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1. Introduction

It is well know that the moments of negative eigenvalues of the Schrödinger operator
−∆ − V in L2(R

d) can be estimated in terms of the classical phase space volume. Namely,
the Lieb-Thirring inequality states that the bound

(1.1) tr (−∆ − V )γ− ≤ Lγ,d

∫

Rd

V
γ+ d

2
+ dx

holds true for any potential V if and only if

(1.2) γ ≥ 1

2
if d = 1, γ > 0 if d = 2, γ ≥ 0 if d ≥ 3 .

Here x± := max{0,±x} denotes the positive and negative part of x. Inequality (1.1) is due
to Lieb and Thirring [LT] and, in the endpoint cases, to Cwikel [Cw], Lieb [L], Rozenblum
[R] and Weidl [W]. We refer to [LW] and [H] for recent reviews on this topic.

Our main objective is to establish the analog of (1.1) for Schrödinger operators on metric
trees. A (rooted) metric tree Γ consists of a set of vertices and a set of edges, i.e., segments
of the real axis which connect the vertices. We assume that Γ has infinite height, that is,
it containing points at arbitrary large distance from the root. We define the Schrödinger
operator formally as

−∆N − V in L2(Γ)

with Kirchhoff matching conditions at the vertices and a Neumann boundary condition at
the root of the tree.

Metric trees represent a special class of so called quantum graphs, which recently have
attracted great interest; see, e.g., [BCFK, KoSch, Ku1, Ku2] for extensive bibliographies about
this subject. Many works devoted to quantum graphs concern questions about self-adjoint
extensions, approximation by thin quantum wave guides and direct or inverse scattering
properties of the Laplace operator on graphs, see the references above and also [EP, KuS].
Various functional inequalities for the Laplacian on metric trees have been established in
[EHP, NS1]. However, much less attention has been payed, with the exception of [NS2],
to the classical question of finding appropriate estimates, similar to (1.1), on the discrete
spectrum of Schrödiger operators on metric trees. As we shall see, the interplay between the
spectral theory and the mixed dimensonality of a tree makes this a fascinating problem.

Our main result concern regular metric trees, that is, trees which are symmetric with
respect to the distance from the root; see Subsection 2.1 for a precise definition. We shall
show that the validity of a suitable analog of (1.1) is characterized by the global branching
of the tree Γ. The latter is expressed by the branching function g0(t) := #{x : |x| = t} which
counts the number of points of Γ as a function of the distance from the root. The function
g0 is clearly non-decreasing. Depending on its growth we may split the trees into two classes
according to whether the integral

(1.3)

∫ ∞

0

dt

g0(t)

is finite (transient trees) or infinite (recurrent trees). It turns out that in the former case,
the corresponding Lieb-Thirring inequality holds for all values γ ≥ 0. For γ = 0 this is
an estimate on the number of negative eigenvalues in terms of an integral of the potential,
usually called a Cwikel-Lieb-Rozenblum inequality. On the other hand, if the integral (1.3)
is infinite, then Lieb-Thirring inequalities do not hold for values of γ which are smaller than
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some critical value γmin > 0. In order to determine the value of γmin we use the notion of the
global dimension of a metric tree, see Definition 2.5. This dimension is equal to d ≥ 1 if the
branching function g0 grows polynomially at infinity with power d− 1. We emphasize that in
contrast to the Euclidean case d need not be an integer.

For regular metric trees Γ with global dimension d and Schrödinger operators with sym-
metric potentials V we shall prove Lieb-Thirring inequalities of the form

(1.4) tr (−∆N − V )γ− ≤ C

∫

Γ
V

γ+ 1+a
2

+ g
a

d−1

0 dx , a ≥ 0 .

The allowed values of γ are determined by the parameter a and by the global dimension d of
Γ, see Theorem 2.7. For a = 0 the weight in the integral on the right hand side disappears
and the inequality is very similar to its Euclidean version (1.1). Both sides then share the
same growth in the strong coupling limit, see Remark 2.10 below. On the other hand, it
requires the exponent γ ≥ 1/2 and does not capture the fact that even smaller moments can
be estimated for larger values of d. This motivates the inequality (1.4) with different choices
of a. As a consequence of our result, the smallest value of γ such that (1.4) holds for some
a ≥ 0 (indeed, for a = d − 1) is

(1.5) γmin =
2 − d

2
1 ≤ d < 2 , γmin = 0 d > 2 .

We emphasize that we establish the inequality in these endpoint cases and that the resulting
inequality for 1 ≤ d < 2 is order-sharp in the weak coupling limit, see Remark 2.11. As one
may expect by analogy with the Euclidean situation, the case d = 2 is somewhat special,
since the minimal value of γ is 0, but the inequality is not valid in the endpoint case.

We consider also the case of a homogeneous tree, i.e., a tree where all edges have equal
length and all vertices are of the same degree. In this case the function g0 grows exponentially
and the Laplacian −∆N is positive definite. We prove Cwikel-Lieb-Rozenblum inequalities
for the number of eigenvalues that a potential V generates below the bottom of the spectrum
of −∆N .

An important ingredient in our proof of such estimates are one-dimensional Sobolev in-
equalities with weights. In particular, if integral (1.3) is finite, we combine them with a
Sturm oscillation argument in order to deduce Cwikel-Lieb-Rozenblum inequalities. This
yields remarkably good bounds on the constants. We believe that our technique, in particular
the duality argument in Proposition 7.2, has applications beyond the context of this paper.

As we have pointed out, one of the main motivations for this work is to understand how
the dimensionality of the underlying space is reflected in eigenvalue estimates. Lieb-Thirring
inequalities with two terms have been proven by Lieb, Solovej and Yngvason [LSY] for the
Pauli operator. The second, non-standard term there corresponds to particles in the lowest
Landau level which are localized in the the plane orthogonal to the magnetic field. A two-term
inequality of more geometric nature was proven by Exner and Weidl [EW] for Schrödinger
operators in a waveguide ω × R, ω ⊂ R

d−1. Here the second term corresponds to the global
dimension, which is one, as opposed to the local dimension d. Note, however, that in our
situation the roles are reversed: the global dimension is larger than the local dimension.
Therefore, instead of inequalities with two-terms we prove families of inequalities, which are
sharp in different coupling regimes. This is somewhat similar to the family of inequalities
obtained by Hundertmark and Simon [HS] for the discrete Laplacian on the lattice Z

d, where
the local dimension is 0 and the global dimension is d.
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2. Main results and discussions

2.1. Preliminaries. Let Γ be a rooted metric tree with root o. By |x| we denote the unique
distance between a point x ∈ Γ and the root o. Throughout we assume that Γ is of infinite
height, i.e., supx∈Γ |x| = ∞. The branching number b(x) of a vertex x is defined as the
number of edges emanating from x. We assume the natural conditions that b(x) > 1 for any
vertex x 6= o and that b(o) = 1.

We define the Neumann Laplacian −∆N as the self-adjoint operator in L2(Γ) associated
with the closed quadratic form

∫

Γ
|ϕ′(x)|2 dx, ϕ ∈ H1(Γ).(2.1)

Here H1(Γ) consists of all continuous functions ϕ such that ϕ ∈ H1(e) on each edge e of Γ
and

∫

Γ

(

|ϕ′(x)|2 + |ϕ(x)|2
)

dx < ∞.

The operator domain of −∆N consists of all continuous functions ϕ such that ϕ′(o) = 0,
ϕ ∈ H2(e) for each edge e of Γ and such that at each vertex x 6= o of Γ the matching
conditions

ϕ−(x) = ϕ1(x) = · · · = ϕb(x)(x) , ϕ′
−(x) = ϕ′

1(x) + · · · + ϕ′
b(x)(x)

are satisfied. Here ϕ− denotes the restriction of ϕ on the edge terminating in x and ϕj , j =
1, . . . , b(x), denote the restrictions of ϕ to the edges emanating from x, see, e.g., [NS2, NS1]
for details.

In this paper we are interested in Schrödinger operators −∆N − V in L2(Γ). Throughout
we assume that the potential V is a real-valued, sufficiently regular function on Γ, the positive
part of which vanishes at infinity in a suitable sense. (We shall be more precise below.) In this
case the negative spectrum of −∆N −V consists of discrete eigenvalues of finite multiplicities.
Our goal is to estimate the total number of these eigenvalues or, more generally, moments of
these eigenvalues in terms of integrals of the potential V .

The starting point of our analysis is

Theorem 2.1. Let γ ≥ 1/2. Then there exists a constant Lγ such that for any rooted metric
tree Γ and any V ,

tr(−∆N − V )γ− ≤ Lγ

∫

Γ
V (x)

γ+ 1
2

+ dx.(2.2)

We emphasize that the constant Lγ is independent of Γ. This result is clearly analogous
to the standard one-dimensional Lieb-Thirring inequalities. An advantage is its universality.
Moreover, we will see in Subsection 2.3 below, that the right hand side has the correct order
of growth in the strong coupling limit when V is replaced by αV and α → ∞. On the other
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hand, it does not reflect the geometry of Γ at all and it does not display the correct behavior
in the weak coupling limit when V is replaced by αV and α → 0.

The main goal of this paper is to obtain eigenvalue estimates which take the global struc-
ture of Γ into account. We shall consider trees which possess certain additional symmetry
properties. Namely, we impose

Assumption 2.2. The tree Γ is regular, i.e., all the vertices at the same distance from the
root have equal branching numbers and all the edges emanating from these vertices have
equal length.

Let x be a vertex such that there are k + 1 vertices on the (unique) path between o and x
including the endpoints. We denote by tk the distance |x| and by bk the branching number
of x. Moreover, we put t0 := 0 and b0 := 1. Note that tk and bk are only well-defined for
regular trees and that these numbers, in the regular case, uniquely determine the tree.

We define the (first) branching function g0 : R+ → N by

g0(t) := b0 b1 · · · bk, if tk < t ≤ tk+1, k ∈ N0.

Here N = {1, 2, 3, . . .} and N0 := N∪ {0}. Note that g0 is a non-decreasing function and that
g0(t) coincides with the number of points x ∈ Γ such that |x| = t. The rate of growth of g0

reflects the rate of growth of the tree Γ. More precisely, g0 measures how the surface of the
‘ball’ {x ∈ Γ : |x| < t} grows with t. Of great importance in our analysis will be the fact
whether the reduced height of Γ,

(2.3) ℓΓ :=

∫ ∞

0

dt

g0(t)

is finite or not.
In addition to Assumption 2.2 we shall impose

Assumption 2.3. The function V is symmetric, i.e., for any x ∈ Γ the value V (x) depends
only on the distance |x| between x and the root o.

With slight abuse of notation we shall write sometimes V instead of V (| · |).
2.2. Eigenvalue estimates on trees. In this subsection we present our main results. We
denote by N(T ) the number of negative eigenvalues (counting multiplicities) of a self-adjoint,
lower bounded operator T . We begin with the case where the reduced height (2.3) is finite.
In this case we shall prove

Theorem 2.4 (CLR bounds for trees of finite reduced height). Let Γ be a regular
metric tree with ℓΓ < ∞ and let w : R+ → R+ be a positive function such that for some
2 < q ≤ ∞

(2.4) M := sup
t≥0

(
∫ t

0
g0(s)

q/2w(s)−(q−2)/2 ds

)2/q ∫ ∞

t

ds

g0(s)
< ∞ .

Let p := q/(q − 2). Then there exists a constant Np(Γ, w) such that

(2.5) N(−∆N − V ) ≤ Np(Γ, w)

∫

Γ
V (|x|)p+w(|x|) dx

for all symmetric V . Moreover, the sharp constant in (2.5) satisfies

Np(Γ, w) ≤ (1 + p′)p−1

(

1 +
1

p′

)p

Mp.
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By definition, if q = ∞ condition (2.4) is understood as

sup
t≥0

(

sup
0≤s≤t

g0(s)

w(s)

)
∫ ∞

t

ds

g0(s)
< ∞ ,

and one has N1(Γ, w) ≤ M .
In order to give more explicit estimates we assume that the growth of the branching function

is sufficiently regular in the sense of

Definition 2.5. A regular metric tree Γ has global dimension d ≥ 1 if its branching function
satisfies

0 < c1 := inf
t≥0

g0(t)

(1 + t)d−1
≤ sup

t≥0

g0(t)

(1 + t)d−1
=: c2 < ∞ .(2.6)

Obviously, if Γ has global dimension d, then it has finite reduced height if and only if d > 2.
In this case Theorem 2.4 implies

Corollary 2.6. Assume that Γ has global dimension d > 2. Then for any a ≥ 1 there exists
a constant C(a,Γ) such that for any symmetric V

N(−∆N − V ) ≤ C(a,Γ)

∫

Γ
V (|x|) 1+a

2 g0(|x|)
a

d−1 dx .

Next we turn to the case of infinite reduced height ℓΓ = ∞. It is easy to see that Schrödinger
operators −∆N−V on such trees with non-trivial V ≥ 0 have at least one negative eigenvalue,
no matter how small V is. Hence it is impossible to estimate the number of eigenvalues from
above by a weighted integral norm of the potential. However, under the assumption that the
tree has a global dimension we can prove estimates for the moments of negative eigenvalues
of −∆N − V . Moreover, we can treat the case 0 ≤ a < 1 which was left open in Corollary
2.6. Our result is

Theorem 2.7 (LT bounds for trees). Let Γ be a regular metric tree with global dimension
d ≥ 1.

(1) Assume that either 1 ≤ d < 2 and 0 ≤ a ≤ d − 1, or else that d ≥ 2 and 0 ≤ a < 1.
Then for any γ ≥ 1−a

2 there exists a constant C(γ, a,Γ) such that for any symmetric
V

(2.7) tr(−∆N − V )γ− ≤ C(γ, a,Γ)

∫

Γ
V (|x|)γ+ 1+a

2
+ g0(|x|)

a
d−1 dx.

(2) Assume that either 1 ≤ d < 2 and a > d − 1, or else that d = 2 and a ≥ 1. Then for
any γ > (1+a) 2−d

2d there exists C(γ, a,Γ) such that (2.7) holds for any symmetric V .
(3) Assume that d > 2 and that a ≥ 1. Then for any γ ≥ 0 there exists C(γ, a,Γ) such

that (2.7) holds for any symmetric V .

One can prove that our conditions on γ are not only sufficient but (except for the limiting
case in Part (2)) also necessary for the validity of (2.7). This is further discussed in Subsection
2.3. Part (3) is in fact an immediate consequence of Corollary 2.6 and an argument by
Aizenman and Lieb [AL]. It is stated here for the sake of completeness.

If the branching function g0 grows ‘very’ fast, the Laplacian −∆N is positive definite. In
this case it is reasonable not only to estimate the number of negative eigenvalues of −∆N −V ,
but also the number of eigenvalues less then the bottom of the spectrum of −∆N . We carry
through this analysis for a special class of trees.
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A regular metric tree is called homogeneous if all the edges have the same length τ and
if the branching number bk = b > 1 is independent of k. Homogeneous trees correspond
intuitively to trees of infinitely large global dimension. By scaling it is no loss of generality
to assume that τ = 1. The branching function g0 then reads

g0(t) = bj, j < t ≤ j + 1, j ∈ N0 .

The Laplacian −∆N (or rather its Dirichlet version) on a homogeneous tree was studied in
[SS]. It follows from the analysis there that −∆N is positive definite and its essential spectrum
starts at

λb =

(

arccos
1

Rb

)2

, Rb =
b1/2 + b−1/2

2
.

We shall prove

Theorem 2.8 (CLR bounds for homogeneous trees). Let Γ be a homogeneous tree with
edge length 1 and branching number b > 1 and let w : R+ → R+ be a positive function such
that for some 2 < q ≤ ∞

M := sup
t≥0

(1 + t)−1

(
∫ t

0
(1 + s)qw−(q−2)/2 ds

)2/q

.

Let p = q/(q − 2). Then there exists a constant Np(b, w) such that

(2.8) N(−∆N − V − λb) ≤ Np(b, w)

∫

Γ
V (|x|)p+ w(|x|) dx

for all symmetric V . Moreover, the sharp constant in (2.8) satisfies

(2.9) Np(b, w) ≤ C(b) (1 + p′)p−1

(

1 +
1

p′

)p

Mp

with some constant C(b) depending only on b.

Choosing w(t) = (1 + t)a we obtain the following strengthening of Corollary 2.6.

Corollary 2.9. Let Γ be a homogeneous tree with edge length 1 and branching number b > 1.
Then for any a ≥ 1 there exists a constant C(a, b) such that for any symmetric V

N(−∆N − V − λb) ≤ C(a, b)

∫

Γ
V (|x|)

1+a
2

+ (1 + |x|)a dx .

2.3. Discussion. In this subsection we discuss the inequality (2.7) and the conditions for its
validity given in Theorem 2.7.

Remark 2.10 (Strong coupling limit). The inequality (2.7) with a = 0 coincides with (2.2),

tr(−∆N − V )γ− ≤ Lγ

∫

Γ
V (|x|)γ+ 1

2
+ dx, γ ≥ 1

2
.

This inequality reflects the correct behavior in the strong coupling limit. Indeed, if V is, say,
continuous and of compact support then standard Dirichlet-Neumann bracketing [RS, Thm.
XIII.80] leads to the Weyl-type asymptotic formula

(2.10) lim
α→∞

α−γ− 1
2 tr (−∆N − αV )γ− = Lcl

γ,1

∫

Γ
V (|x|)γ+ 1

2
+ dx, γ ≥ 0,
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with

(2.11) Lcl
γ,1 =

Γ(γ + 1)

2
√

π Γ(γ + 3/2)
.

This shows in particular that (2.7) can not hold for a < 0.

Remark 2.11 (Weak coupling limit). Assume that Γ has global dimension d ∈ [1, 2). The
inequality (2.7) with a = d − 1, γ = (2 − d)/2 reads

tr(−∆N − V )
2−d
2

− ≤ C

(

2 − d

2
, d − 1,Γ

)
∫

Γ
V (|x|)+g0(|x|) dx.

This inequality reflects the correct behavior in the weak coupling limit. Indeed, it is shown
in [K] that −∆N − αV has at least one negative eigenvalue whenever

∫

Γ V (|x|) dx > 0, and
that for α sufficiently small this eigenvalue, say λ1(α), is unique and satisfies

(2.12) −a1 α
2

2−d ≤ λ1(α) ≤ −a2 α
2

2−d , α → 0,

for suitable constants a1 ≥ a2 > 0 depending on V . This fact shows also that (2.7) does not
hold for 1 ≤ d < 2, a ≥ 0 and γ < (1 + a)2−d

2d . We do not know whether (2.7) holds in the

endpoint case γ = (1 + a)2−d
2d when 1 ≤ d < 2 and a > d − 1.

Similarly, when Γ has global dimension d = 2, one can show that −∆N − αV has at least
one negative eigenvalue whenever

∫

Γ V (|x|) dx > 0. Hence (2.7) does not hold for d = 2,
a ≥ 0 and γ = 0.

Remark 2.12 (Dirac-potential limit). As we have seen in the previous remark, the condition
γ > (1 + a)(2− d)/(2d) in Part (2) of Theorem 2.7 comes from the weak coupling limit. Now
we explain that the condition γ ≥ (1 − a)/2 in Part (1) comes from what may be called
the Dirac-potential limit. Consider the sequence of potentials Vn = nχ(0,n−1). Using a trial

function supported near the root o one easily proves that tr(−∆N − Vn)γ− is bounded away

from zero uniformly in n. On the other hand,
∫

V
γ+ a+1

2
n g

a
(d−1)

0 dx tends to zero if γ < (1+a)/2.

This shows that the condition γ ≥ 1−a
2 is necessary for the validity of (2.7).

Remark 2.13 (Slowly decaying potentials). Assume that V is a symmetric function which
is locally sufficiently regular and obtains the asymptotics V (t) ∼ αt−s as t → ∞ for some
s > 0, α > 0. By standard methods (see, e.g., [RS, Thm. XIII.6]) one shows that the operator
−∆N − V has only a finite number of negative eigenvalues provided s > 2. However, the
semi-classical expression for the number of negative eigenvalues, i.e. the right hand side of
(2.10) with γ = 0, is only finite under the more restrictive condition s > 2d. Our Corollary 2.6
with sufficiently large a gives a quantitative estimate on the number of negative eigenvalues
for the whole range of exponents s > 2 if d > 2. Similarly, in the case 1 ≤ d ≤ 2 we
obtain quantitative information about the magnitude of the eigenvalues, which goes beyond
semi-classics.

Remark 2.14 (Dirichlet boundary conditions). The reader might wonder how our main
theorems change, if a Dirichlet instead of a Neumann boundary condition is imposed at the
root. Let −∆D be the self-adjoint operator in L2(Γ) generated by the quadratic form (2.1)
with form domain H1

0 (Γ) := {φ ∈ H1(Γ) : φ(0) = 0}. By the variational principle, any bound
for −∆N − V implies a bound for −∆D − V . However, it turns out that inequalities for the
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latter operator hold for a strictly larger range of parameters. Indeed, the analog of Theorems
2.4 states that the inequality

tr(−∆D − V )γ− ≤ C(γ, a,Γ)

∫

Γ
V (|x|)γ+ 1+a

2
+ g0(|x|)

a
d−1 dx.

holds provided either 0 ≤ a < 1 and γ ≥ (1− a)/2, or else a ≥ 1 and γ ≥ 0 and d 6= 2, or else
a ≥ 1 and γ > 0 and d = 2. This follows (except for the statement for γ = 0, 1 ≤ d < 2) from
Theorem 7.4. There is also an analog of Theorem 2.4 for −∆D which is obtained by simply
interchanging the two intervals of integration in the assumption (2.4). We omit the details.
For spectral asymptotics of the operator −∆D − V we refer to [NS2].

2.4. One-dimensional Schrödinger operators with metric. Our symmetry assumptions
will allow us to reduce the spectral analysis of the operator −∆N −V to the spectral analysis
of a family of one-dimensional Schrödinger-type operators. The main ingredient in the proof
of Theorem 2.7 will be an inequality for such operators, which is of independent interest.

We consider a positive, measurable and locally bounded function g on [0,∞) and denote
by H1(R+, g) the space of all functions f ∈ H1

loc(R+) such that
∫ ∞

0

(

|f ′(t)|2 + |f(t)|2
)

g(t) dt < ∞.

The quadratic form

(2.13)

∫ ∞

0
|f ′(t)|2g(t) dt

with form domain H1(R+, g) defines a self-adjoint operator Ag in L2(R+, g). Note that this
operator corresponds to the differential expression

Ag = −g−1 d

dt
g

d

dt
,

and that functions f in its domain satisfy Neumann boundary conditions f ′(0) = 0 at the
origin.

For our first results we assume that g grows sufficiently fast in the sense that

(2.14)

∫ ∞

0

dt

g(t)
< ∞.

We shall prove that under this condition the number of negative eigenvalues of the Schrödinger
operators Ag − V can be estimated in terms of weighted Lp-norms of V . More precisely, one
has

Theorem 2.15. Assume (2.14) and let w : R+ → R+ be a positive function such that for
some 2 < q ≤ ∞

(2.15) M := sup
t≥0

(
∫ t

0
g(s)q/2w(s)−(q−2)/2 ds

)2/q ∫ ∞

t

ds

g(s)
< ∞ .

Let p := q/(q − 2). Then the inequality

(2.16) N(Ag − V ) ≤ Cp(w, g)

∫ ∞

0
V p

+w dt



13

holds for all V , and the sharp constant Cp(w, g) in (2.16) satisfies

Mp ≤ Cp(w, g) ≤
(

1 + p′
)p−1

(

1 +
1

p′

)p

Mp.

Moreover, if M = ∞ then there is no constant Cp(w, g) such that (2.16) holds for all V .

By definition, if q = ∞ condition (2.15) is understood as

M := sup
t≥0

(

sup
0≤s≤t

g(s)

w(s)

)
∫ ∞

t

ds

g(s)
< ∞,

and the sharp constant is C1(w, g) = M . This leads to the following beautiful estimate.

Example 2.16. Taking w(t) = g(t)
∫∞

t g−1(s) ds and q = ∞ one obtains

(2.17) N(Ag − V ) ≤
∫ ∞

0
V (t)+ g(t)

(
∫ ∞

t

ds

g(s)

)

dt ,

which is sharp (meaning that the estimate is no longer true for all g and all V if the right
hand side is multiplied by a constant less than one). As a consequence one also finds

N(Ag − V ) ≤
∫ ∞

0

dt

g

∫ ∞

0
V+g dt .

Theorem 2.15 gives a complete characterization of weights for which the number of negative
eigenvalues can be estimated by a weighted norm of the potential. When g grows very fast,
the operator Ag will be positive definite and in this case one may not only ask for the number
of eigenvalues of Ag − V below 0 but also below the bottom of the spectrum of Ag. We turn
to this question next. We assume, in addition to (2.14), that

(2.18) sup
t>0

∫ t

0
g(s) ds

∫ ∞

t

ds

g(s)
< ∞.

This condition is necessary and sufficient for the operator Ag to be positive definite, see
Proposition 5.1 below or [S, Thm. 5.2]. We denote the bottom of its spectrum by λ(Ag) > 0
and assume that λ(Ag) is not an eigenvalue of Ag. Let ω be the unique (up to a constant)
distributional solution of the differential equation

(2.19) −(gω′)′ = λ(Ag) g ω on R+

satisfying the boundary condition ω′(0) = 0. Since λ(Ag) is not an eigenvalue, the function
ω is not square-integrable with respect to the weight g. We quantify the growth of ω2g by
assuming that

(2.20)

∫ ∞

0
ω−2g−1 ds < ∞.

Under these conditions one has

Theorem 2.17. Assume (2.14), (2.18) and (2.20). Let w : R+ → R+ be a positive function
such that for some 2 < q ≤ ∞

M := sup
t>0

(
∫ t

0
ωqgq/2w−(q−2)/2 ds

)2/q ∫ ∞

t
ω−2g−1 ds < ∞,



14

and put p := q
q−2 . Then the inequality

(2.21) N(Ag − V − λ(Ag)) ≤ Cp(w, g, ω)

∫ ∞

0
V p

+w dt

holds for all V , and the sharp constant Cp(w, g, ω) satisfies

(2.22) Mp ≤ Cp(w, g, ω) ≤
(

1 + p′
)p−1

(

1 +
1

p′

)p

Mp.

Finally, we present some estimates without imposing the condition (2.14). It is easy to see
that if the integral in (2.14) is infinite, then Ag − V will have a negative eigenvalue for any
non-negative V 6≡ 0, hence no estimate on the number of eigenvalues in terms of norms of V
can hold. Below we shall prove that estimates on moments of eigenvalues do hold. For the
sake of simplicity we restrict ourselves to the case where g has power-like growth, i.e.,

0 < c1 := inf
t>0

g(t)

(1 + t)d−1
≤ sup

t>0

g(t)

(1 + t)d−1
=: c2 < ∞(2.23)

for some d ≥ 1. Note that (2.14) holds iff d > 2. We shall consider inequalities of the form

(2.24) tr(Ag − V )γ− ≤ L

∫ ∞

0
V (t)

γ+ a+1
2

+ (1 + t)a dt, L = L(γ, a, d, c1, c2).

In Remark 7.3 below we show that the relation between the exponent of V and that of the
weight (1 + t) can not be improved. Our result is

Theorem 2.18. Assume (2.23) for some d ≥ 1.

(1) Let either 1 ≤ d < 2 and 0 ≤ a ≤ d − 1, or else d ≥ 2 and 0 ≤ a < 1. Then (2.24)
holds iff γ ≥ (1 + a)/2.

(2) Let either 1 ≤ d < 2 and a > d − 1, or else d = 2 and a ≥ 1. Then (2.24) holds iff
γ > (1 + a)(2 − d)/(2d).

(3) Let d > 2 and a ≥ 1. Then (2.24) holds for any γ ≥ 0.

Part (3) is of course a consequence of Theorem 2.15 (for γ = 0) and of an argument
by Aizenman and Lieb [AL] (for γ > 0). Note carefully that for small a (Part (1)) the
inequality (2.24) holds in the endpoint case, while it does not for large a (Part (2)). This is
a phenomenon due to the Neumann boundary conditions which is not present when Dirichlet
boundary conditions are imposed instead, see Theorem 7.4.

2.5. Outline of the paper. This paper is organized as follows. In Section 3 we prove
Theorem 2.1 and a weighted version of it about arbitrary, not necessarily regular, metric
trees. In Section 4 we show how our main results, Theorems 2.4, 2.7 and 2.8, follow from
the results about one-dimensional Schrödinger operators in Subsection 2.4. In Section 5 we
give the proofs of Theorems 2.15 and 2.17. Section 6 is of auxiliary character and contains
the proof of a family of Sobolev interpolation inequalities which will be useful in the proof of
Theorem 2.18. Finally, in Section 7 we will use a duality argument and estimates for Dirichlet
eigenvalues in order to obtain the statements of Theorem 2.18.
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3. Eigenvalue estimates on general metric trees

This section is devoted to the proof of Theorem 2.1. Moreover, we shall also prove the
following weighted analog.

Theorem 3.1. Let a > 0 and γ > (1 + a)/2. Then there exists a constant Ca(γ) such that

tr(−∆N − V )γ− ≤ Ca(γ)

∫

Γ
V (x)

γ+ 1+a
2

+ |x|a dx.(3.1)

We emphasize that the constant in (3.1) can be chosen independently of the tree. For the
proofs of Theorems 2.1 and 3.1 we use the following results about half-line operators.

Proposition 3.2. Let Γ = R+ and a ≥ 0. Let γ > (1 + a)/2 if a > 0 and γ ≥ 1/2 if a = 0.
Then there exists a constant LEK

γ,a such that

(3.2) tr (−∆N − V )γ− ≤ LEK
γ,a

∫ ∞

0
V (t)

γ+ 1+a
2

+ ta dt

for all V .

To prove (3.2) we extend V to an even function W on R. Then the left hand side of
(3.2) can be estimated from above by the corresponding moments of the whole-line operator
−d2/dx2 −W , and the claimed inequality for that operator follows from [EK] and [W]. Using
in addition the sharp constants from [HLT] and [AL] one obtains for a = 0 the following
bounds on the constants,

(3.3) LEK
γ,0 ≤ 4Lcl

γ,1 if γ ≥ 1

2
, LEK

γ,0 ≤ 2Lcl
γ,1 if γ ≥ 3

2

with Lcl
γ,1 from (2.11). Note that the inequality (3.2) with this constant for γ = 1/2 and a = 0

is sharp, and therefore so is (2.2) for γ = 1/2. Now we turn to the

Proof of Theorems 2.1 and 3.1. The idea is to impose Neumann boundary condition at all
but one emanating edges of all vertices. This decreases the operator −∆N −V . The resulting
operator can be identified with a direct sum of half-line operators for which one can use
Proposition 3.2.

To be more precise, we decompose the graph Γ =
⋃

j Γj into a disjoint union of infinite

halflines Γj. Then L2(Γ) =
⊕

j L2(Γj) and H1(Γ) ⊂∑j H1(Γj). By the variational principle,
this implies

−∆N − V ≥
⊕

j

(

−∆
Γj

N − Vj

)

,

where −∆
Γj

N is the Neumann Laplacian on Γj and Vj is the restriction of V to Γj. Hence
Proposition 3.2 yields

tr(−∆N − V )γ− ≤
∑

j

trL2(Γj)

(

−∆
Γj

N − Vj

)γ

−

≤ LEK
γ,α

∑

j

∫

Γj

Vj(x)
γ+ 1+a

2
+ dist(x, ∂Γj)

a dx

≤ LEK
γ,α

∫

Γ
V (x)

γ+ 1+a
2

+ |x|a dx,

as claimed. �
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4. Eigenvalue estimates on regular trees

In this section we show how our main results, Theorems 2.4, 2.7 and 2.8, can be deduced
from the results about one-dimensional Schrödinger operators in Subsection 2.4. To do so, we
exploit the symmetry of the tree and the potential, which allows us to decompose −∆N − V
into a direct sum of half-line Schrödinger operators in weighted L2-spaces. We recall this
construction next.

4.1. Orthogonal decomposition. In this subsection we recall the results of Carlson [C]
and of Naimark and Solomyak [NS1, NS2]. We need some notation. For each k ∈ N we define
the higher order branching functions gk : R+ → N0 by

gk(t) :=







0, t < tk ,
1, tk ≤ t < tk+1 ,
bk+1bk+2 · · · bn, tn ≤ t < tn+1, k < n ,

and introduce the weighted Sobolev space H1
0 ((tk,∞), gk) as the closure of C∞

0 (tk,∞) in the
norm

[
∫ ∞

tk

(

|f ′(t)|2 + |f(t)|2
)

gk(t) dt

]
1
2

.

Let Ak be the self-adjoint operator in L2((tk,∞), gk) given by the quadratic form

ak[f ] :=

∫ ∞

tk

|f ′(t)|2gk(t) dt

with form domain H1
0 ((tk,∞), gk). Notice that the operators Ak with k ≥ 1 satisfy Dirichlet

boundary condition at tk, while the operator A0 satisfies Neumann boundary condition at
t0 = 0.
The following statement is taken from [NS2] and [S].

Proposition 4.1. Let V ∈ L∞(Γ) be symmetric. Then −∆N − V is unitarily equivalent to
the orthogonal sum of operators

(4.1) −∆N − V ≃ (A0 − V ) ⊕
∞
∑

k=1

⊕
(

Ak − Vk

)[b1...bk−1(bk−1)]
.

Here the symbol [b1...bk−1(bk − 1)] means that the operator Ak − Vk appears b1...bk−1(bk − 1)
times in the orthogonal sum, and Vk denotes the restriction of V to the interval (tk,∞).

4.2. Proof of Theorems 2.4 and 2.7. Let us compare the operators Ak with each other.
¿From the definition of the function gk it follows that

∫∞
tk

(

|f ′|2 − Vk|f |2
)

gk dt
∫∞
tk

|f |2gk dt
=

∫∞
tk

(

|f ′|2 − Vk|f |2
)

g0 dt
∫∞
tk

|f |2g0 dt
.

Since every function f ∈ H1
0 ((tk,∞), gk) can be extended by zero to a function in H1(R+, g0),

the variational principle shows that

tr(Ak − Vk)
γ
− ≤ tr(A0 − χ(tk,∞)V )γ−(4.2)

for any k ∈ N and γ ≥ 0.
Assuming the validity of Theorems 2.15 and 2.18 we now give the
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Proof of Theorems 2.4 and 2.7. In the case of Theorem 2.4 put γ = 0 and let q and w be
such that (2.4) holds. Moreover, put p = q/(q − 2). In the case of Theorem 2.7 let γ be as
indicated there and put p = γ + (1 + a)/2 and w(t) := g0(t)

a/(d−1). It follows from Theorems
2.15 and 2.18, respectively, that in both cases there exists a constant C such that

tr(A0 − V )γ− ≤ C

∫ ∞

0
V (t)p+w(t) dt

for all V . Combining this with the orthogonal decomposition (4.1) and inequality (4.2) we
obtain

tr(−∆N − V )γ− = tr(A0 − V )γ− +

∞
∑

k=1

b1 · · · bk−1(bk − 1) tr(Ak − χ(tk ,∞)V )γ−

≤C

∫ ∞

0
V (t)p+w(t) dt

+ C

∞
∑

k=1

(

b1 · · · bk−1(bk − 1)

∫ ∞

tk

V (t)p+w(t) dt

)

=C

∞
∑

k=0

∫ tk+1

tk

(b0 · · · bk)V (t)p+w(t) dt

=C

∫

Γ
V (|x|)p+ w(|x|) dx,

as claimed. �

4.3. Proof of Theorem 2.8. In this subsection we assume that g0 is the first branching
function of a homogeneous metric tree with edge length 1 and branching number b > 1.
Denote by λb the bottom of its essential spectrum and by ω the function on R+ satisfying in
distributional sense

−(g0ω
′)′ = λbg0 ω ,

ω′(0) = 0, ω(j+) = ω(j−), ω′(j−) = bω′(j+), j ∈ N .

In the proof of Theorem 2.8 we need the following technical result.

Lemma 4.2. There exist constants 0 < C1 < C2 < ∞ such that

(4.3) C1
1 + t
√

g0(t)
≤ ω(t) ≤ C2

1 + t
√

g0(t)
, t ≥ 0 .

Assuming this for the moment we give the

Proof of Theorem 2.8. Proceeding in the same way as in the proof of Theorems 2.4 and 2.7
one sees that it suffices to prove that

(4.4) N(A0 − V − λb) ≤ C

∫ ∞

0
V (t)p+w(t) dt .

We shall deduce this from Theorem 2.17 with g = g0. By the explicit form of g0 we see that
(2.14) and (2.18) are satisfied. Moreover, λb = λ(A0) and ω is the generalized ground state of
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A0 in the sense of (2.19). It follows from Lemma 4.2 that the assumption (2.20) is satisfied
and that one has

(
∫ t

0
ωqg

q/2
0 w−(q−2)/2 ds

)2/q ∫ ∞

t
ω−2g−1 ds

≤
(

C2

C1

)2(∫ t

0
(1 + s)qw−(q−2)/2 ds

)2/q
1

1 + t
.

Hence (4.4) follows from Theorem 2.17. �

We are left with the

Proof of Lemma 4.2. A direct calculation shows that

ω(t) = αj cos(µ(t − j)) + βj cos(µ(j + 1 − t)), j < t < j + 1,

with µ :=
√

λb, α0 := 1, β0 := 0 and

αj−1 cos µ + βj−1 = αj + βj cos µ , −αj−1 = b βj .

This can be rewritten as
(

αj

βj

)

= b−1/2

(

2 b1/2

−b−1/2 0

)(

αj−1

βj−1

)

,

and by induction one easily finds that

(

αj

βj

)

= b−j/2

(

j + 1 j b1/2

−j b−1/2 −j + 1

) (

α0

β0

)

.

This implies

ω(t) = g0(t)
−1/2(j + 1)

(

cos(µ(t − j)) − j

j + 1
b−1/2 cos(µ(j + 1 − t))

)

if j < t < j + 1, and hence

(4.5) ω(t) ∼ g0(t)
−1/2 (1 + t)ϕ(t), t → ∞,

where ϕ is periodic with period 1 and

ϕ(t) = cos µt − b−1/2 cos(µ(1 − t)), 0 < t < 1.

The estimates

b1/2 − b−1/2

b1/2 + b−1/2
≥ ϕ(t) ≥ b−1/2 b1/2 − b−1/2

b1/2 + b−1/2
> 0, 0 < t < 1 ,

and the asymptotics (4.5) imply that (4.3) holds for all sufficiently large t. On the other hand,
by the Sturm oscillation theorem (or by direct calculation) ω is bounded and bounded away
from zero on compacts. This proves the lemma. �
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5. Estimates on the number of eigenvalues

5.1. Proof of Theorem 2.15. Our goal in this section is to prove the statements of Theorem
2.15. An important ingredient will be weighted Hardy-Sobolev inequalities. The character-
ization of all admissible weights is independently due to Bradley, Maz’ya and Kokilashvili.
The constant in (5.3) below is due to Opic. We refer to [OK, Thm. 6.2] for the proof and
further historical remarks.

Proposition 5.1. Let 2 ≤ q ≤ ∞. The inequality

(5.1)

(
∫ ∞

0
|w(r)u(r)|q dr

)2/q

≤ S2

∫ ∞

0
|v(r)u′(r)|2 dr

holds for all absolutely continuous functions u on [0,∞) with limr→∞ u(r) = 0 if and only if

(5.2) T := sup
r>0

(
∫ r

0
|w(s)|q ds

)1/q (∫ ∞

r
|v(s)|−2 ds

)1/2

< ∞.

In this case, the sharp constant S in (5.1) satisfies

(5.3) T ≤ S ≤
(

1 +
q

2

)1/q
(

1 +
2

q

)1/2

T.

If q = ∞, then (5.2) means

T := sup
r>0

(

sup
0≤s≤r

|w(s)|
)(

∫ ∞

r
|v(s)|−2 ds

)1/2

< ∞,

and in (5.3) one has T = S. Now everything is in place to give the

Proof of Theorem 2.15. Let w ≥ 0 such that M defined in (2.15) is finite. Then Proposition
5.1 yields for all u ∈ H1(R+, g),

(5.4)

(
∫ ∞

0
|u|qgq/2w−(q−2)/2 dt

)2/q

≤ S2

∫ ∞

0
|u′|2g dt,

where

M ≤ S2 ≤
(

1 +
q

2

)2/q
(

1 +
2

q

)

M.

We now use an argument in the spirit of [GGMT] to deduce (2.16) from (5.4). Let ω be the
solution of −(gω′)′ − V ωg = 0 that satisfies the boundary condition ω′(0) = 0. By Sturm-
Liouville theory (see, e.g., [Wm, Thm. 14.2]) the number of zeros of ω coincides with the
number N of negative eigenvalues of Ag − V . Denote these zeros by 0 < a1 < a2 < . . . <
aN < ∞ and apply (5.4) to u = ωχ(aj ,aj+1). Integrating by parts and using Hölder’s inequality

(noting that 1/p + 2/q = 1) we obtain
(

∫ aj+1

aj

|ω|qg q
2 w− q−2

2 dt

)2/q

≤ S2

∫ aj+1

aj

|ω′|2g dt = S2

∫ aj+1

aj

V |ω|2g dt

≤ S2

(

∫ aj+1

aj

V pw dt

)1/p(
∫ aj+1

aj

|ω|q g
q
2 w− q−2

2 dt

)2/q

.
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This implies that

1 ≤ S2p

∫ aj+1

aj

V pw dt , ∀ j = 1, . . . N .

Summing this inequality over all intervals (aj , aj+1) we obtain

N(Ag − V ) ≤ S2p

∫ ∞

0
V p

+w dt.

This proves (2.16) and shows that the sharp constant satisfies C(w) ≤ S2p. The lower bound
C(w) ≥ S2p follows from Theorem 7.1 below. This implies also that (2.16) does not hold if
M = ∞ and completes the proof. �

For later reference we include

Example 5.2. Assume that g satisfies (2.23) for some d > 2. Then for any 1 ≤ a < ∞

N(Ag − V ) ≤ Ca

∫ ∞

0
V

(1+a)/2
+ (1 + t)a dt

where
(

c1

c2

)
1+a
2

M
1+a
2

a ≤ Ca ≤ (2a)a

(a + 1)
a+1
2 (a − 1)

a−1
2

(

c2

c1

)
1+a
2

M
1+a
2

a .

and

Ma := sup
t>0

(
∫ t

0
(1 + s)

(d−1)(a+1)−2a

a−1 ds

)

a−1
a+1
∫ ∞

t
(1 + s)−d+1 ds

=

(

a − 1

a + 1

)
a−1
a+1

(d − 2)−
2a

a+1 .

(For a = 1 one has (c1/c2)M1 ≤ C1 ≤ (c2/c1)M1 and M1 := (d − 2)−1.) This follows by
choosing w(t) = (1 + t)a and q = 2(a + 1)/(a − 1) after elementary calculations.

It is also illustrative to include another proof of estimate (2.17) in Example 2.16: The
Birman-Schwinger principle implies

(5.5) N(Ag − V ) ≤ trL2(R+,gdt)

(

V
1
2

+ A−1
g V

1
2

+

)

.

Since the operator V
1
2

+ A−1
g V

1
2

+ is non-negative, we have

(5.6) trL2(R+,gdt)

(

V
1
2

+ A−1 V
1
2

+

)

=

∫ ∞

0
G(t, t)V (t)+ g(t) dt,

where G(t, t) is the diagonal of the Green function of the operator A. It follows from Sturm-
Liouville theory (see, e.g., [Wm, Thm. 7.8]) that

G(t, t) =
u1(t)u2(t)

g(t)W (t)
,

where u1, u2 are two linearly independent solutiuons of −(gu′)′ = 0 and W = u′
1u2 − u1u

′
2 is

their Wronskian. A direct calculation gives

u1(t) = 1, u2(t) =

∫ ∞

t

ds

g(s)
, W (t) =

1

g(t)
.

In view of (5.5) and (5.6) this yields estimate (2.17).
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5.2. Proof of Theorem 2.17. In this subsection we are working under the assumptions
(2.14), (2.18) and (2.20) of Theorem 2.17. Recall that ω is the ‘ground state’ of the operator
A. Since g may be non-smooth (it is a step function in the case of the tree) the differential
equation (2.19) has to be understood in quadratic form sense, i.e.,

(5.7)

∫ ∞

0
ω′f ′g dt = λ(A)

∫ ∞

0
ωf dt

for all f ∈ H1(R+, g) with compact support in [0,∞). The following identity is usually called
ground state representation.

Lemma 5.3. For any h = ω−1f ∈ ω−1H1(R+, g),

(5.8)

∫ ∞

0
|f ′|2g dt − λ(A)

∫ ∞

0
|f |2g dt =

∫ ∞

0
|h′|2ω2g dt.

We include a sketch of the proof for the sake of completeness.

Proof. It suffices to consider h ∈ C∞
0 (R+). Then

|(ωh)′|2 = ω2|h′|2 + ω′(ω|h|2)′

and (5.8) follows from (5.7) with f = ω|h|2. �

With (5.8) at hand we can proceed to the

Proof of Theorem 2.17. We denote by B the operator in L2(R+, ω2g) corresponding to the
quadratic form

∫ ∞

0
|h′|2ω2g dt

with form domain H1(R+, ω2g). Then by the ground state representation (5.3) and Glazman’s
lemma (see e.g. [BS, Thm. 10.2.3])

N(A − V − λ(A)) = N(B − V ),

and the result follows from Theorem 2.15. �

6. Sobolev interpolation inequalities

In this section we fix a parameter d ≥ 1 and study inequalities of the form
(
∫

|u|q(1 + t)βq−1 dt

)2/q

≤ K(q, β, d)

(
∫

|u′|2(1 + t)d−1 dt

)θ

(6.1)

(
∫

|u|2(1 + t)d−1 dt

)1−θ

for all u ∈ H1(R+, (1 + t)d−1). We are interested in the values of β and q for which this
inequality holds. We always fix

(6.2) θ :=
d − 2β

2
.

In the endpoint case q = ∞ we use the convention that (6.1) means

sup |u|2(1 + t)2β ≤ K(∞, β, d)

(
∫

|u′|2(1 + t)d−1 dt

)θ (∫

|u|2(1 + t)d−1 dt

)1−θ
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Figure 1. Parameter range of the Sobolev interpolation inequalities

for all u ∈ H1(R+, (1 + t)d−1). Note that this makes sense even in the special case β = 0
(where the product βq in (6.1) is not well-defined).

Theorem 6.1. Let d ≥ 1 and d−2
2 ≤ β ≤ d

2 .

(1) If 1 < d ≤ 2 and 0 < β ≤ d−1
2 , or if d > 2 and d−2

2 ≤ β ≤ d−1
2 , then (6.1) holds for

all 2 ≤ q ≤ ∞.

(2) If d ≥ 1 and d−1
2 < β ≤ d

2 , then (6.1) holds for all 2 ≤ q ≤
(

β − d−1
2

)−1
.

(3) If 1 ≤ d < 2 and β = 0, then (6.1) holds for q = ∞.
(4) If 1 ≤ d ≤ 2 and −2−d

2 ≤ β ≤ 0, then (6.1) does not hold for 2 ≤ q < ∞.

(5) If 1 ≤ d < 2 and −2−d
2 ≤ β < 0, or if d = 2 and β = 0, then (6.1) does not hold for

q = ∞.

(6) If d ≥ 1 and d−1
2 < β ≤ d

2 , then (6.1) does not hold for
(

β − d−1
2

)−1
< q ≤ ∞.

Remark 6.2. In (6.1) the exponent βq−1 of the weight on the left hand side is coupled to the
interpolation exponent θ in (6.2). This is in a certain sense optimal. Indeed, if the inequality

(
∫

|u|q(1 + t)σ−1 dt

)2/q

≤ K

(
∫

|u′|2(1 + t)d−1 dt

)θ

(
∫

|u|2(1 + t)d−1 dt

)1−θ

holds for some σ > 0 and all u ∈ H1(R+, (1 + t)d−1), then necessarily σ ≤ q(d − 2θ)/2.
(To see this put u(t) = v(lt) and let l → 0.) Note that with the value (6.2) of θ one has
q(d − 2θ)/2 = βq.

We break the proof into several lemmas which prove inequality (6.1) in the endpoints of
the allowed region for the parameters q and β, see Figure 1 on the left.

Lemma 6.3. If 1 < d ≤ 2 and 0 < β ≤ d−1
2 , or if d > 2 and d−2

2 ≤ β ≤ d−1
2 , then (6.1)

holds for q = 2 with the constant

K(2, β, d) = β−d+2β .
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Proof. Integration by parts shows
∫

|u|2(1 + t)2β−1 dt = (−β)−1ℜ
∫

uu′
(

(1 + t)2β − 1
)

dt

≤ β−1

∫

|u||u′|(1 + t)2β dt.

We shall assume now that β < d−1
2 . The proof in the case of equality follows along the same

lines. Then p := d−2β
d−1−2β satisfies 1 < p < ∞, and by Hölder we can continue to estimate

∫

|u|2(1 + t)2β−1 dt ≤ β−1

(
∫

|u|2(1 + t)2β−1 dt

)1/p

×
(
∫

|u|
p−2
p−1 |u′|

p
p−1 (1 + t)

2β(p−1)+1
p−1 dt

)
p−1

p

.

By the definition of p one has

2β(p − 1) + 1

p − 1
=

(d − 1)(p − 2)

2(p − 1)
+

(d − 1)p

2(p − 1)
,

and hence again by Hölder,
∫

|u|
p−2
p−1 |u′|

p
p−1 (1 + t)

2β(p−1)+1
p−1 dt

≤
(
∫

|u|2(1 + t)(d−1) dt

)
p−2

2(p−1)
(
∫

|u′|2(1 + t)(d−1) dt

)
p

2(p−1)

.

This proves the inequality with the claimed constant. �

Lemma 6.4. If 1 < d ≤ 2 and 0 < β ≤ d−1
2 , or if d > 2 and d−2

2 ≤ β ≤ d−1
2 , then (6.1)

holds for q = ∞ with the constant

K(∞, β, d) =

(

2

d − 2β

)d−2β (d − 1 − 2β

2β

)d−1−2β

.

Here we use the convention that 00 = 1. Hence for β = d−1
2 one has K(∞, d−1

2 , d) = 2.

Proof. Let p := 2
d−2β . Our assumptions imply that 2

d < p ≤ 2 if 1 < d ≤ 2 and 1 ≤ p ≤ 2 if

d > 2. By Schwarz we estimate

|u(t)|p ≤ p

∫ ∞

t
|u|p−1|u′| ds

≤ p

(
∫ ∞

0
|u′|2(1 + s)d−1 ds

)1/2(∫ ∞

t
|u|2(p−1)(1 + s)−d+1 ds

)1/2

This proves the assertion if p = 1, i.e., β = d−2
2 and d > 2. If p = 2 the assertion follows from

the estimate
∫ ∞

t
|u|2(p−1)(1 + s)−d+1 ds ≤ (1 + t)−2(d−1)

∫ ∞

0
|u|2(p−1)(1 + s)d−1 ds.
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In the remaining case 1 < p < 2 we use Hölder to obtain
∫ ∞

t
|u|2(p−1)(1 + s)−d+1 ds

≤
(
∫ ∞

t
(1 + s)−

(d−1)p
2−p ds

)2−p(∫ ∞

0
|u|2(1 + s)d−1 ds

)p−1

=

(

2 − p

dp − 2

)2−p

(1 + t)−dp+2

(
∫ ∞

0
|u|2(1 + s)d−1 ds

)p−1

.

This proves the inequality with the claimed constant. �

Lemma 6.5. If 1 ≤ d < 2 and β = 0, then (6.1) holds for q = ∞ with the constant

K(∞, 0, d) = (2d)d(2(d − 1))−2(d−1)(2 − d)−1.

Proof. If d = 1 one has

(6.3) |u(t)|2 ≤ 2

∫ ∞

t
|u||u′| ds ≤ 2

(
∫ ∞

0
|u|2 ds

)1/2(∫ ∞

0
|u′|2 ds

)1/2

,

as claimed. If 1 < d < 2 then we estimate for any R > 0

|u(t)|2 ≤ 2

(
∫ R

0
|u||u′| ds +

∫ ∞

R
|u||u′| ds

)

≤ 2

(

(
∫ ∞

0
|u′|2sd−1 ds

)1/2

‖u‖∞
(
∫ R

0
s−d+1 ds

)1/2

+

(
∫ ∞

0
|u′|2sd−1 ds

)1/2 (∫ ∞

0
|u|2sd−1 ds

)1/2

R−d+1

)

= 2

(
∫ ∞

0
|u′|2sd−1 ds

)1/2
[

‖u‖∞(2 − d)−1/2R(2−d)/2

+

(
∫ ∞

0
|u|2sd−1 ds

)1/2

R−d+1

]

.v

Choosing t such that u(t) = ‖u‖∞ and optimizing with respect to R we find that

‖u‖2
∞ ≤ K

(
∫

|u′|2sd−1 ds

)d/2(∫

|u|2sd−1 ds

)(2−d)/2

with the constant as claimed. This implies (and, by a scaling argument, is actually equivalent
to) the assertion. �

Lemma 6.6. If d = 1 and 0 < β ≤ 1
2 , then (6.1) holds for q = 2 with the constant

K(2, β, 1) = 2−2β(1 − 2β)2β−1β−1.

Proof. It suffices to prove the inequality
∫

|v|2s−1+2β ds ≤ K

(
∫

|v′|2 ds

)(1−2β)/2 (∫

|v|2sd−1 ds

)(1+2β)/2

.
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(Actually, a scaling argument as in the proof of Theorem 6.1 below shows that this inequality
is equivalent – with the same constant – to the inequality (6.1).) Using (6.3) we estimate for
any R > 0

∫

|v|2s−1+2β ds ≤ ‖v‖2
∞

∫ R

0
s−1+2β ds + ‖v‖2

2R
−1+2β

≤ β−1‖v‖‖v′‖R2β + ‖v‖2
2R

−1+2β,

and the claim follows by optimizing with respect to R. �

Proof of Theorem 6.1. First assume that 1 < d ≤ 2 and 0 < β ≤ d−1
2 , or d > 2 and d−2

2 ≤
β ≤ d−1

2 . The assertion (1) has been proved in the endpoint cases q = 2 and q = ∞ in
Lemmas 6.3 and 6.4. Estimating

∫

|u|q(1 + t)βq−1 dt ≤ sup
(

|u|q−2(1 + t)β(q−2)
)

∫

|u|2(1 + t)β2−1 dt

we obtain the assertion (1) also in the case 2 < q < ∞.
Next we prove the assertion (2). Let d ≥ 1, d−1

2 < β ≤ d
2 . First assume that q = 2. If

d = 1, the inequality holds by Lemma 6.6. If d > 1 we put p := (2β − d + 1)−1 and apply
Hölder’s inequality to find

∫

|u|2(1 + t)2β−1 dt ≤
(
∫

|u|2(1 + t)d−2 dt

)
p−1

p

≤
(
∫

|u|2(1 + t)d−1 dt

)
1
p

.

Estimating the first factor on the right side using Lemma 6.3 with β ≤ d−1
2 we obtain the

assertion in the case q = 2. Now let q =
(

β − d−1
2

)−1
. We estimate

∫

|u|q(1 + t)2β−1 dt ≤
(

sup |u|2(1 + t)d−1
)

d−2β
2β−d+1

(
∫

|u|2(1 + t)d−1 dt

)

.

The first factor on the right side is estimated using (6.3) if d = 1 and using Lemma 6.4

with β ≤ d−1
2 if d > 1. This proves the assertion in the case q =

(

β − d−1
2

)−1
. By Hölder’s

inequality we obtain (2) for arbitrary 2 < q <
(

β − d−1
2

)−1
.

The assertion (3) was proved in Lemma 6.5.
To prove the negative results let 1 ≤ d ≤ 2 and assume that (6.1) holds for some β and

some 2 ≤ q ≤ ∞. We apply the inequality to the function u(t) = v(t/l), where v is a smooth
function with bounded support. Letting l → ∞ we obtain

(6.4)

(
∫

|v|qsβq−1 ds

)2/q

≤ K(q, β, d)

(
∫

|v′|2sd−1 ds

)θ (∫

|v|2sd−1 ds

)1−θ

.

Note that v can be chosen non-zero in a neighborhood of the origin. We deduce that the
inequality can not hold for β < 0, and if q < ∞ then it can not hold for β = 0 either. This
proves assertion (4) and the first part of (5). It remains to prove that (6.1) or equivalently
(6.4) does not hold if d = 2, β = 0 and q = ∞. This follows by considering the sequence of
trial functions vn(s) := min{1, (log n − log s)/ log n} if s ≤ n and vn(s) = 0 for s > n.

Finally, to prove (6) let d ≥ 1 and d−1
2 < β ≤ d

2 . Again we apply the inequality to the
function u(t) = v(t/l), where v is a smooth function with bounded support. As l → 0, the
left hand side decays like l2/q (resp. becomes constant when q = ∞) whereas the right hand
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side decays like l2β−d+1. We conclude that the condition q ≤
(

β − d−1
2

)−1
is necessary for

(6.1) to hold. �

7. Estimates for moments of eigenvalues

Our goal in this section will be to prove the Lieb-Thirring bounds in Theorem 2.18.
Throughout we will assume that g has power-like growth in the sense of (2.23) for some
d ≥ 1.

7.1. One-bound-state inequalities and duality. A first step towards Theorem 2.18 is to
prove that the lowest eigenvalue of the operator Ag − V can be estimated from below by a
weighted Lp-norm of the potential.

Theorem 7.1. Assume (2.23) for some d ≥ 1 and let a, γ ≥ 0. Then the inequality

(7.1) sup spec
(

(Ag − V )γ−
)

≤ C

∫

R+

V (t)
γ+ a+1

2
+ g(t)

a
d−1 dt, C = C(γ, a, d, c1, c2),

holds for all V if and only if a and γ satisfy the assumptions of Theorem 2.18.

In the case γ = 0, (7.1) means that if
∫

R+
V (t)

a+1
2

+ (1+ t)a dt < C−1 then inf spec(Ag−V ) ≥
0.

The proof of Theorem 7.1 is based on the following abstract duality result, which does not
use the explicit form of g.

Proposition 7.2. Assume that the parameters a > −1, γ ≥ 0 and p := γ + 1+a
2 are related

to the parameters 2 < q ≤ ∞, d−2
2 ≤ β < d

2 and θ := d−2β
2 by

(7.2) p =
q

q − 2
, q =

2p

p − 1
, a =

(d − 1 − 2β)q + 2

q − 2
, β =

dp − 1 − a

2p
.

Then the inequality (7.1) holds if and only if

(7.3)

(
∫

|u|qg
βq−1
d−1 dt

)2/q

≤ K(q, β, g)

(
∫

|u′|2g dt

)θ (∫

|u|2g dt

)1−θ

.

for all u ∈ H1(R+, g). In this case, the constants are related by

(7.4) K(q, β, g) = L
q−2

q θ−θ(1 − θ)θ−1

In the case q = ∞, (7.3) means

sup |u|2g
2β

d−1 ≤ Lθ−θ(1 − θ)θ−1

(
∫

|u′|2g dt

)θ (∫

|u|2g dt

)1−θ

.

for all u ∈ H1(R+, g).

Proof of Proposition 7.2. Below we will only consider u ∈ H1(R+, g) and V ≥ 0 such that
the right hand side of (7.1) is finite.

Equation (7.1) holds for all V if and only if
∫

|u′|2g dt −
∫

V |u|2g dt
∫

|u|2g dt
≥ −

(

L

∫

V pg
a

d−1 dt

)2/(2p−1−a)

(7.5)
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holds for all u and V . Write V = αW with α such that
∫

W pg
a

d−1 dt = 1.(7.6)

Thus (7.5) holds for all u and V if and only if

sup
α>0

(

α

∫

W |u|2g dt − α
1

1−θ L
q−2

q(1−θ)

∫

|u|2g dt

)

≤
∫

|u′|2g dt(7.7)

holds for all u and all W obeying (7.6). By calculating the supremum we find that (7.8) holds
for all u and all W obeying (7.6) if and only if

sup

{
∫

W |u|2g dt :

∫

W pg
a

d−1 dt = 1

}

≤ K

(
∫

|u′|2g dt

)θ (∫

|u|2g dt

)1−θ

(7.8)

for all u. By duality

sup

{
∫

W |u|2g dt :

∫

W pg
a

d−1 dt = 1

}

=

(
∫

|u|qg
βq−1
d−1 dt

)2/q

.

Hence (7.8) holds for all u if and only if (7.3) holds for all u. �

Proof of Theorem 7.1. Assumption (2.23) implies that Theorem 6.1 holds (with another con-
stant) if (1+t)d−1 is replaced by g. Simple arithmetic shows that if (q, β) and (p, a) are related
as in (7.2), then the allowed values (q, β) in Theorem 6.1 correspond to the allowed values
(p, a) in Theorem 2.18. In view of Proposition 7.2 we obtain the assertion of Theorem 7.1. �

Remark 7.3. We claim that if the inequality

(7.9) sup spec
(

(Ag − V )γ−
)

≤ C

∫

R+

V (t)
γ+ 1+a

2
+ g(t)b dt

holds for some γ ≥ 0, a ≥ 0, b ≥ 0 and all V , then one has necessarily b ≥ a/(d−1). Obviously,
the inequality becomes weaker as b increases. This motivates why we restrict ourselves to the
case b = a/(d − 1) when considering the inequalities (2.24).

To prove the claim we apply a similar duality argument as in the proof of Proposition 7.2
and find that (7.9) is equivalent to

(
∫

|u|qg
p−b
p−1 dt

)2/q

≤ K

(
∫

|u′|2g dt

)θ (∫

|u|2g dt

)1−θ

, u ∈ H1(R+, g),

where p and q are as in that proposition and θ = (p − γ)/p. It follows from Remark 6.2 that
(d − 1)(p − b)/(p − 1) + 1 ≤ q(d − 2θ)/2. This means b ≥ a/(d − 1), as claimed.

7.2. Estimates in the case of a Dirichlet boundary condition. Here we will establish
the analog of Theorem 2.18 when a Dirichlet instead of a Neumann boundary condition is
imposed at the origin. More precisely we denote by AD the self-adjoint operator in L2(R+, g)
corresponding to the quadratic form (2.13) with form domain H1

0 (R+, g) := {f ∈ H1(R+, g) :
f(0) = 0}. In this case the conditions for the validity of a Lieb-Thirring inequality become
much simpler than in Theorem 2.18.

Theorem 7.4. Assume (2.23) for some d ≥ 1 and let a ≥ 0, γ > 0. Then the inequality

(7.10) tr(AD − V )γ− ≤ L

∫

R+

V (t)
γ+ a+1

2
+ (1 + t)a dt, L = L(γ, a, d, c1, c2),
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holds for all V if and only if a, γ satisfy

γ ≥ 1 − a

2
if 0 ≤ a < 1,

γ > 0 if a ≥ 1.

We emphasize that we did not discuss the case γ = 0 in Theorem 7.4.
When proving Theorem 7.4 we will use a result from [EF1] and [EF2] concerning the

operator − d2

dr2 − 1
4r2 − W in L2(R+) with a Dirichlet boundary condition at the origin.

Proposition 7.5. Let 0 ≤ a < 1 and γ ≥ 1−a
2 or a ≥ 1 and γ > 0, then

tr

(

− d2

dr2
− 1

4r2
− W

)γ

−

≤ Cγ,a

∫

R+

W (r)
γ+ 1+a

2
+ ra dr(7.11)

with a constant Cγ,a independent of W .

Before we can apply this estimate we have to replace the (possibly non-smooth) function
g by a smooth function with the same behavior at infinity. To this end we consider the
self-adjoint operator BD in L2(R+) corresponding to the quadratic form

bD [u] =

∫

R+

∣

∣

∣

∣

(

u(t)

(1 + t)(d−1)/2

)′∣
∣

∣

∣

2

(1 + t)d−1 dt

=

∫

R+

(

|u′|2 +
(d − 1)(d − 3)|u|2

4(1 + t)2

)

dt

(7.12)

defined on H1
0 (R+). We prove now that the eigenvalues of AD −V can be estimated – modulo

a change in the coupling constant – from above and below by those of BD − V . A similar
idea was used in [FSW] to obtain Lieb-Thirring inequalities for Schrödinger operators with
background potentials.

Lemma 7.6. Assume (2.23) for some d ≥ 1 and put β := c2/c1. Then for any V ≥ 0 and
γ ≥ 0 we have

tr(BD − β−1V )γ− ≤ tr(AD − V )γ− ≤ tr(BD − βV )γ−.(7.13)

Proof. We shall prove that for any τ > 0

(7.14) N(BD − β−1V + τ) ≤ N(AD − V + τ) ≤ N(BD − βV + τ).

This will imply the statement since

tr T γ
− = γ

∫ ∞

0
τγ−1N(T + τ) dτ.

To prove the second inequality in (7.14) suppose that

∫

R+

(

|f ′|2 − V |f |2
)

g dt < −τ

∫

R+

|f |2g dt
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for some f ∈ H1
0 (R+, g). Using (2.23) we conclude that

c1

∫

R+

(

|f ′|2 − βV |f |2
)

(1 + t)d−1 dt ≤
∫

R+

(

|f ′|2 − V |f |2
)

g dt

≤ −τ

∫

R+

|f |2g dt

≤ −τc1

∫

R+

|f |2(1 + t)d−1 dt .

It follows from Glazman’s lemma (see, e.g., [BS, Thm. 10.2.3]) that

N(AD − V + τ) ≤ N(ÃD − βV + τ),

where ÃD denotes the operator L2(R+, (1 + t)d−1) corresponding to the quadratic form
∫

|f ′|2(1+ t)d−1 dt with a Dirichlet boundary condition. Since ÃD −βV in L2(R+, (1+ t)d−1)
is unitarily equivalent to BD −βV in L2(R+), we obtain the second inequality in (7.14). The
first one is proved similarly. �

Proof of Theorem 7.4. We may assume that V ≥ 0. We use the operator inequality

− d2

dr2
− 1

4r2
≤ − d2

dr2
+

(d − 1)(d − 3)

4r2
.

(Note also that the form domain of the operator on the LHS is strictly larger than H1
0 (R+).)

It follows that

tr(BD − βV )γ− ≤ tr

(

− d2

dr2
− 1

4r2
− βV

)γ

−

.

The result now follows from Proposition 7.5 and Lemma 7.6. �

7.3. Putting it all together. Finally we give the

Proof of Theorem 2.18. The variational principle implies that the eigenvalues of the Dirichlet
and the Neumann problems interlace (see, e.g., [BS, Thm. 10.2.5]). Hence

tr(A − V )γ− ≤ sup spec
(

(A − V )γ−
)

+ tr(AD − V )γ−.

We estimate the first term on the right hand side via Theorem 7.1 (recall (2.23)) and the
second one via Theorem 7.4. This completes the proof of the ‘if’ part of the statement. The
‘only if’ statement follows from the ‘only if’ part of Theorem 7.1. �
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