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SPHERICAL TRANSFORMS

AND RADON TRANSFORMS

IN MOEBIUS GEOMETRY

Eberhard Teufel

April 19, 2007

Abstract

We study spherical transforms on euclidean spaces through a geometric view on the ac-

tion of differential operators acting onto spheres. We achieve interrelations between Radon

transforms and spherical transforms. We attain inversion formulas, especially a one-radius

inversion formula. The results are conformal invariant. Moreover we get two-radius and one-

radius-germ support results. Finally we derive interrelations and inversion formulas for Radon

transforms, spherical transforms and horospherical transforms in hyperbolic spaces.

Key Words: Spherical transform, Radon transform, inversion formula, support theorem,

Moebius geometry, horospherical transform, hyperbolic geometry.

AMS Subject Classification: 53C65, 44A12, 53A30.

1 Introduction

Radon transforms go back to P. Funk (1916) and J. Radon (1917), cf. [5], [16], [9], [6]. Spherical
transforms, or spherical means, in connection with plane waves and the Darboux equation go back
to F. John (1935), cf. [12]. Both transformations come together from a conformal point of view,
cf. [7]. The classical techniques are harmonic analysis, PDEs, integral equations, geometric means.
The following studies are based on a geometric view on the action of differential operators of first
order acting onto spheres and planes (3) (4). To make the geometric ideas clear we first of all
concentrate on the 3-dimensional euclidean space. We attain interrelations between the spherical
transform and the Radon transform, and interrelations for the spherical transform respectively
(Theorem 1, Theorem 2). Moreover we obtain an inversion formula (Theorem 3) and a one-radius
inversion formula (Theorem 4) for the spherical transform.
The basic results Theorem 1 (7) and Theorem 2 (13), written in euclidean terms, are conformal
invariant and Möbius invariant respectively (Theorem 5). The Möbius pitch are degenerate pencils
of spheres and pencils of spheres with limit points (Poncelet pencils) respectively. (Actual we fail
in playing with pencils of spheres without limit points.)
Section 4 plays in hyperbolic spaces. We use conformal models of the hyperbolic space in order to
apply the euclidean situations. We derive similar results concerning the geodesic Radon transform,
the spherical transform and the horospherical transform respectively.
Section 5 contains support results similar to support theorem for the classical Radon transform
[8] and for the spherical transform [21] respectively. We get two-radius and one-radius support
theorems (Theorem 8, Theorem 9).
In section 6 we point out some first aspects of a reduction scheme in higher dimensions.

A similar geometric view on Radon transforms is treated in [19].
Let Gk,n be the space of k-dimensional affine subspaces of the n-dimensional euclidean space

En. The k-plane Radon transform Rk maps C∞
c (En) into C∞

c (Gk,n), namely

(Rkf)(η) =

∫

η

f(x) dx , η ∈ Gk,n , (1)
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(C∞
c = space of C∞-functions with compact support; dx = euclidean volume density on the k-

plane η).
Let Mk,n be the space of k-dimensional spheres in En. The k-spherical transform Sk maps
C∞

c (En) into C∞(Mk,n), namely

(Skf)(ξ) =

∫

ξ

f(x) dx , ξ ∈Mk,n , (2)

(dx = euclidean volume density on the k-sphere ξ).
Let DX , X ∈ V n (V n = euclidean vector space associated to En), denote the differential operator
of first order acting on C∞(Mk,n) through parallel translating the spheres in En, i.e.

(DXF )(ξ) :=
d

dt
(F (ξ + tX)) |t=0 (3)

(ξ ∈Mk,n, F ∈ C∞(Mk,n)).
Let Dr denote the differential operator of first order acting on C∞(Mk,n) through bubbling the
spheres, i.e.

(DrF )(ξ) :=
d

dt
(F (ξ(m, t))) |t=r (4)

(ξ = ξ(m, r) = sphere with center m and radius r).
One of the key questions is how to invert these transformations, i.e. how to reconstruct the

point function f from the knowledge of the Radon transform Rkf or the spherical transform Skf
respectively.
For the Radon transform on the 3-dimensional euclidean space this can be done through a dual
integration by means of a differential operator of second order acting onto planes, namely

f(x) =
1

4π2

∫

G
2,3
x

D2
N(η)(R

2f)(η) dη , (5)

x ∈ E3 fix, G2,3
x = space of 2-planes in E3 through x = unit sphere with center x, N(η) = unit

normal vector of η, dη = volume density of the unit sphere, DN see (3).
The integration on the right hand side of (1) runs over all points x in the plane η, whereas the
integration on the right hand side of (5) runs over all planes η through the point x. This is the
play of the classical duality between points and planes in space. In the following we shall meet
similar and more general situations, and in the same way we call the corresponding integrations
dual integrations.
The inversion of the spherical transform is trivial, provided that S2f is available at spheres of
arbitrary small radius,

f(x) =
1

4π
lim

r→∞

1

r2
S2f(ξ(x, r)) , (6)

x ∈ E3.

2 Spherical transform and Radon transform on the eu-

clidean space

Theorem 1 Let η1, η2 be parallel 2−planes in E3 at distance 2r. Let a, b be real constants. Then

2π
(

(a+ b) · R2f(η2) + (−a+ b) ·R2f(η1)
)

=

=

∫

µ

(a

r
·DN +

b

r
·Dr −

b

r2

)

(S2f)(ξ) dm . (7)
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Herein the dual integration on the right hand side runs over the totality of 2−spheres ξ = ξ(m, r)
of radius r tangent to both η1 and η2, parametrized through their centers m ∈ µ; dm = euclidean
volume density on µ, the mid-plane with respect to η1 and η2; N = normal unit vector of η1
pointing towards η2.

Proof: The definition of the differential operators (3), (4) implies

DN (S2f)(ξ) =

∫

ξ

df|y(N)dy (8)

Dr(S
2f)(ξ) = −

∫

ξ

df|y(e1)dy +
2

r

∫

ξ

f(y)dy (9)

(e1 = interior normal unit vector of ξ at y). (The vector fields N in (8) and e1 in (9) respectively
are unique up to divergence-free tangent vector fields along ξ.)
For ξ = ξ(m, r),m ∈ µ, let x1 = η1 ∩ ξ, resp. x2 = η2 ∩ ξ denote the points of contact. We take
orthonormal moving frames ye1e2e3, yē1ē2ē3, y ∈ ξ, with the following adaptations: e1 = interior
normal unit vector of ξ at y, e2 = tangent unit vector at y of the oriented great circle of ξ from
y to x1, ē1 = N , ē2 = tangent unit vector at y of the oriented perpendicular line from y to x1x2.
Then

ē1 = −
1

sinα
· e2 +

cosα

sinα
· ē2

e1 = −
cosα

sinα
· e2 +

1

sinα
· ē2 (10)

(α = ∠(x1my)).
Hence (8), (9) yield

(a ·DN + b ·Dr)(S
2f)(ξ) =

∫

ξ

(

−
a

sinα
+
b cosα

sinα

)

df|y(e2)dy +

+
2b

r

∫

ξ

f(y)dy (11)

mod integrand terms df|y(ē2) disappearing through the dual integration because of symmetry.
Now, using polar coordinates on ξ centered at x1, i.e. dy = r sinα(rdα)dϕ to rewrite the inte-
grand of the first integral on the right hand side of (11), i.e. r(−a+ b cosα)df|y(e2)(rdα)dϕ, and
integrating by parts with respect to (rdα), this integral becomes

2πr ((a+ b)f(x2) + (−a+ b)f(x1)) −
b

r
· S2(f)(ξ). (12)

Finally, we bring (12) back into (11) and we carry-out the dual integration, taking into account
dx1 = dx2 = dm. Thus we reach (7). �

Remark 1. Read from the right to the left hand side (7) is pointing a way from the spherical
transform to the Radon transform. For the opposite way from the Radon transform to the spherical
transform, e.g. through inversion of Volterra integral equations of first kind (Abel type), cf. [9]
proof of theorem 2.6..

Theorem 2 Let η1, η2 be concentric 2-spheres in E3 with center o and radii r1, r2(r1 < r2). Let
a, b be real constants. Then

2π

(

(a+ b)

(

r1 + r2
2r2

)

· S2f(η2) + (−a+ b)

(

r1 + r2
2r1

)

· S2f(η1)

)

=

=

∫

µ

(a

r
·DN(m) +

b

r
·Dr +

2a

r(r1 + r2)
−

b

r2

)

(S2f)(ξ) dm . (13)
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Herein the dual integration runs over the totality of 2-spheres ξ = ξ(m, r) of radius r = r2−r1

2
tangent to both η1 and η2, ξ lying outside η1 and inside η2, and parametrized through their centers
m ∈ µ; dm = euclidean volume density on the 2-sphere µ = µ(o, r1+r2

2 ); N = N(m) = exterior
normal unit vector of µ at m.

Proof: For ξ = ξ(m, r),m ∈ µ, let x1 = η1 ∩ ξ, resp. x2 = η2 ∩ ξ denote the points of contact.
We take orthonormal moving frames ye1e2e3, yē1ē2ē3, y ∈ ξ, with the following adaptations: e1 =
interior normal unit vector of ξ at y, e2 = tangent unit vector at y of the oriented great circle of
ξ from y to x1, ē1 = tangent unit vector at y of the oriented line from o to y, ē2 = tangent unit
vector at y of the oriented line from y to om perpendicular to oy. Then

N = −
cosβ

sin(α+ β)
· e2 +

cosα

sin(α+ β)
· ē2

e1 = −
cos(α+ β)

sin(α+ β)
· e2 +

1

sin(α+ β)
· ē2 (14)

where α = ∠(x1my), β = ∠(x1oy).
Hence (8), (9) yield

(a ·DN(m) + b ·Dr)(S
2f)(ξ) =

=

∫

ξ

(

−a
cosβ

sin(α+ β)
+ b

cos(α+ β)

sin(α+ β)

)

df|y(e2)dy +
2b

r

∫

ξ

f(y)dy (15)

mod integrand terms df|y(ē2) disappearing through the dual integration because of symmetry.
Now, using polar coordinates on ξ centered at x1, i.e. dy = r sinα(rdα)dϕ to rewrite the integrand
of the first integral on the right hand side of (15), i.e.

r
sinα

sin(α+ β)
(−a cosβ + b cos(α+ β)) df|y(e2)(rdα)dϕ,

and integrating by parts with respect to (rdα), this integral becomes

2πr

(

2r2
r1 + r2

(a+ b)f(x2) +
2r1

r1 + r2
(−a+ b)f(x1)

)

−

−

(

2a

r1 + r2
+
b

r

)

S2(f)(ξ). (16)

(Some explanation: e.g. d(br sin α·cos(α+β)
sin(α+β) )|y(e2) = d(b (r1+r)2−r2−ρ2

2(r1+r) )|y(e2) = − bρ
r1+r

· dρ|y(e2)

= − bρ
r1+r

· dρ|y(− sin(α + β) · ē1 + cos(α + β) · ē2) = bρ
r1+r

· sin(α + β) = b sinα, using some
trigonometric formulary in triangle omy, ρ = euclidean distance between o and y.)
We bring (16) back into (15) and we carry-out the dual integration, taking into account dx1 =
( 2r1

r1+r2

)2dm, dx2 = ( 2r2

r1+r2

)2dm. That way we reach (13). �

Remark 2. The same situation as in Theorem 2, but now using all the 2−spheres ξ of radius
r = r2+r1

2 tangent to both η1 and η2, η1 lying inside ξ and ξ lying inside η2, leads to (13) with
r1 + r2 replaced by r2 − r1.

Remark 3. (13) with b = 0 and r2 → ∞ gives a way from the Radon transform to the spherical
transform.
(13) with r1 → ∞, r2 → ∞ and r2 − r1 = 2r leads to (7).

Now, starting at (13) we let the sphere η1 shrink to its center o. We calculate the geometric
Taylor expansion of (13), and we get the following one-radius-germ inversion formula for the
spherical transform.
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Theorem 3 Let o ∈ E3, r > 0. Then

8π2f(o) = −

∫

µ

( 1

r2
D2

(m,r) +
1

r3
D(m,r)

)

(S2f)(ξ)dm =

= −

∫

µ

( 1

r2
D2

(m,r) −
1

r4

)

(S2f)(ξ)dm. (17)

Herein the dual integration runs over the totality of 2-spheres ξ = ξ(m, r) of radius r through
o, parametrized through their centers m ∈ µ = µ(o, r); dm = euclidean volume density on the
2-sphere µ; D(m,r) and D2

(m,r) = differential operator of first and second order, see (19), (21),

(22).

Proof: (13) with η1 = η1(o, r1), η2 = η2(o, 2r) and a = 1
2 , b = − 1

2 implies through r1 → 0

∫

µ

D(m,r)(S
2f)(ξ)dm = −

1

r

∫

µ

S2f(ξ)dm , (18)

with

D(m,r) :=
1

2
DN(m) −

1

2
Dr (19)

at ξ = ξ(m, r), m ∈ µ,, N(m) = exterior unit normal vector of µ at m. And further

8π · f(o) = lim
r1→0

1

r1

(

−
1

r2

∫

µ(r1)

D(m(r1),r)(S
2f)(ξ)dm(r1) −

−
1

r3

∫

µ(r1)

S2f(ξ)dm(r1)
)

(20)

D(m(r1),r) := 1
2DN(m(r1)) −

1
2Dr at ξ = ξ(m(r1), r − r1

2 ), m(r1) ∈ µ(r1) := µ(o, r + r1

2 ). All
2-spheres ξ coming up belong to the family of 2-spheres tangent to η2 = η2(o, 2r). Therefore, note
a = 1

2 , b = − 1
2 ,

D(m(r1),r) =
d

dt

(

ξ(m(r1) + t · u, r −
r1 + t

2
)
)

|t=0

(u := unit vector in direction from o to m(r1)). We view the differential operator of first order as
tangent vector in the space of spheres M2,3 at ξ = ξ(m(r1), r −

r1

2 ). Hence

D(m(r1),r)(S
2f)(ξ) =

d

dt

(

S2f(ξ(m(r1) + t · u, r −
r1 + t

2
))
)

|t=0
(21)

and

D2
(m(r1),r)(S

2f)(ξ) =
d2

dt2

(

S2f(ξ(m(r1) + t · u, r −
r1 + t

2
))
)

|t=0
. (22)

Now Taylor-expansion with respect to r1 (direction u fixed) at r1 = 0 gives

S2f(ξ(m(r1), r −
r1
2

)) = S2f(ξ(m, r)) +

+r1 ·D(m(τ),r)(S
2f)(ξ(m(τ), r −

τ

2
)) (23)

for some 0 < τ < r1, and

D(m(r1),r)(S
2f)(ξ(m(r1), r −

r1
2

)) =

= D(m(r),r)(S
2f)(ξ(m(r), r)) + r1 ·D

2
(m(σ),r)(S

2f)(ξ(m(σ), r −
σ

2
)) (24)

9



for some 0 < σ < r1.
Finally we bring together (20), (23), (24), (18) (note: dm(r1) = (r + r1

2 )2r−2dm), and we reach
(17). �

Starting again at (13) we consider infinite many dual integrations in concentric shells around
o. And for rapidly decreasing point functions f we get the following one-radius inversion formula
for the spherical transform.

Theorem 4 Let o ∈ E3, r > 0, f ∈ C∞(E3) rapidly decreasing at ∞. Then

8π2f(o) = −
∞
∑

l=0

∫

µ(o,(2l+1)r)

(

al ·D
2
N(m) + bl ·DN(m) + cl

)

(S2f)(ξ(m, r)) dm , (25)

where

al :=
1

r2(2l + 1)
,

bl :=
1

2r3(2l + 1)

(

6l+ 5

(l + 1)(2l + 1)
− 1 +

l
∑

i=1

1

i(i+ 1)

)

,

cl :=
1

2r4(2l + 1)2

(

1

l + 1
− 1 +

l
∑

i=1

1

i(i+ 1)

)

.

(N(m) = exterior unit normal vector of ν at m).

Proof: (13) with a = 1, b = 0 implies through r1 → 0

π S2f(η(o, 2r)) =

∫

µ(o,r)

(

1

r
DN(m) +

1

r2

)

(S2f)(ξ(m, r)) dm , (26)

and

8π2f(o) = lim
r1→0

1

r1

(

2π

r1 + 2r
(S2f)(η(o, r1 + 2r))−

−

∫

µ(o,r1+r)

(

1

r(r1 + r)
DN(m) +

1

r(r1 + r)2

)

(S2f)(ξ(m, r)) dm

)

. (27)

Taylor-expansion in (27) with respect to r1, taking into account (26), yields

8π2f(o) = −

∫

µ(o,r)

(

1

r2
D2

N(m) +
2

r3
DN(m)

)

(S2f)(ξ(m, r)) dm+

+
π

r

(

Dr |η (S2f)
)

(η(o, 2r)) −
π

2r2
S2f(η(o, 2r)) . (28)

(13) with a = 1, b = 0, r2 = r1 + 2r implies

S2f(η1) =
r1

r1 + 2r
S2f(η2)−

−
1

2π

∫

µ(o,r1+r)

(

r1
r(r1 + r)

DN(m) +
r1

r(r1 + r)2

)

(S2f)(ξ(m, r)) dm (29)

and

(Dr |η S
2f)(η1) =

r1
r1 + 2r

(Dr |η S
2f)(η2) +

2r

(r1 + 2r)2
S2f(η2)−

−
1

2π

∫

µ(o,r1+r)

( r1
r(r1 + r)

D2
N(m) +

3r1 + r

r(r1 + r)2
DN(m) +

+
r1

r(r1 + r)2

)

(S2f)(ξ(m, r)) dm . (30)
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In this second step (29), (30) with r1 = 2r , r2 = 4r, and (28) produce the first two summands
(shells) in (25), up to an error along η(o, 6r). In this manner, starting at (13) through successive
application of (29), (30), shell by shell, we reach the one-radius inversion formula (25). (The sum
converges and the error tends to zero because f is rapidly decreasing at ∞.) �

Remark 4. (17) with r → ∞ leads to the classical inversion formula for the Radon transform.
Remark 5. Other Inversion formulas for the spherical transform, cf. [12] Chpt. IV, [3], [2],

[13].

3 Spherical transform on the Möbius space

Let us now open the euclidean sight to a conformal point of view. The Möbius space is the point
space E3 ∪ {∞}, the basic objects are spheres (i.e. spheres and planes under euclidean sight), the
underlying group is the Möbius group. But we also consider parts of the euclidean space fit out
with a conformally changed metric.

Theorem 5 (7) Theorem 1 and (13) Theorem 2 are representatives, written in euclidean terms, of
formulas invariant with respect to Möbius transformations of the euclidean space E3 and invariant
with respect to conformal changes of the euclidean metric respectively.

Proof: Consider a conformal change of the euclidean metric ge in E3, i.e. g = ρ2ge (ρ 6= 0 at
the points reached by the spheres ξ through the dual integration), without changing the sphere
ensemble in the formulas (7), (13). For the function f in the conformaly changed setting we take
fe := ρ2f in the euclidean setting. Then S2fe(ξ), R

2fe(ξ) with respect to ge are equal to S2f(ξ),
R2f(ξ) with respect to the conformaly changed metric g. Therefore (7), (13), with differential
operators and dual integration taken with respect to the euclidean metric, are valid too in the
conformaly changed situation. Planes and spheres respectively, differential operators and the dual
integration may have intrinsic meanings in the conformaly changed setting, e.g. see Theorem 6
and Theorem 7 in hyperbolic spaces. That way (7), (13) are euclidean representatives of conformal
invariant formulas.
A specific case are Möbius transformations. (We may take the conformal change of the euclidean
metric induced by a Möbius transformation without changing the spheres in the formulas, or
equivalently we may consider a Möbius transformation of the sphere ensemble in E3∪{∞} without
changing the euclidean metric.) Here differential operators and dual integration have Möbius
invariant meanings as follows:
In the situation of Theorem 1 (7) the spheres η1 and η2 are tangent, they define a degenerate
pencil of spheres Σ. ξ is determined by its point of contact x1 = η1 ∩ ξ and x2 = η2 ∩ ξ; hence
ξ is determined by an orthogonal trajectory circle cξ to Σ; therefore ξ is parametrized through
m = cξ ∩µ, µ ∈ Σ, µ = mid-sphere of η1, η2 (i.e. η1, η2, µ, o are in harmonic division, o = η1∩η2).
Let HΣ denote the subgroup of the Moebius group acting on Σ. Fix r > 0. For ξ let Hξ be the
subgroup of HΣ acting on cξ. Let H1 be the subgroup of Hξ acting on cξ \ {o} without fixed
points. Choose V from the Lie algebra of H1 with exp(2rV ) · η1 = η2. Let H2 be the subgroup
of Hξ acting on Σ fixing µ. Choose W from the Lie algebra of H2 with W ∗

|x2
= rV ∗

|x2
(W ∗, resp.

V ∗ are the vector fields on En associated to the action of exp(tW ), resp. exp(tV ), t ∈ R, on En).
Then a

r
·V + b

r
·W − b

r2 describes the differential operator in (7) through Moebius invariant terms,
acting on En, hence acting on the space of spheres, in particular at ξ. (V,W are not unique but
their actions at ξ.) The dual integration runs over µ with volume density invariant with respect
to the subgroup H3 of HΣ fixing η1 and η2 (H3 is isomorphic to the isometry group of a euclidean
plane), normalized as in the euclidean case.
In the situation of Theorem 2 (13) the spheres η1 and η2 do not intersect, they define a pencil
of spheres Σ with limit points say o and ∞ (Poncelet pencil). ξ is determined by an orthogonal
trajectory circle cξ to Σ, hence ξ is parametrized through m = cξ ∩ µ, µ ∈ Σ, µ = fixed sphere
with respect to the Moebius transfomation from HΣ which changes o and ∞, as well as η1 and
η2. Fix r > 0. For ξ let Hξ be the subgroup of the Moebius group acting on cξ. Let H1 be the
subgroup of Hξ fixing exactly ∞. Choose V from the Lie algebra of H1 with exp(2rV ) · x1 = x2.

11



Then r1, r2 are determined through exp(r1V ) · o = x1, exp(r2V ) · o = x2. Let H2 be the subgroup
of Hξ fixing ∞. Choose W from the Lie algebra of H2 with W ∗

|x2
= rV ∗

|x2
and W ∗

|x1
= −rV ∗

|x1
.

Then a
r
· V + b

r
·W + 2a

r(r1+r2) − b
r2 describes the differential operator in (13) through Moebius

invariant terms. The dual integration runs over µ with volume density invariant with respect
to the subgroup H3 of HΣ fixing o, η1, η2 and ∞ (H3 is isomorphic to the isometry group of a
euclidean sphere), normalized by vol(µ) = ((r1 + r2)/2)24π. �

Remark 6. In the same line Theorem 3 (17) and Theorem 4 (25) are euclidean representatives
of conformal invariant formulas.

Remark 7. (7) in the Möbius transformed sitution works for f ∈ C∞
c (En) with η1∩η2∩suppf =

∅.

4 Applications in the hyperbolic space

Let H3 be the 3-dimensional hyperbolic standard space (i.e. geodesically complete, simply con-
nected, constant curvature −1). Let R2, S2 and S2

h denote the 2-plane Radon transform, the 2-
spherical transform and the 2-horospherical transform respectively. They are defined analogeously
to (1), (2), mapping C∞

c (H3) into C∞(Y ), Y = G2,3 = space of 2-planes, i.e. 2-dimensional
totally geodesic subspaces of H3, Y = M2,3 = space of 2-dimensional distance spheres in H3 and
Y = M2,3

h = space of 2-dimensional horospheres in H3 respectively.
For X ∈ T 1

xH
3, x ∈ H3, let τ(X,x)(t) (t ∈ R) denote the 1-parameter subgroup of hyperbolic

isometries induced by geodesic parallel translation along the geodesic through x in direction X .
Then D(X,x) denotes the differential operator of first order acting on C∞

c (Y ) through τ(X,x), i.e.

(D(X,x)F )(ξ) :=
d

dt
(F (τ(X,x)(t) · ξ)) |t=0 (31)

(ξ ∈ Y , F ∈ C∞(Y )).

Theorem 6 a) Let η ∈M2,3
h be a horosphere in H3. Then

2πS2
hf(η) = −

∫

η

(

D(N(x),x) + 2
)

(S2
hf)(ξ)dx. (32)

Herein the dual integration runs over the totality of horospheres ξ = ξ(x) tangent to η, ξ 6= η,
parametrized through their points of contact x ∈ η; N(x) = exterior unit normal vector of η
at x; dx = hyperbolic volume density on η.

b) Let η ∈M2,3 be a distance sphere in H3 of hyperbolic radius r. Then

2πS2f(η) = −
er

2 sinh r

∫

η

(

D(N(x),x) + 2
)

(S2
hf)(ξ)dx. (33)

Herein the dual integration runs over the totality of horospheres ξ = ξ(x) tangent to η, η
lying outside ξ, parametrized through their points of contact x ∈ η; N(x) = exterior unit
normal vector of η at x;dx = hyperbolic volume density on η.

c) Let o ∈ H3. Then

8π2f(o) = −

∫

T 1
o H3

(

D2
(u,o) + 2D(u,o)

)

(S2
hf)(ξ)du =

= −

∫

T 1
o H3

(

D2
(u,o) − 4

)

(S2
hf)(ξ)du. (34)

Herein the dual integration runs over the totality of horospheres ξ = ξ(o, u) through o,
parametrized through their interior normal unit vector u ∈ T 1

oH
3 at o; du = euclidean

volume density on the unit spherical in the tangent space of H3 at o.
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Proof: a): Let H3 be realized through Poincaré’s half-space model in R
3, adapted to Theorem

1 by η = η1, η2 = boundary 2-plane of the model. The euclidean metric tensor ge and the
hyperbolic metric tensor gh at y ∈ H3 are conformally related by gh = 1

ρ2 ge, ρ = ρ(y) = euclidean

distance of y to η2. We start at (7) with a = −r, b = r, and with euclidean terms replaced by
their hyperbolic meanings, i.e. R2f̃(η) = S2

hf(η), S2f̃(ξ) = S2
hf(ξ), f̃ := f 1

ρ2 , dx = 1
4r2 dm,

2r(−DN +Dr) = −D(N(x),x) at ξ(x), x ∈ η. We take into account that the hyperbolic isometry
group acts transitively on the space of horospheres, therefore the special situation in the model
setting describes the general hyperbolic situation. Thus we reach (32).
b): Let H3 be realized through Poincaré’s ball model, adapted to Theorem 2 by η1 = η1(o, r1) = η,

r1 < r2 = 2, η2 = η2(o, 2) = boundary 2-sphere of the model. (13) with a = −(1− r2

1

4 ), b = (1− r2

1

4 ),

f̃ ∈ C∞
c (H3) writes, in euclidean terms,

2π(1 −
r21
4

)
(2 − r1)(2 + r1)

2r1
S2f̃(η) =

=

∫

µ

(1 −
r21
4

)(−DN(m) +Dr)(S
2f̃)(ξ)dm−

−2

∫

µ

S2f̃(ξ)dm

µ = µ(o, r1+2
2 ).

The euclidean metric tensor ge and the hyperbolic metric tensor gh at y ∈ H3 are conformally

related by gh = (1 − ρ2

4 )−2ge, ρ = ρ(y) = euclidean distance between o (= euclidean center
of the model) and y. Therefore the euclidean radius r1 and the hyperbolic radius r of η are
related by r1 = 2 tanh r

2 . Then we replace the euclidean terms by their hyperbolic meanings,

i.e. S2f̃(η) = S2f(η), S2f̃(ξ) = S2
hf(ξ), f̃ := (1 − ρ2

4 )−2f , dx = (1 − r2

1

4 )−2r21(
r1+2

2 )−2dm,

(1− r2

1

4 )2(−DN(m) +Dr) = −D(N(x),x) at ξ(x), x ∈ η. Because the hyperbolic isometry group acts
transitively on the space of hyperbolic distance spheres with radius r, we reach (33).
c): (33) through r → 0, like in the proof of Theorem 3, yields (34). �

Through similar adaptations we obtain

Theorem 7 a) Let η ∈M2,3
h be a horosphere in H3. Then

2πS2
hf(η) = −

∫

η

(

D(N(x),x) + 1
)

(R2f)(ξ)dx. (35)

Herein the dual integration runs over the totality of 2-planes ξ = ξ(x) tangent to η,
parametrized through their points of contact x ∈ η; N(x) = exterior unit normal vector
of η at x; dx = hyperbolic volume density on η.

b) Let η ∈M2,3 be a distance sphere in H3 of hyperbolic radius r. Then

2πS2f(η) = −

∫

η

( 1

tanh r
D(N(x),x) + 1

)

(R2f)(ξ)dx. (36)

Herein the dual integration runs over the totality of 2-planes ξ = ξ(x) tangent to η,
parametrized through their points of contact x ∈ η; N(x) = exterior unit normal vector
of η at x; dx = hyperbolic volume density on η.

c) Let o ∈ H3. Then

8π2f(o) = −

∫

T 1
o H3

(

D2
(u,o) + 1

)

(R2f)(ξ)du. (37)
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Herein the dual integration runs twice over the totality of 2-planes ξ = ξ(o, u) through o and
perpendicular to u, parametrized through u ∈ T 1

oH
3; du = euclidean volume density on the

unit sphere in the tangent space of H3 at o.

Remark 8. Similar adaptations lead e.g. to the following relations: from the spherical transform
to the spherical transform like (13), to inversion formulas for the spherical transform like (17),
or from orbital integrals with respect to distance surfaces of 2-planes to the spherical transform
similar to (13), etc..
Similar applications happen in the spherical space.

Remark 9. Inversion formulas for the Radon transform in hyperbolic spaces, cf. also [8], [11],
[19]. Inversion formulas for the horospherical transform, cf. also [6] Chpt. V, [10].

5 Support results

Theorem 8 Let f ∈ C∞(E3) be such that for each integer l > 0, | x − o |l f(x) is bounded,
(o ∈ E3 fixed). Suppose there exists a closed ball B(o,R) with center o and radius R, and a fixed
radius r, such that S2f(ξ) = 0 for all spheres ξ of radius r with B(o,R) outside ξ. Then f(x) = 0
for x ∈ E3 \B(o,R).

Proof: Let η1 be a sphere of radius r1 which encloses B(o,R). Let η2 denote the sphere of radius
r1 + 2r concentric to η1. Then (13) with b = 0 gives S2f(η1) = r1

r1+2r
S2f(η2). Going outwards

through such steps shows S2f(η1) = r1

r1+l2r
S2f(ηl), l ∈ N, ηl = sphere of radius r1 + l2r concentric

to η1. Thus S2f(η1) = 0 because f rapidly decreases. Hence S2f(η) = 0 for each sphere which
encloses B(o,R). Therefore [9] Ch.1 Lemma 2.7 yields that f vanishes outside B(o,R). �

Theorem 9 Let f ∈ C∞(E3). Suppose there exists a closed ball B(o,R) with center o and radius
R, and two fixed radii r, r̄ with r/r̄ irrational and 2r+2r̄ < R, such that S2f(ξ) = 0 for all spheres
ξ ⊂ B(o,R) of radius r and S2f(ξ̄) = 0 for all spheres ξ̄ ⊂ B(o,R) of radius r̄. Then f(x) = 0
for x ∈ B(o,R).

Proof: Let η1, η2 be concentric spheres with center o and radii r1, r2 = r1 + 2r or r2 = r1 + 2r̄,
0 < r1 < r2 < R. Then (13) with b = 0 gives S2f(η1) = r1

r2

S2f(η2).
Let S := {n2r−m2r̄ | n,m ∈ Z, n ≥ 0} ∩ [0, R]. Then S is dense in [0, R], because r/r̄ irrational.
Moreover any two points in S can be connected in [0, R] using segments each of length 2r or 2r̄.
(cf. [14] pp. 88, resp. [21] proof of Lemma 3.3).
Therefore S2f(η1) = r1

r2

S2f(η2) for r1, r2 ∈ S. Taking into account a sequence r2 → 0 yields

S2f(η) = 0 for all spheres η(o, r), r ∈ S. Hence by continuity, S2f(η) = 0 for all spheres η(o, r),
r < R.
The same holds for small perturbations of o. Therefore the idea of the proof of Lemma 2.7 Chpt.
1 [9] works and shows f(x) = 0 for x ∈ B(o,R). �.

Remark 10. Theorem 8 and Theorem 9 respectively are valid for f continuous and rapidly
decreasing at ∞, and for f continuous respectively.
Note: The proofs above work through replacing f by the convolution φ ∗ f , where φ is a well
chosen radial C∞-function with support in a small ball B(o, ǫ) ⊂ En, ǫ > 0. In fact, for Theorem
8, and analogously for Theorem 9,

S2(φ ∗ f)(ξ(m, r)) = (χ ∗ S2f)(ξ(m, r)) =

∫

En

χ(m− x) · S2f(ξ(x, r)) dx ,

χ a radial C∞-function with compact support in B(o, ǫ) ⊂ R
3, appropriated to φ.

Remark 11. Support and injectivity results for the spherical transform, cf. [12] Chpt. VI, [21],
[1], [4], [15], [18], [20].
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6 A reduction sheme in higher dimensions

Lemma 1 Let η1, η2 be parallel hyperplanes in En at distance 2r. Then for k ≥ 3
∫

µ×G
k−2,n−1

0

Sk−2f(δ)dδ =

=
vk−3,k−1

(k − 2)v2,n−k+1

∫

µ×G
k,n−1

0

(1

r
Dr −

1

r2

)

(Skf)(ξ)dξ. (38)

Herein the dual integration on the right hand side runs over the totality of k-spheres ξ = ξ(m,σ, r)
of radius r tangent to both η1 and η2, parametrized through center m ∈ µ and σ = affine hull
of ξ ∩ µ, σ ∈ Gk,n−1

0 (= Grassmann manifold of k-planes in µ through m), dξ = dmdσ, dm =

euclidean volume density on the hyperplane µ, dσ = invariant volume density in Gk,n−1
0 . The

integration on the left hand side analogously runs over the totality of (k−2)-spheres δ = δ(m, τ, r)

of radius r tangent to both η1 and η2, parametrized through center m ∈ µ, τ ∈ Gk−2,n−1
0 . vk−3,k−1,

v2,n−k+1 = volume of the Grassmann manifold Gk−3,k−1
0 , G2,n−k+1

0 .

Proof: The definition of Dr implies

Dr(S
kf)(ξ) =

∫

ξ

cosα

sinα
· df|y(e2)dy +

k

r

∫

ξ

f(y)dy (39)

mod integrand terms df|y(ē2) disappearing through dual integration because of symmetry (cf.
proof of Proposition 2.1) (α = ∠(x1my), x1 = η1 ∩ ξ).
We use polar coordinates on ξ centered at x1, i.e. dy = rk−1 sink−1 α(rdα)du, u ∈ T 1

x1
ξ, to

rewrite the integrand of the first integral on the right hand side of (39), i.e. rk−1 sink−2 α · cosα ·
df|y(e2)(rdα)du. Integration by parts with respect to(rdα), this integral becomes

∫

ξ

(k − 2)rk−2 sink−3 α · f(y)(rdα)du −
k − 1

r
Skf(ξ). (40)

We replace the integration with respect to u over the (k−1)-sphere T 1
x1
ξ by a twofold integration,

at first over (k − 3)-greatspheres of T 1
x1
ξ then over the totality of (k − 3)-greatspheres of T 1

x1
ξ.

Thus first integral in (40) becomes

(k − 2)r

vk−3,k−1

∫

G
k−2,k
0

Sk−2f(δ)dτ (41)

(τ = Tx1
δ ⊂ Tx1

ξ).
Finally we bring (41), (40) back into (39), we carry-out the dual integrations, taking into account
integration with respect to nested subspaces τ ⊂ σ ⊂ R

n−1 (see [17] (12.52)), and we reach (38).
�

Through similar computations we get

Lemma 2 Let η1, η2 be concentric (n−1)−spheres in En with center o and radii r1, r2 (r1 < r2).
Then for k ≥ 3

∫

µG
k−2,n−1

0

Sk−2f(δ)dδ =
vk−3,k−1

(k − 2)v2,n−k+1

∫

µG
k,n−1

0

(

−
r1 + r2
2r1r2

DN(m)+

+
(r1 + r2)

2

2r1r2(r2 − r1)
Dr −

k(r2 − r1)
2 + 4r1r2

(r2 − r1)2r1r2

)

(Skf)(ξ)dξ. (42)
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Herein the dual integration on the right hand side runs over the totality of k-spheres ξ = ξ(m,σ, r)
of radius r = r2−r1

2 tangent to both η1 and η2, ξ outside η1 and inside η2, parametrized through

center m ∈ µ and σ = affine hull of ξ ∩ Tmµ, σ ∈ Gk,n−1
0 (Tmµ) (= Grassmann manifold of

k-spaces in Tmµ through m), dξ = dmdσ. The integration on the left hand side analogously runs
over the totality of (k − 2)-spheres δ = δ(m, τ, r) of radius r tangent to both η1 and η2, δ outside

η1 and inside η2, parametrized through center m ∈ µ, τ ∈ Gk−2,n−1
0 (Tmµ), dδ = dmdτ .

Proposition 1 Let η1, η2 be parallel hyperplanes in En at distance 2r, n = 2k + 1. Let a, b be
real constants. Then

2π
(

(a+ b) ·Rn−1f(η2) + (−a+ b) ·Rn−1f(η1)
)

=

= c(n)

∫

µ

(a

r
·DN +

b

r
·Dr −

b

r2

)(1

r
Dr −

1

r2

)k−1

(Sn−1f)(ξ) dm . (43)

Herein the dual integration runs over the totality of (n−1)−spheres ξ = ξ(m, r) of radius r tangent
to both η1 and η2, parametrized through their centers m ∈ µ; N = normal unit vector of η1 pointing
towards η2; c(n) a constant depending on n.

Proof: (7) through successive application of (38) yields (43). (Note: Integrations in (38) and the
differential operators DN and Dr intertwine.) �

Remark 12. There are further reduction formulas in the style of (38) and (42), more general
however much more complex. (Actual we don’t overlook the totality of such reduction formulas.)

Remark 13. (13) and (17) respectively through successive application of the reduction formula
(42) leads to the analogue of (43) for concentric (n− 1)−spheres η1, η2 in En and to an inversion
formula for the spherical transform in En, n = 2k + 1. (Note: All terms coming up depend on o,
r1 and r, (r2 = r1 + 2r). Let I(µ,r) denote anyone of the integration operators in (13), (42), then

∂/∂r ◦ I(µ,r) = I(µ,r) ◦ ∂/∂r and ∂/∂rSkf(ξ) = DrS
kf(ξ), Dr|µ ◦ I(µ,r) = ∂/∂(r1 + r) ◦ I(µ,r) =

∂/∂r1 ◦ I(µ,r) = I(µ,r) ◦ ∂/∂r1 + 2(n−1)
r1+r2

I(µ,r) and ∂/∂r1S
kf(ξ) = DN(m)S

kf(ξ).)

Remark 14. Inversion formulas for the circular transform in the euclidean plane E2: Let E2

be enlarged through an orthogonal complement to E3 = E2 × R, let F ∈ C∞
c (E3) be defined by

F ((x, t)) := ψ(t) · f(x), (x, t) ∈ E2 × R, ψ ∈ C∞
c (R) with ψ(0) = 1 . Then (7) with η1 = g1 × R,

η2 = g2 × R, g1, g2 parallel lines in E2 at distance 2r leads to a transformation from the circular
transform S1(ξ) to the Radon transform R1(g1), R

1(g2), looking like (7), with dual integration
over the totality of circles ξ = ξ(m, ρ) of radius 0 ≤ ρ ≤ r and centers m on the mid-parallel of g1
and g2, and additional coefficients depending on ρ appearing at the summands on the right hand
side of (7).
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[16] J. Radon: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser
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