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Abstract

We improve the Berezin-Li-Yau inequality in dimension two by adding a positive correction term
to its right-hand side. It is also shown that the asymptotical behaviour of the correction term is
almost optimal. This improves a previous result by Melas, [10].

1 Introduction

Let Ω be an open bounded set in R
d and let −∆ be the Dirichlet Laplacian on Ω. We denote by λj

the non-decreasing sequence of eigenvalues of −∆. The main object of our interest in this paper is the
lower bound

k
∑

j=1

λj ≥
dCd
d+ 2

V − 2
d k

d+2
d , Cd = (2π)2ω

−2/d
d , (1)

where V stands for the volume of Ω and ωd denotes the volume of the unit ball in R
d. Inequality (1)

was proved in [8], and is commonly known as the Li-Yau inequality. In [7] it was pointed out that (1)
is in fact the Legendre transformation of an earlier result by Berezin, see [1]. Note also that the Li-Yau
inequality yields an individual lower bound on λk in the form

λk ≥ dCd
d+ 2

V − 2
d k

2
d . (2)

For further estimates on λk see [12, 5, 6, 7].
It is important to compare the lower bound (1) with the asymptotical behaviour of the sum on the

left-hand side, which reads as follows:

k
∑

j=1

λj =
dCd
d+ 2

V − 2
d k

d+2
d + C̃d

|∂Ω|
V 1+ 1

d

k1+ 1
d + o

(

k1+ 1
d

)

as k → ∞ (3)

with

C̃d =

√
π Γ

(

2 + d
2

)1+ 1
d

(d+ 1)Γ
(

3
2 + d

2

)

Γ(2)
1
d

.

The first term in the asymptotics (3) is due to Weyl, see [15]. The second term in (3) was established,
under suitable conditions on Ω, in [3, 4, 11], see also [13, Chap. 1.6].

It follows from (3) that the constant in (1) cannot be improved. On the other hand, since the
second asymptotical term is positive, it is natural to ask whether one might improve (1) by adding an
additional positive term of lower order in k to the right-hand side. The first step towards this goal was
done by Melas, [10], who showed that the inequality

k
∑

j=1

λj ≥
dCd
d+ 2

V − 2
d k

d+2
d +Md

V

I
k, I = min

a∈R2

∫

Ω

|x− a|2 dx (4)

holds true with a factor Md which depends only on the dimension. Note however, that the additional
term in the Melas bound does not have the order in k predicted by the second term in (3). Moreover,
the coefficient of the second term in (3) reflects explicitly the effect of the boundary of Ω, whereas such
a dependence is not seen in the coefficient V/I of (4).

Our aim is to improve (1) and (4) by adding a positive contribution which reflects the nature of the
second term in the asymptotic (3). Recently, one of the authors, see [14], proved an analogous improved
estimate on the quantity

∑

k

(Λ − λk)
σ
+, σ ≥ 3/2
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with a remainder term which agrees, up to a constant, with the corresponding second term in the
asymptotics of

∑

k (Λ−λk)σ+ as Λ → ∞. The proof given in [14] relies on sharp Lieb-Thirring inequalities
for operator valued potentials and works only for σ ≥ 3/2. Since the estimates treated in present paper
concern the value σ = 1, the method of [14] cannot be carried over to this case. We will therefore
develop a different approach. We wish to point out [2] (and references therein), where an improvement
of (1) has been established for the discrete Laplacian. In particular, the authors make use of a more
detailed analysis of the approximation of characteristic functions by low energy eigenvalues of the
discrete Laplace operator. This is also the key element of this paper.

The main idea of our strategy is explained in section 2.3. It is closely related to a modified proof
of inequality (1), which we briefly describe in section 2.1, see also [9, Chap. 12]. The main results
which represent improved Li-Yau inequalities in case d = 2 are formulated in section 3. Since our proof
includes many technical results concerning the geometry of the boundary of Ω, we will first give its
exposition for polygons, section 4. Finally, in section 5 we extend the proof to general domains.

To keep the presentation as short and stringed as possible, we have decided to restrict ourselves to
the case d = 2 throughout the paper.

2 Preliminaries

Following notation will be employed in the text. By Θ(·) : R → R we denote the Heaviside function
defined by Θ(x) = 0 if x ≤ 0 and Θ(x) = 1 if x > 0. For given t > 0 we denote by Nt the number
of eigenvalues of the Dirichlet-Laplacian in Ω less than or equal to t. Finally, we will write [s] for the
integer part of a real number s.

2.1 Li-Yau bound revisited

Let ψj be the sequence of the normalised eigenfunctions of −∆ in Ω, i.e.

−∆ψj = λj ψj in Ω, ψj = 0 on ∂Ω,

∫

Ω

|ψj |2 = 1 . (5)

In order to explain the idea which will lead to an improvement of the results by Li-Yau and Melas,
it is illustrative to see how to obtain inequalities (1) and (4) for d = 2 (the same arguments apply to
higher dimensions as well). Following [1, 10] we extend the eigenfunctions ψj continuously by zero to
the whole of R

2 so that they remain in H1(R2). Next introduce the following functions:

fj(ξ) = (2π)−1

∫

Ω

e−ix·ξ ψj(x) dx, F (ξ) :=

k
∑

j=1

|fj(ξ)|2. (6)

Since {ψj} is an orthonormal basis of L2(Ω), the Parseval identity implies that

F (ξ) =

k
∑

j=1

|fj(ξ)|2 ≤
∞
∑

j=1

|fj(ξ)|2 = (2π)−2

∫

Ω

∣

∣e−ix·ξ
∣

∣

2
dx = (2π)−2 V (7)

holds for any ξ ∈ R
2. Next we denote by F ∗(|ξ|) the decreasing radial rearrangement of F . Using the

well-known properties of the radial rearrangement we find
∫

R2

F ∗(|ξ|) dξ =

∫

R2

F (ξ) dξ = k (8)

and
k
∑

j=1

λj =

∫

R2

|ξ|2 F (ξ) dξ ≥
∫

R2

|ξ|2 F ∗(|ξ|) dξ. (9)

6



To find a lower bound on
∑k
j=1 λj it thus suffices to find the minimiser of the functional

∫

R2 |ξ|2 F ∗(|ξ|) dξ
under the conditions (7) and (8).

The result of Li and Yau can be proved using the fact, [9, Chap. 12], that this functional is minimised
by the function

ΦLY (|ξ|) =







(2π)−2 V 0 ≤ |ξ| ≤ rk,

0 rk < |ξ|,
(10)

where rk is given by the condition

(2π)−1V

∫ rk

0

|ξ| d|ξ| = k ⇒ rk =

√

4π k

V
.

Inserting (10) into (9) we obtain inequality (1) for d = 2.

2.2 Melas’ improvement revisited

Melas observed in [10] that the lower bound on the right-hand side of (9) can be improved, if one takes
into account that the follwing additional regularity condition on F ∗ must hold

|(F ∗)′| ≤ 2(2π)−2
√
V I =: L . (11)

It can be easily verified that, depending on the value of k, the corresponding minimiser ΦM of the
functional (9) then has the following form:

for k ≥ V 2

48πI
ΦM (|ξ|) =







(2π)−2 V 0 ≤ |ξ| ≤ sk,
(2π)−2 V − (|ξ| − sk)L sk < |ξ| ≤ tk,
0 tk < |ξ|,

(12)

where the points sk and tk are uniquely determined by

2π

∫

R+

ΦM (|ξ|) |ξ| d|ξ| = k, tk = sk +
V

4π2L
,

see Figure 1, and

for k <
V 2

48πI
ΦM (|ξ|) =

(

(

3kL2

π

)1/3

− L|ξ|
)

+

. (13)

Using this minimiser we obtain the lower bound

k
∑

j=1

λj ≥
2π

V
k2 +

1

32

V

I
k if k ≥ V 2

48πI
(14)

and
k
∑

j=1

λj ≥
2π

V
k2 +

(

1 − 10 · 2− 5
3 3−

4
3

) 3

10

(

2

π

)
2
3

L− 2
3 k

5
3 if k <

V 2

48πI
. (15)

Now let a ∈ R
2 be such that I =

∫

Ω
|x− a|2 dx and let Ba be the disc centred in a and with the volume

V . It is then straightforward to verify that

I ≥ I(Ba) =
V 2

2π
.

Using this inequality and the fact that k ≥ 1 we deduce from (14) and (15) the uniform estimate

k
∑

j=1

λj ≥
2π

V
k2 +

1

32

V

I
k ∀ k ∈ N . (16)

7



2.3 The new correction term

Our main observation is that the crucial reservoir for improvements of (1) does not lie in the regularity
of F ∗, but in a more detailed analysis and improvement of the condition (7). Indeed, since

F (ξ) =
k
∑

j=1

|fj(ξ)|2 =
V

4π2
−

∞
∑

j=k+1

|fj(ξ)|2, (17)

any estimate from below on
∑∞

j=k+1 |fj(ξ)|2 will automatically lead to a sharper upper bound on F
and therefore to an additional term in the Li-Yau inequality.

Moreover, the last term in (17) cannot go to zero arbitrarily fast as k goes to infinity. This follows
from the fact that |e−ix·ξ| = 1 everywhere in Ω, which means that the Fourier coefficients fj(ξ) of e−ix·ξ

with respect to the basis {ψj} cannot decay too fast in j (each ψj vanishes on ∂Ω). In particular, the
sequence {fj(ξ)} is not in ℓ1. Another way to see this is to realize that the Fourier series

∑

j fj(ξ)ψj(·)
of continuous functions approximates, in L2(R2), the function e−ix·ξχΩ, which has a discontinuity on
∂Ω. Thus the decay properties of

∑∞
j=k+1 |fj(ξ)|2 and consequently the additional term in Li-Yau

inequality should reflect the effect of the boundary of Ω.
The main technical difficulty is to quantify this strategy into a uniform lower bound on

∑∞
j=k+1 |fj(ξ)|2.

In particular, if we can prove an estimate of the form

∞
∑

j=k+1

|fj(ξ)|2 ≥ ε kδ ∀ξ ∈ R
2, (18)

where ε and δ are positive, then the corresponding minimiser of (9) satisfying conditions (8) and (17)
reads

Φ(|ξ|) =

{

V/4π2 − εk−δ 0 ≤ |ξ| ≤ τk,
0 τk < |ξ|, (19)

see Figure 1. Here τk is defined by the condition

2π

∫

R+

Φ(|ξ|) |ξ| d|ξ| = k.

A direct calculation then shows that there exists a positive coefficient A(ε, δ) such that

k
∑

j=1

λj ≥ 2π

∫

R+

Φ(|ξ|) |ξ|3 d|ξ| =
2π

V
k2 +A(ε, δ) k2−δ. (20)

The asymptotic formula (3) implies that δ ≥ 1/2. For δ < 1 we obtain an improvement of the Melas
bound.

Let us finally mention that a similar effect of the boundary on the sum of the eigenvalues in the case
of the discrete Laplace operator was already observed in [2].

3 Main results

We will state and prove the results for the case of polygons and general domains separately.

3.1 Case 1: Polygons

For a given polygon Ω we denote by pj , j = 1, . . . , n the j−th side of Ω. Moreover, we denote by dj
the distance between the middle third of pj to ∂Ω \ pj . We can now formulate our first result.

8



Theorem 1 (Lower bound for polygons). Let Ω be a polygon with n sides. Let lj be the length of the
j−th side of Ω. Then for any k ∈ N and any α ∈ [0, 1] we have

k
∑

j=1

λj ≥ 2π

V
k2 + 4α c3 k

3
2−ε(k) V − 3

2

n
∑

j=1

lj Θ

(

k − 9V

2π d2
j

)

+ (1 − α)
V

32 I
k, (21)

where

ε(k) =
2

√

log2(2πk/c1)
(22)

and

c1 =

√

3π

14
10−11 , c3 =

2−3

9
√

2 36
(2π)

5
4 c

1/4
1 . (23)

3.2 Case 2: General domains

For general open domains Ω ⊂ R
2 we will have to impose certain assumptions on the regularity of ∂Ω.

Assumption A. There exist C2− smooth parts Γj ⊂ ∂Ω at the boundary of Ω. Let j = 1, . . . ,m.

To be able to state the result for general domains we need some definitions. Let Aj , Bj be the end

points of Γj and let {xj1(s), xj2(s)} be the parametrisation of Γj with its length s. We define

κj = max
s

|κj(s)|,

where κj(s) denotes the curvature at the point s ∈ Γj . Moreover, let L(Γj) be length of Γj . Now we
divide Γj into several pieces of the same length. The tiling of Γj will be done in two different ways
depending on the values of κj and L(Γj):

(i) If

L(Γj) ≤
3π

8 κj
, (24)

then we divide Γj into three parts of the same length and denote by dj the distance of the middle
part to ∂Ωj \ Γj .

(ii) If

L(Γj) >
3π

8 κj
, (25)

then we divide Γj into nj = [8L(Γj)κj/π] parts of the same length. Let aji , a
j
i+1 be the end points

of the i−th part with aj0 = Aj , a
j
nj

= Bj and let

δji = dist
(

(aji , a
j
i+1), ∂Ω \ {(aji−1, a

j
i ) ∪ (aji , a

j
i+1) ∪ (aji+1, a

j
i+2)}

)

Then we define
dj = min

1≤i≤n−2
δji .

Finally, we will need

kj :=
V

2π
max

{

Λ3(j),
9

d2
j

,
128 κ

2
j

π2
,

6κj

dj

}

,

where

Λ3(j) := max

{

9 · 210 max
j

κ
2
j , 226

c1V
−1 , c−1

1 222 68
κ

4
j V

}

.

Now we are in position to state the result for general domains.

9



Theorem 2 (Lower bound for general domains). Let Ω satisfy Assumption A. Then for any k ∈ N

and any α ∈ [0, 1] we have

k
∑

j=1

λj ≥ 2π

V
k2 + α c3 k

3
2−ε(k) V −3/2

m
∑

j=1

L(Γj)Θ(k − kj) + (1 − α)
V

32 I
k. (26)

3.3 Remarks

Remark 1. Note that the coefficient of the second term on the right hand side of (26) is very similar
to the coefficient of the second term in the Weyl asymptotics (3). In particular, it reflects the expected
effect of the boundary of Ω. On the other hand, this boundary term becomes visible only for k large
enough. However, we would like to point out that the second term cannot be simply proportional
to
∑

j L(Γj). Indeed, one can make
∑

j L(Γj) arbitrarily large by “folding” the boundary ∂Ω while
keeping the eigenvalues λj with j ≤ k almost unchanged. This shows that the condition k ≥ kj cannot
be removed.

Remark 2. It would be natural to try to deduce the result for general domains from the result for
polygons by approximating Ω by polygons. However, the contribution of the second term would in
general disappear in such a procedure. To see this it suffices to take an open ball in R

2 as Ω. Then
the coefficients kj would go to infinity when approximating Ω by a sequence of polygons. Therefore a
different strategy will be needed in the proof of Theorem 2.

Remark 3. As for the constants in (26), notice that ε(k) ≪ 1 for all k and that ε(k) → 0 as k → ∞.
On the other hand, the values of kj are in general very large. Nevertheless, the correction term on
the right-hand side of (26) can be optimised according to the geometry of Ω by choosing the boundary
segments Γj in an appropriate way.

4 Proof for polygons

The proofs of our main results rely on a careful exploitation of the ideas described in section 2.3.

Let λ = λk and let Lk :=
{

∑k
i=1 ciψi :

∑k
i=1 |ci|2 ≤ V

}

. Since eiξ·x belongs to L2(Ω) for each

ξ ∈ R
2, it follows that

inf
ψ∈Lk

∥

∥eiξ·x − ψ
∥

∥

2

L2(Ω)
≤ ‖eiξ·x −

k
∑

i=1

(

eiξ·x, ψi
)

L2(Ω)
ψi‖2

L2(Ω) = V − 4π2 F (ξ) , (27)

where
k
∑

i=1

∣

∣

∣

(

eiξ·x, ψi
)

L2(Ω)

∣

∣

∣

2

= 4π2F (ξ) ≤ V.

Equation (27) yields the estimate

F (ξ) ≤ (4π2)−1

(

V − inf
ψ∈Lk

∥

∥eiξ·x − ψ
∥

∥

2

L2(Ω)

)

.

In view of the arguments given in section 2.3, to prove (21) it thus suffices to show that

∥

∥eiξ·x − ψ
∥

∥

2

L2(Ω)
≥ constk−

1
2−ε(k) ∀ψ ∈ Lk (28)

holds for k large enough. Moreover, it is well known that λk ∼ k in dimension d = 2, which shows that
(28) is equivalent to

∥

∥eiξ·x − ψ
∥

∥

2

L2(Ω)
≥ constλ

− 1
2−ε(k)

k ∀ψ ∈ Lk . (29)

10



The idea how to prove (29) is obvious; since |eiξ·x| = 1 everywhere and ψ = 0 on ∂Ω, we will estimate
the left-hand side of (28) by integrating over a suitable neighbourhood of ∂Ω only. More precisely, we
will make use of the contributions from integrating |eiξ·x − ψ|2 over squares of the size of order λ−1/2

attached to the boundary of Ω, see Figure 2. To estimate these contributions from below, we will need
appropriate integral upper bounds on the normal derivatives of ψ on ∂Ω in terms of λ. This will be
done as the first step of the proof.

4.1 Eigenfunctions estimates

In this section we give an L2 estimate on the derivatives the eigenfunctions ψi in the vicinity of ∂Ω.
Let

ω =

[

0,
1

2
√
λ

]

×
[

− 1

4
√
λ
,

1

4
√
λ

]

and assume that λ is large enough so that the square ω can be placed inside Ω in such a way that one of
its sides coincides with a part of ∂Ω. We also introduce a local system of coordinates (x1, x2). Finally,
for a given p ∈ N we define the sequence An(p) by

An(p) = (3 + 726 · 46 p4)An−2(p) + 150 · 92 p2An−1(p) (30)

where A0(p) = 1 and A1(p) = 1. We then have

Lemma 1. Let ψi be a normalised eigenfunction of the Dirichlet Laplacian on Ω with an eigenvalue
λi ≤ λ. Then

∥

∥

∥

∥

∥

∂p+1ψi

∂xp+1
1

∥

∥

∥

∥

∥

2

L2(ω)

≤ Ap(p)λ
p+1 (31)

holds true for all p ∈ N0.

Proof. For n, p ∈ N we define the functions g : [0, 1] → [0, 1] by
g(x) := 1 − 6x4 + 8x6 − 3x8 and vn,p : R → R by

vn,p(t) =



























1 0 ≤ t ≤ 2p−n
2p ,

g(2pt− 2p+ n) 2p−n
2p ≤ t ≤ 2p−n+1

2p ,

0 2p−n+1
2p < t

with vn,p(t) = vn,p(−t) for t < 0. It is easy to check that

|vn,p(t)| ≤ 1, |v′n,p(t)| ≤ 2α1 p, |v′′n,p(t)| ≤ 4α2 p
2 ,

where α ≤ 5/2 and α2 ≤ 11. Next we define

Wn,p,λ(x1, x2) = vn,p(
√
λx1) vn,p(4

√
λx2)

and note that
|Wn,p,λ(x1, x2)| ≤ 1, |∇Wn,p,λ(x1, x2)| ≤ 9

√
λα1 p

|∆Wn,p,λ(x1, x2)| ≤
√

2 43 λα2p
2

(32)

for all (x1, x2) ∈ ω. We will prove
∥

∥

∥

∥

∂nψi
∂xn1

∥

∥

∥

∥

2

L2(suppWn−1,p,λ)

≤ An−1(p)λ
n,

∥

∥

∥

∥

∂nψi

∂xn−1
1 ∂x2

∥

∥

∥

∥

2

L2(suppWn−1,p,λ)

≤ An−1(p)λ
n

(33)

11



by induction in n for n = 1, . . . , p. Notice that, in view of (58), (59), the inclusion

ωn := (suppWn,p,λ) ⊂ Ω

holds true for every p ∈ N and every n ≤ p. For n = 1 we have
∥

∥

∥

∥

∂ψi
∂x1

∥

∥

∥

∥

2

L2(ω0)

≤ A0(p)λ,

∥

∥

∥

∥

∂ψi
∂x2

∥

∥

∥

∥

2

L2(ω0)

≤ A0(p)λ.

Multiplying the equation −∆ψi = λiψi by ∂2ψi

∂x2
1

and integrating by parts we find out that

∥

∥

∥

∥

∂2ψi
∂x2

1

∥

∥

∥

∥

2

L2(ω1)

≤ A1(p)λ
2,

∥

∥

∥

∥

∂2ψi
∂x1∂x2

∥

∥

∥

∥

2

L2(ω1)

≤ A1(p)λ
2 .

Hence (33) holds for n = 1 and n = 2. Now assume that (33) holds for some n− 1 and n. We will show
that it holds for n+ 1 as well. Integration by parts yields

∥

∥

∥

∥

∆

(

∂n−1ψi

∂xn−1
1

Wn−1,p,λ

)∥

∥

∥

∥

2

L2(ωn−1)

=

∥

∥

∥

∥

∂2

∂x2
1

(

∂n−1ψi

∂xn−1
1

Wn−1,p,λ

)∥

∥

∥

∥

2

L2(ωn−1)

+

∥

∥

∥

∥

∂2

∂x2
2

(

∂n−1ψi

∂xn−1
1

Wn−1,p,λ

)
∥

∥

∥

∥

2

L2(ωn−1)

+ 2

∥

∥

∥

∥

∂2

∂x1∂x2

(

∂n−1ψi

∂xn−1
1

Wn−1,p,λ

)
∥

∥

∥

∥

2

L2(ωn−1)

(34)

From the fact that Wn−1,p,λ = 1 on the ωn it follows that the first and the last term on the right hand
side of (34) are greater than or equal to

∥

∥

∥

∥

∂n+1ψi

∂xn+1
1

∥

∥

∥

∥

2

L2(ωn)

and

∥

∥

∥

∥

∂n+1ψi
∂xn1∂x2

∥

∥

∥

∥

2

L2(ωn)

respectively. The second term on the right hand side of (34) is positive and since ω ⊂ suppWn,p,λ, we
get

∥

∥

∥

∥

∂n+1ψi

∂xn+1
1

∥

∥

∥

∥

2

L2(ωn)

+

∥

∥

∥

∥

∂n+1ψi
∂xn1∂x2

∥

∥

∥

∥

2

L2(ωn)

≤
∥

∥

∥

∥

∆

(

∂n−1ψi

∂xn−1
1

Wn−1,p,λ

)
∥

∥

∥

∥

2

L2(ωn)

. (35)

Next we employ (32) and (33) to conclude that

∥

∥

∥

∥

∆

(

∂n−1ψi

∂xn−1
1

Wn−1,p,λ

)
∥

∥

∥

∥

2

L2(ωn)

= (36)

∥

∥

∥

∥

λi

(

∂n−1ψi

∂xn−1
1

)

Wn−1,p,λ +

(

∂n−1ψi

∂xn−1
1

)

∆Wn−1,p,λ + 2

(

∇∂n−1ψi

∂xn−1
1

)

∇Wn−1,p,λ

∥

∥

∥

∥

2

L2(ωn)

≤ 3λn+1An−2(p) + 6 · 46 α2
2 p

4 λn+1An−2(p) + 24 · 92 α2
1 p

2 λn+1An−1(p) ≤ λn+1 An(p) .

As a consequence of this result we obtain

Corollary 1. Let ω be as in Lemma 1. Assume that ψ =
∑

λi≤λ ciψi with
∑

λi≤λ |ci|2 ≤ V . Then

∥

∥

∥

∥

∥

∂p+1ψ

∂xp+1
1

∥

∥

∥

∥

∥

2

L2(ω)

≤ Ap(p)V
2(Ω)

4π
λp+2.
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Proof. By Lemma 1 and the Cauchy-Schwarz inequality we have

∥

∥

∥

∥

∥

∂p+1ψ

∂xp+1
1

∥

∥

∥

∥

∥

2

L2(ω)

≤
∑

λi≤λ
|ci|2

∑

λi≤λ

∥

∥

∥

∥

∥

∂p+1ψi

∂xp+1
1

∥

∥

∥

∥

∥

2

L2(ω)

≤ Nλ V Ap(p)λ
p+1 , (37)

Using the lower bound on λi given in (53) we find out that Nλ ≤ V
4π λ.

4.2 Lower bound on a square

Corollary 1 is one the two main technical results on which is based the proof of Theorems 1 and 2.
The goal of this section is to prove the second one of these results, namely Proposition 2 (see page 15).
We start with a couple of one dimensional estimates concerning smooth functions on an interval [0, l].
Unless otherwise stated, ‖ · ‖ denotes the L2−norm on [0, l].

Lemma 2. Let f ∈ Cp+1[0, l], p ∈ N. Then

max |f (p)|2 ≤ 3

2

(

1

l
‖f (p)‖2 + l ‖f (p+1)‖2

)

.

Proof. Let max |f (p)| = |f (p)(t0)| with t0 ∈ [0, l]. For any t ∈ [0, l] we have

f (p)(t) = f (p)(t0) +

∫ t

t0

f (p+1)(τ) dτ .

Integrating with respect to t and using the Jensen inequality gives

l |f (p)(t0)|2 ≤ 3

2

∫ l

0

|f (p)(t)|2 dt+ 3

∫ l

0

(
∫ t

t0

f (p+1)(τ) dτ

)2

dt

≤ 3

2
‖f (p)‖2 + 3

∫ l

0

t‖f (p+1)‖2 dt =
3

2

(

‖f (p)‖2 + l2‖f (p+1)‖2
)

.

Lemma 3. Let f ∈ C2
[

0, 1
2 λ

−1/2
]

and real-valued. Then one of the following inequalities holds true:

max |f | max |f ′′| ≤ 1

4
max |f ′|2 (38)

max |f ′| ≤ 32λ
1
2 max |f | (39)

Proof. Let mi = max |f (i)|, i ∈ {0, 1, 2} and let t0 ∈
[

0, 1
2 λ

−1/2
]

be such that m1 = |f ′(t0)|. Without

loss of generality we assume that t0 < 1
4 λ

−1/2, otherwise we consider the interval [0, t0] instead of

[t0,
1
2 λ

−1/2]. Assume that f ′(t0) = m1. If

t0 +
m1

m2
≤ 1

2
λ−1/2, (40)

then the Taylor theorem says that

m0 ≥ f

(

t0 +
m1

m2

)

≥ f(t0) +m1

(

m1

m2

)

− m2

2

(

m1

m2

)2

≥ −m0 +
m2

1

2m2
,

13



which implies (38). If, on the contrary,

t0 +
m1

m2
>

1

2
λ−1/2, then

m1

m2
>

1

2
λ−1/2 − t0 >

1

4
λ−1/2.

In this case we have

m0 ≥ f

(

t0 +
1

8
λ−1/2

)

≥ f(t0) +m1
1

8
λ−1/2 − m2

128
λ−1 ,

which implies

m1
1

8
λ−1/2 − m1

32λ−1/2
λ−1 ≤ 2m0.

From here we conclude that
m1

m0
≤ 64

3λ−1/2
≤ 32λ

1
2 .

The proof in the case f ′(t0) = −m1 is analogous.

Proposition 1. Let f ∈ Cp
[

0, 1
2 λ

−1/2
]

, p ∈ N and let f be real-valued. Then one of the following
inequalities holds true:

max |f ′| ≤ 4p+
1
2 λ

1
2 max |f | (41)

max |f ′| ≤
(

max |f (p)|
max |f |

)

1
p

4p−
1
2 max |f | . (42)

Proof. Let mi = max |f (i)|, i = 1, . . . , p. There are two possibilities. Either for all i ≤ p holds

mi

mi−1
≥ 32λ

1
2 , (43)

or there exists i0 ∈ [1, p] , such that

∀ i < i0
mi

mi−1
≥ 32λ

1
2 ,

mi0

mi0−1
< 32λ

1
2 . (44)

In the first case mi

mi−1
> 1

4
mi−1

mi−2
holds for all i ≤ p, see Lemma 3. This yields

mp ≥ 4−
p(p−1)

2

(

m1

m0

)p

m0,

which is equivalent to (42). In the second case we have mi

mi−1
> 1

4
mi−1

mi−2
for all i ≤ i0. Combining this

with (44) we conclude that
m1

m0
≤ 4i0+

1
2 λ

1
2 .

Corollary 2. Let f ∈ Cp
[

0, 1
2 λ

−1/2
]

, p ∈ N be a complex-valued function such that f(0) = 0 and

max |f (p)| ≤ C(p)λ
p
2 +1 for some constant C(p). Then for any ϕ0, ϕ1 ∈ R holds

∫ 1
2λ

−1/2

0

|f(t) − eiϕ1t+iϕ0 |2 dt ≥ λ−
1
2

9
min

{

4−p−
5
2 , 4−

p+3
2 6

1
p C(p)−

1
p λ−

1
p

}

. (45)
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Proof. Let u = Ref and v = Imf . If max |f | ≥ 6, then at least one the expressions max |u|, max |v| is
larger than or equal to 3. Without loss of generality we assume that max |u| ≥ 3 and apply Proposition
1 to the function u. If u satisfies (41), then there exists an subinterval I ⊂ [0, 1

2 λ
−1/2] of the length

3−14−p−
1
2 λ−

1
2 on which |u| ≥ 3/2. This implies

∫ 1
2λ

−1/2

0

|f(t) − eiϕ1t+iϕ0 |2 dt ≥ 3−1 4−p−
1
2 λ−

1
2 .

If, on the other hand, u satisfies (42), then the length of the subinterval of [0, 1
2 λ

−1/2], on which

|u| ≥ 3/2, is at least 3−14−
p−1
2 C(p)−

1
p λ−

1
2− 1

p , which gives

∫ 1
2λ

−1/2

0

|f(t) − eiϕ1t+iϕ0 |2 dt ≥ 3−1 4−
p−1
2 C(p)−

1
p λ−

1
2− 1

p .

Assume now that max |f | < 6. The latter means that max |u| < 6 and max |v| < 6. Since u(0) =
v(0) = 0, there exists a subinterval of [0, 1

2 λ
−1/2], on which max{|u(t)|, |v(t)|} ≤ 1/3, which implies

|f(t) − eiϕ1t+iϕ0 |2 ≥ 1/4. Applying Proposition 1 to the functions u, v we find out that the length of
this interval is bounded from below by

min
{

3−2 4−p−
5
2 λ−

1
2 , 3−2 4−

p+3
2 6

1
p C(p)−

1
p λ−

1
2− 1

p

}

.

This completes the proof.

With the above auxiliary results at hand, we can finally prove the following integral estimate, which
will play a central role in the proof of Theorem 1 and 2.

Proposition 2. Let f ∈ Cp+1[ω] a complex valued function such that f(0, x2) = 0 for each x2 and

∥

∥

∥

∥

∥

∂p+1f

∂xp+1
1

∥

∥

∥

∥

∥

L2(ω)

≤ βp+1 λ
1+ p

2 ,

∥

∥

∥

∥

∂pf

∂xp1

∥

∥

∥

∥

L2(ω)

≤ βp λ
1
2+ p

2

for some positive βp and βp+1. Then the inequality

∥

∥

∥
f − ei(ξ1x1+ξ2x2+ϕ)

∥

∥

∥

2

L2(ω)
≥ 1

36
min

{

4−p−
5
2 λ−1, 4−

p
2− 3

2 6
1
2p (β2

p+1 + β2
p)

− 1
2p λ−1− 1

p

}

(46)

holds true for all ξ1, ξ2, ϕ ∈ R.

Proof. The measure of the set

{

x2 ∈ [0, λ−1/2] :

∫ 1

2
√

λ

0

∣

∣

∣

∣

∂if(x1, x2)

∂xi1

∣

∣

∣

∣

2

dx1 ≤ 8 β2
i λ

i+ 3
2 , i ∈ {p, p+ 1}

}

is obviously at least 1
4 λ

− 1
2 . For such x2 holds by Lemma 2

max
x1

∣

∣

∣

∣

∂pf(x1, x2)

∂xp1

∣

∣

∣

∣

≤
√

3 λ1+ p
2

√

β2
p+1 + β2

p .

Corollary 2 then implies the statement.
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4.3 Proof of Theorem 1

Proof of Theorem 1. Fix λ > 0. Let λj be the eigenvalues of the Dirichlet Laplacian on Ω and let ψj
be the corresponding normalised eigenfunctions. For k ∈ N we define

F (ξ) =

k
∑

j=1

|ψ̂j(ξ)|2 ,

where ψ̂j denotes the Fourier transform of ψj . Moreover, we denote by F ∗(|ξ|) the decreasing radial
rearrangement of F (ξ). Let

ψ(x) =
∑

λi≤λ
ci ψi(x), with

∑

µi≤λ
|ci|2 ≤ V .

For each j = 1, . . . , n we choose on the middle part of pj several points tl such that dist(tl, tl+1) =√
2λ−1/2 for all l and denote by Tl the squares with the side 1

2λ
−1/2 constructed in the middle point

between tl and tl+1, see Figure 2. We note that for each j the number of these squares is at least

Nj =

[

1

3
√

2
lj λ

1
2

]

.

According to Corollary 1 for each l and p we have

∥

∥

∥

∥

∂p+1ψ

∂νp+1

∥

∥

∥

∥

2

L2(Tl)

≤ Ap(p)V
2

4π
λp+2,

where ∂ψ
∂ν denotes the normal derivative of ψ. In view of Proposition 2 and Corollary 3 we get

∥

∥ψ − eiξ·x
∥

∥

2

L2(Tl)
≥ 1

36
min

{

4−p−
5
2 λ−1, 4−

p
2− 3

2 6
1
2p (β2

p+1 + β2
p)

− 1
2p λ−1− 1

p

}

, (47)

where

β2
p+1 =

Ap(p)V
2

4π
.

We continue by estimating the sequence Ap(p). A direct inspection shows that

Ap(p) ≤ c0 2(p+1)2 , c0 = 7 · 1022 . (48)

This implies that (β2
p+1 + β2

p)
− 1

2 ≥ 2−1/2 √π c−1/2
0 V −1 2−(p+1)2/2. Hence for

p =
[

√

2 log2(V λ/c1)
]

− 1, c1 =

√

3π

2
c
− 1

2
0

we obtain
∥

∥ψ − eiξ·x
∥

∥

2

L2(Tl)
≥ 2−3

36
c−1
1 V

(

V λ

c1

)−1− 2√
log2(V λ/c1)

.

Taking λ large enough such that

λ−1/2 ≤ dj
3
.

we make sure that the squares Tl lie inside Ω and that they do not overlap each other. Summing this
inequality for all l = 1, . . . , Nj and all j = 1, ..., n we thus arrive at

V − 4π2 F ∗(|ξ|) ≥
∥

∥ψ − eiξ·x
∥

∥

2

L2(Ωe)
≥ c2 V

1
2

(

V λ

c1

)− 1
2− 2√

log2(V λ/c1)
n
∑

j=1

lj Θ

(

λ− 9

d2
j

)

(49)
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with c2 = 2−3

9
√

2 36
c
−1/2
1 . This yields the following upper bound on F ∗:

F ∗(|ξ|) ≤ M(p, λ) :=
V

4π2



1 − c2 V
− 1

2

(

V λ

c1

)− 1
2− 2√

log2(V λ/c1)
n
∑

j=1

lj Θ

(

λ− 9

d2
j

)



 . (50)

Now we use the minimiser (10) with V/4π2 replaced by M(p, λ) to obtain

k
∑

j=1

λj ≥
∫

R2

F ∗(|ξ|)|ξ|2 dξ ≥ λ2V 2

8π3M(p, λ)
. (51)

Employing the definition of M(p, λ) we then find out that

k
∑

j=1

λj ≥
λ2V

2π
+ c2 c

2
1 V

− 3
2

(

V λ

c1

)
3
2− 2√

log2(V λ/c1)
n
∑

j=1

lj Θ

(

λ− 9

d2
j

)

. (52)

Next we set λ = λk and note that inequality (2) yields

2π

V
k ≤ λk . (53)

Since the right hand side of (52) is an increasing function of λ, we can use (53) to conclude that

k
∑

j=1

λj ≥
2π

V
k2 + 4 c3 k

3
2− 2√

log2(2πk/c1)

n
∑

j=1

lj Θ

(

k − 9V

2π d2
j

)

V −3/2 (54)

where

c3 =
2−3

9
√

2 36
(2π)

5
4 c

1/4
1 .

Finally, we combine inequalities (54) and (16) to get (21).

5 Proof for general domains

From now on we suppose that Ω is a general domain satisfying assumption A. To prove a Li-Yau type
inequality with the correction term we cannot directly employ the approach invented for polygons,
since ∂Ω is in general nowhere straight. However, we can extend Ω by adding small “bumps” to certain
parts of ∂Ω, see Figure 4, in order to obtain an extended domain Ωe whose boundary is in certain parts
represented by a straight line. On these straight pieces of ∂Ωe we will then employ the same strategy
as in the case of polygons. Due to the monotonicity of eigenvalues, any lower bound on the sum of
the eigenvalues on the extended domain gives also a lower bound on the sum of the eigenvalues on Ω.
On the other hand, we have to make sure that the volume of Ωe is not much bigger than V , because
otherwise it could destroy the effect of the correction term in (26) by decreasing the leading term. We
will again split the exposition in several steps.

5.1 Step 1: Some geometrical remarks

Here we will show that ∂Ω∩Γj can be locally represented as a graph of a certain C2−smooth function.
Let Γ = {x1(s), x2(s)} be a part of the boundary of Ω parametrised by its length s and such that
x1(s), x2(s) ∈ C2(R+). Let

κ0 := max
{x1,x2}∈Γ

|κ(x1, x2)|

17



be the maximal curvature of Γ. We consider certain points A = {x1(s
′), x2(s

′)} ∈ Γ and B =
{x1(s

′′), x2(s
′′)} ∈ Γ and chose a new system (u, v) such that A = (0, 0) and the u−axes goes along the

line AB.

Lemma 4. Assume that κ0|s′ − s′′| ≤ π/4. Then the following statements hold true.

(i) The part of Γ connecting A and B can be written in the system of coordinates (u, v) as v =
v(u), u ∈ [0, u0], where u0 = |AB|. Moreover, we have

max
u∈[0,u0]

v(u) ≤
√

2 κ0 u
2
0 . (55)

(ii) The inequality
2−1/2 |s′ − s′′| ≤ |AB| ≤ |s′ − s′′| (56)

holds.

Proof. Let {u(s), v(s)} be the parametrisation of Γ in the coordinates (u, v). By assumption we have

∫ |s′−s′′|

0

κ(s) ds ≤ π/4 (57)

This means that for any s ∈ [0, |s′ − s′′|] the angle between the tangent of Γ at the point {u(s), v(s)}
and the u−axes is less than or equal to π/4. Assume that there exists s1, s2 ∈ [0, |s′ − s′′|] such that
u(s1) = u(s2). Then there exists s3 ∈ [s1, s2] such that the tangent of Γ at {u(s3), v(s3)} is orthogonal
to the u−axes. The latter contradicts (57). This shows that the part of Γ between A and B can be
considered as the graph of the function

v = v(u), u ∈ [0, u0], v(0) = v(u0) = 0 .

This proves the first part of (i) and, in view of (57), shows that |v′(u)| ≤ 1 on [0, u0]. Next we prove
inequality (56). It thus follows that

u0 = |AB| ≤ |s′ − s′′| =

∫ u0

0

(

1 + |v′(u)|2
)1/2

du ≤ 21/2 u0 ,

which implies (56). To prove (55) we note that v(u) is twice differentiable and therefore there exists
some u1 ∈ [0, u0], such that v′(u1) = 0. Since |v′′(u)| = |κ(u)| (1 + |v′(u)|2)3/2 ≤ 23/2

κ0, we obtain

|v′(u)| ≤
∫ u

u1

|v′′(u)| du ≤ 23/2
κ0 u0 ∀u ∈ [0, u0].

The last inequality together with the fact that v(0) = v(u0) = 0 finally implies

|v(u)| ≤ 1

2
23/2

κ0 u
2
0 = 21/2

κ0 u
2
0 ∀u ∈ [0, u0] .

5.2 Step 2: Approximation of the boundary

Next we introduce a procedure that allows us to choose appropriate parts of ∂Ω ∩ Γj on which we will
construct the additional “bumps”, see Figure 4. Let Γj , j = 1 . . .m be the parts of boundary defined

18



in section 3 with the end points Aj , Bj and the partition aji , i = 0, . . . , nj . We fix j ∈ {1, ...,m} and
take λ large enough, such that

λ−
1
2 ≤ min

{

dj
3
,

π

8
√

2 κj

}

, if L(Γj) >
3π

8κj
(58)

and

λ−
1
2 ≤ min

{

dj
3
,
L(Γj)

3
√

2

}

, if L(Γj) ≤
3π

8κj
. (59)

Let us consider Γj ∩ (aji , a
j
i+1) with 0 < i < nj. On this part of the boundary we choose several disjoint

arcs (bl, b
′
l), such that each of them has the length

√
2λ−1/2 and such that

∑

l

s(bl, b
′
l) ≥

1

3
s(aji , a

j
i+1), s(aji , a

j
i+1) −

∑

l

s(bl, b
′
l) ≤

√
2λ−1/2 ,

where s(a, b) denotes the arc-length between a and b.
Next we pick an l and connect bl and b′l with a straight line and choose a local system of coordinates

(y1, y2) so that the y1−axis goes along the straight line from bl to b′l and the origin is in bl. Notice that

s(aji−1, a
j
i+1) = s(aji , a

j
i+2) ≤ π

2κj
, which according to Lemma 4 means that in the chosen coordinate

system the boundary between aji−1 and aji+2 can be written explicitly as y2 = f(y1). Let y0 = dist(bl, b
′
l).

In view of Lemma 4
max
y1

|f(y1)| ≤
√

2 κj y
2
0 ≤ 2

3
2 κj λ

−1 .

Now we introduce
Σ1 =

{

(y1, y2) : y1 ∈ [0, y0], y2 = 2
3
2 κj λ

−1
}

and
Σ2 =

{

(y1, y2) : y1 ∈ [0, y0], y2 = −2
3
2 κj λ

−1
}

Lemma 5. If λ > 6κj/dj, then
Σ1 ∩ ∂Ω = Σ2 ∩ ∂Ω = ∅ .

Proof. Obviously Σ1 and Σ2 do not cross ∂Ω between aji−1 and aji+2. On the other hand, for each point

P = (yP1 , y
P
2 ) holds

dist(P, (aji , a
j
i+1)) ≤ 23/2

κj λ
−1 .

Since dist
(

(aji , a
j
i+1), ∂Ω \ (aji−1, a

j
i+2)

)

≥ dj , this implies

dist
(

P, ∂Ω \ (aji−1, a
j
i+2)

)

≥ dj − 23/2
κj λ

−1 >
dj
2
> 0 .

The last Lemma says that one of the sets Σ1 and Σ2 is inside Ω and the other one is outside Ω. Without
loss of generality we assume that Σ1 is outside Ω.
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5.3 Step 3: Extended domain Ω
e.

The extended domain Ωe differs from Ω if λ is large enough so that (58) respectively (59) is satisfied
(otherwise it coincides with Ω).

To define Ωe we proceed as follows. For a fixed j ∈ {1, . . . ,m}, fixed i ∈ {1, ..., nj − 1} and fixed
l, we consider the boundary between the points bl and b′l. If it is a straight line, we do not change
it. Otherwise we replace this piece of the boundary with the segment Σi, where i is such that Σi is
outside Ω, and connect the end points of Σ1 with the boundary at certain points b̃l ∈ (b′l−1, bl) and

b̃′l ∈ (b′l, bl+1) with appropriate C2 functions. We choose these function and the points b̃l, b̃
′
l in such

a way that the added area to Ω is less than 3 times the area of the rectangle with the corners given
by bl, b

′
l and the end points of Σ1. We then obtain a new region whose boundary, corresponding to

the original piece Γj is again C2−smooth and which between the original boundary points bl and b′l
consists of a straight line. Repeating this procedure for all Γj , j = 1, . . . ,m, all i ∈ {1, . . . , nj − 1} and
all l we thus obtain a new domain Ωe.

As a next step we construct the squares Tl of the side 1
2 λ

−1/2 between the the points bl and b′l
centred in the middle. Note that, according to Lemma 4, |blb′l| ≥ λ−1/2/

√
2. We have

Lemma 6. The squares Tl do not overlap.

Proof. First we show that every Tl does not overlap with any of the squares constructed on the part
of the boundary different from the arch (aji−1, a

j
i+2). Indeed, each point of Tl has distance to (bl, b

′
l) at

most 1
2 λ

−1/2 and the distance between (bl, b
′
l) and ∂Ω \ (aji−1, a

j
i+2) is at least dj . Since λ−1/2 < dj ,

see (58), the result follows.
Consider now (aji−1, a

j
i+2). This part can be written as y2 = f(y1) in the above introduced coordinate

system. Consider the squares Tl1 and Tl2 with l1 6= l2. Let y1
1 be the y1 coordinate of the middle

point between bl1 and b′l1 and let y2
1 be the y1 coordinate of the middle point between bl2 and b′l2 .

Since |f ′(y1)| ≤ 1 on (aji−1, a
j
i+2), we have |y1

1 − y2
1 | ≥ λ−1/2. For all points (y1, y2) ∈ Tl1 holds

|y1 − y1
1 | ≤ 1

4λ
−1/2 and for all points (y1, y2) ∈ Tl2 holds |y1 − y2

1 | ≤
√

2
2 λ−1/2. Collecting these

inequalities we conclude that Tl1 ∩ Tl2 = ∅.

As a consequence of the last result we obtain estimates on the volume of Ωe, which will be used in the
proof of Theorem 2.

Corollary 3. Let V e be the volume of the extended domain Ωe. Then

V e ≤ V + 2
3
2 λ−1

m
∑

j=1

κj L(Γj) . (60)

Moreover, if
λ ≥ Λ1 := 9 · 210 max

j
κ

2
j ,

then
V e ≤ 2V . (61)

Proof. Inequality (60) follows directly from the construction of Ωe, since the area of the added volume

along Γj does not exceed 2
3
2 λ−1

κjL(Γj). As for the second inequality, we consider each pair bl, bl′ and

note that for λ ≥ 9 · 210
κ

2
j is the area of the added volume between b̃l and b̃l′ , bounded from above by

12 κj λ
− 3

2 ≤ 1

8
λ−1 .

This follows from the choice of the points bl, see section 5.3. On the other hand, for λ chosen as above
we get

|Tl ∩ Ω| ≥ 1

2
|Tl| =

1

8
λ−1 .
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Since Tl do not overlap, we obtain (61).

5.4 Proof of Theorem 2

Proof of Theorem 2. Fix λ > 0 and consider the extended domain Ωe. Let µj be the eigenvalues of the
Dirichlet Laplacian on Ωe and let φj be the corresponding normalised eigenfunctions. For k ∈ N we
define

Fe(ξ) =

k
∑

j=1

|φ̂j(ξ)|2 ,

where φ̂j denotes the Fourier transform of φj . By F ∗
e (|ξ|) we denote the decreasing radial rearrangement

of Fe(ξ). Let

φ(x) =
∑

µi≤λ
ci φi(x), with

∑

µi≤λ
|ci|2 ≤ V e

and let Tl be the sequence of squares constructed along Γj . For each j is the number of these squares
at least

Nj =

[

1

9
√

2
L(Γj)λ

1
2

]

.

Next we take λ ≥ Λ1, so that V e ≤ 2V , see Corollary 3. According to Corollary 1 for each l and p we
then have

∥

∥

∥

∥

∂p+1φ

∂νp+1

∥

∥

∥

∥

2

L2(Rn)

≤ Ap(p)(V
e)2

4π
λp+2 ≤ Ap(p)V

2

π
λp+2 ,

where ∂φ
∂ν denotes the normal derivative of φ. In view of Proposition 2 for each l holds

∥

∥φ− eiξ·x
∥

∥

2

L2(Tl)
≥ 1

36
min

{

4−p−
5
2 λ−1, 4−

p
2− 3

2 6
1
2p (β2

p+1 + β2
p)

− 1
2p λ−1− 1

p

}

,

with

β2
p+1 =

Ap(p)(V
e)2

4π
≤ Ap(p)V

2

π
.

Now we employ the same arguments used in the proof of Theorem 1 in order to find an appropriate
upper bound on F ∗

e . Since λ ≥ Λ1 we can use Corollary 3 to arrive at

F ∗
e (|ξ|) ≤ V

4π2



1 +

m
∑

j=1

(

23/2V −1
κjλ

−1 − c2
2
V − 1

2

(

V λ

c1

)− 1
2− 2√

log2(V λ/c1)

)

L(Γj)



 .

Note that for
λ ≥ Λ2 := 226

c1 V
−1

we have
(

V λ
c1

)− 1
2− 2√

log2(V λ/c1) ≥
(

V λ
c1

)− 3
4

and therefore

F ∗
e (|ξ|) ≤ Me(p, λ) :=

V

4π2



1 − c2
4
V − 1

2

(

V λ

c1

)− 1
2− 2√

log2(V λ/c1)
m
∑

j=1

L(Γj)Θ(λ− Λ3(j))



 .

where
Λ3(j) := max

{

Λ1 , Λ2 , c
−1
1 222 68

κ
4
j V
}

.
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We now use again the Li-Yau type minimiser (10) with V/4π2 replaced by Me(p, λ) to obtain

k
∑

j=1

λj ≥
k
∑

j=1

µj ≥
∫

R2

F ∗
e (|ξ|)|ξ|2 dξ ≥ λ2V 2

8π3Me(p, λ)
.

As in the proof of Theorem 1 we set λ = λk and use definition of Me(p, λ) together with inequalities
(58),(59) and (53) to obtain

k
∑

j=1

λj ≥
2π

V
k2 + c3 k

3
2− 2√

log2(2πk/c1)

m
∑

j=1

L(Γj)Θ(k − k(j))V −3/2 (62)

where

k(j) :=
V

2π
max

{

Λ3(j),
9

d2
j

,
128 κ2

j

π2
,

6κj

dj

}

.

Finally, we combine inequalities (62) and (16) to get (26).
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