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Elastic and Electro-Magnetic Waves in Infinite Waveguides

Peter H. LEsky and Reinhard RACKE

Abstract: We consider initial boundary value problems for the equations of isotropic elasticity for several
mixed boundary conditions in infinite wave guides, as well as Maxwell equations. With the help of decom-
positions of the displacement field into divergence- and curl-free parts, respectively, which are compatible
with the boundary conditions, we obtain sharp decay rates for the solutions. The decomposed systems
correspond to the second-order Maxwell equations for the electric and the magnetic field with electric and
magnetic boundary conditions, respectively.

1 Introduction
We start considering the equations of elasticity
uy — pAu — (L + ANVVu = f (1.1)

for the displacement vector u : [0,00) x Q — R™, n = 2,3, arising for isotropic media (cf. [9]), in
domains 2 C R™ with infinite boundaries of waveguide type, that is,

Q=R x B, B ¢ R"! bounded,

where 1 <1 <n — 1. Following are the typical examples:

n =2, [ = 1: Infinite strip.

n =3, | =2 : Domain between two planes.

n =3, [ = 1: Infinite cylinder with cross section B C R? having a smooth boundary 0B.
The differential equations (1.1) for u are completed by initial conditions

u(t =0) = u°, u(t =0) = u' (1.2)

and by the boundary conditions (1.7) or (1.9) below.
In our paper [15], in particular, the classical (nonlinear) wave equation for the scalar function

v,

vie — Av = g(v, v, Vo, Vg, V20), (1.3)

was investigated together with initial conditions and the Dirichlet boundary condition
v(t,-) =0 on 0fL.

Sharp decay rates of solutions to the linearized problem (¢ = 0 or ¢ = g(¢,z)) were proved,
yielding interesting new phenomenon, and then nonlinear well-posedness results could be proved
under some conditions on the nonlinearity g.

Now formulating the corresponding Dirichlet boundary conditions for the displacement vector,

u(t,") =0 on 09,

does not allow for carrying over the methods from [15], this already out of the simple reason that
a decomposition of the Laplacean A as A = A’ + A" according to the decomposition of the space
variable into z = (2/,2”) € R! x B is not possible for the operator E := —uA — (1 + \)VV*
because of the mixing of components in the VV*-part.

0 AMS subject classification: 35 L 70, 35 Q 60, 74 B 20
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On the other hand, if we think for a moment of the Cauchy problem 2 = R"”, the well-known
decomposition of vector fields into its curl-free and divergence-free components, respectively,

((L3(R™)" = VHT(RY) & Do(R") (1.4)
where Dg(R™) denotes the divergence-free fields, leads to a decomposition of the displacement into
u=uP’ +u°

which decomposes the differential equation (1.1) (f = 0),
ue — pAu — (u+ A)VV*u =0
into two classical wave equations for the two projections:
uby — (2pu+ N)AuP? =0, ugy — pAu® = 0. (1.5)

But for our problem, a decomposition into curl- and divergence-free parts is not compatible with
the Dirichlet boundary condition.

Our observation is that we can study several interesting boundary conditions and find appro-
priate decompositions into curl-free and divergence-free components, respectively. Here are some
examples, more are given in Section 3.

Consider a strip in R?: @ =R x (0,1) and the boundary condition

ui(t, ) = Onua(t,-) =0 on 0% (1.6)

where u1, us denote the components of u, and d;z denotes the normal derivative, 77 denoting the
exterior normal, which is given by @ = (0, £1)* in this example. The boundary conditions (1.6)
correspond to an elastic movement on the boundary where the movement into the normal direction
is free, but the object does not move into the z;-direction (no shear movement).

We recall the following formulae for vector functions H and scalar functions h, respectively,

V x H =01Hy — 0 Hj, V x h = (02h, —01h)*
Then the formula for the vector Laplacean,
A=VV" -V xVx
holds in both space dimensions n = 2,3, and we have correspondingly
i X H =n1Hy — fiaHy, i X h = (figh, —7i1h)*.
Now we observe that we can reformulate the boundary conditions (1.6) equivalently as
ni(-) x u(t,) =0, V*u(t,) =0 on Of). (1.7)
As second example we consider in the strip the boundary conditions
us(t,-) = Ozui(t,-) =0 on 0 (1.8)

which represents a mere shear movement at the boundary, i.e. a free movement into the ;-
direction, but no movement in the normal direction. This boundary condition is now equivalent
to

a()u(t, ) =0, 7i() x (V xu(t,") =0 on 0f). (1.9)

As third and fourth examples we consider the domain between two plates in three space dimensions:
2 =R? x (0,1) and the boundary conditions

up(t, ) = ua(t, ) = dzus(t,") =0 on 01, (1.10)



or

Onuy(t, ) = Opua(t,:) = ug(t,) =0 on 092, (1.11)

respectively. The third example (1.10) represents a mere movement into the normal direction, no
shear movement, while the fourth one (1.11) represents a mere shear movement at the boundary.
It turns out that the boundary conditions (1.10) are equivalent to the ones formulated in (1.7),
and the conditions (1.11) are equivalent to those in (1.9). Therefore, we will concentrate on these
boundary conditions (1.7) and (1.9), respectively, also for infinite cylinders in R3. For a more
detailed discussion of the boundary conditions see Section 3.

We prove that the boundary conditions are compatible with certain (different) decompositions
of L? into spaces of curl-free and diverengence-free functions, respectively, see Section 2. If we
denote the associated decomposition of u by u = u?° + u®, then for 8 € {po, s}

ub — AU’ = P (1.12)

with 7 € {2u+ ), u}, and u” satisfies one of the boundary conditions (1.7), (1.9). This means that
uP? u® are solutions of the second-order Maxwell equations together with the so-called electric and
magnetic boundary condition, respectively, cf. [26, 27, 28]. It is important that for solutions of the
maxwell equations these boundary conditions split up in a way such that appropriate boundary
conditions at the boundary of the cross section B appear (which was trivial for Dirichlet boundary
conditions, for example). Therefore we are able to carry over considerations for the pure wave
equation under Dirichlet’s boundary condition from [15] for each of the subsystems for u”° and
u®.

Combining the results for ©P° and u® we obtain rates of decay for the solution u. For those
components uy, of u, where the boundary conditions do not cause null spaces and hence stationary
solutions in the cross section, the decay in the strip or the domain between two planes is the same
as for the Cauchy problem, that is in absence of the obstacles. If the domain is an infinite cylinder,
we loose order one half; in terms of the decay of the L°°-norm this means that

ug(t, )L < const -t as t — o0.
[Juk(t, )l L~ < v

This decay rate is the same as was observed in [15] for the pure wave equation. For all other
components u; of u we obtain

l|w;(t, )| Lo < comst - ¢~ (=172 as t — oo.

If we suppose additionally that the curl-free and diverengence-free parts of the data u®,u!, f are
orthogonal to the null spaces, then all components of u show the better decay.

We remark that the knowledge of the decay rates of the linear system is an important tool in
solving the corresponding nonlinear systems, cp. [15].

Linear and nonlinear wave equations (1.3) (extending to Klein-Gordon type) in waveguides
providing sharp decay rates and giving global well-posedness results were first studied in our paper
[15], then improvements leading to more admissible nonlinearities were given by Metcalfe, Sogge
and Stewart [17]. Conical sets with infinite boundaries instead of waveguides were the subject
of Dreher [6] proving decay rates in the linear situation. A discussion of resonance behavior
in waveguides was given for classical wave equations and for Maxwell’s equations by Werner
[29, 30, 31], for elasticity with Dirichlet boundary conditions see Lesky [14]. Anisotropic situations
like cubic or rhombic media were studied by Stoth, see [23] and [25], see also Doll [5], leading to
interesting effects in comparison to the special isotropic case. The local energy decay of solutions
to the linearized problem in exterior domains and for Dirichlet type boundary conditions was
investigated by Iwashita and Shibata [8] and Dan [4].

The special boundary conditions (1.7) and (1.9), respectively, were considered in different
contexts for bounded domains or in exterior domains — not in waveguides — in our work [21, 22,
24], see Section 2.

Summarizing our new contributions, we present the first results on sharp decay rates for solu-
tions to initial boundary value problems for systems in elasticity as well as for classical Maxwell



systems in infinite waveguides. The essential ingredients are various decompositions of the vector
fields in appropriate spaces that are compatible with the boundary conditions, and extensions of
techniques from the scalar wave equation case [15].

The paper is organized as follows: In Section 2 we formulate the setting, in particular we
introduce appropriate spaces and discuss the decompositions. In Section 3 the boundary conditions
are characterized with examples. Section 4 collects the necessary background in elliptic theory for
the Laplacean resp. Maxwell operator with respect to the boundary conditions under investigation.
The main results on the decay rates for the Maxwell and the elastic systems are given in Section 5
(f =0) and in Section 6 (f = f(t,x)), respectively.

2 Spaces and well-posedness

The starting point is the system of (homogeneous, isotropic) elasticity (2.1)—(2.3), or (2.1), (2.2),
(2.4), respectively:
Uy, — pAu — (u+ A)VV*u = f, (2.1)

where u : R x Q@ — R”, n = 2,3, with the Lamé constants \, u satisfying u > 0, 2u +nA > 0
(cf. [9]), and
Q=R x B, B c R bounded,

with 1 <1 < n — 1. The superscript * denotes transposition, e.g. V* is the divergence operator.
f:RxQ — R” is assumed to be smooth; further assumptions on the topology of B will be given
Section 4.

The differential equations (2.1) for u are completed by initial conditions

u(t =0) = u°, ug(t = 0) = u' (2.2)
and either the boundary conditions
7i(+) X u(t,-) =0, V*u(t,) =0 on 0N (2.3)
or the boundary conditions
a(-)u(t,-) =0, () x (V xu(t,-) =0 on 0. (2.4)

The well-posedness of the system (2.1), (2.2) with the boundary condition (2.3) has been studied
by Leis [11], cp. also [22] for exterior domains or [24]. For the well-posedness in case of boundary
conditions (2.4) see [21, 24]. We remark that after the following decompositions into divergence-
and curl-free components, respectively, the two arising subsystems are well-posed based on the
knowledge for Maxwell’s equations, thus giving another direct well-posedness argument.

First we consider the boundary condition (2.3), and we use the following decomposition of
L? = (L?(Q)™

L? =VH(Q) ® Do(Q)

where Dy () denotes the fields with divergence zero.

The decomposition follows from the projection theorem and decomposes u into

u=uP’+u’, uP® € VHE(Q), u® € Dy(9). (2.5)

The compatibility of the boundary conditions (2.3) with the decomposition (2.5) is reflected in
the decoupling of the differential equation for u and the decoupling of the boundary conditions as
follows. u® satisfies

uj, + puV x Vxu® = f*% V*u® =0, (2.6)
u®(t = 0) = u’*, ui(t =0) = u'*, (2.7)
fi(-) x u®(t,-) =0 on 9f. (2.8)



The boundary condition (2.8) will be satisfied in the weak sense,
us(t,-) € R°(Q)
where R°(Q) generalizes the classical boundary condition,
RY(Q):={vel?|Vxvel? andVFEL* VxFeL?: (v,VxF)=(VxuvF)}

with (-,-) denoting the inner product in L? and corresponding norm || - [|. R%(Q) equals the
completion of C§°-fields with respect to the norm || - ||z := (|| - || + ||V x -[|?)/?, cf. [12, 21]. uP®
satisfies

uly — 2u+ N VV*uP? = fro, uP® € VHL(Q), (2.9)
uP(t =0) =uP°,  ub’(t = 0) = utP, (2.10)
() x uP°(t,-) =0,  V*uP(t,-) =0 on 9. (2.11)

We remark that the boundary condition 7i(-) x ub, = 0 is satisfied in the weak sense automatically
since uP® € VH}(Q2) c R°(Q), the boundary condition V*uP(t,-)aq = 0 is also defined in the
usual weak sense: V*u(t,-) € H}(Q).

Thus, we obtain for 8 € {po, s} that

ub — 75 AuP = 5, (2.12)
WPit=0)=u"? Wt =0)=u"", (2.13)
i(-) x uP(t,-) =0, V*uP(t,-) =0 on 99 (2.14)
with £
_f 2p+ X if 8= po,
g 1= { p 5 s (2.15)

Note that 74 > 0 by our assumptions & > 0, 2+ nA > 0.

The initial boundary value problem (2.12)—(2.14) is of Maxwell type corresponding to the
second order equation for the electric field with so-called electric boundary conditions, see [26, 27,
28, 12]. The existence theory is well-known. It has also been studied in [11, 22, 24]. In [22] exterior
domains were studied and polynomial decay rates were given, while in [24] bounded domains and
the question of exponential stability under the presence of thermal damping were discussed.

If we now turn to the boundary condition (2.4), we use the following decomposition

L? = Ry(Q) & V x RO(),

where Ry(f2) denotes the fields with vanishing rotation. Note in the case n = 2 that R°(£2) has to
be taken as a space of scalar-valued functions and equals H}(Q). u is now decomposed into

w=uP+u,  uP € Ry(Q), ub €V x RO(Q). (2.16)

The same argument as above yields that

uby — 75 AuP = 5, (2.17)
WPt =0)=u" W)t =0)=u’, 2.18)
() x (V xu(t,-)) =0, () ul(t,-) =0 on 99 (2.19)

for 8 € {po, s}.
The first part of the boundary condition is interpreted in the sense V x u®(t,-) € R°. The
second part 7iv = 0 on 9N is formulated in L? by saying v € D°(2) with

DYQ) :={ve L?|V'veL? andV fe HY(Q): (v,Vf)=—(V*v, f)},



DO(£2) equals the completion of Cg°-fields with respect to the norm || - ||p == (|| - || + ||V* - ||*)'/2,
cf. [12, 21].

The initial boundary value problem (2.17)—(2.19) is of Maxwell type corresponding to the
second order equation for the magnetic field with so-called magnetic boundary conditions, see
[26, 27, 28, 12]. The existence theory is well-known.

Summarizing we have found that for both boundary conditions (2.3) and (2.4), respectively,
a decomposition of the displacement vector u = uP® + u® into a curl-free component ©P° and a
divergence-free component u® is possible which is compatible with the boundary conditions leading
to similar systems for uP° and u® that correspond to Maxwell’s equations for the electric field with
electric boundary conditions in case of boundary condition (2.3), and to Maxwell’s equations for
the magnetic field with magnetic boundary conditions in case of boundary condition (2.4).

Consequently, in order to obtain decay rates for the displacement vector finally, we will look at
Maxwell’s equations under electric and magnetic boundary conditions, respectively, in Section 5.

To realize the connection between the equations of elasticity with the boundary conditions
under investigation is a basic element of this paper. In the next section we examine examples for
the elastic boundary conditions in the typical situations.

3 The boundary conditions

We noticed that the boundary conditions for the displacement that are considered here, (2.3)
resp. (2.4), are just those well-known for Maxwell’s equations, the electric boundary condition for
the electric field resp. the magnetic boundary condition for the magnetic field. Here we examine
the typical meaning of these boundary conditions in elasticity for the three types of waveguides
that arise in two and three space dimensions.

First we consider the two-dimensional case where we have essentially one situation, 2 being a
strip with cross section (0, 1) without loss of generality,

Q=R x (0,1) C R%
The first boundary conditions are (2.3), i.e.
ixu=0, V=0 on Of). (3.1)

[43

Observing in two resp. one space dimension(s) the rules for “x” between vectors (and scalars),
given in the introduction, we have from (3.1) equivalently on 9

—ilouy + fiue = 0,
O1ug + Oougy = 0,

where 9; = 9/0x;, j = 1,2(,3). Since @ = (0, £1)* and /97 = £09, this is equivalent to
U1 = Ozus =0 on 09, (3.2)

and hence represents a free movement in the normal direction and no shear movement. The second
boundary conditions are (2.4), i.e.

fiu = 0, X (Vxu)=0 on Of). (3.3)

Observing in two resp. one space dimension(s) the rules for the curl “Vx” given in the introduction,
we have from (3.3) equivalently on 99

fiyuy + figug = 0,
ﬁg(—agul + 81’&2) = 0,
ﬁl(azul - 31u2) = 0,
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or, equivalently,
Oru1 = us =0 on 0f2. (3.4)

Hence (3.3) represents a free shear movement without movement in the normal direction.
Second, we consider the three-dimensional case n = 3 with [ = 2 where we have essentially one
situation, 2 being the region between two plates. Without loss of generality we consider

Q=R?*x(0,1) Cc R%.

The first boundary conditions (3.1) are now equivalent on 0f2 to

ﬁg’U,g — ﬁg’dg = 0,
ﬁgul — ﬁ1U3 = 0,
'ﬁzl'LLQ — ﬁ2U1 = O, (35)
Ohur + Oous + O3uzs = 0.
Observing 7 = (0,0,+1)* and 0/ = +0s, this is equivalent to
up = ug = dpuz =0 on 9N). (3.6)

This is the analogon to the two-dimensional version (3.2) representing a mere movement in the
normal direction, no shear movement.
The second boundary conditions (3.3) are equivalent on 9 to

iuy + foug + figuz = 0,
ﬁg(al’U,Q — 62u1) — ﬁ3(83u1 — (91’(1,3) = 0, (3 7)
fig(Douz — Ozuz) — 71 (Oruz — dour) = O, '
M1 (03uy — O1ug) — Mia(Oauz — Jzuz) = O,
or, equivalently,
Orup = Ozug =uz =0 on 09. (3.8)

This is the analogon to the two-dimensional version (3.4) and represents a free shear movement
without movement in the normal direction.
Third, we have the three-dimensional infinite cylinder (n = 3,1 = 1),

Q=R x BcCR?,

where B C R? is a bounded domain.
For the first boundary conditions (3.1) we obtain from (3.5), observing 7 = (0, @iz, 7i3)*,

uy =0, foug —nizug =0, Joug + d3uz =0 on Of). (39)
For the second boundary condition (3.3) we obtain from (3.7)
ﬁg’dg + ’fi3’U,3 = 0, ﬁg(al’U,Q — 62u1) — ﬁ3(83u1 — (91’(1,3) = 0, 82U3 — (93’(1,2 =0 on 0f). (310)

The boundary conditions (3.9) and (3.10), respectively, become more transparent for cylindrically
symmetrical domains. This is the following situation where 0 = R x B is a classical cylinder,
i.e. B is radially symmetrical which in turn means

"€B = VYReO(2): R eB

where O(n) will denote for n = 2, 3 the set of orthogonal n x n real matrices. The typical examples
are balls or annular domains. Let now () be a classical cylinder. We define

Definition 3.1 A vector field u : Q — R3? is called cylindrically symmetrical, if

Vo, €R Va" = (x9,23) € B VR O(2):

uy(z1, Ra") = uy(z1,2"),  (uz,us)*(z1, Ra") = R(ug,us)* (z1,2").
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That is, u is cylindrically symmetrical if, for fixed z;, the first component as a scalar, and the
second and third component together as a vector field are radially symmetrical in B, cp. for
example [9]. Therefore we have the following characterization (cp. [9, Lemma 4.5]),

Lemma 3.2 u : Q — R3 is cylindrically symmetrical <= There exist functions h, ¢ : R x R}
such that for all (z1,2") € Q

ul(xlax”) = h(l'l,T), (Ug,Ug)*(,’El,fE”) = x”(b(xlur)u

where r:= |z = \/x3 + 22

Our initial-boundary value problem with differential equation (2.1) and f = 0, initial conditions
(2.2) and boundary conditions (2.3) resp. (2.4) turns out to be cylindrically invariant, we have
Lemma 3.3 Let Q be cylindrically symmetrical. If the data u®, u* are cylindrically symmetrical,
then the solution u(t,-) to (2.1), (2.2), (2.8) resp. (2.4), f =0, is cylindrically symmetrical for
allt > 0.

PROOF: Let R = (Tij)lgi,j§2 € 0(2), and let

Then R € O(3). Set for t >0, z = (x1,2”) € Q

v(t,x) := R*u(t, Rx).
Since
v (t, ) = R*uy(t, Rz), Awv(t,z) = R*(Au)(t, Rx), VV*u(t,z) = R*(VV*u)(t, Rz)

we conclude that v satisfies the same differential equation as u. Since the initial data are cylindri-
cally symmetrical we have
U(Oa ) = uoa vt(Ov ) = ulv

and hence v has the same initial values as u. By the uniqueness of solutions it only remains to
show that v satisfies the same boundary conditions as u, that is the invariance of the boundary
conditions under cylindrical symmetry.

For the first boundary conditions (2.3) this can be seen as follows: First note that

ﬁg (.Il, R.I”) o R ﬁg (.Il, {E”)
ﬁg(fbl, R.I”) - ﬁg(fbl, {E”)

ii(Rx) = Rii(x). (3.11)

and by 771 =0

This implies
fi(z) x R*u(t, Rx) = (R*Rﬁ(ac)) x R*u(t, Rx)
= det(R) R* ((Rﬁ(m)) X u(t,f%:v)) = det(R) R* (ﬁ(f%x) X u(t,f%:v)) =0 on 9
by 7 X u = 0 on 9f). Hence we have proved

X v(t,)=0 on 0N. (3.12)

A short calculation shows that V* (R*u(t, Rz)) = (V*u)(t, Rx). Therefore we have

V*u(t,z) = (V*u)(t,Rz) =0  on 90 (3.13)



because of the boundary conditions given for w. This proves that v satisfies the same boundary
condition (2.3) as u.
For the second boundary condition (2.4) it is easy to see that on 92

f(z)v(t,x) = (Rﬁ(m)) u(t, Rx) = i(Rx)u(t, Rx) = 0 (3.14)

holds. Using

V x (R*u(t, RZC)) = det(R) R* (V x u)(t, Rx)

we obtain in the same way
7i(z) x (V x o(t,z)) = R* (ﬁ(Rz) x (V x u)(t, Ra:)) =0  ondQ (3.15)

With (3.14) and (3.15) we have that v satisfies the same boundary condition (2.4) as w. This
finishes the proof of Lemma 3.3.

Q.E.D.

For a cylindrically symmetrical solution

w(t,a1,2") = ( RO )

we can rewrite the second boundary condition (2.4) as
hr=0, ¢=0, (3.16)
or
85’&1 = U2 = U3 = O, (317)

cp. (3.6). The first boundary boundary condition (2.3) can be rewritten for a cylindrically sym-
metrical solution as

h=0, 26+rp, =0, (3.18)

the latter following from Oyus 4+ Osus = 0. (3.18) represents a kind of Robin type boundary
condition for (ug,us).

We finally remark that the boundary conditions (2.3) for elasticity were already studied by
Weyl! [33]; in particular, he investigated the asymptotic distribution of eigenvalues of the associ-
ated stationary problem, cp. the next section.

4 Elliptic estimates

We write
r=(2',2") € Q=R x B,

n l n
A=) 07 AN=>0 AN'=> 0
j=1 j=1

j=Il+1
Let
A:D(A) C L*(Q) — L*(9Q),

D(A) := W2 Q)N Wy 2(Q), Ap:=—Ap,
where we use standard notations for Sobolev spaces (cp. [1]), similarly

A" D(A') C LA(R') — L2(RY),

1Weyl gave a motivation as follows: “Sie [the boundary condition (2.3)]1 wird fiir uns dadurch wesentlich,
dass sie nach dem Schema < Elastischer Kérper — FRESNELs elastischer Aether — elektromagnetischer
Aether>> den Uebergang von der Elastizitatstheorie zur Potentialtheorie zu Wege bringt.”
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D(A') = W*2(R!), Ap:=-Ap,
A" :D(A") c L*(B) — L*(B),
D(A") :=W>2(B)nW, *(B), A'p:=-A"p.

The operators A, A’, A” are selfadjoint, A” is positive definite with compact inverse, having a
complete orthogonal set (w;);jen of eigenfunctions corresponding to positive eigenvalues (\;);en
being arranged such that

O0< A <A< <A =00, asj— oo.
The spectrum of A’ resp. A is purely continuous and consists of
o(A') =[0,00), (A) = [\, 00),

cp. e.g. [13]. The following lemma is taken from Section 2 in our previous work [15].
Lemma 4.1 (L?-regularity for the Laplace operator) Let j € Ng, ¢ € D(A), 1 < p < 00, ¢ €
LP(Q), Ap € W2P(Q). Then it holds

lellwz+i ) < cllApllwi e,
where ¢ is a positive constant at most depending on j and p.

In the case n < 4 the assumption ¢ € LP(Q)) can be omitted. This can be seen approximating ¢

by @i (z) := w(%)go(:v), where 1) denotes a cut-off function with respect to the unbounded variable
2’ € R'. Then ¢}, € LP(Q) N D(A) and || Agr — Al ey — 0. This proves:

Corollary 4.2 Letn <4, j € Ng, p € D(A), 1 < p < 0o, Ap € W3P(Q). Then ¢ € W2T7P(Q)

and
lellwz+ir) < cllApllwir @),

where ¢ is a positive constant at most depending on 7 and p.

We define the two Maxwell operators M7, My with
M;:D(M;) c L* - L?

by
D(M;) := {ueL?*luecR%Q), Vue H}(Q), Au € L?} (4.1)
D(My) := {ueL?*luec D),V xuc RYQ), Auc L*}, (4.2)
Mju = —-7Au, (4.3)

where 7 will be either of p, (2p+ A). We have from [30, 31] that M; is a positive self-adjoint
operator with purely continuous spectrum

o(M;) = [a, 00)

where o satisfies

> . j=1 and B is simply connected
@ { } 0 if { j=2 or B is multiply connected |- (4.4)

The following assertion is an extension from Kozono and Yanagisawa [10], where the case of a
bounded domain is studied.

Lemma 4.3 (LP-regularity for the Mazwell operators) Let m € No, u € D(M;), j=1,2,1<p<
o0, u € LP(Q), Mju € W™P(Q). Then it holds u € W™+2P(Q) and

[ullwmszr@) < cl[(Mj + Dullwmr),

where ¢ s a positive constant at most depending on m and p (and j).
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As for the case of the classical wave equation (“scalar A-operator with Dirichlet boundary con-
ditions”) previously studied in [15], we will need knowledge on the eigenvalue distribution for
the different operators acting on the bounded cross section B. It is important that the original
boundary conditions in 2 split up into reasonable boundary conditions for the components in the
cross section.

We have the following six cases: space dimensions n = 2,3, 1 <[ < n—1, boundary conditions
(2.3), (2.4). We know from Section 2 that the decompositions u = uP® + u® according to (2.5)
resp. (2.16) carry over the boundary conditions (2.3) resp. (2.4) to both uP° and u®, while the
elastic operator A; is turned into the Laplace operator. That is we will have to check what kind of
boundary conditions arise for the components in the cross section. For these boundary conditions
we need the distributions of the eigenvalues (p,, ) of the Laplace operator, not necessarily taking
into account the subspaces where the vector functions live in, but just in all of L2, and in ascending
order as usual. Let N(p) denote the number of eigenvalues p,, satsifying p,, < p.

Case I: n=2,[1=1, boundary conditions (2.3):

By (3.2) we need the behavior for the Dirichlet and Neumann boundary conditions in B = (0, 1),
which is well-known: )

pm = (mm)*, N(p) ~ p?,
with m = 1,2,... for the Dirichlet condition, and m = 0,1,2,... for the Neumann condition on
0B.

Case I. n =2, =1, boundary conditions (2.4):

By (3.4) we have the same situation as in case I.

Case III:  n =3, [ =2, boundary conditions (2.3):
By (3.6) we have the same situation as in case I.

Case IV: n =3, [ =2, boundary conditions (2.4):
By (3.8) we have the same situation as in case I.

Case V: n =3, =1, boundary conditions (2.3):

By (3.9) we have for fixed 2’ € R at 9B the Dirichlet condition for u;(2’,) and the boundary
conditions (2.3) for the components (uz,us)(z’,-) and the normal vector (n3,73)(2’, ). For the
Dirichlet condition we have the well-known estimate, see [2], going back to Weyl [32, 33]:

implying ,
Pm = M2,

where ¢ > 0 is independent of m.

For the boundary condition (2.3) we have the same result. This was proved first by Weyl [32, 33]
for a three-dimensional domain and extended by Mehra [16] to the two-dimensional situation, the
situation we encounter here.

Case VI:  n =3, [ =1, boundary conditions (2.4), cylindrical symmetry:

The boundary conditions (3.10) give the boundary conditions (2.4) for fixed 2’ € R at 9B for
the components (ug,us)(z’,-) and the normal vector (n3,n3)(z’,-). The condition for wu; is not
separated in general, but for the assumed cylindrical symmetry we get the Neumann boundary
condition for uy(2’, ), and the Dirichlet boundary condition for us, us, see (3.17). Hence we obtain
the same asymptotics for the eigenvalues as in case V.

Summarizing we have:

Lemma 4.4 The eigenvalues (pm)m for the Laplace-operator studied in the cross section B under
the different boundary conditions arising in the cases I-VI satisfy

2
Pm Z cmn—1

where ¢ > 0 is independent of m.
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We remark that the Laplace operator is studied in certain subspaces of L? according to the
decomposition of u into u?° 4+ u®, and maybe under radial symmetry. Still the estimate on the
lower bound for p; in Lemma 4.4 remains valid for these subspaces, in some cases not being sharp,
compare e.g. the distribution of the eigenvalues of the Dirichlet Laplace operator for the radially
symmetrical case of the unit disk in R? with N(p) ~ p%, as in the one-dimensional case, while
N(p) ~ p2 for a general two-dimensional bounded domain, see [2].

5 The decay of solutions, f =0

In the first part of this section we study Maxwell’s equation for the electric and magnetic field,
respectively, with right-hand side f = 0. In the second part we apply the results obtained to the
original elastic system with f = 0. Results for non-vanishing right-hand side will be given in the
next section.

Let z : [0,00) x @ — R™ be the solution of Maxwell’s equation

Ztt — TAz = 0, (51)

where 7 > 0, together with initial conditions

and either electric boundary conditions (2.3), i.e.
n(-) x z(t,-) =0, V*z(t,-) =0 on 042, (5.3)
or magnetic boundary conditions (2.4), i.e.
ni(-)z(t,-) =0, 7i(-) x (V x 2(t,-)) =0 on 0f. (5.4)

We consider again the six cases n = 2,3, 1 <[ < n — 1, boundary conditions (5.3), (5.4), having
been denoted by I-VI in Section 4.

Cases I, I, III, IV, VI: n=2o0rn =3, =2 or n = 3,] = 1 with boundary conditions
(5.4) and cylindrical symmetry:
By (3.2), (3.4), (3.6), (3.8) and (3.17), respectively, we observe that all components satisfy either
the Dirichlet or the Neumann boundary condition, and that at least one component satisfies the
Dirichlet boundary condition and at least one the Neumann boundary condition. Thus we obtain
from [15, Thm. 3.3 plus Remark| the decay rates for the ||zx(t,-) zs(0)-norm (2 < ¢ < oo) of
the components of the solution, see the following Theorem. In case of the Dirichlet condition we
obtain the rate t=/2 for ||zx(t, ) Lo (), while for the Neumann condition this only holds on the
space orthogonal to the null space of the Neumann operator (the constant in B), otherwise we
have the rate ¢t—(=1)/2),

Case V: n =3, =1, boundary conditions (5.3):
By (3.9) we have for fixed 2’ € R at 0B the Dirichlet condition for z1(¢,2’,) and the boundary
conditions (5.3) for the components (22, 23)(t, 2, -) and the normal vector (72, 73)(2’, -). Therefore
z1 can be treated as before, and for (22, z3) the methods from [15] carry over, we sketch the steps:
The null space of M;" — denoting M; as operator in B instead of  now — equals Ry(B) N
RY(B) N Dy(B), the dimension of which is 1, hence being generated by some wy = wo(z") € R?,
see e.g. [18, 19, 20, 28]. Let (wy, )m denote the eigenfunctions of M (in B) with eigenvalues (pp, )m.,
m=0,1,2,..., with pp =0 and 0 < p1 < pa <.... Set Z := (29, 23) = (22, 23)(¢, 2, ") and

O (t,2") = (Z(t, 2", ), wm) L2(B)>
for m € NU{0}. Then v,, satisfies

V.t — AUy + PV = 0 in [0, 00) x R, (5.5)
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um(0,2") = vp, (') = (2(0, 2", ), wm) 2(m), in R, (5.6)
Om,t(0,2) = v}, (') := (Z(0,2', ), wm) 12(B), in R, (5.7)

Thus v,, satisfies a Klein-Gordon equation in R! for m > 1, and a pure wave equation (pg = 0)
for m = 0. Hence we have for m > 1 the decay of v,, in L of order t~'/2, and for vy no decay.

Expanding Z into a Fourier series with respect to the (wpm,)m in L?(B) one can get the decay
rate for Z from that of the v,,, here using Lemma 4.4 in a series argument, as in [15]. The L?-L?
energy estimate is also given, so we obtain the LP-L9%-decay by interpolation. In this single case
V, the interpolation result seems not yet to be given in the literature, but is expected to hold,
cp. Guidetti [7] for the interpolation argument. The extension to the boundary conditions (5.3)
we take as hypothesis here.

We summarize our results, using the estimates for wave equations from [15]. In order to have
one unified result for all cases, we introduce a condition reflecting possible parts in the arising null
spaces in case of the Neumann boundary condition and the electric boundary condition in case V.
Condition (N): The initial data 2°(z’,-), 2X(2’,-) from (5.2) satisfy for every fived ' € R' that
their projections onto the null spaces of the operator’s part in cross-direction (constant functions
for the Neumann condition in cases LILIILIV,VI; in case V: span {wo}) vanish.

Theorem 5.1 (Mazwell systems, f = 0) Assume condition (N). Let z be the unique solution to
(5.1)-(5.3) or (5.1), (5.2) and (5.4), and let2 < qg<oo, 1/p+1/qg=1. Let

n n—1 [+3 n—1+1
Kg._[§]+{7]+3, Kg._[ : }+[ . }

and
20 € D(M[?/?) nwietKatL 1 ()

21 € D(M V2 et Kt
j =1,2 corresponding to boundary condition (5.8) and (5.4), respectively. Then z satisfies

c

[(2(#), 2¢(t), Vz(t) | Lage) < m”(%%VZO)HWN,),p(Q)a
where
& [ Q- DU+ Ky if qe€ {2 00},
r [(1-2) (K2 + K3)|+1  if 2<q<oo,

and c depends at most on q and B.

In view of the applications to corresponding nonlinear systems, we remark that we have in
Theorem 5.1 a real decay of the L°°-norm like ¢t~", with » > 0, in the cases III and IV always
(r = 1 if condition (N) is satisfied, r = 1/2 otherwise), and in the other cases (only) if condition
(N) is satisfied, then with r = 1/2.

Now let u be the solution to the original system (2.1), (2.2) with boundary condition (2.3) or
(2.4), respectively. As in Section 2, we decompose u = uP° + u® according to

L2(Q) = HP® & H* (5.8)

where HP° and H® are determined in the given decompositions in (2.5) resp. (2.16), which them-
selves depend on the choice of boundary conditions (2.3) resp. (2.4). Then in each case

z=u’, e {po,s}

satisfies (5.1), (5.2) and (5.3) or (5.4), respectively (cp. (2.7)—(2.10) and (2.17)—(2.19)). The initial
data for z are given by the projections of u°, u' onto the spaces HP° and H*, respectively:

20 = PPyl 2t = PPout if f=po and 20 =Pu’, 2 = Psulif g =s. (5.9)

)
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We apply the result of Theorem 5.1 and obtain for u (e.g.), and g < oo,

lu(t, Moy < NPt )lLae) + 1w’ Lo

# po, 0 ppo, 1 po, 0 B
= oo (I, Proud, V)l
s,,0 s, 1 s, 1
1P, P2, VP )5y )
Thus we have proved, defining the elasitic operators E1, o as follows,
E;:D(E;) c L> - L?
by
D(Ey) = {u€ L*|uec RQ), V'ue H}(Q), (A + (u+ NVV*)u € L?} (5.10)
D(E;) = {u€eL*|lueD’Q),Vxuec R (Q), (uA+ (p+NVV*ue L?*}, (5.11)
Eju = (uA+(p+AN)VVu, (5.12)

Theorem 5.2 (Elastic systems, f = 0) Assume that the initial data 2° = PP°u®, 21 = PPou! and
20 = Psu®, 2t = Psul satisfy condition (N). Let u be the unique solution to (2.1)-(2.3) resp. to
(2.1), (2.2, (2.4), and let 2 < g < oo, 1/p+1/q=1. Let

n n—1 [+3 n—1+1
o [ [ oo s [155] 4 Jrmi]

and
u® € D(E[*/?) nwhetKarl ()

ul € D(EY V2 qwketkal(q),
j = 1,2 corresponding to boundary condition (5.3) and (5.4), respectively. Then u satisfies

([ (u(®), ue(t), Vu(t)) || Lao) <

- (PP, PPt FPPu0) |y, o gy + (P, Pul W Pou)

(1+)1-9)2 HWNP~P(Q)=)

where )
o [ A=2)(K2+ Ks) if q€{2 00},
L —%)(K2+K3)]+1 if 2<q< o0,
and c depends at most on q and B.

In order to remove the projections in the estimate of the last theorem we need to know the
continuity of the projections P onto the space H”, 3 € {po, s}, in the Sobolev space WN-?(Q),

| PPv]|y~.p < const |[v]| . (5.13)

For bounded domains we could refer for 1 < p < oo to Kozono and Yanagisawa [10], where the case
N = 0 is discussed in detail. For our waveguides, we first present a proof for the decomposition
(2.5), used for the boundary conditions (2.3).

Theorem 5.3 Let 1 <p < oo, m € N. Let
X = (LXQnW™PQ)", Y :=VHHQ)NW™P(Q)", Z:=Do(Q)n (W™ ()"
with natural norm || - lwm.r) + || - |22(0). Then we have the direct sum decomposition

X=Y®Z

and the projections Py ontoY and Pz onto Z, respectively, are continuous.
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PRrROOF: First, using the Poincaré inequality, we observe that

VH; (Q) = VH; (),
and that X is a Banach space, and Y and Z are subspaces. Let u € X, then the decomposition
(2.5) in L? yields
U=u; +u2, U ZVQEVHé(Q), uy € Dy.
g can be determined by solving
Ag=V*u, g€ H}Q),
the solution g of which has (elliptic) regularity g € W™T1P(Q) (cp. Corollary 4.2). Hence
u; € W™P(Q).

Then ug = u—wu; € W™P(Q) too. This proves the direct decomposition X =Y + Z. To prove the
continuity of the projections it is now sufficient to show the closedness of Y and Z (cp. [3, p.189]).
But this easily follows for Y using the Poincaré estimate again, and for Z using the definition of
Dy.

Q.E.D.
In the application to the estimate of u in Theorem 5.2 we note that 1 < p < 2 and m = Np > 3.
Then we obtain from Theorem 5.3 and Sobolev’s inequality
1PP o < ¢ (s + 1 12) < ¢ [lu? s (5.14)

Now we give a corresponding result in the case n = 2 for the decomposition (2.16), used for
the boundary condition (2.4). We remark that the case n = 3 remains open.

Theorem 5.4 Suppose that n =2 and that 1 < p < oo, m € N,
ue W™P(Q)N{u|V xuec L*N)}.
Then PPu € W™P(Q), and there is a constant ¢ > 0 independent of u such that
1P ullwrr < cllulwnr (8 € {po,s}).
PROOF: Let g be the (scalar-valued) solution to
~Ag=V xu, g€cH}Q) =R(Q).
Then
Vx((u—Vxg)=Vxu—Vx ( _aglgg ) =Vxu—Ag=0
and hence u — V x g € Rp(€2). This implies
u=(u—-Vxg)+Vxg u—-VxgecRy(), VxgeVxR(Q)
which means that
PPoy =V x g € W™P(Q), Pu=u—-V xgeWmP(Q),
using elliptic regularity. Now we obtain from Corollary 4.2 that
1PPullwms < lgllwene < eV X ullwn-1 < elullyms.
The boundedness of P? follows from P®u = u — PP°u.

Q.E.D.

Using Theorems 5.3 and 5.4, we immediately conclude from Theorem 5.2:
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Theorem 5.5 (Elastic systems, f = 0) Assume that the initial data 2° = PP°u®, 21 = PPyt and
20 = Pl 2t = Psul satisfy condition (N). Let u be the unique solution to (2.1)-(2.3) resp. to
(2.1), (2.2), (2.4), in the latter case assuming n =2, and let 2 < g <oo, 1/p+1/q=1. Let

n n—1 l+3} [n—l—i—l}
+ )

K = H + [—] +3, Kj:= [

2 2 2 2

and
u® € D(E?) nwietisttig),

ul € D(BD2) qw ket l(q),
j =1,2 corresponding to boundary condition (5.8) and (5.4), respectively. Then u satisfies

C
H (’U,(t), ut(t)a vu(t))HLq(Q) < (uov ulv VUO)”WN% P(Q)’

Tt
where
g (= D+ Ky) if q€ {2 00},
p = [(1_5)([{2_’_[{3)]4-1 Zf 2 < q < o0,

and ¢ depends at most on q and B.

6 The decay of solutions, general f = f(¢t,x)

As in [15] we have to overcome the difficulty that one cannot directly apply Duhamel’s principle of
the variation of constants because of the boundary conditions to be observed. Here, additionally,
one has operators that may have zero in the spectrum, cp (4.4). Therefore we have to extend the
approach in [15] in the following way which works analogously for any operator being bounded
from below.

Let A be any of the operators M; defined in Section 4, j = 1,2. We first look for estimates of
the solution u : [0,00) — R™ to

Ut + Au = f, (61)

u(t) € D(A), (6.2)

U(O, ) = uO, ut(07 ) = ula (63)
2K+2

we () C7([0,00), WKHT2702()), (6.4)
j=0

where K € N. If the solution exists, the following necessary conditions have to be satisfied:

2K
fe /(0 00), WK72(Q)) (6.5)

=0
and
uF e D(A) NWHH2732(Q) for k=0,1,...,2K, u?5T'e D(AY?), w52 L2(Q); (6.6)
here u°, u! denote the given data and inductively
W= fUTD0) — Awd T2 for j=2,... 2K +2, (6.7)
which means that u/ = 8u(0, ).
Now suppose that (6.5) and (6.6) hold and that u is solution of (6.1) — (6.4). We define the
invertible Operator B := A+ 1 on D(B) := D(A) and rewrite (6.1) as

(02 —)u+ Bu=f. (6.8)
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Then we can do the same trick used in section 4 of [15], we only have to replace the operator 9?
by (02 — 1). In particular we set

v:=(—=B) K0 - 1)%u. (6.9)

By induction with respect to k we conclude from (6.8) that

k—1
(—=B)~ "2 — 1)* G2 — 1) f +u
jZO
and
K—-1
D2 — 1) f + u. (6.10)
jZO
Hence v is the solution of
v + Av = (=B) K97 - )X f, (6.11)
vo(t) € D(A), (6.12)
K-1
0(0,) =00 =Y (=B)"UtD (2 — 1)7 £(0) + u°, (6.13)
j=0
K-1
0(0,) =v' = S (=B)"UTD(92 = 1)79,£(0) + u', (6.14)
j=0
2
ve [)C([0,00), WET202()), (6.15)
j=0

where (6.15) follows from (6.4), (6.9) and elliptic regularity theory, cp. Lemma 4.3.
On the other hand, if v is the solution of (6.11) — (6.15), then set

K-1

— Z —GHD (92 — 1) f (6.16)

Q

As in the proof of Theorem 4.1 in [15] we can show that @ solves (6.1) — (6.3), and (6.4) follows
from (6.15) and (6.5) by sy = f — Atu. Then 4 = u by uniqueness of the solution.

Note that the right-hand side of (6.11) satisfies boundary conditions as element of D(BX) =
D(AK). Analogously, v* = B=5(9? — 1)%u(0,.) € D(AX*H1) and v! = B=% (87 — )X 0,u(0,.) €
D(AK+1/2) by (6.6). Therefore we can apply Duhamel’s principle and the results of the previous
section to obtain decay-estimates for v and hence for u. In the following we give only the results,
the remaining proofs can be carried over from section 4 of [15], here using the LP-regularity for
the Maxwell operators M given in Lemma 4.3.

We say that (f,u",u') satisfies the compatibility condition of order K for the operator A, if
u®,u? and u? defined by (6.7) satisfy

u* € D(A) for k=0,1,...,2K, > e D(AY?). (6.17)
Moreover, we naturally extend condition (N) to non-zero f:
Condition (N): 20(2’,), z1(2/,-) and f(t,2’,.) satisfy for every fired t > 0 and x’ € R! that
their projections onto the null spaces of the operator’s part in cross-direction (constant functions
for the Neumann condition in cases LILIILIV,VI; in case V: span {wp}) vanish.
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Theorem 6.1 (Mazwell systems, LP-Li-decay)) Assume condition (N). Let Ko, K3,d be defined
as in Theorem 5.1. Suppose

K2w2l<[ﬁ}+[l+_1:|+n_l+l),

2 2 2 2
2K ) ) )
fe ) C([0,00, WH=32(Q) n WK3-1(Q)) |
§=0

ZO c W2K+2’2(Q) N W2K+2’1(Q), Zl c W2K+1’2(Q) N W2K+1’1(Q),

that (29,21, f) satisfies the compatibility condition of order 2K for the operator My or Ma, Te-
spectively, and that z is the unique solution of (5.1) — (5.8) or (5.1), (5.2), (5.4). Then for every
q € [2,00) and % + % =1 the solution z satisfies

”(Z(ta ')a Zt(tv ')7 Vz(ta '))HL‘?(Q)

2K —1
c )
< ————7 H(Zoazlavzo)”W?Kw Q) T Hf(J)(O)HWM*lfM Q
(1+1)0=D% @ JZ:(:) «

2K—-1

t
e T 1_2)ZZ||f Ay +¢ 3 1P Ollwerrosoe

where the constant ¢ > 0 does not depend on 2°, 2%, f and t.

Finally, we obtain the general decay results for the elastic system (2.1)—(2.3)/(2.4), decompos-
ing u and f into

u=uP+u’  f= [+ [
Theorem 6.2 (Elastic systems, LP-Li-decay) Assume that the projections PP°u, PPout, PP f
and Pu®, P*ul, P* f satisfy condition (N). Let Ko, K3,d be defined as in Theorem 5.1. Suppose

K2w2l<[ﬁ}+[l+_1:|+n_l+l),

2 2\L2 2
2K
I € () C7([0,00), WHEZI2(@) n WK1 1),
j=0

0 c W2K+2’2(Q) N W2K+2’1(Q), ul c W2K+1’2(Q) N W2K+1’1(Q),

that (u®,u, f) satisfies the compatibility condition of order 2K, now for the operator Ey or Es,

respectively, and that u is the unique solution of (2.1)—(2.3) or (2.4), respectively. Then for every
q € [2,00) and % + % =1 the solution u satisfies

H(u(tu')7ut(t7')7vu(t7'))HL‘?(Q)
< —— ([(PPoul, PPoul VPPouC, PR, Pl V PR Nlwer. v ()
(141122

2K—-1

+ > PP f9(0), PO 0)lwer -0 | +
=0

¢

c | Pre f) SFOT) | Loy dr +
/0 (1—|—t—T -2 Z e

2K -1

¢ Y 1P (), PP D (1) |[wan 150
j=0
where the constant ¢ > 0 does not depend on u°,u', f.
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Using Theorems 5.3 and 5.4 we can remove the projection operators appearing in the last theorem.

Theorem 6.3 (Elastic systems, LP-L?-decay) Assume condition (N). Let Ko, K3,d be defined as
in Theorem 5.1. Suppose

K>w:l<[ﬁ}+[l+_1:|+n_l+l),

- 2 2 2 2
2K

fe ) C/([0,00), WH32(Q) n WK1 (),
j=0

uO c W2K+2’2(Q) N W2K+2’1(Q), ul c W2K+1’2(Q) N W2K+1’1(Q),

that (u®,u, f) satisfies the compatibility condition of order 2K, now for the operator Ey or Es,
respectively, and that u is the unique solution of (2.1)—(2.3) resp. to (2.1), (2.2), (2.4), in the
latter case assuming n = 2. Then for every q € [2,00) and % + % =1 the solution u satisfies

”(u(t7 ')7 ut(t7 ')7 Vu(t, '))”Lq(ﬂ)

2K—-1
___c 0.1 v,,0 ) |
< R [(u”, ut, V) e, » () + ;‘) £ (0) lwar—1-5. (5
¢ 1 2K 2K -1
+c/ £ () | Lo (ydr + ¢ £ @) || ywrar—1-3. 7
0 (1+t—7)0-2 JZ:;) @) ;0 W2K =132 (Q)

where the constant ¢ > 0 does not depend on u°,u', f.
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