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FINITE GROUPS OF UNITS AND THEIR COMPOSITION FACTORS IN

THE INTEGRAL GROUP RINGS OF THE GROUPS PSL(2, q)

Abstract. Let G denote the projective special linear group PSL(2, q), for a prime power q. It is
shown that a finite 2-subgroup of the group V(ZG) of augmentation 1 units in the integral group
ring ZG of G is isomorphic to a subgroup of G. Furthermore, it is shown that a composition
factor of a finite subgroup of V(ZG) is isomorphic to a subgroup of G.

1. Introduction

A conjecture of H. Zassenhaus from the 1970s asserts that for a finite group G, every torsion
unit in its integral group ring ZG is conjugate to an element of ±G by a unit in the rational
group ring QG. For known results on this still unsolved conjecture the reader is referred to [23,
Chapter 5], [24, § 8] and [14,15]. In fact this conjugacy question makes sense even for finite groups
of units in ZG. The outstanding result in the field is Weiss’s proof [30] that for nilpotent G, this
strong version of the conjecture is true.

The question begs to be asked though, is a finite group of units in ZG (for general G) necessarily
isomorphic to a subgroup of ±G? Related issues are addressed in Problems No. 19 and 20 from
[19]. We present results from the second authors Ph.D. thesis [16] when G is a two-dimensional
projective special linear group PSL(2, q), q a prime power. We remark that no feasible approach
is currently available for obtaining some general results which does not boil down to conjugacy
questions.

It is always enough to consider only finite subgroups of V(ZG), the group of augmentation 1
units in ZG. Focus may be either on particular classes of groups G, or on particular classes (even
certain isomorphism types) of finite subgroups of V(ZG) (for general G), or on both. To indicate
the difficulty of the terrain: a torsion unit in V(ZG) is not known to have the same order as some
element of G, except when it is of prime power order [3] or G is solvable [11]. The first result,
already known for a long time, shows that the exponent of a finite subgroup of V(ZG) divides
the exponent of G. Another general result is that the order of a finite subgroup of V(ZG) divides
the order of G (Berman; cf. [22], for proof see [23, Lemma (37.3)]). More recently, it has been
shown [13] that a finite subgroup of V(ZG) has cyclic Sylow p-subgroups provided this is true for
G, as yet another application of partial augmentations. This happened after it was observed [20]
that V(ZG) contains no four-group provided there is no such in G, by the Berman–Higman result
on the vanishing of 1-coefficients of torsion units and by a deep theorem of Brauer and Suzuki on
groups with quaternion Sylow 2-subgroups.

The Zassenhaus conjecture for torsion units in Z[PSL(2, q)] (brackets are inserted for better
readability) has been studied in [12, § 6] using a modular version of the Luthar–Passi method.

In § 2, it is shown that finite 2-subgroups of V(Z[PSL(2, q)]) are isomorphic to subgroups of
PSL(2, q) (only the case q odd matters, when Sylow 2-subgroups of PSL(2, q) are dihedral). The
method of proof is that of [13], and we sketch the relevant idea. Let the finite group H be a
(putative) subgroup of V(ZG). Let ξ be an ordinary character of the group G. When ξ is viewed
as a trace function on the complex group ring CG of G, then its restriction ξH to H is a character
of H . Suppose that the values ξ(x), x ∈ H , are sufficiently well known, which essentially means
that some knowledge is available about the Zassenhaus conjecture for torsion units in V(ZG) of
the same order as some element of H . Then, for an irreducible character λ of H , the scalar product
〈λ, ξH〉, defined as 1

|H|

∑
x∈H λ(x)ξH (x−1), might be calculated accurately enough to show that it
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6 americanFINITE GROUPS OF UNITS IN Z[PSL(2, q)]

is not a nonnegative rational integer, a contradiction showing that H is not a subgroup of V(ZG)
since 〈λ, ξH〉 is the number of times λ occurs in ξH . This interpretation of 〈λ, ξH〉 suggests that it
might also be useful to know over which fields a representation corresponding to ξ can be realized
(keep R, the real numbers, as a first choice in mind).

Let H be a finite subgroup of V(ZG). When G is solvable, then so is H (see [23, Lemma (7.4)]).
When G is nonsolvable, one might ask whether the (nonabelian) composition factors of H are
isomorphic to subquotients of G (Problem 20 from [19]). This holds if H is a group basis of ZG
(meaning that |H | = |G|), when it even has the same chief factors as G including multiplicities [21].

In § 3, it is shown that for a finite subgroup of V(Z[PSL(2, q)]), its composition factors are
isomorphic to subgroups of PSL(2, q). This was shown in [16] under the additional assumption
that PSL(2, q) has elementary abelian Sylow 2-subgroups. Our approach differs slightly in that [16,
Lemma 3.7] is replaced by the obvious generalization, Lemma 3.3 below, and it is subsequently
used that a finite subgroup of V(Z[PSL(2, q)]) has abelian or dihedral Sylow 2-subgroups (and
the part of the classification of the finite simple groups concerning such groups). We remark
that Dickson has given a complete list of the subgroups of SL(2, q), see Chapter 3, § 6 in [26], for
example. The nonabelian simple subgroups of PSL(2, q) are isomorphic to PSL(2, pm), with the
field of pm elements a subfield of the field of q elements and characteristic p, or isomorphic to the
alternating group A5 if 5 divides the group order.

2. Finite 2-groups of units in Z[PSL(2, q)]

Let G = PSL(2, q), where q is a prime power. We will show that finite 2-subgroups of V(ZG)
are isomorphic to subgroups of G. The Sylow 2-subgroups of G are elementary abelian if q is even
and dihedral groups if q is odd (see [7, 2.8.3]). Remember that the order of a finite subgroup of
V(ZG) divides the order of G.

When q is even, a Sylow 2-subgroup of G has exponent 2 and so has any finite 2-subgroup
of V(ZG) by [3, Corollary 4.1]. Then it follows that a finite 2-subgroup of V(ZG) is elementary
abelian, and therefore isomorphic to a subgroup of G.

So we only have to deal with the case q odd. Note that a dihedral 2-group contains, for each
divisor n of its order, n ≥ 4, a cyclic and a dihedral subgroup of order n. Thus it suffices to prove
the following theorem.

Theorem 2.1. Let H be a finite 2-subgroup of V(ZG), where G = PSL(2, q) with q an odd prime
power. Then H is either cyclic or a dihedral group.

Proof. Let ε ∈ {−1, 1} such that q ≡ ε mod 4. For convenience of the reader, the (ordinary)
character table of G is shown in Table 1 (in the notation from [6, § 38]).

We can assume that |H | ≥ 8. Then 8 divides |G|. Since |G| = (q − 1)q(q + 1)/2, the maximal
power of 2 dividing |G| divides q − ε. Hence q − ε ≡ 0 mod 8.

We can assume that q 6= 5, since otherwise G is isomorphic to the alternating group A5, and the
statement of the theorem is known (see [5]). Then we can set ξ = χ1 if ε = 1 and ξ = θ1 if ε = −1.
Note that ξ(1) = q + ε. The group G has only one conjugacy class of involutions. Let s be an
involution in G. By [14, Corollary 3.5], it follows that an involution inH is conjugate to s by a unit
in QG. So ξ(x) = ξ(s) for an involution x of H . Note that ξ(s) = −2ε. Suppose that H has an
element u of order 4. For an element g of G of order 4 we have ξ(g) = 0. By [14, Proposition 3.1], it
follows that ξ(u) = εs(u)ξ(s), where εs(u) denotes the partial augmentation of u at the conjugacy
class of s. By [3, Theorem 4.1], εs(u) is divisible by 2 and so ξ(u) ≡ 0 mod 4. Also note that
ξ(u) = ξ(u−1) since ξ(u) is a rational integer. So ξ(u) + ξ(u−1) ≡ 0 mod 8.

Suppose that H is elementary abelian of order 8. Let λ be an irreducible character of H which
is not principal. Then

∑

x∈H

λ(x)ξ(x−1) = ξ(1) + ξ(s)
∑

16=x∈H

λ(x) = (q + ε) − 2ε(3 − 4) = q + 3ε.

Since q + 3ε 6≡ 0 mod 8, this contradicts the fact that 〈λ, ξH〉 is a (nonnegative) integer.
Now suppose that H is the direct product of a cyclic group of order 4 and a cyclic group of

order 2. Let u, v ∈ H such that 〈u〉 and 〈v〉 are the two subgroups of order 4 in H . Let λ be the
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class of 1 c d al bm

order 1 p p of a is q−1
2 of b is q+1

2

1 1 1 1 1 1
ψ q 0 0 1 −1
χi q + 1 1 1 ρil + ρ−il 0
θj q − 1 −1 −1 0 −(σjm + σ−jm)

η1
1
2 (q + ε) 1

2 (ε+
√
εq) 1

2 (ε−√
εq) (−1)lδε,1 (−1)m+1δε,−1

η2
1
2 (q + ε) 1

2 (ε−√
εq) 1

2 (ε+
√
εq) (−1)lδε,1 (−1)m+1δε,−1

Entries: δε,±1 Kronecker symbol,
ρ = e4πi/(q−1), σ = e4πi/(q+1),

ε = 1 : 1 ≤ i ≤ 1
4 (q − 5), 1 ≤ j, l,m ≤ 1

4 (q − 1),

ε = −1 : 1 ≤ i, j, l ≤ 1
4 (q − 3), 1 ≤ m ≤ 1

4 (q + 1).

Table 1. Character table of PSL(2, q), q = pf ≥ 5, odd prime p

principal character of H . Then
∑

x∈H

λ(x)ξ(x−1) = (q + ε) + 3(−2ε) + 2ξ(u) + 2ξ(v) ≡ q + 3ε mod 8,

again a contradiction.
We have shown that a maximal abelian subgroup of H is either cyclic or isomorphic to a four-

group V (the direct product of two cyclic groups of order 2). Suppose that H has a noncyclic
abelian normal subgroup N . Then N ∼= V , and N is a maximal abelian normal subgroup of H ,
so that the quotient H/N acts faithfully on N . It follows that H is either N or a dihedral group
of order 8. Thus we can assume that H has no noncyclic abelian normal subgroups. When H is
not cyclic or a dihedral group, it then must be a semidihedral group or a (generalized) quaternion
group (see [7, 5.4.10]). A semidihedral group contains a direct product of a cyclic group of order 4
and a cyclic group of order 2, so we have already ruled out the possibility of H being semidihedral.
A (generalized) quaternion group has a quaternion group of order 8 as a subgroup. Hence the
proof will be finished once we have shown that H cannot be the quaternion group of order 8.

Assume the contrary. Let λ be the irreducible character of H of degree 2. Then λ(z) = −2 for
the involution z in H and λ(u) = 0 for an element u of order 4 in H . It follows that

∑

x∈H

λ(x)ξ(x−1) = 2(q + ε) + (−2)(−2ε) = 2(q − ε) + 8ε,

so 〈λ, ξH〉 is an odd integer. This reminds us of the following fact. If W is an irreducible RH-
module such that C⊗R W has character µ satisfying 〈λ, µ〉 6= 0, then W is the quaternion algebra
on which H acts by multiplication, and so 〈λ, µ〉 = 2. But a CG-module M with character ξ
can be realized over R, which means that there exists an isomorphism M ∼= C ⊗R M0 for some
RG-module M0. This can be shown by calculating the Frobenius–Schur indicator of M in terms of
the character ξ (see [17, XI.8.3]). This implies that 〈λ, ξH〉 is an even integer, a contradiction. �

In view of the final contradiction in the above proof, we remark that the Schur indices, over
the rational field, of the irreducible characters of SL(2, q) and the simple direct summands of the
rational group algebra Q[SL(2, q)] are known [18], [25]. In particular, the Schur indices of the
irreducible characters of PSL(2, q) are all 1.

We give an instance where the theorem can be applied. The group PSL(2, 7), of order 168, is
the second smallest nonabelian simple group. In [14, Example 3.6], it has been shown that for
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G = PSL(2, 7), the (first) Zassenhaus conjecture is valid, that is, any torsion unit in V(ZG) is
conjugate to an element of G by a unit in QG.

Example 2.2. Let G = PSL(2, 7). We show that a finite subgroup H of V(ZG) is conjugate to a
subgroup of G by a unit in QG. By [2, Theorem 1], any subgroup of V(ZG) of the same order as
G is conjugate to G by a unit in QG. Hence we can assume that |H | < |G|. We have |G| = 23.3.7.
The conjugacy classes of G consist of one class each of elements of orders 1, 2, 4 and 3, and two
classes of elements of order 7, with an element of order 7 not being conjugate to its inverse. The
Zassenhaus conjecture is valid for G, so in particular a torsion unit in V(ZG) has the same order
as some element of G.

We first show that H is isomorphic to a subgroup of G. Recall that |H | divides |G|. So H is
solvable as 60 is not a divisor of |G|. Let M be a minimal normal subgroup of H . Then H is an
elementary abelian p-group. We assume that H 6= 1, so M 6= 1.

Suppose that p = 2. Then |M | ≤ 4 by Theorem 2.1. When |M | = 2, then H is a 2-group
since H contains no elements of order 2r, r an odd prime, and H is isomorphic to a subgroup of
G by Theorem 2.1. Assume that M is a four-group. Then M 6= H since M is a minimal normal
subgroup of H . Only 2-elements of H can centralize a nontrivial element of M . It follows that H
is isomorphic to either A4 or to S4. Both groups occur as subgroups of G.

Suppose that p = 3. Then |M | = 3. Since H contains no elements of order 3r, r > 1, either
H = M or H is isomorphic to S3. So H is isomorphic to a subgroup of G.

Finally, suppose that p = 7. Then |M | = 7, and H/M acts faithfully on M . So either H = M ,
or H is isomorphic to the Frobenius group of order 14, or to the Frobenius group of order 21. The
latter group occurs as a subgroup of G. Suppose that |H | = 14. Then H has an element x of
order 7 which is conjugate to its inverse. But x is conjugate to an element g of G by a unit in
QG, whence g is conjugate to its inverse by a unit in QG, and therefore also by an element in G,
a contradiction. Thus H is isomorphic to a subgroup of G.

It remains to prove the conjugacy statement, which will be done using the suitable (standard)
criterion from ordinary character theory (see [23, Lemma (37.6)]). We have to find a subgroup U
of G isomorphic to H and an isomorphism ϕ : H → U such that χ(h) = χ(ϕ(h)) for all irreducible
characters χ of G and all h ∈ H . We have shown that there exists an isomorphism ϕ : H → U
for some U ≤ G. Remember that the Zassenhaus conjecture is valid for G. If |H | 6= 21 then, in
view of the above possibilities for H , the isomorphism ϕ has the required property. So assume
that |H | = 21. Then we can adjust ϕ, if necessary, by a group automorphism of H so that
χ(x) = χ(ϕ(x)) for an element x of order 7 in H . Then again, ϕ has the required property.

3. Composition Factors of finite groups of units in Z[PSL(2, q)]

We continue to let q denote a power of a prime p. The group PSL(2, q) has, for a prime r
distinct from 2 and p, cyclic Sylow r-subgroups. A finite group of units in Z[PSL(2, q)] therefore
also has cyclic Sylow r-subgroups, by the following theorem, which is Corollary 1 in [13].

Theorem 3.1. Let G be a finite group having cyclic Sylow r-subgroups for some prime r. Then
any finite r-subgroup of V(ZG) is isomorphic to a subgroup of G.

In the situation of the theorem, a finite subgroup H of V(ZG) has cyclic Sylow r-subgroups.
When |H | is divisible by r, we may obtain more information about the structure of H , or even
quotients of H whose order is divisible by r, when elements of order r in H are conjugate to
elements of G by units in QG, by comparing the number of conjugacy classes of elements of order
r in H (or the quotient of H) with the corresponding number of classes in G.

We begin with an elementary group-theoretical observation. For a finite group G, we write
cclr(G) for the set of the conjugacy classes of elements of order r in G.

Lemma 3.2. Let H be a finite group with cyclic Sylow r-subgroups for some prime divisor r of the
order of H, and let X be a quotient of H whose order is divisible by r. Then |cclr(X)| ≥ |cclr(H)|.
Proof. Let N be the normal subgroup of H with X = H̄ = H/N , and let x be a r-element in H
such that x̄ has order r. Note that the subgroup lattice of a Sylow r-subgroup of H is linearly
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ordered. By Sylow’s theorem, 〈x̄〉 contains representatives of the conjugacy classes of elements of
order r in H̄, and 〈x〉 is a Sylow p-subgroup of 〈x〉N .

Suppose that x has order r. Then, if x̄ is conjugate to x̄i in H̄ for some integer i, Sylow’s
theorem implies that x is conjugate to xi in H . So |cclr(X)| ≥ |cclr(H)| in this case. Let us

therefore assume that the order of x is rn, for some n > 1. Set y = xrn−1 ∈ N . Then 〈y〉
contains representatives of the conjugacy classes of elements of order r in H . Suppose that x̄
is conjugate to x̄i in H̄ for some integer i. Let c ∈ H with x̄c̄ = x̄i. By Sylow’s theorem,
xca ∈ 〈x〉 ∩ xiN = xi〈xr〉 for some a ∈ N . Raising elements to the rn−1th power yields yca = yi.
This shows that |cclr(X)| ≥ |cclr(H)|. �

As indicated before, we will use this as follows.

Lemma 3.3. Let G be a finite group with cyclic Sylow r-subgroups for some prime r. Suppose
that each unit of order r in V(ZG) is conjugate to some element of G by a unit in QG. Let X be
a quotient of a finite subgroup of V(ZG) whose order is divisible by r. Then |cclr(X)| ≥ |cclr(G)|.
Proof. A finite subgroup of V(ZG) has cyclic Sylow r-subgroups, by Theorem 3.1. So we can
assume, by Lemma 3.2, that X is a subgroup H of V(ZG). Let g be an element of order r in G.
By assumption, each element of order r in H is conjugate to some power of g by a unit in QG.
Take an element h in H which is conjugate to g by a unit in QG. If h is conjugate to hi in H
for some integer i, then g is conjugate to gi by a unit in QG, which implies that g and gi are
conjugate in G. Hence |cclr(H)| ≥ |cclr(G)|, and the lemma is proven. �

As for the groups PSL(2, q), the lemma can be applied through the following proposition, which
is Proposition 6.4 in [12].

Proposition 3.4. Let G = PSL(2, q), and let r be a prime distinct from p (of which q is a power).
Then any torsion unit in V(ZG) of order r is conjugate to an element of G by a unit in QG.

We shall need the following simple number-theoretical lemma.

Lemma 3.5. Let a, n and m be natural integers. Then an − 1 divides am − 1 if and only if n
divides m.

Now we can prove the following two lemmas. The reason for doing so will be given afterwards.
For the first, we use that the number of conjugacy classes of the group PSL(2, q) consisting of
elements of order r, an odd prime divisor of the group order, is 2 if r = p and (r − 1)/2 if r 6= p.

Lemma 3.6. Set G = PSL(2, q) and let X be a composition factor of a finite subgroup of V(ZG).
If X is a two-dimensional projective special linear group, then X is isomorphic to a subgroup of
G.

Proof. Let X ∼= PSL(2, rm) for some prime r and a natural integer m. Suppose that r = p. Write
q = pf . That |X | divides |G| means that rm(r2m − 1) divides pf (p2f − 1), so m divides f by
Lemma 3.5, and G has a subgroup isomorphic to X . So let us assume that r 6= p. When r = 2,
Sylow 2-subgroups of X are elementary abelian, but also cyclic or dihedral groups, by Theorem 2.1.
Thus X ∼= PSL(2, 4) ∼= A5. With 5 dividing |X |, also |G| is divisible by 5, and G has a subgroup
isomorphic to A5. So we may assume that r is odd. Then X has precisely 2 conjugacy classes of
elements of order r. The order of G is divisible by r, so G has precisely (r−1)/2 conjugacy classes
of elements of order r. Thus r ∈ {3, 5} by Lemma 3.3. Finite r-subgroups of V(ZG) are cyclic, by
Theorem 3.1. So X has cyclic Sylow r-subgroups, that is, m = 1. Since PSL(2, 3) is not simple,
it follows that r = 5 and X ∼= PSL(2, 5) ∼= A5. Again, G has a subgroup isomorphic to A5. �

Lemma 3.7. For G = PSL(2, q), the alternating group of degree 7 does not occur as a composition
factor of a finite subgroup of V(ZG).

Proof. Suppose, by way of contradiction, that A7 is a composition factor of a finite subgroup of
V(ZG). Since A7 has noncyclic Sylow 3-subgroups, Theorem 3.1 shows that G also has noncyclic
Sylow 3-subgroups. Hence p = 3. Furthermore, 5 divides |G|, and G has 2 conjugacy classes of
elements of order 5. But A7 has only one conjugacy class of elements of order 5. This contradicts
Lemma 3.3. �
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The main result of this section, which identifies the composition factors of finite groups of units
in Z[PSL(2, q)], follows easily if we do not mind using part of the classification of the finite simple
groups. Groups with dihedral Sylow 2-subgroups were classified by Gorenstein and Walter in the
three papers [8–10] (see [7, § 16.3]). In particular, if G is a simple group with dihedral Sylow
2-subgroups, it is isomorphic to either PSL(2, q), q odd, q > 3, or to A7. Groups with abelian
Sylow 2-subgroups were classified by Walter [29] (a short proof was obtained by Bender [1]). In
particular, if G is a nonabelian simple group with abelian Sylow 2-subgroups, it is isomorphic to
either PSL(2, q), for certain q, to the Janko group J1, or to a Ree group (for a description of these
groups, see [17, Chapter XI, § 13]).

Theorem 3.8. For G = PSL(2, q), each composition factor of a finite subgroup of V(ZG) is
isomorphic to a subgroup of G.

Proof. We only have to consider a nonabelian composition factor X . Suppose p (of which q is a
power) is odd. Then X has dihedral Sylow 2-subgroups by Theorem 2.1. By the classification
of the finite simple groups with dihedral Sylow 2-subgroups, Lemmas 3.6 and 3.7 show that X is
isomorphic to a subgroup of G. So assume that p = 2. Then X has abelian Sylow 2-subgroups, as
noted at the beginning of § 2. By Lemma 3.6, and the classification of the finite nonabelian simple
groups with abelian Sylow 2-subgroups, we have to consider the possibility that X is isomorphic
to the Janko group J1, or to a Ree group. The group J1 has elements of order 7, all of which are
conjugate. So X is not isomorphic to J1 by Lemma 3.3. A Ree group has a noncyclic subgroup
of order 9 while G has cyclic Sylow 3-subgroups. So X is not isomorphic to a Ree group by
Theorem 3.1. The proof is complete. �

We end with an application of the last theorem. The classification of all minimal finite simple
groups (those for which every proper subgroup is solvable) is obtained as a corollary of the major
work of Thompson on N -groups (consisting of the six papers [27,28]). A minimal finite nonabelian
simple group is isomorphic to either PSL(2, q), for certain q, or to PSL(3, 3), or to a Suzuki group
Sz(2p) for some odd prime p.

Theorem 3.9. Let G be a minimal finite simple group. Then a finite subgroup of V(ZG) of order
strictly smaller than |G| is solvable.

Proof. Let H be a nontrivial finite subgroup of V(ZG) of order strictly smaller than |G|. We have
to show that H is solvable. Let N be a maximal normal subgroup of H . By induction on |H | we
can assume that N is solvable, and have to show that the simple group H/N is solvable.

If the order of a nonabelian simple group K divides |PSL(3, 3)|, then |K| = |PSL(3, 3)| =
24.33.13. (One even has K ∼= PSL(3, 3).) This is either proved directly or by looking at a list of
simple groups of small order, e.g. in [4]. So we can assume that G is not isomorphic to PSL(3, 3).

If G is isomorphic to PSL(2, q) for some q, solvability of H/N follows from Theorem 3.8. So
by Thompson’s work, we can assume that G is isomorphic to a Suzuki group Sz(2p) for some odd
prime p. Then 3 does not divide |G| (see [17, XI.3.6]), and so |H/N | is not divisible by 3. Suppose
that H/N is nonsolvable. The Suzuki groups are the only finite nonabelian simple groups of order
not divisible by 3 (see [17, XI.3.7]). So H/N is isomorphic to a Suzuki group Sz(2n) for some odd
number n, n ≥ 3. We have |G| = 22p(22p + 1)(2p − 1) and |H/N | = 22n(22n + 1)(2n − 1). In
particular, 2n − 1 divides |G|(2p +1), which equals 22p(24p − 1). Thus n divides 4p by Lemma 3.5,
and as n is odd, n = p. So |H/N | = |G|, a contradiction. �

Perhaps more could now be said about nonsolvable finite subgroups of units in Z[PSL(2, q)],
but we refrain from doing so. Priority should have the following issues. Let q be a power of the
prime p. If the order of a torsion unit in V(Z[PSL(2, q)]) is divisible by p, has it order p? If p is
odd, are units of order p in Z[PSL(2, q)] conjugate to elements of PSL(2, q) by units in the rational
group ring? If p is odd, are finite p-subgroups of V(Z[PSL(2, q)]) elementary abelian?

Finally, we remark that § 2 can be seen as a contribution to the determination of the isomorphism
types of finite 2-subgroups in V(ZG) for finite groups G with dihedral Sylow 2-subgroups (a
problem suggested in [13]).
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