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Abstract

We improve the Berezin-Li-Yau inequality in dimension two by adding a positive correction term
to its right-hand side. It is also shown that the asymptotical behaviour of the correction term is
almost optimal. This improves a previous result by Melas, [10].

1 Introduction

Let © be an open bounded set in R? and let —A be the Dirichlet Laplacian on . We denote by \;
the non-decreasing sequence of eigenvalues of —A. The main object of our interest in this paper is the
lower bound
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where V stands for the volume of  and w,y denotes the volume of the unit ball in R?. Inequality (1)
was proved in [8], and is commonly known as the Li-Yau inequality. In [7] it was pointed out that (1)
is in fact the Legendre transformation of an earlier result by Berezin, see [1]. Note also that the Li-Yau
inequality yields an individual lower bound on A; in the form
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For further estimates on A\ see [12, 5, 6, 7].
It is important to compare the lower bound (1) with the asymptotical behaviour of the sum on the
left-hand side, which reads as follows:

dCy _2 ,dt2 = |8Q| 1 1
;)\j: d+2V aka +Odvl+§ klitd +0(k1+d) as k — oo (3)
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The first term in the asymptotics (3) is due to Weyl, see [15]. The second term in (3) was established,
under suitable conditions on Q, in [3, 4, 11], see also [13, Chap. 1.6].
It follows from (3) that the constant in (1) cannot be improved. On the other hand, since the
second asymptotical term is positive, it is natural to ask whether one might improve (1) by adding an

additional positive term of lower order in k to the right-hand side. The first step towards this goal was
done by Melas, [10], who showed that the inequality
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holds true with a factor M, which depends only on the dimension. Note however, that the additional
term in the Melas bound does not have the order in k predicted by the second term in (3). Moreover,
the coefficient of the second term in (3) reflects explicitly the effect of the boundary of 2, whereas such
a dependence is not seen in the coefficient V/T of (4).

Our aim is to improve (1) and (4) by adding a positive contribution which reflects the nature of the
second term in the asymptotic (3). Recently, one of the authors, see [14], proved an analogous improved
estimate on the quantity
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with a remainder term which agrees, up to a constant, with the corresponding second term in the
asymptotics of ), (A—A;)7 as A — oo. The proof given in [14] relies on sharp Lieb-Thirring inequalities
for operator valued potentials and works only for o > 3/2. Since the estimates treated in present paper
concern the value o = 1, the method of [14] cannot be carried over to this case. We will therefore
develop a different approach. We wish to point out [2] (and references therein), where an improvement
of (1) has been established for the discrete Laplacian. In particular, the authors make use of a more
detailed analysis of the approximation of characteristic functions by low energy eigenvalues of the
discrete Laplace operator. This is also the key element of this paper.

The main idea of our strategy is explained in section 2.3. It is closely related to a modified proof
of inequality (1), which we briefly describe in section 2.1, see also [9, Chap. 12]. The main results
which represent improved Li-Yau inequalities in case d = 2 are formulated in section 3. Since our proof
includes many technical results concerning the geometry of the boundary of €2, we will first give its
exposition for polygons, section 4. Finally, in section 5 we extend the proof to general domains.

To keep the presentation as short and stringed as possible, we have decided to restrict ourselves to
the case d = 2 throughout the paper.

2 Preliminaries

Following notation will be employed in the text. By ©(:) : R — R we denote the Heaviside function
defined by ©(z) = 0if x < 0 and O(z) = 1 if x > 0. For given ¢t > 0 we denote by N, the number
of eigenvalues of the Dirichlet-Laplacian in Q less than or equal to ¢. Finally, we will write [s] for the
integer part of a real number s.

2.1 Li-Yau bound revisited
Let v; be the sequence of the normalised eigenfunctions of —A in Q, i.e.
SAu =Ny R w=0 mon [juP-. (5)
Q

In order to explain the idea which will lead to an improvement of the results by Li-Yau and Melas,
it is illustrative to see how to obtain inequalities (1) and (4) for d = 2 (the same arguments apply to
higher dimensions as well). Following [1, 10] we extend the eigenfunctions 1; continuously by zero to
the whole of R? so that they remain in H!(R?). Next introduce the following functions:

k
£i(©) = (2m)~! / TPy dz,  F(€) =) 1f(©). (6)
Q =
Since {1;} is an orthonormal basis of L?(f2), the Parseval identity implies that
k oo
F&) =Y 1P <Y 1H©P = 2n)7 /Q lem= " dz = (2m) 72V (7)
j=1 j=1

holds for any ¢ € R2. Next we denote by F*(|¢|) the decreasing radial rearrangement of F. Using the
well-known properties of the radial rearrangement we find

| Ptehas= [ Fede=r )
and
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To find a lower bound on E_];:l Aj it thus suffices to find the minimiser of the functional [o, [£|* F*(|¢]) d¢
under the conditions (7) and (8).
The result of Li and Yau can be proved using the fact, [9, Chap. 12], that this functional is minimised

by the function
@2m)=2V. o< g <y,

Py (l¢]) = (10)
0 i < |l
where 7 is given by the condition
_ Tk Atk
N e
0

Inserting (10) into (9) we obtain inequality (1) for d = 2.

2.2 Melas’ improvement revisited

Melas observed in [10] that the lower bound on the right-hand side of (9) can be improved, if one takes
into account that the follwing additional regularity condition on F* must hold

|(F*)'| <2(2m)2VVI = L. (11)

It can be easily verified that, depending on the value of k, the corresponding minimiser ®,; of the
functional (9) then has the following form:

2 (2m) 2V 0 < €] < sp,
for k> =— mM(€) =< @m)2V —([¢]—sk) L sk < [E] <ty (12)
T 0 te < €],

where the points s; and tj are uniquely determined by

Vv
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see Figure 1, and

V2 3kL2\ /3
fork < 2 duy(le) - ((T) -] (13)
Using this minimiser we obtain the lower bound
k
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Now let a € R? be such that I = [, |z —a|* dz and let B, be the disc centred in a and with the volume
V. Tt is then straightforward to verify that

2
I>1I(B,)= v .
2m
Using this inequality and the fact that k > 1 we deduce from (14) and (15) the uniform estimate
a 1V
/\>—k2 ——-k VkeN. 16



2.3 The new correction term

Our main observation is that the crucial reservoir for improvements of (1) does not lie in the regularity
of F*, but in a more detailed analysis and improvement of the condition (7). Indeed, since

k [e%S)
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any estimate from below on 3322, | |f;(€)[* will automatically lead to a sharper upper bound on F
and therefore to an additional term in the Li-Yau inequality.

Moreover, the last term in (17) cannot go to zero arbitrarily fast as k goes to infinity. This follows
from the fact that |e=%¢| = 1 everywhere in 2, which means that the Fourier coefficients f;(£) of e=%¢
with respect to the basis {t;} cannot decay too fast in j (each v; vanishes on 0Q). In particular, the
sequence { f;(£)} is not in £!. Another way to see this is to realize that the Fourier series > fi(©) ;)
of continuous functions approximates, in L?(R?), the function e~ ¢yq, which has a discontinuity on
0. Thus the decay properties of Zj’;k +1 1£i(©)* and consequently the additional term in Li-Yau
inequality should reflect the effect of the boundary of .

The main technical difficulty is to quantify this strategy into a uniform lower bound on 322, ) [ £;(€)[*.
In particular, if we can prove an estimate of the form

o0

STOHEP = ek® VEER?, (18)
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where ¢ and § are positive, then the corresponding minimiser of (9) satisfying conditions (8) and (17)
reads

2 _7.-6
@(|§|>—{0V/4” * (T)f<|§|'|§|,§m’ (19)

see Figure 1. Here 71 is defined by the condition
2n [ a(le) leldle] = .
Ry

A direct calculation then shows that there exists a positive coefficient A(e,d) such that

k
Sz 2w [ (el €l dig = 3 K + A5 R (20)
i=1 +

The asymptotic formula (3) implies that § > 1/2. For § < 1 we obtain an improvement of the Melas
bound.

Let us finally mention that a similar effect of the boundary on the sum of the eigenvalues in the case
of the discrete Laplace operator was already observed in [2].

3 Main results
We will state and prove the results for the case of polygons and general domains separately.

3.1 Case 1: Polygons

For a given polygon {2 we denote by p;, j = 1,...,n the j—th side of 2. Moreover, we denote by d;
the distance between the middle third of p; to 90\ p;. We can now formulate our first result.



Theorem 1 (Lower bound for polygons). Let Q be a polygon with n sides. Let l; be the length of the
j—th side of Q. Then for any k € N and any o € [0, 1] we have

k o " 9V v
Aj > — k2+4a03k%75(k) V-3 ;0 (k——2> + (1 —a) 555k, (21)
; vV ; 27rdj 321
where 9
(k) = ————r (22)
V1ogy(2wk /1)
and
3r 273 5 1/4
— /2T o1 _ 2 1/ 23
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3.2 Case 2: General domains

For general open domains €2 C R? we will have to impose certain assumptions on the regularity of 9.

Assumption A. There exist C2— smooth parts T'; C 9 at the boundary of Q. Let j =1,...,m.

To be able to state the result for general domains we need some definitions. Let A;, B; be the end
points of I'; and let {z](s),z}(s)} be the parametrisation of I'; with its length s. We define

sy = ma |5;(s)].

where 5¢;(s) denotes the curvature at the point s € I';. Moreover, let L(I';) be length of I';. Now we
divide I'; into several pieces of the same length. The tiling of I'; will be done in two different ways
depending on the values of s; and L(T;):

(i) If
3m
L(T;) < — 24
( ]) — 8%]7 ( )
then we divide I'; into three parts of the same length and denote by d; the distance of the middle
part to 092, \ T;.
(ii) If
3T

)
8%j

L(Ty) > (25)

then we divide I'; into n; = [8L(T';)5; /] parts of the same length. Let a?, ag_H be the end points
of the i—th part with a} = A;, a%j = Bj and let

55 = dist ((af,aﬁ;l), o\ {(ag—lvag) U (aza g+1) U (ag+1,ag+2)})
Then we define _
d; = min 55 .
1<i<n—2

Finally, we will need

1% L9 12832 6
kj = > max{Ag(j), 2 TJ, d—J} )
j j

where
A3(j) := max {9 .10 max i, 22" e,V c; 22268 P V} .

Now we are in position to state the result for general domains.



Theorem 2 (Lower bound for general domains). Let Q satisfy Assumption A. Then for any k € N
and any o € [0, 1] we have

2T 3_ _ Ui V
Nz Tr K+ oy k2 =Wy 82 L(T;) Ok = kj) + (1 = ) 5= k. (26)
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3.3 Remarks

Remark 1. Note that the coefficient of the second term on the right hand side of (26) is very similar
to the coefficient of the second term in the Weyl asymptotics (3). In particular, it reflects the expected
effect of the boundary of 2. On the other hand, this boundary term becomes visible only for k large
enough. However, we would like to point out that the second term cannot be simply proportional
to >-; L(I';). Indeed, one can make } ; L(I'j) arbitrarily large by “folding” the boundary 02 while
keeping the eigenvalues A\; with j < k almost unchanged. This shows that the condition £ > k; cannot
be removed.

Remark 2. It would be natural to try to deduce the result for general domains from the result for
polygons by approximating 2 by polygons. However, the contribution of the second term would in
general disappear in such a procedure. To see this it suffices to take an open ball in R? as . Then
the coefficients k; would go to infinity when approximating € by a sequence of polygons. Therefore a
different strategy will be needed in the proof of Theorem 2.

Remark 3. As for the constants in (26), notice that e(k) < 1 for all k and that e(k) — 0 as k — oo.
On the other hand, the values of k; are in general very large. Nevertheless, the correction term on
the right-hand side of (26) can be optimised according to the geometry of by choosing the boundary
segments I'; in an appropriate way.

4 Proof for polygons

The proofs of our main results rely on a careful exploitation of the ideas described in section 2.3.
Let A = A, and let £ = {Zle cit; Zle lei]? < V}. Since €'® belongs to L?(Q) for each
¢ € R?, it follows that

k

ot e =l oy < Nle* _;(eg Vi) oy YillLa) =V —4n F (), (27)

where
k

Z ‘(eiﬁvm, wi)L?(Q)‘Q =4m’F(§) < V.
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Equation (27) yields the estimate

2\—1 . iex |2
F(§) < (4m%) (V wléllfgk e w”m(g)) :
In view of the arguments given in section 2.3, to prove (21) it thus suffices to show that

[l — ¢||iz(n) > consth2 =K} vy e Ly (28)

holds for k large enough. Moreover, it is well known that A\ ~ k in dimension d = 2, which shows that
(28) is equivalent to

| — 1/’H2L2(Q) > const A, * e Ly (29)



The idea how to prove (29) is obvious; since |e/*| = 1 everywhere and 1) = 0 on 952, we will estimate
the left-hand side of (28) by integrating over a suitable neighbourhood of 9 only. More precisely, we
will make use of the contributions from integrating |e’¢® — /|2 over squares of the size of order A\~1/2
attached to the boundary of €2, see Figure 2. To estimate these contributions from below, we will need
appropriate integral upper bounds on the normal derivatives of ¢ on 92 in terms of A. This will be
done as the first step of the proof.

4.1 Eigenfunctions estimates

In this section we give an L? estimate on the derivatives the eigenfunctions v; in the vicinity of <.
Let

1 1 1
w=|0,—&| X |——,—=
[ 2v/A ] { AVX 4N ]
and assume that \ is large enough so that the square w can be placed inside €2 in such a way that one of

its sides coincides with a part of Q. We also introduce a local system of coordinates (z1,22). Finally,
for a given p € N we define the sequence A, (p) by

An(p) = (34726 4°p") Ana(p) +150 - 9°p* 4,1 (p) (30)
where Ag(p) =1 and A;(p) = 1. We then have
Lemma 1. Let 1; be a normalised eigenfunction of the Dirichlet Laplacian on Q with an eigenvalue
i <A Then
holds true for all p € Ny.
Proof. For n,p € N we define the functions g : [0,1] — [0, 1] by
g(z) :=1— 62" + 825 — 32% and v, : R — R by

as N

371)-’_1 < Ap(p) APHL (31)

L*(w)

1 OStS 2p2fn7
P
0 ontl <t

with vy, p(t) = vnp(—t) for ¢t < 0. It is easy to check that
lonp(] <1, fop,, (0] < 201p, v, ,(8)] < dazp®,
where o < 5/2 and ag < 11. Next we define
Wapa(z1,22) = Un,p(\/xxl) Un,p(4\/X$2)

and note that
Wopa(@r,22)| <1, [VWhpa(z1,22)] <9VAarp

(32)
AW, pox (21, 2)] < V243 Xagp?
for all (z1,22) € w. We will prove
"y ||?
H azﬁ, S Anfl(p) >\na
4g) L2(supp Wyn—1,p,x) (33)
o |
H—d’ < Ana(p) A"
8$1 8I2 L2(supp anl,p)\)
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by induction in n for n =1,...,p. Notice that, in view of (58), (59), the inclusion
wn, = (supp Wap,x) C Q

holds true for every p € N and every n < p. For n = 1 we have

2 2

} 8_¢ < Ao(p) A, Ha—w < Ao(p) A
X1 L2(wo) €2 L2(wo)
Multiplying the equation —Aw; = \;¢; by 882;/’; and integrating by parts we find out that
1
0% ||” i |
< Ai(p) N, H < Ai(p) A
H 817% L2(wy) 8:1:183:2 L2(wy)

Hence (33) holds for n =1 and n = 2. Now assume that (33) holds for some n — 1 and n. We will show
that it holds for n + 1 as well. Integration by parts yields

2

"y ’ O (0t
HA <WWnl,p,A> = HW < P Wnl,p,A) +
1 L2(wn_1) 1\ 0Ty L2(wp 1)
82 <8n_11/1i ) 2 H 82 <8n_11/1i > 2
=5 | ==t Wn-1.p.2 +2 —1 Wn-1p. (34)
Haxg oxy ! " 2 0102 \ 97! A PR

From the fact that W,,_; , » = 1 on the w, it follows that the first and the last term on the right hand
side of (34) are greater than or equal to

}

respectively. The second term on the right hand side of (34) is positive and since w C supp Wi, p x, we

2 2

1
o+ "/Jz
n+1

Ox]

6n+1¢i
8.@7118172

and ’ ‘

L2(w) L?(wn)

get
an+1 i 2 anJrl i 2 anfl i 2
L T O
Oxy L2(wn) L10L2 L2 (w,) Oy L2(wn)
Next we employ (32) and (33) to conclude that
an—l i 2
(-
Oz L2(wy)
8n11/)i> (8n11/)i> < an1¢i) 2
i Wi + AW, _ +2(V VW, _
‘ ( 0z bPAT gzt A oz P ey
<BNTEA, o(p)+6-45a3p* A" A, o(p) +24-92 a3 pP NPT AL 1 (p) < AT AL(D) .
O

As a consequence of this result we obtain
Corollary 1. Let w be as in Lemma 1. Assume that ¢ = EA¢<>\ c;; with EA¢<>\ le;|? < V. Then

ap-i-lw 2

= < Ap(p)V2 Q) AP 2.
ozl

- 4

L2 (w)
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Proof. By Lemma 1 and the Cauchy-Schwarz inequality we have

2 2
oty 2 Py 1
2] x| s mvaoren, o)
1 L2(w) A <A A <A 1 L2(w)
Using the lower bound on \; given in (53) we find out that Ny < % A O

4.2 Lower bound on a square

Corollary 1 is one the two main technical results on which is based the proof of Theorems 1 and 2.
The goal of this section is to prove the second one of these results, namely Proposition 2 (see page 15).
We start with a couple of one dimensional estimates concerning smooth functions on an interval [0, ].
Unless otherwise stated, || - || denotes the L?—norm on [0,].

Lemma 2. Let f € CP*Y0,1], p € N. Then
< 3 (Lo (p+1) 2
maxc [f0f < 3 (2702 o0
Proof. Let max |f®)| = |f®)(ty)| with t € [0,1]. For any ¢ € [0,1] we have
t
FO) = fPto) + [ fP(r)dr.

to

Integrating with respect to ¢ and using the Jensen inequality gives

l l t 2
WP <5 [1reras [ ([ o) a

3 : 3
< SUPI+3 [ e = 5 (1O + 2 R).

O

Lemma 3. Let f € C? [O, % /\71/2] and real-valued. Then one of the following inequalities holds true:

1
max | f| max|f”’| < 1 max | f'|? (38)

IN

max | f/| < 327 max|f| (39)

Proof. Let m; = max |f(V|, i € {0,1,2} and let t; € [0,2 A='/2] be such that m; = |f'(to)|. Without
loss of generality we assume that typ < %)\71/ 2
[to, 3 A=1/2]. Assume that f'(to) = my. If

, otherwise we consider the interval [0,%o] instead of

my Ly 1y

to+— < =\ 40
0+ me = 2 ) ( )
then the Taylor theorem says that

2 2
mq my mo M m
o £ (o 1) 2 e () 5 (T2 = o 3o

13



which implies (38). If, on the contrary,

1 1 1
fo+ L 5 Z 212 then % s ZATV2 g > S22
ma 2 mo 2 4

In this case we have

1 1
mo > f <to +3 /\1/2) > f(to) +my g A2~ % AL,

which implies

1 —1/2 mi -1
mq g A — 32)\71/2 A S 2m0.
From here we conclude that 64
mq 1
— < ——— <32)z.
mgo 3)\71/2 B
The proof in the case f’(ty) = —my is analogous. O

Proposition 1. Let f € CP [O, % /\71/2] ,p € N and let f be real-valued. Then one of the following
inequalities holds true:

max |f| < 472 A% max|f| (41)
max | f(P)| ’ 1
max|f| < [ ————] 4772 max|f]. (42)
max | f|
Proof. Let m; = max |f(®|, i = 1,...,p. There are two possibilities. Either for all i < p holds
i > 390, (43)
mi—1
or there exists ig € [1,p] , such that
Vi<ip — >32)7, Mo 3953, (44)
mi—1 Mig—1

mi > 1 mi—1

In the first case pr— —=L holds for all ¢ < p, see Lemma 3. This yields

4 mi_2
_pp=1) mq P
mp > 4 2 mo,
mo

mi—1
mi—2

which is equivalent to (42). In the second case we have - > %

P for all ¢ < 9. Combining this
with (44) we conclude that

m .
1 < 410+% )\% .
mo

O

Corollary 2. Let f € C? [0, % /\71/2} ,p € N be a complez-valued function such that f(0) = 0 and
max |fP)| < C(p) A2 for some constant C(p). Then for any @, 1 € R holds

J

1y—1/2
A

2 _pt3

o A~
() — eiertTivo |2 gp > TQ min {4-17_3 L4765 o) x%}. (45)

14



Proof. Let w = Ref and v = Imf. If max|f| > 6, then at least one the expressions max |u|, max |v]| is
larger than or equal to 3. Without loss of generality we assume that max |u| > 3 and apply Proposition
1 to the function u. If u satisfies (41), then there exists an subinterval I C [0, 2 A=1/2] of the length

37147P=2 A\~ on which |u| > 3/2. This implies
é)\—l/2

/7 |f(t) — ePrttivo 2 gp > 371 47P=3 \ 73
0

If, on the other hand, u satisfies (42), then the length of the subinterval of [0, % A~1/2], on which
lu| > 3/2, is at least 3~ 14— C’(p)_% A"77 %, which gives

%A—l/Q
. . —1
/ |f(t) — ertHiv 2 g > 371475 Cp) v A2
0

=

Assume now that max|f| < 6. The latter means that max|u| < 6 and max|v| < 6. Since u(0) =
v(0) = 0, there exists a subinterval of [0, 4 A=1/2], on which max{|u(t)|,|v(t)|} < 1/3, which implies
|f(t) — ei¥1ttivo)2 > 1 /4. Applying Proposition 1 to the functions u,v we find out that the length of
this interval is bounded from below by

p+3

min {37247778 74 37247 67 C(p)”

D=
>
|
N|=
|
=
—

This completes the proof. [l

With the above auxiliary results at hand, we can finally prove the following integral estimate, which
will play a central role in the proof of Theorem 1 and 2.

Proposition 2. Let f € CPTw] a complezx valued function such that f(0,z2) = 0 for each x> and

ap-‘rlf
axﬁ’“

oP f 1.p
i < zt3
ozt < BpA

L2(w)

142
S6P+IA+25 H

L2 (w)
for some positive B, and Bpi1. Then the inequality

(€121 +E2a 2 I p5. -1 ,—p_3 .1 A g1
Hf—e(E1 1+ 2+“")‘L2(w)2%m1n{4 PrINTL 475 36 (B2 +B2) "7 A ! p} (46)

holds true for all £&1,&, 0 € R.

Proof. The measure of the set

1
{x2 e [0, 212 /m
0

is obviously at least % A~2. For such x5 holds by Lemma 2

<VBATE B2 482

Corollary 2 then implies the statement. (|

O' f (21, x2)

2
. dry < 8 B2N\T3 e {pp+1
o x1 < 8[; ic{p,p+1}

max
z1

(9pf(I1 ) ‘TQ)
ozt
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4.3 Proof of Theorem 1

Proof of Theorem 1. Fix A > 0. Let A; be the eigenvalues of the Dirichlet Laplacian on 2 and let v;
be the corresponding normalised eigenfunctions. For k € N we define

k
F§) =2 [H5©F,

where wAj denotes the Fourier transform of ;. Moreover, we denote by F*(|¢]) the decreasing radial
rearrangement of F(£). Let

P(z) = Z cii(x), with Z lei]? < V.
Ai<A i <A

For each j = 1,...,n we choose on the middle part of p; several points ¢; such that dist(¢;,t141) =
V2712 for all | and denote by T} the squares with the side 2A\71/2 constructed in the middle point
between t; and t;41, see Figure 2. We note that for each j the number of these squares is at least

1 ,
N, = |—— 1 A%] .
’ [3\/53 ]

According to Corollary 1 for each [ and p we have

2

6Vp+1 L2(Tl) 47T
where g—f denotes the normal derivative of 1. In view of Proposition 2 and Corollary 3 we get
iz 12 1 5 N1 ,_P_3 .1 1 g1
Hw_ezg HL2(TZ) 2 36 mln{4 Pr AT 476 ( §+1 +ﬁ;2)) AT P}a (47)
where )
2 Ap(p)V
p+1 — A7 :

We continue by estimating the sequence A,(p). A direct inspection shows that
Ap(p) < co2®tD* | g =7.10%2. (48)

This implies that (37, + 52)7% >2-1/2 fm ey M2 V-12-(+D?/2 Hence for

3m 1
p:{ 210g2(V)\/01)}—1, 01:\/7002

2

273 v (V)\> BTy

we obtain

icx||2 —
Hd’_eg ||L2(Tl) = 36 4 )

Taking A large enough such that

d.
A2 < 2L
-3
we make sure that the squares 7; lie inside 2 and that they do not overlap each other. Summing this
inequality for all l =1,...,V; and all j = 1,...,n we thus arrive at
1 2 n
9 it |2 1 (VAN % Viesa(Vi/en) 9

V=t (D) 2 [ = ¢ aqe) Z 2V (c_l) 21]6 E o

J:
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273 —1/2

with co = 5v356 1 This yields the following upper bound on F™*:
1 2
. _1 (VAN 2 Vemae) 9
F(E) < Mp,A)i= 1 [1—eaV72 (C—1> ;zw(A—d—?) . (50)
Now we use the minimiser (10) with V/4m? replaced by M (p, \) to obtain
k
A2V2
N> | FF 2d¢ > ———. 51
IR L Ftebir s > g G1)
Employing the definition of M (p, A) we then find out that
k 3.2 o,
)\QV _3 VA\?2 V1ega(VA/cq) 9
Jj=1 j=1 J
Next we set A = A, and note that inequality (2) yields
2
k< M (53)

|4

Since the right hand side of (52) is an increasing function of A, we can use (53) to conclude that

k o a2 " 9V s/
ijzvk +tdegk® ViRl N0 b= | V (54)
=1 =1 J
where .
2- 5 1/4
c3 = 2m)ac
3 9\/536( ) 1
Finally, we combine inequalities (54) and (16) to get (21). O

5 Proof for general domains

From now on we suppose that 2 is a general domain satisfying assumption A. To prove a Li-Yau type
inequality with the correction term we cannot directly employ the approach invented for polygons,
since 0f) is in general nowhere straight. However, we can extend 2 by adding small “bumps” to certain
parts of 082, see Figure 4, in order to obtain an extended domain §2¢ whose boundary is in certain parts
represented by a straight line. On these straight pieces of 0Q2° we will then employ the same strategy
as in the case of polygons. Due to the monotonicity of eigenvalues, any lower bound on the sum of
the eigenvalues on the extended domain gives also a lower bound on the sum of the eigenvalues on ).
On the other hand, we have to make sure that the volume of 2¢ is not much bigger than V', because
otherwise it could destroy the effect of the correction term in (26) by decreasing the leading term. We
will again split the exposition in several steps.

5.1 Step 1: Some geometrical remarks

Here we will show that 9QNT'; can be locally represented as a graph of a certain C*—smooth function.
Let T' = {z1(s),z2(s)} be a part of the boundary of  parametrised by its length s and such that
z1(8),2(s) € C?(Ry). Let

Xy = ma »(x1,
0 {m;ferl (z1,22)]
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be the maximal curvature of I'. We consider certain points A = {z1(s'),z2(s)} € T' and B =
{z1(s"),22(s")} € T and chose a new system (u,v) such that A = (0,0) and the u—axes goes along the
line AB.

Lemma 4. Assume that s|s’ — s”| < w/4. Then the following statements hold true.

(i) The part of T' connecting A and B can be written in the system of coordinates (u,v) as v =
v(u), u € [0,up], where ug = |AB|. Moreover, we have

max v(u) < V2 ud. (55)
u€[0,up]
(i1) The inequality
2_1/2|S/—8H| S |AB| S |SI_SI/| (56)

holds.

Proof. Let {u(s),v(s)} be the parametrisation of T' in the coordinates (u,v). By assumption we have

/ T syds </ (57)
0

This means that for any s € [0, |s" — s”|] the angle between the tangent of I" at the point {u(s),v(s)}
and the u—axes is less than or equal to w/4. Assume that there exists s1,s2 € [0, |s" — s”|] such that
u(s1) = u(s2). Then there exists s3 € [s1, s2] such that the tangent of T" at {u(s3),v(s3)} is orthogonal
to the u—axes. The latter contradicts (57). This shows that the part of I' between A and B can be
considered as the graph of the function

v=ov(u), ué€l0,up], v(0)=wv(ug)=0.

This proves the first part of (i) and, in view of (57), shows that |v'(u)| < 1 on [0, ug]. Next we prove
inequality (56). It thus follows that

uo
Uy = |AB| < |S/_S// :/ (1+|’U/(u)|2)1/2 du§21/2u0,
0

which implies (56). To prove (55) we note that v(u) is twice differentiable and therefore there exists
some u; € [0, ug], such that v/(u1) = 0. Since [v” (u)| = |[2¢(u)| (1 + |0’ (u)]?)?/? < 23/2 34, we obtain

[v'(u)| < / [ (u)| du < 23/% 5 ug Yu € [0, uo).

1

The last inequality together with the fact that v(0) = v(ug) = 0 finally implies

1
[v(u)] < 3 2312 509 u2 = 242 305 u? Yau € [0, ug] -

5.2 Step 2: Approximation of the boundary

Next we introduce a procedure that allows us to choose appropriate parts of 92 NT'; on which we will
construct the additional “bumps”, see Figure 4. Let I'j, j = 1...m be the parts of boundary defined
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in section 3 with the end points A;, B; and the partition af, i=0,...,n;. Wefixje{l,..,m}and
take A large enough, such that

d; T 3
A <mind 2, —— % if L) > 58
= {3 sﬁ%j} T5) 8 %)
and d; L(T;) 3
A% <min{ & i it L(T;) < L 59
2_mm{3,&ﬁ},1 (ﬂ_g% (59)

Let us consider I'; N (az, agﬂ) with 0 < 4 < nj. On this part of the boundary we choose several disjoint
arcs (by, b)), such that each of them has the length v/2 A=/ and such that

Z s(b, b)) = s(af, a“ngl)? 8(@3} angl) - Z s(by, b)) < V2ATV2,

l l

Wl =

where s(a,b) denotes the arc-length between a and b.

Next we pick an [ and connect b; and b] with a straight line and choose a local system of coordinates
(y1,y2) so that the y; —axis goes along the straight line from b; to b; and the origin is in b;. Notice that
s(al_,, ag_H) = s(a, a{+2) < 2%{]_, which according to Lemma 4 means that in the chosen coordinate
system the boundary between a{_l and ag 4o can be written explicitly as y2 = f(y1). Let yo = dist(b, b;).
In view of Lemma 4

max | f(y1)] < V2548 < 27507
Y1

Now we introduce s
21 = {(ylayQ) U € [Ovyo]a Y2 = 22 7 Ail}

and ,
Yo = {(ylay2) cy1 € [0,90], y2 = —22 5 )\_1}

Lemma 5. If A > 6¢;/d;, then
S1NoN=Xn00=0.

Proof. Obviously ¥; and ¥ do not cross 0€2 between ag_l and a{ 1o2- On the other hand, for each point
P = (y{,y3') holds o
dist(P, (a}, al,)) < 23/2 5, AL

Since dist ((ag, a{H), o0\ (al_,, a{+2)> > dj, this implies

dist (P7 NN\ (a]_y, aﬁg)) >dj — 23/2 2 Al > —2J >0.
|

The last Lemma says that one of the sets 31 and s is inside € and the other one is outside 2. Without
loss of generality we assume that 3; is outside €.
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5.3 Step 3: Extended domain ()°.

The extended domain Q¢ differs from Q if A is large enough so that (58) respectively (59) is satisfied
(otherwise it coincides with Q).

To define Q¢ we proceed as follows. For a fixed j € {1,...,m}, fixed ¢ € {1,...,n; — 1} and fixed
I, we consider the boundary between the points b; and bj. If it is a straight line, we do not change
it. Otherwise we replace this piece of the boundary with the segment ¥;, where ¢ is such that ¥, is
outside €2, and connect the end points of ¥; with the boundary at certain points b € (bj_1,b1) and
INJZ € (b}, bi41) with appropriate C? functions. We choose these function and the points b, 132 in such
a way that the added area to €2 is less than 3 times the area of the rectangle with the corners given
by by, bj and the end points of ¥;. We then obtain a new region whose boundary, corresponding to
the original piece I'; is again C?—smooth and which between the original boundary points b and b}
consists of a straight line. Repeating this procedure for all T';, j =1,...,m, alli € {1,...,n; —1} and
all [ we thus obtain a new domain °.

As a next step we construct the squares T; of the side %)\_1/ 2 between the the points b; and b,
centred in the middle. Note that, according to Lemma 4, |b;b)| > A71/2//2. We have

Lemma 6. The squares T} do not overlap.

Proof. First we show that every 1; does not overlap with any of the squares constructed on the part
of the boundary different from the arch (a]_;, a],,). Indeed, each point of T; has distance to (b;, b)) at
most 3 A~!/? and the distance between (b;, b)) and 9\ (al_,, af+2) is at least d;. Since A\~1/2 < d;,
see (58), the result follows.

Consider now (a]_,, a;,,). This part can be written as yo = f(y1) in the above introduced coordinate
system. Consider the squares 7j, and 7}, with I # ls. Let y} be the y; coordinate of the middle
point between b;, and bfl and let y? be the y; coordinate of the middle point between b;, and b;z.
Since |f'(y1)] < 1 on (al_,, ag+2), we have |yi — y?| > A~'/2. For all points (y1,%2) € Tj, holds
ly1 — yi| < 2X71/2 and for all points (y1,y2) € Tj, holds |y — y?| < @)\_1/2. Collecting these
inequalities we conclude that T;, N T}, = 0. O

As a consequence of the last result we obtain estimates on the volume of Q¢ which will be used in the
proof of Theorem 2.

Corollary 3. Let V¢ be the volume of the extended domain Q°. Then

Ve < V428 AT s L(ry). (60)
j=1

Moreover, if

A > A :=9.210 max%f—,
J
then

Ve < 2v. (61)
Proof. Inequality (60) follows directly from the construction of £2¢, since the area of the added volume
along I'; does not exceed 23 A1 »#;L(T';). As for the second inequality, we consider each pair b;, by and
note that for A > 9.210 %?- is the area of the added volume between b; and by, bounded from above by

3

1
1256072 < gxl.

This follows from the choice of the points b;, see section 5.3. On the other hand, for A chosen as above
we get

1 1
T,NQl > 2Ty == 21,
T |_2|l| 5
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Since T} do not overlap, we obtain (61). O

5.4 Proof of Theorem 2

Proof of Theorem 2. Fix A > 0 and consider the extended domain 2°. Let u; be the eigenvalues of the
Dirichlet Laplacian on ¢ and let ¢; be the corresponding normalised eigenfunctions. For k£ € N we
define

k
F(§) =D 16:(9)1,

where ¢Aj denotes the Fourier transform of ¢;. By F*(|¢|) we denote the decreasing radial rearrangement
of F.(§). Let

o(x) = Z ci ¢i(xz), with Z lei? < Ve
i <A i <A
and let T} be the sequence of squares constructed along I';. For each j is the number of these squares
at least

N; = {9%/5 L(Ty) A%] :

Next we take A > Ay, so that V¢ < 2V see Corollary 3. According to Corollary 1 for each [ and p we
then have

where % denotes the normal derivative of ¢. In view of Proposition 2 for each [ holds

orlg 2

’ < Ap(p)(Ve)2 APH2 < Ap(p)V2 AP+2
ovprt ’

- 47 - T

L2(Ry)

; 1 5 :
16 = €[}y = 5o min {4777 AT 4B R 63 (82, 4 g2 F AR

with
2 _ Ap)(Ve)?

_ Ap (p)V2
p+1 A :

™

<
Now we employ the same arguments used in the proof of Theorem 1 in order to find an appropriate
upper bound on F). Since A > A; we can use Corollary 3 to arrive at

1 2
VAN 2 Viesa(Va/en)
) ) L(Ty)

V m _ _ (6] 1
F* <—— |1 232y 1\ - 2y—s (2
e(|§|) — 47T2 +]§ ( X 2 2 ¢l

Note that for .
A Z A2 = 22 C1 V71

12 _3
we have (‘g—f) P Vs (e (‘g—f‘) " and therefore
1 2
v VA P vEmos &
Fr(E) < M(ph) = —5 [1-2v—3 (2 CEEYEST L) O - As ()
471'2 C1

Jj=1

A3(j) := max {Al , Ao, cfl 222 68 %;-1 V} :
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We now use again the Li-Yau type minimiser (10) with V/47? replaced by M.(p, \) to obtain
k
\2y2
Aj > E; 2d —
REDWIE > [ FeDIEP de 2 g

As in the proof of Theorem 1 we set A = A, and use definition of M. (p, A) together with inequalities
(58),(59) and (53) to obtain

k

Z/\Jz—k2+03k2 \/WZ — k() VI (62)

j=1
where

v 9 128kK% 6,
k(7)) := — Aa(7). = J 3\
(]) o maX{ 3(])7 d?7 2 ) d_] }

Finally, we combine inequalities (62) and (16) to get (26). O
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