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Universit ät Stuttgart
Fachbereich Mathematik

Improved Berezin-Li-Yau inequalities with a remainder
term

Timo Weidl

Preprint 2007/006



Fachbereich Mathematik
Fakultät Mathematik und Physik
Universität Stuttgart
Pfaffenwaldring 57
D-70 569 Stuttgart

E-Mail: preprints@mathematik.uni-stuttgart.de

WWW: http://www.mathematik/uni-stuttgart.de/preprints

ISSN 1613-8309

c© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.
LATEX-Style: Winfried Geis, Thomas Merkle



5

1. Introduction

Let Ω be an open domain in R
d and consider the Dirichlet Laplacian −∆D

Ω defined in

the form sense on the form domain
◦

H1 (Ω). If the embedding
◦

H1 (Ω) →֒ L2(Ω) is compact,

for example, if the domain Ω is bounded, the spectrum of −∆ is discrete. It consists of a

non-decreasing sequence of positive eigenvalues λk accumulating at infinity, which we repeat

according to their multiplicities. Let

n(Ω,Λ) = card{λk|λk < Λ}

be the corresponding counting function.

In 1912 Hermann Weyl proved the famous asymptotic formula [17]

n(Ω,Λ) = (1 + o(1))η(Ω,Λ) as Λ → +∞ . (1.1)

where η(Ω,Λ) denotes the respective classical phase space volume

η(Ω,Λ) :=

∫

x∈Ω

∫

ξ∈Rd:|ξ|2<Λ

dx · dξ

(2π)d
= Lcl

0,dvol(Ω)Λd/2, Lcl
0,d =

ωd

(2π)d
. (1.2)

Here ωd stands for the volume of the unit ball in R
d.

Along side with the counting function we shall discuss the eigenvalue means

Sσ,d(Ω,Λ) :=
∑

n

(Λ − λn)σ+ = σ

∫ Λ

0
(Λ − τ)σ−1n(Ω, τ)dτ , Λ ≥ 0, σ > 0, (1.3)

sσ,d(Ω, N) :=

N
∑

k=1

λσ
k = σ

∫ ∞

0
τσ−1(N − n(Ω, τ))+dτ , σ > 0. (1.4)

Inserting (1.1) and (1.2) into the integral (1.3) one obtains the Weyl asymptotics

Sσ,d(Ω,Λ) = (1 + o(1))Scl
σ,d(Ω,Λ) as Λ → +∞ , (1.5)

where

Scl
σ,d(Ω,Λ) =

∫

x∈Ω

∫

ξ∈Rd

(Λ − |ξ|2)σ+
dx · dξ

(2π)d
= Lcl

σ,dvol(Ω)Λσ+d/2 .

Here we make use of the well-known Lieb-Thirring constants

Lcl
σ,d :=

Γ(σ + 1)

2dπd/2Γ(1 + σ + d/2)
= σB

(

σ, 1 +
d

2

)

Lcl
0,d .

A similar computation for the expression (1.4) implies

sσ,d(Ω, N) = (1 + o(1))scl
σ,d(Ω,N) as N → +∞ , (1.6)

with the classical quantity

scl
σ,d(Ω, N) = σ

∫ ∞

0
τσ−1 (N − η(Ω, τ))+ dτ = c(σ, d) (vol(Ω))−

2σ

d N1+ 2σ

d ,

where

c(σ, d) :=
2σ

d

(

Lcl
0,d

)− 2σ

d

B

(

2σ

d
, 2

)

=
d

2σ + d

(

Lcl
0,d

)− 2σ

d

.
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It is an important question, whether the semi-classical quantities in the Weyl type formu-

lae can serve as universal bounds for the corresponding spectral quantities of the Dirichlet

Laplacian as well. In particular, one is interested in the validity of the following inequalities
∑

k

(Λ − λk)
σ
+ = Sσ,d(Ω,Λ) ≤ r(σ, d)Scl

σ,d(Ω,Λ) , Λ > 0 , σ ≥ 0 , (1.7)

N
∑

k=1

λσ
k = sσ,d(Ω, N) ≥ ρ(σ, d)scl

σ,d(Ω,N) , N ∈ N , σ > 0 , (1.8)

and in the sharp values of the constants r(σ, d) and ρ(σ, d) therein. From the Weyl asymptotics

(1.5), (1.6) follows that at the best r(σ, d) ≥ 1 and ρ(σ, d) ≤ 1.

Berezin showed in [2] that (1.7) holds with r(σ, d) = 1 for all d ∈ N and all σ ≥ 1. If one

applies the Legendre transformation to (1.7) for the case σ = 1, one finds that

s1,d(Ω,N) ≥ scl
1,d(Ω,N) .

The later result has independently been obtained by Li and Yau [12] by other means. By

Hölder’s inequality we have

scl
1,d(Ω, N) ≤ s1,d(Ω,N) ≤ s

1/σ
σ,d (Ω,N)N1/σ′

,
1

σ
+

1

σ′
= 1 . (1.9)

From this follows that (1.8) remains true for σ > 1 with the estimate

ρ(σ, d) ≥ (c(1, d))σ/c(σ, d) =
2σ + d

d

(

d

2 + d

)σ

on the constant. If we pass in (1.9) to the limit σ → ∞, we obtain the bound

d

2 + d
(Lcl

0,d vol(Ω))−
2

d N
2

d ≤ λN , N ∈ N .

This is equivalent to

n(Ω,Λ) ≤ r(0, d)η(Ω,Λ) , Λ > 0 ,

with the estimate 1 ≤ r(0, d) ≤ (1 + 2d−1)d/2 on the constant r(0, d), which corresponds to

the case σ = 0 for the inequality (1.7). From here, for example, one can conclude by the

Lieb-Aizenman trick [1] that r(σ, d) ≤ (1 + 2d−1)d/2 for 0 ≤ σ < 1.

Pólya showed in 1961 that for all tiling domains Ω one has in fact r(0, d) = 1, see [14]. The

famous Pólya conjecture suggesting that r(0, d) = 1 for general domains, remains unresolved

so far. For certain improvements in this direction see [8, 9]. Recently it has been shown that

Pólya’s conjecture fails in the case of a constant magnetic field [15].

Along with his formula on the main high energy term for the counting function n(Ω,Λ)

Weyl conjectured that for the Dirichlet Laplacian the following two term formula holds true

n(Ω,Λ) = Lcl
0,dvol(Ω)Λd/2 −

1

4
Lcl

0,d−1|∂Ω|Λ(d−1)/2 + o(Λ(d−1)/2) as Λ → ∞ . (1.10)

Here |∂Ω| denotes the d− 1-dimensional measure of the boundary of Ω. This formula fails in

general, but it holds true under certain restrictions on the geodesic flow in the domain [7, 16].
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If we insert (1.10) into (1.3) and (1.4) we obtain the following two-term formulae for the

eigenvalue means

Sσ,d(Ω,Λ) = Lcl
σ,dvol(Ω)Λσ+d/2 −

1

4
Lcl

σ,d−1|∂Ω|Λσ+(d−1)/2 + o(Λσ+(d−1)/2), (1.11)

sσ,d(Ω, N) = c(σ, d) (vol(Ω))−
2σ

d N1+ 2σ

d

+
Lcl

σ,d−1(L
cl
σ,d)

−1− 2σ−1

d

4(d−1
2 + σ)

·
σ|∂Ω|

(vol(Ω))1+
2σ−1

d

N1+ 2σ−1

d + o(N1+ 2σ−1

d ) . (1.12)

Of course, the sign of the second terms support the sharp inequalities stated above.

In view of these two-term asymptotics one can ask, if it is possible to find universal bounds

on the spectral quantities, which hold true for all values of Λ, contain the sharp first Weyl

term and reflect the contribution of the second order term?

Note that a straight-forward generalisation of the Berezin bound by just adding the second

asymptotic term on the right hand side

Sσ,d(Ω,Λ) ≤ Scl
σ,d(Ω,Λ) − C · |∂Ω|Λσ+ d−1

2 must fail.

Indeed, without further restrictions the r.h.s. in this bound can just be negative for fixed

values of Λ. Therefore, any improvement of sharp one-term bounds must invoke a suitable

replacement for the surface volume |∂Ω|.

A first step towards this goal has been made by Melas [13]. Refining the result by Li and

Yau he found that
N
∑

k=1

λk = s1,d(Ω,N) ≥ scl
1,d(Ω,N) + M(d)

vol(Ω)

J(Ω)
N . (1.13)

Here

J(Ω) = min
y∈Rd

∫

Ω
|x − y|2dx

is the momentum of Ω and the constant M(d) depends only on the dimension d. This bound

is remarkable, since it improves the Li-Yau inequality which corresponds via the Legendre

transformation to the endpoint σ = 1 of the scale, where r(σ, d) = 1 is known to be true. On

the other hand, comparing (1.13) with (1.12) we find, that the additional term of order N on

the r.h.s. of (1.13) does not capture the correct order N1+ 1

d of the second Weyl term.

In the present note we give with (2.2) in Theorem 2.1 an improvement of a Berezin type

bound (1.7) for σ ≥ 3/2. The result is based on the application of sharp Lieb-Thirring inequal-

ities with operator valued potentials [11, 10] to spectral estimates of the Dirichlet Laplacian

in domains, see also [4, 5]. In fact, we simply raise the explicit remainder term for the second

derivative with Dirichlet boundary condition on one-dimensional intervals to the Dirichlet

Laplacian on domains in arbitrary dimensions. Although the proof is straightforward, we

find (2.2) noteworthy, since

• it contains a correction term of the order of the standard second term in the Weyl

asymptotics,

• it improves even the first term by taking only the volume of a suitable subset ΩΛ ⊂ Ω

into account,
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• it is applicable even for certain domains Ω with infinite volume,

• it generalises without change of constants to Dirichlet Laplacians with arbitrary mag-

netic fields.

However, our result does not touch the endpoint σ = 1 of the scale where the sharp one-

term Berezin bound is known. Hence, it does not imply an improvement on the best known

estimates on the counting function. The question, whether (2.2) can be generalised in some

way to σ = 1 or whether the Melas bound can be improved with a correction term of the

second Weyl term order, remains open.

The structure of the paper is as follows. In section 2 we state the main result and comment

on the improvements which we gain compared to the one-term bound. The proof of our result

will be sketched in section 3.

2. Statement of the Result

Notation. First let prepare some notation which shall be of use below.

Let Ω be an open subset of R
d. We fix a Cartesian coordinate system in R

d and for x ∈ R
d

we shall also write x = (x′, t) ∈ R
d−1 × R. Each of the sections Ω(x′) = {t ∈ R|(x′, t) ∈ Ω}

consists of at most countably many open intervals Jk(x
′) ⊂ R of length lk(x

′). For given x′

and Λ let κ(x′,Λ) ⊂ N be the subset of all indices k, where lk(x
′) > lΛ := πΛ−1/2.

If vol(ΩΛ) is finite, the sets κ(x′,Λ) are finite for a.e. x′ and we let κ(x′,Λ) denote the

number of the elements of these sets. We shall assume that this function is measurable in x′.

Put

ΩΛ(x′) =
⋃

k∈κ(x′,Λ)

Jk(x
′) ⊂ Ω(x′) ⊂ R and ΩΛ =

⋃

x′∈Rd−1

{x′} × ΩΛ(x′) ⊂ Ω .

That means ΩΛ is the subset of Ω, where the intervals in t-direction contained in Ω are longer

than lΛ. The set ΩΛ is monotone increasing in Λ.

We shall also make use of the quantity

dΛ(Ω) =

∫

x′∈Rd−1

κ(x′,Λ)dx′ ,

which is an effective measure of the projection of ΩΛ on the x′-plane counting the number of

sufficiently long intervals.

A basic estimate. Consider the function

fµ(A) =
A

2
B

(

1 + µ,
1

2

)

−

∞
∑

k=1

(

1 −
k2

A2

)µ

+

, A ≥ 1 , µ > 0 ,

which is continuous in A. Since

A

2
B

(

1 + µ,
1

2

)

=

∫ +∞

0

(

1 −
t2

A2

)µ

+

dt >

∞
∑

k=1

(

1 −
k2

A2

)µ

+

,

the function fµ(A) takes positive values for A ≥ 1. Moreover, it is not difficult to see, that

lim
A→+∞

fµ(A) =
1

2
, µ > 0 .
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Thus, the minimum

εµ = min
A≥1

fµ(A) > 0

exists and
∞
∑

k=1

(

1 −
k2

A2

)µ

+

≤
A

2
B

(

1 + µ,
1

2

)

− εµ , A ≥ 1 . (2.1)

The cases A = 1 and A → +∞ ensure that

2εµ ≤ min

{

1, B

(

1 + µ,
1

2

)}

.

Main Result.

Theorem 2.1. There exists a positive constant ν = ν(σ, d), such that for any open domain

Ω ⊂ R
d, σ ≥ 3/2 and any Λ > 0 the bound

∑

k

(Λ − λk)
σ
+ = Sσ,d(Ω,Λ) ≤ Lcl

σ,dvol(ΩΛ)Λσ+ d

2 − ν(σ, d)
Lcl

σ,d−1

4
dΛ(Ω)Λσ+ d−1

2 (2.2)

holds true. The optimal constant ν = ν(σ, d) satisfies

4εσ+ d−1

2

≤ ν(σ, d) ≤ 2min

{

1, B

(

1 + σ +
d − 1

2
,
1

2

)}

. (2.3)

Comments.

Remark 2.2. The correction term in (2.2) reflects the correct asymptotical order O(Λσ+ d−1

2 )

of the standard correction term in the Weyl formula.

Remark 2.3. The first term on the r.h.s. of (2.2) takes only the volume of the part ΩΛ ⊂ Ω into

account, that is only the part of the original domain where it is sufficiently wide for a Dirichlet

bound state below Λ to settle in t-direction. Therefore, we have already an improvement in

the first term of the Berezin bound. In particular, the inequality (2.2) is applicable to domains

Ω of infinite volume, as long as for given Λ the volume of ΩΛ is finite.

Remark 2.4. Numerical evaluations which can be made rigorous by elementary means show

that the lower bound on ν(σ, d) is reasonable. For example, if d = 2 and σ = 3/2, then

1.91 < ν

(

3

2
, 2

)

≤ 2 .

The upper bounds. At this point let us discuss the upper bounds on ν(σ, d) more in detail.

First of all, consider a long, thin rectangle of width w and height h = δw, which is parallel to

the coordinate axes. For sufficiently large Λ we have Ω = ΩΛ, dΛ = w and |∂Ω| = 2(1 + δ)dλ.

The asymptotical formula (1.11) in comparison with (2.2) yields that ν(σ, d) ≤ 2(1+δ). Since

δ can be chosen arbitrary small, one finds that ν(σ, d) ≤ 2.

Now take again a rectangle of width w and height h = (1 − δ)lΛ for some small positive δ.

Then dΛ = w, Ω = ΩΛ and vol(ΩΛ) = (1 − δ)πΛ−1dΛ. The r.h.s. of (2.2) turns into

dΛ(Ω)Λσ+ d−1

2

(

(1 − δ)πLcl
σ,d −

ν(σ, d)

4
Lcl

σ,d−1

)

.
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Since this expression has to be non-negative for the bound (2.2) to make sense, we find that

ν(σ, d) ≤ 4πLcl
σ,d(L

cl
σ,d−1)

−1 = 2B

(

1

2
, 1 + σ +

d − 1

2

)

.

Actually, this condition ensures that the r.h.s. of (2.2) is non-negative for arbitrary Ω.

Indeed, since the total width of ΩΛ(x′) exceeds κ(x′,Λ) · lΛ ≥ πΛ−1/2
κ(x′,Λ), the volume of

ΩΛ can be estimated from below by

vol(ΩΛ) =

∫

x′∈Rd−1

κ(x′,Λ) · lΛdx′ ≥ πΛ−1/2dΛ(Ω).

Thus, the expression on the r.h.s. of (2.2) satisfies

Lcl
σ,dvol(ΩΛ)Λσ+ d

2−
ν(σ, d)

4
Lcl

σ,d−1dΛ(Ω)Λσ+ d−1

2 ≥ dΛ(Ω)Λσ+ d−1

2

(

πLcl
σ,d −

ν(σ, d)

4
Lcl

σ,d−1

)

≥ 0 .

3. The proof of the main result

The proof proceeds in two steps We start with a variational argument, which transforms

our initial problem into a spectral estimate on the negative eigenvalues of a Schrödinger type

operator with operator values potential. Our result follows then from an operator valued

Lieb-Thirring bound [11, 6, 10].

Step 1: A variational argument. We use the notation introduced in section 2. Moreover,

by ∇′ and −∆′ we denote the gradient and the Laplacian in the first d − 1 dimensions of

R
d = R

d−1 × R ∋ (x′, t).

Consider a function u from the form core C∞
0 (Ω) of −∆D

Ω . For the quadratic form of

−∆D
Ω − Λ we have the identity

‖∇u‖2
L2(Ω) − Λ‖u‖2

L2(Ω) = ‖∇′u‖2
L2(Ω) +

∫

Rd−1

dx′

∫

Ω(x′)

(

∣

∣

∣

∣

∂

∂t
u(x′, t)

∣

∣

∣

∣

2

− Λ|u(x′, t)|2

)

dt .

Note that Ω(x′) = ∪kJk(x
′). The functions u(x′, ·) satisfy Dirichlet boundary conditions at

the endpoints of Jk(x
′). The lowest Dirichlet eigenvalue of −d2/dt2 on Jk(x

′) equals π2l−2
k (x′).

Hence,
∫

Jk(x′)

∣

∣

∣

∣

∂

∂t
u(x′, t)

∣

∣

∣

∣

2

dt ≥
π2

l2k(x
′)
‖u(x′, ·)‖2

L2(Jk(x′)) .

In particular, for all k /∈ κ(x′,Λ) we have

∫

Jk(x′)

(

∣

∣

∣

∣

∂

∂t
u(x′, t)

∣

∣

∣

∣

2

− Λ|u(x′, t)|2

)

dt ≥ 0 .

It follows that
∫

Ω(x′)

(

∣

∣

∣

∣

∂

∂t
u(x′, t)

∣

∣

∣

∣

2

− Λ|u(x′, t)|2

)

dt ≥
∑

k∈κ(x′,Λ)

∫

Jk(x′)

(

∣

∣

∣

∣

∂

∂t
u(x′, t)

∣

∣

∣

∣

2

− Λ|u(x′, t)|2

)

dt

≥ −
∑

k∈κ(x′,Λ)

〈

Vku(x′, ·), u(x′, ·)
〉

L2(Jk(x′))
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where the operators Vk = Vk(x
′,Λ) denote the negative parts of the Sturm-Liouville problems

− d2

dt2
− Λ with Dirichlet boundary conditions on L2(Jk(x

′)). Put

W (x′,Λ) =
(

⊕k∈κ(x′,Λ)Vk(x
′,Λ)

)

⊕ O on L2(ΩΛ(x′)) ⊕ L2(Ω(x′) \ ΩΛ(x′)) .

This operator is bounded on L2(Ω(x′)) and for any u ∈ C∞
0 (Ω) it holds

‖∇u‖2
L2(Ω) − Λ‖u‖2

L2(Ω) ≥ ‖∇′u‖2
L2(Ω) −

∫

Rd−1

〈

W (x′,Λ)u(x′, ·), u(x′, ·)
〉

L2(Ω(x′))
dx′ .

In a last step we study now the function f = u + v where both functions u ∈ C∞
0 (Ω) and

v ∈ C∞
0 (Ω̂) are extended by zero to R

d and where Ω̂ = R
d \Ω. Since ‖∇v‖2

L2(Ω̂)
≥ ‖∇′v‖2

L2(Ω̂)

we have

‖∇v‖2
L2(Ω̂)

+‖∇u‖2
L2(Ω)−Λ‖u‖2

L2(Ω) ≥ ‖∇′f‖2
L2(Rd)−

∫

Rd−1

〈

Wf(x′, ·), f(x′, ·)
〉

L2(R)
dx′ . (3.1)

Here we extend (in a slight abuse of notation) W = W (x′,Λ) by an orthogonal sum with

O|
L2(R\Ω(x′))

to a bounded operator on L2(R).

The inequality (3.1) holds true for f ∈ C∞
0 (Rd \ ∂Ω), which is a form core for (−∆D

Ω̂
) ⊕

(−∆D
Ω −Λ) corresponding to the expression on the l.h.s. The semi-bounded form on the r.h.s.

is closed on the larger domain H1(Rd−1, L2(R)), where it corresponds to the Schrödinger type

operator −∆′⊗I−W (x′,Λ) on L2(Rd−1, L2(R)). Due to the positivity of −∆D
Ω̂

the variational

principle implies that

∑

k

(Λ − λk)
σ
+ = tr(−∆D

Ω − Λ)σ− = tr
(

(−∆D
Ω̂

) ⊕ (−∆D
Ω − Λ)

)σ

−

≤ tr
(

−∆′ ⊗ I − W (x′,Λ)
)σ

−
. (3.2)

Step 2: Sharp Lieb-Thirring bounds. We are now in the position to apply a sharp Lieb-

Thirring inequality for operator valued potentials (Theorem 3.1 in [11]) in the dimension d−1

with σ ≥ 3/2. In our setting it reads as follows

tr
(

−∆′ ⊗ I − W (x′,Λ)
)σ

−
≤ Lcl

σ,d−1

∫

Rd−1

tr W σ+ d−1

2 (x′,Λ)dx′ . (3.3)

The eigenvalues of the operator W (x′,Λ) are known explicitly and the non-zero ones equal

µj,k = Λ− j2π2l−2
k (x′) for k ∈ κ(x′,Λ) and j = 1, 2, . . . , [lk(x

′)l−1
Λ ]. If we insert this into (3.3)

and (3.2) we obtain

∑

k

(Λ − λk)
σ
+ ≤ Lcl

σ,d−1

∫

Rd−1

∑

k∈κ(x′,Λ)

[lk(x′)l−1

Λ
]

∑

j=1

(Λ − j2π2l−2
k (x′))σ+ d−1

2 dx′

≤ Λσ+ d−1

2 Lcl
σ,d−1

∫

Rd−1

∑

k∈κ(x′,Λ)

[lk(x′)l−1

Λ
]

∑

j=1

(

1 −
j2

l2k(x
′)l−2

Λ

)σ+ d−1

2

dx′ . (3.4)
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Since for k ∈ κ(x′,Λ) we have lk(x
′)l−1

Λ ≥ 1. From (2.1) it follows that

[lk(x′)l−1

Λ
]

∑

j=1

(

1 −
j2

l2k(x
′)l−2

Λ

)σ+ d−1

2

≤
lk(x

′)l−1
Λ

2
B

(

1 + σ +
d − 1

2
,
1

2

)

− εσ+ d−1

2

,

what together with (3.4) amounts to

∑

k

(Λ − λk)
σ ≤

Λσ+ d

2

2π
B

(

1 + σ +
d − 1

2
,
1

2

)

Lcl
σ,d−1

∫

Rd−1

∑

k∈κ(x′,Λ)

lk(x
′)dx′

− εσ+ d−1

2

Λσ+ d−1

2 Lcl
σ,d−1

∫

Rd−1

∑

k∈κ(x′,Λ)

1dx′ . (3.5)

Note that
∑

k∈κ(x′,Λ) lk(x
′) stands for the total width of ΩΛ in t-direction and

∫

Rd−1

∑

k∈κ(x′,Λ)

lk(x
′)dx′ = vol(ΩΛ) . (3.6)

Moreover, we have
∫

Rd−1

∑

k∈κ(x′,Λ)

1dx′ =

∫

Rd−1

κ(x′,Λ)dx′ = dΛ(Ω) . (3.7)

A straightforward computation shows that

1

2π
B

(

1 + σ +
d − 1

2
,
1

2

)

Lcl
σ,d−1 = Lcl

σ,d . (3.8)

Inserting (3.6)-(3.8) into (3.5), we complete the proof.

The magnetic case. Here we consider the magnetic Dirichlet Laplacian (i∇+A(x))2 defined

in the forms sense from a form core C∞
0 (Ω) for A ∈ Ld

loc(Ω, Rd) for d ≥ 3 and A ∈ L1+ε
loc (Ω, Rd)

for d = 2 and some ε > 0. It turns out that the bound (2.2) holds with the same estimates on

ν(σ, d) in the magnetic case as well. The proof uses the idea of induction in dimension in the

magnetic case, see [11] section 3.2, an argument due to Helffer. We sketch it for the benefit

of the reader.

First assume for simplicity that the vector potential A is continuous. For x = (x1, . . . , xd)

let x = (x′
j , x

′′
j ) with x′

j = (x1, . . . , xj) and x′′
j = (xj+1, . . . , xd). We put

Ω(x′
j) = {x′′

j ∈ R
d−j |x = (x′

j , x
′′
j )} ∈ Ω.

This is an open set in R
d−j and let (i∇′′

j +A′′(x′′))2 be the magnetic Dirichlet Laplacian on it.

In a first step we can chose a gauge A(x) = (0, A′′
1(x′

1, x
′′
1)), where the first component of A(x)

vanishes. Using a variational argument similar to the one above and a sharp Lieb-Thirring

bound in the dimension one, we find that for σ ≥ 3/2

∑

k

(Λ − λk)
σ
+ = tr((i∇ + A(X))2 − Λ)σ− ≤ Lcl

σ,1

∫

R

tr((i∇′′
1 + A′′

1(x
′
1, x

′′
1))

2 − Λ)
σ+ 1

2

− dx1 .



13

We apply now the same argument to the operator (i∇′′
1 + A′′

1(x
′
1, x

′′
1))

2 on Ω(x′
1) an so on.

Decreasing dimensions one by one we get in the (d − 1)st step

∑

k

(Λ − λk)
σ
+ ≤ Lcl

σ,1L
cl
σ+ 1

2
,1
· · ·Lcl

σ+ d−2

2
,

∫

Rd−1

tr

(

(

i
d

dxd
+ Ã′′

d(x
′
d−1, xd)

)2

− Λ

)σ+ d−1

2

−

dx1 .

With the notation Ã′′
d we take into account, that the explicit expression for the vector potential

changes at each step due to the necessary gauge transformation.

We avail at a family of one-dimensional Sturm-Liouville problems, where the magnetic field

simply can be gauged away. That means we can make use of the same arguments for the

operator in t = x′′
d−1-direction as above and avail at

∑

k

(Λ − λk)
σ
+ ≤ Λσ+ d−1

2 Lcl
σ,1 · · ·L

cl
σ+ d−2

2
,1

∫

Rd−1

∑

k∈κ(x′,Λ)

[lk(x′)l−1

Λ
]

∑

j=1

(

1 −
j2

l2k(x
′)l−2

Λ

)σ+ d−1

2

dx′ .

Since Lcl
σ,1 · · ·L

cl
σ+ d−2

2
,1

= Lcl
σ,d−1, we complete the proof in the same way as above and find

tr((i∇ + A(x))2 − Λ)σ− ≤ Lcl
σ,dvol(ΩΛ)Λσ+ d

2 − ν(σ, d)
Lcl

σ,d−1

4
dΛ(Ω)Λσ+ d−1

2 (3.9)

Since the estimates1 on the constants ν(σ, d) do not depend on the magnetic vector poten-

tial, we can close the result to non-smooth A by a standard argument.

For this let just note that in the case of a counter example, even if Λ is an accumulation

point of the spectrum, already a finite partial eigenvalue sum will fail the bound (3.9). Thus,

it suffices to study the quadratic form
∫

Ω |(i∇ + A)2u|2dx on the finite-dimensional subspace

of u spanned by the corresponding eigenfunctions. In fact, one can reduce oneself to a finite-

dimensional subspace of the form core. Since A can be approximated by continuous A in L2
loc,

we have a uniform convergence
∫

Ω |(i∇ + Aδ)
2u|2dx →

∫

Ω |(i∇ + A)2u|2dx on normalised u

from this subspace. Variational arguments give a contradiction to the counter example.

This line of arguments will always works, if we have an approximation of the vector potential

by continuous ones in terms of the convergence of the forms on any finite dimensional subspace

of a form core in C∞
0 (Ω). In particular, it applies to the minimal extensions of theAharonov-

Bohm type operators for d = 2.

In conclusion we remark, that the standard one-term Berezin bound

tr((i∇ + A(x))2 − Λ)σ− ≤ Lcl
σ,dvol(Ω)Λσ+ d

2 (3.10)

holds true with the semi-classical constant for constant magnetic fields if σ ≥ 1 [3]. It fails

even in this special case for σ < 1 [15]. The question, whether (3.10) holds true (or can even

be improved by a suitable correction term) for general magnetic fields for σ ∈ [1, 3/2) remains

open.

1This does not mean that the constants ν(σ, d) itself are necessarily independent of A.
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