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POLYA’S CONJECTURE IN THE PRESENCE OF A CONSTANT
MAGNETIC FIELD

ABSTRACT. We consider the Dirichlet Laplacian with a constant magnetic field in a two-
dimensional domain of finite measure. We determine the sharp constants in semi-classical
eigenvalue estimates and show, in particular, that Pdlya’s conjecture is not true in the
presence of a magnetic field.

1. INTRODUCTION

Let Q C R? be a domain of finite measure and define the Dirichlet Laplacian H* in
Ly(€2) as the Friedrichs extension of —A initially given on C§°(€2). This defines a self-adjoint
non-negative operator, and by Rellich’s compactness theorem its spectrum is discrete and
accumulates at infinity only. The spectrum of H® plays an important role in many physi-
cal models (such as membrane vibration or quantum mechanics) and its determination is a
classical problem in mathematical physics.

Let (\,) be the non-decreasing sequence of eigenvalues of H = —A (taking multiplicities
into account) and let N(\, H?) := #{n : A, < A} denote their counting function.

In 1911 H. Weyl [W] (see also [RS, Ch. XIII]) showed the asymptotic formula

B 47T’I’L(
SEe]

In terms of the counting function this is equivalent to

A 1+o0(1)), n— oo

N H?) = ﬁklﬂl(l +o(1)), A— too. (1.1)

Integrating the latter formula one finds as well the asymptotic behavior of the eigenvalue
means
w(H =N = 3 (A=) = LNTQ( 4+ o(1), A oo, (12)
n:A> Ay
where v > 0 and
Ly = (4m(y+ 1)) . (1.3)
Note that the expression on the right hand side of (1.2) equals the classical phase space
average

r el = em? [ (e - A7 dodg (1.4

of the symbol |¢|? of the Laplacian.
Pélya [P] found in 1961 that for tiling domains' Q the asymptotic expression (1.1) is in
fact an upper bound on the counting function, namely

N\ H?) < fAIQI, 2> 0. (1.5)
/[

(© 2007 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.
1A domain Q c R? is tiling if one can cover R? up to a set of measure zero by pairwise disjoint congruent
copies of €.
5



6 POLYA’S CONJECTURE IN THE PRESENCE OF A CONSTANT MAGNETIC FIELD

By (1.1) the constant in this bound is optimal. Moreover, Pélya conjectured that this bound
should hold true for arbitrary domains €2 with the same sharp constant ﬁ.
The fact that the counting function N (), H) can be estimated by

N\ HY) <COMNQ|, A>0. (1.6)

with some constant C' which does not depend on A or the shape of the domain is due to
Rozenblum [R1], Lieb [L2] and Metivier [M]. Results with sharp constants for sums of
eigenvalues have been obtained by Berezin and by Li and Yau. Indeed, Berezin [B1] proved
that

tr(H? — \)Y < L,CYIQXYH\Q] for v>1. (1.7)

In view of the Weyl asymptotics (1.2) the constant in this bound is optimal. This estimate
in the case v = 1 implies after taking the Legendre transform the celebrated result by Li and
Yau [LY]

Y a0 neN. (1.8)
2% =)

Both (1.7) and (1.8) give rise to the best known upper bound C < (27)~! on the sharp
constant C'in (1.6). However, Pélya’s conjecture, namely that (1.5) holds for general domains,
remains open. In fact, this question is unresolved even in the case where the domain is a disk.

The main goal of this paper is to disprove the analogous conjecture for the Dirichlet Lapla-
cian with a constant magnetic field.

Put D = —iV and let A be a sufficiently regular real vector field on . We consider the
operator (D — A)? on Ly(Q) with Dirichlet boundary conditions defined in the quadratic form
sense. If |Q| has finite measure, the spectrum of (D — A)? is discrete and as above, we can
introduce the ordered sequence of eigenvalues and the corresponding counting function. It
is well-known that the asymptotic formulae (1.1) and (1.2) remain true in the magnetic case
as well. This is in accordance with the fact that the magnetic field leaves the classical phase
space average unchanged,

2 2 — (27) 2 2 _ zdf .
em [ (- a@P - N dads = 02 [[ - (€P - o

Therefore, it seems reasonable to discuss Pdlya-type bounds in the magnetic case as well. In
fact, it turns out that the bound (1.6) extends to the magnetic case with a suitable constant
C which does not depend on A, Q and A, see e.g. [R2].

There are also results concering magnetic estimates with sharp semi-classical constants.
As recalled in the appendix, a result by Laptev and Weidl [LW1] implies the bound

tr((D — A)? = \)T < LN Q| (1.9)

for arbitrary A and all v > 3/2. In [ELV] this result was extended to v > 1 in the special
case of a homogeneous magnetic field, A(z) = %(—xg, x1)T. The latter two results motivate
the question, whether Pdlya’s conjecture could be true in the magnetic case.

In this note we shall show that this intuition is wrong and that the Pélya estimate (1.5)
in the magnetic case can be violated even for tiling domains. More precisely, we consider a
homogeneous magnetic field, A(x) = %(—xg, x1)T, and show that for arbitrary domains Q of

finite measure the bound

1
N (D = A4)%) < Q] = 2L5, (9 (1.10)
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holds true. We prove that the constant in this bound is optimal and that the numerical
factor 2 on the right hand side cannot be improved - not even in the tiling case. A similar
phenomenon occurs for eigenvalue moments of order v € (0,1).

As a consequence of our result we see, in particular, that any attempt to prove Pdlya’s
conjecture with a method which extends to constant magnetic fields must fail.

2. MAIN RESULTS

Let ©Q C R? be a domain of finite measure. For B > 0 we consider the self-adjoint operator
H®:=(D—BA? in Ly(Q)
with Dirichlet boundary conditions, i.e., closing the form |(D — BA)u|? on C§°(2). The
magnetic vector potential A is always chosen in the form
1
Aw) i= 5z 00)",

and we remark that curl BA = B. In other words, we restrict the vector potential for a
constant magnetic field from R? to . 2

The operator Hg has compact resolvent and we denote by N ()\,Hg) the number of its
eigenvalues less than A, counting multiplicities. Our first main result is

Theorem 2.1. Let Q C R? be a domain of finite measure. Then for all B >0 and A > 0
N\ HE) < RoLi|Q/A (2.1)
and

where Ry = 2 and Ry = 2(v/(y+1))” for 0 <y < 1. One has R, > 1 and these constants
can not be improved, not even if Q is tiling. More precisely, for any 0 < v < 1, & > 0 and
B > 0 there exists a square Q) and X\ > 0 such that

tr(Hg — A\)? > (1 —e)Ry LY, |QN . (2.3)

tr(Hg — N < R L, Q0T 0<y <1, (2.2)

We emphasize that for linear and superlinear moments one has the semi-classical bound
tr(HE — N < L0, =1 (2.4)

without an excess factor. The inequality (2.4) is essentially contained in [ELV] but will be
rederived in Corollary 4.4 below.

Our second main result concerns tiling domains. We shall show that in this case the
inequalities (2.1) and (2.2) can be strengthened if one is willing to allow the right hand side
depend on B. Let us define

By (B, :=(2m) "B Y (A-B(2k+1))]. (2.5)
keNp

For v = 0 this is defined to be left-continuous in A, i.e., 0° := 0.

2For simply connected domains €2 this choice of A is up to gauge invariance unique in the class of all vector
potentials inducing a constant magnetic field in . If €2 is not simply connected, then one has gauge invariant
classes of magnetic vector potentials inducing a constant magnetic field inside €2, but which are not restrictions
of a vector potential producing a constant magnetic field on the whole of R?. In this paper we do not consider
such vector potentials.
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Theorem 2.2. Let Q C R? be a tiling domain of finite measure. Then for all B > 0 and
A>0
N\, H$) < Bo(B,\)|Q| (2.6)
and
tr(Hg — N <®B.(B,N)Q, 0<y<l, (2.7)
and these estimates can not be improved. More precisely, for any 0 < vy <1, e >0, B >0,
A > 0 there exists a square €2 such that

tr(HE — A2 > (1 —¢)B,(B,\)|Q]. (2.8)
We emphasize that for v > 1 one has the bound
tr(Hg — N2 <By(B,N[Q, =1, (2.9)

for an arbitrary domain Q2 C R? of finite measure. This is again essentially contained in [ELV].
We give an independent proof in Theorem 4.1 below and show also that (2.9) is stronger than
(2.4). The question whether (2.6) and (2.7) extend to not necessarily tiling domains is left
open.

Remark 2.3. There are estimates intermediate between (2.1) and (2.6) with the right hand
side depending on B but in a simpler way than in (2.6). For example, we mention the estimate

N, HE) < ﬁ()\JrB)\Q] (2.10)

for 2 tiling. Note that this estimate is stronger than (2.1) since N(\, H%) =0 for A < B. In
particular, it coincides with the estimate (1.5) for B = 0.

Remark 2.4. There is an essentially equivalent way of stating the estimates (2.1) and (2.10).
Namely denoting the eigenvalues of H g by )\%7 ; and passing to the limit A — )\%7 ;+ in these
estimates we find
MGy = 2m(Q TN
and, respectively,
Mgy = 4rmQT'N — B.

Remark 2.5. For the lower bound (2.3) we fix B > 0 and choose € and A. Alternatively, one
can fix a cube € and choose B and A. This follows by a simple scaling argument.

3. THE MAGNETIC DENSITY OF STATES

3.1. The magnetic density of states. In this section we shall use a slightly modified
notation. When Q = (—L/2, L/2)? we shall denote the operator H$ by HE(L). Recall that
Bo(B,A) was defined in (2.5). Our goal is to prove

Proposition 3.1. Let B > 0 and A > 0. Then
lim L72N(\, HE (L)) = Bo(B, ). (3.1)

L—oo
Hence B¢(B, ) is the density of states for the Landau Hamiltonian Hp := (D — BA)? in
Ly(R?). This is certainly well-known, but we include the proof for the sake of completeness.
This will be done in the remaining part of this section. A different proof may be found in
[N]. Alternatively, one can also use the known result that

lim LN\, HE(L) = lim L2 tx(xq, X0, (Hp))
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The RHS can be evaluated using the explicit form of the spectral projections of Hp, see the
proof of Theorem 4.1.

3.2. Explicit solution on the torus. In this subsection we consider the case of a square,
Q = (-L/2,L/2)* =: Qp, and define an operator HE(L) in Ly(Qp) which differs from H$
by the choice of magnetic periodic boundary conditions. However, its spectrum will turn out
to be explicitly computable.

To define HE (L) we shall fix B, L > 0 such that

(2m)'I?BeN (3.2)
and introduce the ‘magnetic translations’
(Tyu)(x) = e " BE22/2q (21 + L, x),
(Tou)(z) := e BE1/ 20z 2y + L).
(The dependence on B and L is not reflected in the notation.) The assumption (3.2) implies

that T7 and 75 commute, and hence any function v on (@7, has a unique extension to a function
% on R? by means of the operators T}, T». We introduce the Sobolev spaces

H]])ger(QL) = {u S Hk(QL) VNS Hllf)c(R2)}
Then the operator H (L) := (D — BA)? in Ly(Qr) with domain HZ (Qy) is self-adjoint. It
is generated by the quadratic form ||(D — BA)u|> with form domain H;ET(Q 1). The spectrum
of this operator is described in

Proposition 3.2. Assume (3.2). Then the spectrum of HE(L) consists of the eigenvalues
B(2k + 1), k € No, with common multiplicity (2m) " L2B. In particular, for all A > 0,

N\ HE(L)) = L*Bo(B, ). (3.3)
We recall the proof from [CV].

Proof. Consider the closed operator @ := (D1 — BA;) +i(Dy — BA3) with domain H;GT(QL).
Its adjoint is given by Q* := (D1 — BAy) —i(Dy — BAs) with domain H!, (Qr) and one has

per

I(D = BA)ull* = |Qul* + Bllul® = |Q"ull* = Bllul?,  u € Hy,(Qr).

per

Hence Hg(L) = @Q*Q + B and QQ* — Q*Q = 2B. By standard arguments using these
commutation relations one computes the spectrum of HE(L) to consist of the eigenvalues
B(2k 4+ 1), k € Ny, with a common multiplicity, say m. To determine m we note that

N\ HE(L)) =m#{k € Ng: B(2k+1) <A} ~mA/2B as A — oo.

On the other hand, the Weyl-type asymptotics on the counting function holds true for the
Dirichlet and the Neumann boundary conditions, and hence also for the periodic operator,

N\ HE(L)) ~A\L?/4m  as X — c.
Comparing the two asymptotics above one finds that m = L2B/2x. 3 O
3Alternatively, we may determine m using the Aharonov-Casher theorem. Indeed, the multiplicity m is the

dimension of the kernel of the Pauli operator (o - (D — BA))? acting on the sections of a complex line bundle
over the torus (R/LZ).
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3.3. Boundary conditions. In this subsection we shall quantify the intuition that a change
of the boundary conditions of a differential operator has only a relatively small effect on the
overall eigenvalue distribution. We shall denote by HY (L) the operator (D — BA)? with
(magnetic) Neumann boundary conditions in Q = Qp = (—L/2, L/2)?, that is the operator
generated by the quadratic form ||(D — BA)u||?> with form domain H'(Qr). We denote by
| K||; = tr(K*K)'/? the trace norm of a trace class operator K.

A special case of a result by Nakamura [N] (who also allows for a variable magnetic field
and an electric potential) is

Proposition 3.3. Let m € N and B > 0. Then there exists a constant Cy,(B) > 0 such that
forall L>1
I(HE (L) + D)7 = (Hp (L) + 1) 7"l < Cin(B) L. (3.4)

3.4. Proof of Proposition 3.1. Throughout the proof, B will be fixed and, for the sake of
simplicity, dropped from the notation. First note that since
N\ HP(L) < N\, HP(L)) < N(\, HP (L")

for L'’ < L < L" it suffices to prove Proposition 3.1 only for L — oo with the flux con-
straint (3.2), which we shall assume henceforth. One has H” (L) > H” (L) and hence by the
variational principle
N\ HP(L)) < N\ HP(L)).
In view of Proposition 3.2 this proves the upper bound in (3.1).
To prove the lower bound we write

N\ HP (L) =n((A+1)73, (HP (L) +1)73)

where n(k, K) denotes the number of singular values larger than x of a compact operator K.
Now by the Ky-Fan inequality [BS, Ch. 11 Sec. 1] for any € > 0

n((A+ 173, (HP(L) + 1)7%)
> n((1+e) A+ 1)73, (HN(L) + 1)73)
—n(e(A+ D)7 (HY (L) + D7 — (HP(L) + 1)7%).

We treat the two terms on the RHS separately. The second one can be estimated using
Proposition 3.3 as follows,

n(e\+ 173 (HY(L) + )2 — (HP (L) + )7?)
<n(e\+ 1) (HN(L)+ 1) — (HP(L) +1)7?)

<e A+ DAHENL) + D)7 = (HP (L) + D)7
(A+1)

On the other hand, writing . := (1 +¢&)~Y3(\ + 1) — 1 and applying Proposition 3.2 one
finds that for L? € 2rB~'N

n((14+e) AN+ 173, (HN(L) + 1)73) = N\, HN (L))
> N\, HP (L)) = L?*By(B, \.).

Noting that A < A and that By (B, \) is left-continuous in A we see that for all sufficiently
small € > 0 one has
Bo(B, o) = Bo(B,\).
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Collecting all the estimates we find that as L — oo with L? € 2rB™'N
liminf L72N(\, HP (L)) > Bo(B, \).
This proves the lower bound in (3.1).

4. PROOF OF THE MAIN RESULTS

4.1. Non-convex moments for tiling domains. This subsection is devoted to the proof
of Theorem 2.2. We assume that €2 is tiling, so we can write

R? = U Q, up to measure 0
nez?

where Qy = Q and all the €, are disjoint and congruent to . For L > 0 let Qp =
(—=L/2,L/2)* and

Jr, = {n€Z2: Q, CQr}, QY .= int | clos U Q,

neJy,
We note that
lim L724J, = |Q|~L. (4.1)
L—oo
Moreover, one has the operator inequalities
Qlb Qp
HE* <HE <> eHp.
neJy,

(The first inequality is, of course, understood in terms of the natural embedding Lo(2F) C
L2(Qr) by extension by zero.) Noting that all the Hg" are unitarily equivalent we obtain
from the variational principle that

N\ HE) < (#J1) "N\, HIL),

The bound (2.6) follows now from (4.1) and Proposition 3.1 by letting L tend to infinity.
This implies also the sharpness of (2.6). Indeed, by Proposition 3.1 for any € > 0, B > 0 and
A > 0 there exists a cube Q satisfying (2.8) for v = 0.

To prove (2.7) we write, in the spirit of [AL],

e(HE - N7 = [ NO - B d (42)
0
and
B,(B,\) = 7/ Bo(B, A — p)u" " dp. (4.3)
0

Hence (2.7) follows from (2.6). Moreover, Proposition 3.1, the formulae (4.2), (4.3) and an
easy approximation argument based on (2.6) imply that

lim L2 tr(HR (L) — \)? = B,(B, \).

As before, this proves the sharpness of the estimate (2.7) and concludes the proof of Theo-
rem 2.2.
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4.2. Convex moments for arbitary domains. From now on we shall consider arbitrary,
not necessarily tiling domains €2. Our goal is to prove

Theorem 4.1. Let Q C R? be a domain of finite measure and let v > 1. Then for all B > 0
and A > 0,

tr(Hy — N7 < B, (B,\)|Q]. (4.4)
As we will explain after Corollary 4.4 this improves slightly the main result of [ELV].

Proof. In the case Q = R? we write Hp instead of Hg. By the variational principle and
the Berezin-Lieb inequality (see [B2], [L1] and also [LS], [L]), one has for any non-negative,
convex function ¢ vanishing at infinity that

trp(HS) < tr xap(Hg).

Now, if ng) denotes the spectral projection of Hp corresponding to the k-th Landau level,

p(Hp) =Y ¢(B(2k +1))PY.
keNy

To evaluate the above trace we recall that the integral kernel of P](Bk) is constant on the
diagonal (this follows from the translation invariance of the Landau Hamiltonian) and has
the value B
Py =

B (z,z) o
(This is easily seen by diagonalizing Hp with the help of a harmonic oscillator, see also [F].)

It follows that tr XQPg) = B|Q|/2n. * This proves that

BIQ
trp(Hp) < # > e(B(2k+1)).
keNp

Specializing to the case ¢(u) = (u — A)”, v > 1, one obtains the estimate (4.4). O

4.3. Diamagnetic inequalities for the semi-classical symbol. This subsection illus-
trates on a semi-classical level the effects that appear when passing from the ‘magnetic sym-
bol’ B, (B, \) appearing in Theorem 2.2 to the ‘non-magnetic symbol’ L?Y{QXH'I appearing
in Theorem 2.1. The convex case v > 1 appears to be different from the non-convex case
0 < v < 1. We shall prove

Proposition 4.2. Let v >0 and B > 0. Then

B. (B, \) , =0
2 A v ;
e =) ) vo<ast
ik 1 if v> 1.

Moreover, for 0 < ~ < 1 the supremum is attained for A = B(y + 1) and for v = 0 the
supremum is attained in the limit A\ — B+.

We shall need the elementary

4To justify this, identify the LHS as the square of the Hilbert-Schmidt norm of XQP};) and use that
[ |P](3k)(:c,y)|2 dy = ng)(x, x) since P](Bk) is a projection.
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Lemma 4.3. Let 0 >y >0 and > X. Then for all E >0
(E=NL<C(y,0)(p—N)"""7(E - p)?
with C(0,0) :==14ify=0 and C(y,0) :=0 79" (c —v)? 7V ifoc >~v>0.

For the proof of Lemma 4.3 one just has to maximize (A — E)Y(u — A)?~7 as function of A
on the interval (E, p).

Proof of Proposition 4.2. By scaling, we may assume B = 1. First let v > 1 and note that the
function ¢(u) := (A — p)] is convex. Then by the mean value property of convex functions

2k+2

P2k +1) < %/Zk ©(p) dp.

Summing over k € Ny yields the assertion in the case v > 1.
Now let 0 < v < 1. Lemma 4.3 with ¢ = 1 together with the inequality that we have
already proved implies that for any p > A

B, (1,A) < Cy, ) = X) B (1, )
< O(y, DLy (p — X7
Applying the lemma again, i.e. optimizing in yu, yields the estimate
tr(HE — AL < R, LY, |Q\?

where

__Ctuy Lﬁb_z( ) > (45)

V_C(’y+1,2)L?yl,2_ v+1

This proves the claimed upper bound on the supremum in the proposition. Choosing A as
stated shows that this upper bound is sharp. O

Combining Theorem 4.4 with Proposition 4.2 we obtain

Corollary 4.4. Let Q C R? be a domain of finite measure and let v > 1. Then for all B > 0
and A > 0,

tr(Hy — A7 < L9, (4.6)
Using an idea from [LW2] we now show that (4.6) implies the inequality
N
SN (HE) > 27]Q| T N? (4.7)
j=1

from [ELV] for the eigenvalues \;(H$) of H$. For this, we recall the definition of the Legendre
transform of a function f: R,y — R,
f(p) = sup(pA — f(X),
A>0
and note that the inequality f < g for convex functions f, g is equivalent to the reverse
inequality f > § for their Legendre transforms. Hence an easy calculation shows that (4.6)
with v = 1 is equivalent to the inequality

[p]

(0= PDAp+1 (HB) + Y Ni(HB) > (ALT,12) "%, p >0,
j=1



14 POLYA’S CONJECTURE IN THE PRESENCE OF A CONSTANT MAGNETIC FIELD

where [p| denotes the integer part of p. Choosing p = N one obtains (4.7).
In passing we note that by the same argument the inquality (4.4) (which is stronger than
(4.6)) is in the case v = 1 equivalent to the inequality

[p] 2
B, - -
(p = DA () + DN (HE) > o— (B~ B)@B + D + ). p>0,
j=1
where we have set p = 27p/(B|(2|). Estimating the RHS from below by B?5%/(27) one obtains
again (4.7).

4.4. Non-convex moments for arbitrary domains. In this subsection we shall prove
Theorem 2.1. We deduce the inequalities (2.1) and (2.2) from Corollary 4.4 in the case v = 1.
The proof is analogous to that of Proposition 4.2. Indeed, Lemma 4.3 and (4.6) imply that
for any 0 < v < 1 and for any p > A,

tr(H = N2 < Cly, 1)(p — A7 te(HE — p)-

< Cly, VLTI (= M)~
Applying the lemma again, i.e. optimizing in pu, yields the estimate
tr(Hg — AL < R, LY, |Q\?
with R, as in (4.5). This proves (2.1) and (2.2).
To prove sharpness of these bounds we note that if 0 <~ <1 and A, =~ + 1 then
B,(B,BA\y) = R“/Lgl,z(B)W)wl-

Similarly, if v = 0 one has
Jim Bo(B, BX) = 2L§,B.

Hence (2.8) implies that for any € > 0, 0 < < 1 and B > 0 there exists a cube (2 satisfying
(2.3) with A = BA,. This concludes the proof of Theorem 2.1.

5. ADDITIONAL REMARKS

5.1. The three-dimensional case. The our proof of semi-classical inequalities for the two-
dimensional Dirichlet problem with constant magnetic field is based on two observations.
Firstly, it seems to be appropriate to estimate eigenvalue sums tr(H]g2 — )7 in terms of the
respective average of the magnetic symbol B, (B, ). Indeed, the bound

tr(HS — N2 < B.,(B,))|Q,

which holds true for arbitrary € for v > 1 and for tiling domains for v > 0, is sharp, since

the ratio

tr(HS — \)7

B, (B, )|
can be made arbitrary close to 1 by a suitable choice of (large) (2.

Secondly, the average of the magnetic symbol satisfies a sharp estimate by the standard
non-magnetic phase space average from above
1
B, (B,A) < LI\

for v > 1 only. For v < 1 this leads in conjunction with the asymptotic argument to the
counterexamples stated above.
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As we shall see in this subsection, in the three-dimensional case the asymptotic behavior of
eigenvalue moments is still governed by the average of a suitable magnetic symbol. However,
this average will not exceed the corresponding classical phase space average for all v > 1/2.
Therefore our approach produces counterexamples to inequalities with semi-classical constants
only for 0 <+ < 1/2. We shall discuss this below in more detail.

Let © C R? be a domain of finite measure and consider for B > 0 the self-adjoint operator

H%:= (D —BA?  in Ly(Q)
with Dirichlet boundary conditions where now
1
Ax) = 5(—3;2,331,0)T.
In the three-dimensional case the magnetic symbol is define as
BOB.3) = (2n)7 [ BB ) de

~ I'v+1) B B y+1/2
T T(y +3/2) 472 %\;ﬂ (A= B@k+ 1))

Similarly as in Subsection 4.2 one proves that

tr(Hi — N2 <8P (BNQ,  y>1 (5.1)

Put
B 1 T(y+1)
Llyimn)™ [ (- e =
73 {lel<1} ]73/2 I'(v+5/2)
By the same argument as in Proposition 4.2 one has
B®(B,\) < LS N2y >1)2, (5.2)

and hence

tr(Hy — N < LI NP2 4> 1

Again the quantity ‘B(()g) (B, \) arises as the density of states. More precisely, if Qp :=

(—L/2,L/2)? then a three-dimensional version of Proposition 3.3 allows to prove that

lim L3N (A, HO) = 80 (B, ). (5.3)

L—oo

This implies as in the two-dimensional case

Theorem 5.1. Let Q C R3 be a tiling domain of finite measure. Then for all B > 0 and
A>0

N HS) < B8 (B, V)| (5.4)
and
tr(Hy — N <89 (B,NQ,  0<y<], (5.5)

and these estimates cannot be improved. More precisely, for any 0 < vy <1, >0, B> 0,
A > 0 there exists a cube Q such that

tr(Hy — N1 > (1-)BP(B,))Q. (5.6)
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The estimates (5.4), (5.5) and Proposition 4.2 imply that for tiling domains Q and for
0<~v<1/2

tr(Hj — N7 < Ry jp LS g X732 (5.7)

with R, as in Theorem 2.1. Moreover, the asymptotics (5.3) imply that this constant can not
be replaced by a smaller one. However, in contrast to the two-dimensional case we do not
know whether the constant in this estimate has to be further increased if non-tiling domains
are considered.

On the other hand, (5.5) and (5.2) imply that for tiling domains © and for v > 1/2,

tr(Hj — N2 < L9\ /2, (5.8)

We do not know whether the constant in this estimate has to be increased if 1/2 <y < 1 and
if non-tiling domains are considered.

The method of Appendix A allows to deduce from (5.1) (probably non-sharp) estimates on
tr(H$ — \)Y for 0 < < 1 and arbitrary Q. We omit the details.

Another remark concerns domains with product structure.

Proposition 5.2. Let w C R? be a domain of finite measure, I C R a bounded open interval
and Q:=w x I, and let v > 1/2. Then for all B> 0 and A > 0,

tr(Hj — N2 < B88(B,))[Q. (5.9)

It follows from (5.2) that for domains of this form and for v > 1/2 one has also (5.8).

Proof. We follow Laptev’s lifting idea [L]. By separation of variables we can write
2 Y
tr(Hg — N =) tr | Hp+ <@> —A) .
neN ‘[‘ —
Pélya’s estimate on an interval states that
™\ > !
> <<7> . E) < IS B2
neN ‘ ‘ -

where

ga . L TOy+1
¥ 9 /m (v 4 3/2)
Hence
tr(HE — N < L 1] r(HE - A2
Applying Theorem 4.4 and noting that

Lffl,l%fyﬂ/z(B’ A) = %33’(37 A)

completes the proof. O
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5.2. The role of the integrated density of states. Our reasoning in Subsection 4.1 has
shown that the important idea in Pdélya’s proof is not the high energy limit, but the large
domain limit. (In the non-magnetic case these two limits are equivalent by scaling.) The
large domain limit corresponds to the passage to the density of states.

More generally, one can prove the following. For the sake of simplicity we return to the
two-dimensional case. Assume that 2 C R? is a tiling domain and write

R? = U Q, up to measure 0.
nez?

Here Qg = © and all the €2, are disjoint with Q,, = G, for GG,, a composition of a translation
and a rotation. Let V and A be a sufficiently regular real-valued function, respectively
vectorfield on © and consider the self-adjoint operator H := (D — A)? 4+ V with Dirichlet
boundary conditions in Lo (€2).

We extend V and A to the whole plane in such a way that V(z) = V(G,,*x) and curl A(z) =
curl A(G;,'x) for z € Q,. This allows to define a self-adjoint operator H := (D — A)?> +V in
Lo(R?). Our main assumption is that this operator possesses an integrated density of states

at a certain A € R, i.e., there exists a number n(\) > 0 such that
Jim L72N(\, HO) = n(N). (5.10)

Here as before, Qr, = (—L/2,L/2). Under this assumption one has for this given value of A
the Podlya estimate

N\ H?) < n(V)[Q).
This is proved in the same way as Theorem 2.2.

A special case is when the G,, are translations. If the flux of curl A through Q vanishes,
then A can be chosen periodic and one can apply Floquet theory. In this case it is well-known
that the limit (5.10) exists for any A and defines a non-negative, increasing and left-continuous
function n on R. A more general case is that of G,,’s which correspond to almost-periodic
tilings. The existence of the limit (5.10) in the almost-periodic case under broad conditions
on the coefficients has been proved, e.g., in [S].

APPENDIX A. THE CASE OF AN ARBITRARY MAGNETIC FIELD

In this section we consider an arbitrary magnetic field A € L, . () with Q c R? in any

dimension d > 2 and define Ho(A) = (D — A)? on § with Dirichlet boundary conditions. We
shall prove the estimate

tr(Ho(A) — N < pygLS N30, 0<y < 3/2. (A1)
Here T(5/2)T(y +d/2+ 1)
5/2)T (v +d/2+1), 3 (3+d)/2 —y—d/2
= 3 34+d 2)7 (2 d)™7
and

cd _ F(7 + 1)
v.d 2d7.‘.d/2r(,7 + %l n 1) .
Note that for d = 2 the constant p, 4 equals
pr2 = (5/3)2(v/ (v + 1)),
and it follows from our main result that this is off at most by a factor (5/3)%/2/2 ~ 1.0758.
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To prove (A.1) we recall the sharp Lieb-Thirring bound on the negative spectrum of a
magnetic Schrédinger operator Hga(A,V) = (D — A)?2 —V in R? from [LW1],

tr(Hya(A, V)Y < 15, / V(@) gy
b Rd

Here we extend the given magnetic vector potential A on Q by 0 to R%. Since the negative
eigenvalues of Ho(A) — p are not below those of Hpa(A, V) with V(x) := p for z € Q and
V(z):=0for z € R\ Q, we find

tr(Ha(A) — p)>? < tr(Hpa(A, V)Y < LS, |0 uC+O/2.
Lemma 4.3 with o = 3/2 shows now that for 0 <~y < 3/2
tr(Ho(A) — N)Y < C(v,3/2) (1 — A) 32 te(Ho (A) — p)*?

<C(v, 3/2)L§1/2,d|9|(u )2 (34) /2

for any p > A. Again by this lemma, i.e., optimizing in p, we get (A.1) with excess factor

Lipna  C(1,3/2) LS g (34 )2 (2y)

Pryd = —= C _
! L, €3/2-7,03+4d)/2) LY, 33/2 (2 + d)r+d/2

Recalling the definition of Lff{ 4 We obtain the claimed statement.

Besides the case of a homogeneous magnetic field also the case of a §-like magnetic field
(Aharonov-Bohm field) has received particular attention. In [FH] the above value of the
excess factor p, o could be slightly improved for this case, but it is still unknown whether or
not this factor can be chosen one for 0 <~y < 3/2.
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