplication by the
Fourier transform of g, which is denoted by gft. Therefore, most deconvolution procedures are
based on dividing an empirical quantity by gft. More concretely, our goal is estimating a function
f ∈ L2(R) where we have a data-based version ψ̂h(t) of hft(t) = fft(t)gft(t) with h = f ∗ g (∗
denotes convolution).

The probably most obvious strategy is employing

ψ̃f (t) = ψ̂h(t)/gft(t) (1)

as the estimator of fft(t). However, we are getting into trouble if gft has some zeros. Therefore,
it has become common in deconvolution problems to assume that gft vanishes nowhere; although
there are important densities which do not satisfy that condition, for example, uniform densi-
ties and convolution of uniform densities with any other density. So there is a comprehensive
nonparametric class of error densities where classical deconvolution estimators are not applicable.

We focus on error densities g whose Fourier transforms have periodic zeros and show oscillatory
bahaviour; unlike error densities considered in traditional approaches where gft decays about
monotonously, i.e. the upper and the lower bound of gft coincide with each other up to different
positive constants. We call an error density g Fourier-oscillating (FO) if it satisfies

C2

∣

∣ sin(πt/λ)
∣

∣

µ
|t|−ν ≥ |gft(t)| ≥ C1

∣

∣ sin(πt/λ)
∣

∣

µ
|t|−ν , ∀|t| ≥ T , (2)

with some constants λ,C2, C1, T > 0; while |gft(t)| > 0 is stipulated for |t| ≤ T . Parameter µ ≥ 1
represents the order of the isolated zeros; while ν ≥ µ describes the tail behaviour of |gft|. Hence,
all µ-fold self-convolved uniform densities are included into the framework of (2) for µ = ν; as well
as convolutions of those densities with ordinary smooth densities, i.e. their Fourier transforms
decay as a polynomial.

In terms of density deconvolution, Hall & Meister (2007) study the optimal convergence rates
for FO error densities; they show that the rates can be kept from non-FO ordinary smooth error
densities only in rare cases; e.g. parameter µ is sufficiently small with respect to ν and to the
smoothness degree of f ; also, the definition of smoothness classes for f is modified, compared to
standard Sobolev conditions. In the related problem of image recovery, Johnstone et al. (2004)
and Kerkyacharian et al. (2007) consider deconvolution from uniform blurring densities g when
there is a certain relation between the variance of g and the support of f . In special deconvolution
models, e.g. circular deconvolution (see Goldenshluger (2002)) or compactly supported f (see
Meister (2005)), it is possible to recover f even if the set of all zeros of gft is open and non-void;
however, the rates are slow then (logarithmic or at least sub-algebraic).

In the current paper, we consider deconvolution problems from FO error densities g under
restrictions, which are satisfied by assumptions on the decay of f , in addition to usual smoothness
assumptions on f . The methods for reconstructing fft(t) when gft(t) is equal or close to zero are
based on a local polynomial approach in the Fourier domain; it is described in Section 2. Then, by
using those specific estimation procedures, we are able to improve the speed of convergence com-
pared to the rates derived in Hall & Meister (2007) in the field of density deconvolution (Section
3); data-driven bandwidth selection is discussed. In compactly supported models under discrete
transform models, the rates are even very close to those derived for non-FO error densities (Section
4). We derive nearly optimal rates in signal deblurring under significantly weaker conditions on
g, compared to Johnstone et al. (2004) and Kerkyacharian et al. (2007); more concretely, under
uniform blurring densities g, we allow any positive scaling parameter of g; not only irrational
parameters (Subsection 4.1). Also, our results have applications in Berkson regression problems
(Subsection 4.2). The proofs are deferred to Section 5.
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2. Methodology

In the sequel, the isolated zeros of gft are denoted by tj = jλ for |j| ≥ T/λ, according
to (2). We consider how to estimate fft(t) when t is near or even equal tj . Apparently, the

function ψ̃f as in (1) has a pole at tj . Therefore, reconstruction of fft in the neighbourhoods
Aj,n = [tj − aj,n, tj + aj,n], aj,n > 0 becomes particularly challenging.

However, if fft is locally approximable by a polynomial around some neighbourhoods of tj – say
Tj = (tj −τ, tj +τ) with some fixed τ ∈ (0, λ/2) – then fft(t) shall be empirically accessible for t ∈

Aj,n from ψ̃f on a domain outside Aj,n; hence we define the intervalBj,n = [tj−aj,n−bj,n, tj−aj,n],
for j > 0, and Bj,n = [tj + aj,n, tj + aj,n + bj,n], otherwise; with aj,n, bj,n > 0 and aj,n + bj,n ≤ τ

so that ψ̃f does not have any poles on Bj,n.
We assume local smoothness conditions on fft by upper bounds on its derivatives,

max
k∈{0,...,m+1}

sup
|j|≥T/λ

sup
t∈Tj

∣

∣

[

fft
](k)

(t)
∣

∣ ≤ C3 , (3)

where C3 > 0, m ≥ 0. Then we may apply the Taylor expansion around tj , giving us

fft(t) =

m
∑

k=0

1

k!

[

fft
](k)

(tj) · (t− tj)
k + Rtj ,m(t) , (4)

for all t ∈ Tj where the residual term Rtj ,m(t) satisfies
∣

∣Rtj ,m(t)
∣

∣ ≤ C3

[

(m+ 1)!
]−1

· |t− tj |
m+1,

due to Lagrange’s representation. We notice that condition (3) holds if the first to the (m+ 1)th
moment of f are bounded above,

∫

|x|k|f(x)|dx ≤ C4 , ∀k ∈ {0, . . . ,m+ 1} , (5)

for some appropriate constant C4. In problems where f is a density it suffices to assume the above
inequality for k = m + 1 only. On the other hand, the Cauchy density f0(x) = 1/

[

π(1 + x2)
]

is also included into the framework of (3) although it does not satisfy (5). Hence, condition (3)
seems rather mild.

To construct an estimator of fft(t), t ∈ Aj,n, we apply a local polynomial approach in the

Fourier domain. As a tool for projecting ψ̃f onto the space of all polynomials defined on Bj,n with
the degree ≤ mn, we introduce the polynomials Pk,j,n by

Pk,j,n(t) =











(

4k+2
bj,n

)1/2

Lk

[

2b−1
j,n

(

t− tj + aj,n + bj,n/2
)]

, for j > 0 ,
(

4k+2
bj,n

)1/2

Lk

[

2b−1
j,n

(

t− tj − aj,n − bj,n/2
)]

, otherwise ,
(6)

on t ∈ Bj,n, writing χA for the indicator function of a set A and denoting the kth Legendre
polynomial on [−1, 1] by Lk. One can show that

{

Pk,j,n

}

integer k≥0
are an orthonormal base of

the Hilbert space of all squared-integrable functions defined on Bj,n, called L2(Bj,n). We introduce

ψ̃
app.
f ;j,n (t) =

mn
∑

k=0

Pk,j,n(t) ·

∫

Bj,n

Pk,j,n(s)ψ̂h(s)/gft(s) ds , (7)

on t ∈ Bj,n. The sequence (mn)n is still to be determined. Due to the constraint (3), we have to

respect mn ≤ m. Note that ψ̃
app.
f ;j,n may uniquely be continued on t ∈ R\Bj,n so that we have a

polynomial on the whole real line. Hence, we employ that continuation, denoted by ψ̃con.
f ;j,n(t), as

the estimator of fft(t) for t ∈ Aj,n.

The accuracy of estimator ψ̃con.
f ;j,n(t) is studied in the following lemma. We write const. for a

generic positive constant.
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Lemma 1 Assume that g is bounded and satisfies (2); choose aj,n, bj,n > 0 so that aj,n+bj,n ≤ τ ,
∀|j| > T/λ, integer n. We assume m2

n ≤ const. · bj,n/aj,n for all integers n and |j| > T/λ. If f
satifies (3) and mn ≤ m, then we have, for any |j| ≥ T/λ,

sup
t∈Aj,n

E
∣

∣ψ̃con.
f ;j,n(t) − fft(t)

∣

∣

2
≤ O

(

m2
nj

2νa−2µ
j,n

)

sup
s∈Bj,n

E
∣

∣ψ̂h(s) − hft(s)
∣

∣

2

+ O
(

C2
3a

2mn+2
j,n /[(mn + 1)!]2

)

+ O
(

C2
3m

3
n(bj,n + aj,n)2mn+2/[(mn + 1)!]2

)

,

where O(· · · ) does not depend on C3, m and f .

3. Density deconvolution

In this section, we apply the results derived in the previous section to the problem of density
estimation under additive measurement error. In this model, we observe the data

Yj = Xj + εj , j ∈ {1, . . . , n}

where all X1, ε1, . . . , Xn, εn are independent. The εj, which represent the contamination of the
data, have the known density g; while our goal is estimating the density of the Xj, denoted by f .

That widely-studied problem – also known as density deconvolution – has received considerable
attention during the last decades. Deconvolution kernel estimators were introduced by Stefanski
& Carroll (1990) and Carroll & Hall (1988); the underlying minimax theory was developed by
Fan (1991, 1993). For recent contributions to that topic see Delaigle & Gijbels (2002, 2004a,b),
Carroll & Hall (2004), Butucea & Tsybakov (2007a,b). As further methods, we mention discrete
transform approaches (Hall & Qiu (2005)) or wavelet-based methods (Pensky & Vidakovic (1999),
Compte et al. (2006)).

Therefore, the problem as well as the notations f , g, h = f ∗ g are embedded into the general
framework introduced in Section 1 and 2; where h is interpreted as the density of the observations
Yj . Hence, for ψ̂h as used in Section 1 and 2, we choose the empirical characteristic function

ψ̂h(t) =
1

n

n
∑

j=1

exp(itYj) .

Inside the neighbourhoods t ∈ Aj,n of the isolated zeros of gft, we employ the procedure derived in
Section 2 to estimate fft(t); while outside Aj,n, we apply the simple version according to (1). The
specific parameters aj,n, bj,n are still to be chosen suitably. More precisely, for integer |j| ≥ T/λ,
we define

ψ̂f (t) =

{

ψ̃con.
f ;j,n(t) , if t ∈ Aj,n for some |j| ≥ T/λ ,

ψ̂h(t)/gft(t) , otherwise,
(8)

leading to the final density estimator

f̂(x) =
1

2π

∫

exp(−itx)Kft(th)ψ̂f (t)dt , (9)

with a kernel functionK and the bandwidth h = hn. We stipulate thatKft is compactly supported
so that estimator (5) is well-defined.

With respect to the target density f , we assume (3) with fixed constants C3,m, τ and usual
Sobolev conditions, given by

∫

|fft(t)|2
(

1 + |t|2β
)

dt ≤ C5 . (10)
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All those densities are collected into the class Fβ,C5;C3,m,τ . Hence, our framework for f is a
combination of smoothness (with degree β) and decay restrictions (with degree m). We feel that
these assumptions are realistic for most densities of practical interest.

We will show that our estimator (9) achieves optimal rates of convergence in the considered

problem. We define the mean integrated squared error (MISE) of an estimator f̂ for f by

MISEn(f̂ , f) = E‖f̂ − f‖2 ,

where ‖ · ‖ denotes the L2(R)-norm. We give the following theorem.

Theorem 1 Take estimator f̂ as in (9). Assume that the error density g is bounded and satisfies
(2). Select K so that Kft is supported on [−1, 1]; |Kft(t)| ≤ 1; and |Kft(t) − 1| = o(|t|β). We
choose mn = m; aj,n = const.·jκn−η with κ = ν/(µ+m+1); bj,n = 3aj,n; and η = 1/(2µ+2m+2);

and h = const. · n−(2m+3)
/[

2m(2β+2ν+1)+4βµ+2µ+6ν+4β+2
]

. Then, we have

sup
f∈Fβ,C5;C3,m,τ

MISEn(f̂ , f) = O
(

n−(2m+3)β
/[

m(2β+2ν+1)+2βµ+µ+3ν+2β+1
]

)

.

In our setting, the ridge-parameter estimator of Hall & Meister (2007) is unable to take ad-
vantage of (3) and loses its optimality. For instance, taking the Sobolev(β) class of densities with
bounded first moment (m = 0) with respect to f and the uniform density on [−1, 1] as g, the
supremum of the MISE of estimator (9) converges at the rate n−3β/(4β+5) according to Theorem
1; while the ridge-parameter method does not achieve rates faster than n−1/2 (see Theorem 4.2 in
Hall & Meister (2007)), which is significantly slower if β > 5/2. In the countercase β ≤ 5/2, the
more restrictive smoothness conditions of Hall & Meister (2007) become efficient.

On the other hand, we realize that the rates in Theorem 1 are slower than those derived in
Fan (1991, 1993) for non-FO error densities whose Fourier transforms decay as |t|−ν ; that rate is

n−2β/(2β+2ν+1) . (11)

In the sequel, we will refer to those rates as classical deconvolution rates as they are also applicable
in a couple of different deconvolution problems. Of course µ does not occur in (11) because there
are no isolated zeros; but the tail behaviour of gft(t) described by ν influences the speed of
convergence. Obviously, we have to pay for the periodic zeros of gft. Hence, there is a necessity
to prove optimality for the rate in Theorem 1. The following theorem shows that our estimator
cannot be improved with respect to the convergence rates under mild additional assumptions on
the derivative of g, which are indeed satisfied for µ-fold self-convolved uniform densities as well as
their convolutions with appropriate ordinary smooth densities, for example.

Theorem 2 Assume that g is bounded and satisfies (2) and, in addition,

|gft′(t)| ≤ D′
2| sin(πt/λ)|µ−1|t|−ν

for some constant D′
2 > 0; let β > 1/(m + 1); consider C3, C5, τ as sufficiently large. Then, for

any estimator f̂ based on the data Y1, . . . , Yn, we have

sup
f∈Fβ,C5;C3,m,τ

MISEn(f̂ , f) ≥ const. · n−(2m+3)β
/[

m(2β+2ν+1)+2βµ+µ+3ν+2β+1
]

.

As an unattractive feature, estimator (9) uses parameterm in its construction; and the optimal
selection of h requires knowledge of the smoothness degree β, in addition. The previous aspect is
justified if some a-priori information on the decay of f as in (5) is given. Further, under certain
conditions, one may empirically test the assumption

∫

|x|m+1f(x) ≤ Ck for any fixed m and f ; for
estimators of the (m+1)th moment of X1 based on the contaminated data Y1, . . . , Yn, see Meister
(2006). With respect to the bandwidth choice, we propose a cross-validation (CV) procedure;

4



those methods are common in deconvolution problems (e.g. Hesse (1999), Hall & Meister (2007)).
We define the quantity Ξ̂(h; t) by

Ξ̂(h; t) =
1

πn(n− 1)
Re

∑

j 6=k

Kft(th) |gft(t)|−2 exp
(

it(Yj − Yk)
)

, ∀|t| 6∈
⋃

p

Ap,n

and

Ξ̂(h; t) =
1

πn(n− 1)
Re

∑

j 6=k

mn
∑

l,l′

Kft(th)Pl,p,n(t)Pl′,p,n(t)

·

∫

Bp,n

Pl,p,n(s) exp(−isYj)/g
ft(−s) ds ·

∫

Bp,n

Pl′,p,n(s) exp(isYk)/gft(s) ds ,

(12)

for t ∈ Ap,n and some integer p; while Kft is supported on [−1, 1]. Then we put our CV-function
equal to

CV(h) =

∫

∣

∣f̂(h; t)
∣

∣

2
dt −

∫

Ξ̂(h; t)dt ,

where f̂(h; ·) denotes estimator (9) with focus on its bandwidth h. A completely data-driven

choice of the bandwidth ĥ can be derived by taking the minimum of CV(·) over an appropriately
chosen subset of [0,∞).

4. Compactly supported functions f

Heuristically, we obtain the classical convergence rates for nonparametric deconvolution (11)
when putting m = ∞ in Theorem 1. According to (5), that situation is identifiable with problems
where all moments of f exist; that is satisfied by compactly supported f . Considering those f is
realistic in other deconvolution problems than density estimation from corrupted data, e.g. signal
recovery or Berkson regression.

In models with bounded support, discrete transform approaches are favorable, e.g. Hall &
Qiu (2005), as square-integrable f can be represented by its Fourier series so that estimating
f reduces to making the Fourier coefficients of f empirically accessible. We assume that f is
supported on [−π, π]; simple rescaling techniques make our method applicable for more general
support intervals. Given f ∈ L2([−π, π]), we have

f(x) =
1

2π

∑

k∈Z

fk exp(−ixk) · χ[−π,π](x) ,

with the coefficients fk =
∫

exp(itk)f(t)dt = fft(k). We notice that deconvolution is extremely
difficult if e.g. λ = 1, hence tk = k, in (2); then only a finite number of Fourier coefficients
gk = gft(k) is not equal to zero. Therefore, standard methods as utilizing (1) for t = k are not
applicable. At that point of view, no consistent estimator of f seems to exist; however, we will
show that this impression is wrong.

One could try to reelevate the troubles with λ = 1 by changing the support boundaries of f .
Nevertheless, we should consider that the support domain cannot be chosen arbitrarily large as the
endpoints of f are usually exempted from smoothness constraints on f , i.e. jump discontinuities
at {π, π} are allowed while f shall be smooth on (π, π). Therefore, the support is usually deter-
mined by the specific experiment. Those assumptions seem reasonable, for example considering a
picture taken on a bounded domain. That reflects in the following definition of the smoothness
assumptions, given by classifying the decay of the Fourier coefficients,

∑

k

(

1 + |k|2β
)

|fk|
2 ≤ C6 , (13)

5



for β ≥ 1/2; the sum is to be taken over all integers k. In discrete transform models, (13) replaces
the Sobolev condition (10). Similar conditions are also used in Korostelev & Tsybakov (1993),
Hall & Qiu (2005), Delaigle et al. (2006), for instance.

Now, we are able to specify the function class F ′
C6,β by the totality of all functions f supported

on [−π, π]; satisfying (13) and ‖f‖L1(R) ≤ 1. The latter condition can be relaxed by assuming an
arbitrary but fixed upper bound instead of 1. In problems where f is a density, it need not be
assumed explicitly, of course.

Let us study how condition (3) changes for f ∈ F ′
C6,β. We have

∣

∣[fft](m)(t)
∣

∣ ≤

∫

[−π,π]

|x|m|f(x)|dx ≤ πm , ∀ t ∈ R, integer m > 0 (14)

Therefore, C3 in (3) may no longer be seen as a constant but as an exponentially increasing
sequence; that becomes significant when applying Lemma 1. Now we are allowed to select (mn)n

as a sequence tending to infinity in the construction of estimator ψ̃con.
f ;j,n . Lemma 1, when setting

m = mn, provides, for t ∈ Aj,n,

E
∣

∣ψ̃con.
f ;j,n(t) − fft(t)

∣

∣

2
≤ O

(

m2
nj

2νa−2µ
j,n

)

sup
s∈Bj,n

E
∣

∣ψ̂h(s) − hft(s)
∣

∣

2
+O

(

(πaj,n)2mn+2/[(mn + 1)!]2
)

+ O
(

m3
n[π(bj,n + aj,n)]2mn+2/[(mn + 1)!]2

)

, (15)

where constants do not depend on f ; and m2
n ≤ const. · bj,n/aj,n still has to be respected. Then

we derive the estimator f̂k of fk by

f̂k =

{

ψ̃con.
f ;j,n(k) , if k ∈ Aj,n for some |j| > T/λ ,

ψ̂h(k)/gft(k) , otherwise ,

and the function estimator

f̂(x) =
1

2π

∑

|k|≤Jn

f̂k exp(−ixk) · χ[−π,π](x) , (16)

where the integer sequence (jn)n is the analogue of the reciprocal bandwidth in kernel estimation.

Yet, we leave ψ̂h(t) undefined. Its specific selection depends on the statistical experiment. At
this point, we only assume that

sup
t∈R

E
∣

∣ψ̂h(t) − hft(t)
∣

∣

2
≤ const.n−1 , (17)

where const. does not depend on f . Then, we give the following theorem.

Theorem 3 Take estimator f̂ as in (16). Assume that g is bounded and satisfies (2); and that (17)
holds. Select bj,n = b ∈ (0, λ/4), aj,n = an = const. (lnn / ln lnn)−2, mn = Cm lnn / ln lnn with a
constant Cm > 1/2, Jn = const. · n1/(2β+2ν+1)

(lnn/ ln lnn)(−2−4µ)/(2ν+2β+1). Then, we have

sup
f∈F ′

C6,β

MISEn(f̂ , f) = O
(

n−2β/(2β+2ν+1)(lnn/ ln lnn)2β(2+4µ)/(2β+2ν+1)
)

.

Hence, estimator (16) achieves the classical rates (11) up to a logarithmic loss. We mention
that in the papers of Johnstone et al. (2004) and Kerkyacharian et al. (2007), the consideration is
also restricted to nearly optimal rates. Nevertheless, the question whether the logarithmic factor
can be removed in the underlying model remains open.

As a data-driven procedure for selecting parameter Jn, we define the cross-validation function

CV(J) =
∑

|k|≤J

|f̂k|
2 −

∑

|k|≤J

Ξ̂(1/J ; k) ,

6



where we take Ξ(h; ·) from (12) with the sinc kernel as K. Minimizing CV(J) over an appropriate
set of integers gives us an empirically accessible choice of J in the discrete-transform setting.

Further, in density deconvolution with compactly supported and continuous f (β > 1/2)
where g is a uniform density ga = (2a)−1χ[−a,a] , we mention that, for f(π) ≥ const., the scaling
parameter a is consistently estimable by â = max{Y1, . . . , Yn} − π. Therefore, under those
conditions, a need not be known. Nevertheless, our focus is directed to other problems in the
compact support setting.

In the following subsections, we will apply the general result of Theorem 3 to two important sta-
tistical problems. All that remains to be verified is the existence of an estimator ψ̂h satisfying (17).

4.1. Signal deblurring

We consider the famous model of image or signal reconstruction where the function Y (x), x ∈ I,
driven by the stochastic differential equation,

dY (x) = (f ∗ g)dx + n−1/2dW (x) , ∀x ∈ I ,

is observed on some compact interval I; while W (x) denotes the standard Wiener process. For
the minimax theory for non-FO blurring densities g (also known as pointspread function), see e.g.
Korostelev & Tsybakov (1993). From there, we learn that the rates (11) are also obtainable and
optimal in this setting.

Specific problems with uniform blurring densities g have become known as boxcar deconvolu-
tion, see Johnstone et al. (2004) and Kerkyacharian (2007) et al.. In those papers, deconvolution
from uniform densities g is considered if – transferred to our notation – λ as in (2) is irrational.
That means that none of the Fourier coefficients gft(k) is equal to zero but some subsequences
may accumulate to the zeros of gft. Another approach which might address the FO-case in sig-
nal deblurring is the ForWaRD algorithm introduced in Neelamani et al. (2004); however, the
investigation of convergence rates is restricted to standard cases in that paper.

Theorem 3 provides a more general treatment of this problem for any λ > 0. Consider the
situation where g is the µ-fold self-convolved uniform density supported on [−µπ/λ, µπ/λ]. We

recall that h = f ∗ g, by definition. As the estimator ψ̂h(t), we propose

ψ̂h(t) =

∫

[−π−µπ/λ,π+µπ/λ]

exp(itx) dY (x) , (18)

assuming [−π − µπ/λ, π + µπ/λ] ⊆ I. Then, by the following lemma

Lemma 2

E
∣

∣ψ̂h(t) − hft(t)
∣

∣

2
≤ const. · 1/n ,

with constants independent of t and f ,

condition (17) is satisfied so that for f ∈ F ′
C6,β – a realistic condition in image deblurring – The-

orem 3 is applicable. Therefore, estimator (16) establishes nearly optimal rates

4.2. Berkson regression

Since Berkson (1950), errors-in-variables regression problems have been studied where the
design variables are contaminated after the corresponding data have been measured. In the math-
ematical model, one observes the i.i.d. data (X1, Y1), . . . , (Xn, Yn) with

Yj = f(Xj + δj) + ηj ,

where the Xj, δj , j = 1, . . . , n are independent; E(ηj | Xj) = 0 and E(η2
j | Xj) = σ2 ∈ (0,∞),

uniformly in f and n. Here, g must be interpreted as the density of the −δj. The density of the
Xj is called the design density fX . Our goal is estimating the regression function f .
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Note that this problem is different from the deconvolution regression model considered in Fan
& Truong (1993) where the design points are observed with noise δj while Yj = f(Xj) + ηj . A
nonparametric treatment of the Berkson regression problem is given in Delaigle et al. (2006).
In that paper, the authors mention that, in practice, both f and g are likely to be compactly
supported. They propose an approach based on orthogonal series and derive optimal rates of
convergence, which correspond to (11), indeed. Although the authors consider FO error densities
their setting must be viewed at as a classical deconvolution problem as the Fourier coefficients
gft(j) are chosen so that |gft(j)| ≥ const.|j|−2ν . That seems rather restrictive with respect to
parameter λ. Cases where some of the gft(k) are zero are not included; even accumulation of the
gft(k) at some zeros of gft is forbidden.

Again, we are able to consider the problem for arbitrary λ > 0, so we include even the extreme
case where almost all gft(k) are equal to zero. The conditions from Delaigle et al. (2006) may be
adopted except the positive lower bound on the gft(k). In detail, we assume that f is supported
on [−π, π]; that fX is bounded away from zero on [−π − c, π + c] for some c > 0; that the ηj

have mean zero and uniformly bounded variance; and that g is bounded, supported on [−c, c] and
satisfies (2). Hence, the contaminated regression function h(x) := E(Y1 | X1 = x) =

(

f ∗ g
)

(x)
has its support on [−π − c, π + c]. Therefore, the uniform densities on [−π/λ, π/λ] are included
into our framework for any λ ≥ π/c. Under the appropriate smoothness assumptions on f , we
may verify f ∈ F ′

C6,β . Estimating function h(x) is a direct nonparametric regression problem,
i.e. no deconvolution step is required. In rare cases, where the design density fX is known and
supported on [−π − c, π + c], we may employ

ψ̂h(t) =
1

n

n
∑

j=1

Yj exp(itXj) / fX(Xj) ,

as an unbiased estimator for hft(t), which satisfies (17). In a more realistic setting, we may define

ψ̂h as the Fourier transform of a truncated local linear smoother so that validity of (17) can also
be ensured, see Delaigle et al. (2006) for the underlying theory.

Then, for fixed fX , we are able to employ Theorem 3. Our procedure achieves nearly optimal
convergence rates in the Berkson regression problem, too.

5. Proofs

Proof of Lemma 1: First we consider

E
∣

∣

∣
ψ̃con.

f ;j,n(t) −

mn
∑

k=0

Pk,j,n(t) ·

∫

Bj,n

Pk,j,n(s)fft(s)ds
∣

∣

∣

2

= E
∣

∣

∣

∫

Bj,n

[

ψ̂h(s) − hft(s)
][

gft(s)
]−1

mn
∑

k=0

Pk,j,n(t)Pk,j,n(s)ds
∣

∣

∣

2

≤ bj,n ·

∫

Bj,n

∣

∣gft(s)
∣

∣

−2
E

∣

∣ψ̂h(s) − hft(s)
∣

∣

2
∣

∣

∣

mn
∑

k=0

Pk,j,n(t)Pk,j,n(s)
∣

∣

∣

2

ds

≤ O
(

bj,nj
2νa−2µ

j,n

)

sup
s∈Bj,n

E
∣

∣ψ̂h(s) − hft(s)
∣

∣

2
·

mn
∑

k=0

∣

∣Pk,j,n(t)
∣

∣

2
, (19)

where we have used fft(s) = hft(s)/gft(s) for s ∈ Bj,n, the Cauchy-Schwarz inequality, Fubini’s
theorem and the orthonormality of the Pk,j,n. To continue that chain of inequalities, we derive
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the following inequality for the Legendre polynomials Lk.

|Lk(t)| =
∣

∣

∣

k
∑

l=0

2−k

(

k

l

)2

(t− 1)l(t+ 1)k−l
∣

∣

∣
≤

∣

∣1 + (|t| − 1)/2
∣

∣

k
·
∣

∣

∣

k
∑

l=0

k2l

(l!)2

( |t| − 1

|t| + 1

)l∣
∣

∣

≤
∣

∣1 + (|t| − 1)/2
∣

∣

k
· exp

[

k2(|t| − 1)
]

,

for all |t| ≥ 1 (see e.g. Koepf (1998)). Hence, as t ∈ Aj,n,

∣

∣Pk,j,n(t)
∣

∣ ≤
[

(4k + 2)/bj,n
]1/2

· (1 + 2aj,n/bj,n)k · exp(16k2aj,n/bj,n) .

From there, we derive that (19) is bounded above by

O
(

m2
nj

2νa−2µ
j,n

)

sup
s∈Bj,n

E
∣

∣ψ̂h(s) − hft(s)
∣

∣

2
, (20)

as m2
n ≤ const. · bj,n/aj,n.

Further, we study under the condition mn ≤ m,

∣

∣

∣
fft(t) −

mn
∑

k=0

Pk,j,n(t) ·

∫

Bj,n

Pk,j,n(s)fft(s)ds
∣

∣

∣

2

=
∣

∣

∣
Rtj ,mn

(t) −

mn
∑

k=0

Pk,j,n(t) ·

∫

Bj,n

Pk,j,n(s)Rtj ,mn
(s)ds

∣

∣

∣

2

≤ O
(

C2
3 |t− tj |

2mn+2/[(mn + 1)!]2
)

+ 2

mn
∑

k,k′=0

∣

∣Pk,j,n(t)Pk′,j,n(t)
∣

∣

∫

Bj,n

R2
tj ,mn

(s) ds

≤ O
(

C2
3a

2mn+2
j,n /[(mn + 1)!]2

)

+ O
(

C2
3bj,n[bj,n + aj,n]2mn+2/[(mn + 1)!]2

)

·
(

mn
∑

k=0

|Pk,j,n(t)|
)2

≤ O
(

C2
3a

2mn+2
j,n /[(mn + 1)!]2

)

+ O
(

C2
3m

3
n[bj,n + aj,n]2mn+2/[(mn + 1)!]2

)

, (21)

where fft(t) as well as fft(s) inside the integral have been approximated by their mnth Taylor
polynomial (also see (4)) around tj so that the polynomial part disappears; also, the bound for
the Legendre polynomials has been used as above. Combining (20) and (21) gives us the result
stated in the lemma. �

Proof of Theorem 1: By Parseval’s identity and Fubini’s theorem, we obtain

MISEn(f̂ , f) =
1

2π

∫

E
∣

∣ψ̂f (t) − fft(t)
∣

∣

2
dt ≤

1

2π

∑

1/(λh)≥|j|≥T/λ

∫

Aj,n

E
∣

∣ψ̃con.
f ;j,n(t) − fft(t)

∣

∣

2
dt

+
1

2π

∑

1/(λh)≥|j|≥T/λ

∫

Cj,n

var
{

ψ̂h(t)/gft(t)
}

dt + O(h2β) + O(n−1) ,

(22)

where Cj,n = [tj − λ/2, tj + λ/2]\Aj,n. Further, we have used that ψ̂f (t) is an unbiased estimator
of fft(t) for t ∈ [−1/h, 1/h]\

⋃

j Aj,n; Kft is supported on [−1, 1]; the integral restricted to

[t−1 +λ/2, t1−λ/2] decays at the rate O(n−1) and, hence, may be neglected. Condition |Kft(t)−
1| = o(|t|β) gives us the bound O(h2β) for the bias term.

With respect to the second term in (22), we derive

∑

1/(λh)≥|j|≥T/λ

∫

Cj,n

var
{

ψ̂h(t)/gft(t)
}

dt ≤ 4n−1
∑

1/(λh)≥j≥T/λ

∫

[tj+aj,n,tj+λ/2]

∣

∣gft(t)
∣

∣

−2
dt

≤ O(n−1)
∑

1/(λh)≥j≥T/λ

j2ν

∫

[πaj,n/λ,π/2]

∣

∣ sin t
∣

∣

−2µ
dt ≤ O(n−1)

∑

1/(λh)≥j≥T/λ

j2νa1−2µ
j,n . (23)
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Lemma 1 may be applied to the first term in (22), leading to

∑

1/(λh)≥|j|≥T/λ

∫

Aj,n

E
∣

∣ψ̃con.
f ;j,n(t) − fft(t)

∣

∣

2
dt

≤ O(n−1)
∑

1/(λh)≥|j|≥T/λ

|j|2νa1−2µ
j,n +

∑

1/(λh)≥|j|≥T/λ

a2m+3
j,n , (24)

where supsE|ψ̂h(s)−hft(s)|2 ≤ 1/n and bj,n = 3aj,n have been considered. Inserting the specific
choice of aj,n, we obtain as an upper bound for (22),

O
(

n−1+(2µ−1)η
∑

1/(λh)≥j≥T/λ

j2ν+κ(1−2µ) , n−η(2m+3)
∑

1/(λh)≥j≥T/λ

j(2m+3)κ , h2β
)

= O
(

n−1+(2µ−1)η max{1, h−2ν+(2µ−1)κ−1} , n−η(2m+3) max{1, h−κ(2m+3)−1} , h2β
)

Selecting κ, η, h as stated in the theorem gives us the desired rate. �

Proof of Theorem 2: As important tools, we introduce the supersmooth Cauchy density f0(x) =

1/
[

π(1 + x2)
]

and the density f1(x) = Cm

[(

1 − cosx
)

/(πx2)
]m+2

with the appropriate constant

Cm > 0. We see that f1 satisfies (5); hence, the Fourier transform fft
1 is (m+1)-fold continuously

differentiable and supported on [−m− 2,m+ 2]. We consider the densities

fθ(x) =
1

2
δnf0(δnx) +

1

2
δnf1(δnx) ·

(

1 + const. · δm+1
n

2Kn
∑

j=Kn

θj cos(jλx)
)

,

where δn ↓ 0, θ = (θKn
, . . . , θ2Kn

), θj ∈ {0, 1} and Kn denotes an integer tending to infinity. As
the corresponding Fourier transforms, we have

fft
θ (t) =

1

2
fft
0 (t/δn) +

1

2
fft
1 (t/δn) + const. δm+1

n

∑

Kn≤|j|≤2Kn

θ|j|f
ft
1

(

(t− tj)/δn
)

.

Under the selection
δn = const. ·K(−2β−1)/(2m+3)

n (25)

with a suitable constant. we can verify the membership of fθ in Fβ,C5;C3,m,τ .
Considering the θj as independent random variables with P (θj = 0) = 1/2, we obtain for an

arbitrary estimator f̂ , which is based on Y1, . . . , Yn, by Parseval’s identity,

sup
f∈Fβ,C5;C3,m,τ

E‖f̂ − f‖2 ≥ EθEfθ
‖f̂ − fθ‖

2

=
1

2π

∑

Kn≤|j|≤2Kn

EθEfθ

∫ (j+1/2)/λ

(j−1/2)/λ

∣

∣f̂ft − fft
θ (t)

∣

∣

2
dt

≥ const. · δ2m+2
n

∑

Kn≤|j|≤2Kn

∫ (j+1/2)/λ

(j−1/2)/λ

∣

∣fft
1

(

(t− tj)/δn
)∣

∣

2
dt

≥ const. ·Knδ
2m+3
n , (26)

if the χ2-distance between the observed densities fθj,0
∗ g and fθj,1

∗ g satisfies

χ2(fθj,0
∗ g, fθj,1

∗ g) = O(1/n) , (27)
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for any j ∈ {Kn, . . . , 2Kn}, where we write χ2(f, g) =
∫

(f − g)2/f dx and
θj,b = (θKn

, . . . , θj−1, b, θj+1, . . . , θ2Kn
) for b ∈ {0, 1}. That result follows as in Fan (1991, 1993).

So we have

χ2(fθj,0
∗ g, fθj,1

∗ g) ≤ 2δ−1
n

∫

∣

∣

[(

fθj,0
− fθj,1

)

∗ g
]

(x)
∣

∣

2[(
f0(δn·) ∗ g

)

(x)
]−1

dx . (28)

With respect to the denominator in (28), we obtain

[

f0(δn·) ∗ g
]

(x) ≥
1

π

∫

|y|≤q

g(y)
[

1 + 2δ2n(x2 + y2)
]−1

dy ≥ const. ·
(

1 + δ2nx
2
)−1

,

when choosing q sufficiently large so that
∫

|y|≤q
g(y)dy > 0. Therefore,

χ2(fθj,0
∗ g, fθj,1

∗ g) ≤ const. ·

∫

∣

∣

[(

fθj,0
− fθj,1

)

∗ g
]

(x)
∣

∣

2(
δ−1
n + δnx

2
)

dx .

In the following we employ the equality
(

yft
)′

= i
{

· y(·)
}ft

and Parseval’s identity, leading to

χ2(fθj,0
∗ g, fθj,1

∗ g) ≤ const. ·
[

δ2m+1
n

∫

∣

∣fft
1

(

(t± tj)/δn
)∣

∣

2∣
∣gft(t)

∣

∣

2
dt

+ δ2m+1
n

∫

∣

∣[fft
1 ]′

(

(t± tj)/δn
)
∣

∣

2∣
∣gft(t)

∣

∣

2
dt

+ δ2m+3
n

∫

∣

∣fft
1

(

(t± tj)/δn
)∣

∣

2∣
∣[gft]′(t)

∣

∣

2
dt

]

.

As both (fθj,0
− fθj,1

)ft and its derivative are supported on [±tj − δn,±tj + δn] we derive that
χ2(fθj,0

∗ g, fθj,1
∗ g) is bounded above by

O

{

δ2m+1
n

∫ tj+δn

tj−δn

∣

∣gft(t)
∣

∣

2
dt + δ2m+3

n

∫ tj+δn

tj−δn

∣

∣[gft]′(t)
∣

∣

2
dt

}

.

Using (10) and the additional conditions in Theorem 2, we obtain O
(

δ2+2m+2µ
n K−2ν

n

)

as an upper
bound for χ2(fθj,0

∗ g, fθj,1
∗ g). Combining that result with (25) we see that (27) is satisfied by

the selection
Kn = n(2m+3)/[m(4β+2+4ν)+2+4βµ+2µ+6ν+4β] ,

and, by (26), we receive the lower bound on the MISE as stated. �

Proof of Theorem 3: First note that the condition m2
n ≤ const. · bj,n/aj,n is satisfied by the

specific parameter selection in the theorem. By Parseval’s identity for Fourier series and (15), we
derive

E‖f̂ − f‖2
L2(R) ≤

1

2π

∑

k∈[−Jn,Jn]∩
S

j
Aj,n

E
∣

∣ψ̃con.
f ;j,n(k) − fk

∣

∣

2

+
∑

k∈[−Jn,Jn]\
S

j Aj,n

E
∣

∣ψ̂h(k)/gft(k) − fj

∣

∣

2
+ O(J−2β

n )

≤ O
(

n−1m2
na

−2µ
n

)

∑

|k|≤Jn

|k|2ν + O
(

Jn[πan]2mn+2/[(mn + 1)!]2
)

+ O
(

Jnm
3
n[π(b + an)]2mn+2/[(mn + 1)!]2

)

+ O(J−2β
n )

≤ O
(

n−1m2
na

−2µ
n J2ν+1

n

)

+ O
(

Jn[πan]2mn+2/[(mn + 1)!]2
)

+ O
(

Jnm
3
n[π(b + an)]2mn+2/[(mn + 1)!]2

)

+ O(J−2β
n ) .
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We have used that k ∈ Aj,n implies that the ratio j/k is bounded above and below by some
positive constants. Due to Cm > 1/2 and b < λ/4, the second and the third term are negligible
in the equation above. Inserting the selection rules for b, an,mn, Jn gives the convergence rates as
stated. �

Proof of Lemma 2: We utilize Ito’s formula. Concerning the expectation, we obtain

Eψ̂h(t) =

∫

[−π−µπ/λ,π+µπ/λ]

exp(itx)h(x)dx + n−1/2E

∫

[−π−µπ/λ,π+µπ/λ]

exp(itx) dW (x)

= hft(t) ,

while considering that h is supported on [−π−µπ/λ, π+µπ/λ]. Therefore, we have unbiasedness
of our estimator. Now we study the variance

var ψ̂h(t) ≤ n−1E
∣

∣

∣

∫

[−π−µπ/λ,π+µπ/λ]

exp(itx) dW (x)
∣

∣

∣

2

= n−1

∫

[−π−µπ/λ,π+µπ/λ]

| exp(itx)|2dx

≤ O(1/n) .

�
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