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Abstract

Almost Einstein manifolds satisfy a generalisation of the Einstein condition; they are
Einstein on an open dense subspace and, in general, have a conformal scale singularity set Σ
that is a conformal infinity for the Einstein metric. In case an almost Einstein manifold is
closed and Σ is a hypersurface we call the corresponding Einstein metric conformally closed.
Such Einstein metrics represent a subclass of conformally compact Poincaré-Einstein metrics.
With respect to a special defining function of the boundary every Poincaré-Einstein metric
can be expressed in normal form. Similarly, in this paper we discuss closed manifolds, which
admit multiple almost Einstein structures, whose scale singularity sets intersect non-trivially.
In a neighbourhood of that intersection set Σ(S) we describe the underlying conformal
geometry by normal form metrics and the Sl-doubling construction of [24]. The set Σ(S) is
a totally umbilic submanifold (of higher codimension).

Keywords: Conformal geometry; Poincaré-Einstein metrics; tractor calculus; almost Einstein
structures; conformal Killing p-forms.

MSC 2000: Primary 53C25; Secondary 53A30

1 Introduction

Einstein metrics have a distinguished history in geometry and physics. An area of intense interest
is the study of asymptotically hyperbolic Einstein metrics, which are also termed conformally
compact Poincaré-Einstein metrics if the underlying space is compact with boundary. These geo-
metric structures were introduced by Fefferman and Graham in [8] in connection with the ambient
metric, and as a tool for studying the conformal geometry of the boundary. The relationship
between that conformal structure and the geometry of the Riemannian interior has recently been
studied intensively using spectral and scattering tools [9, 18, 19, 20, 30], and related formal asymp-
totics [1, 3, 10, 17]. This relationship is the geometric problem underlying the so-called AdS/CFT
correspondence of String Theory [26, 31].

A certain class of Poincaré-Einstein metrics admit an expedient formulation in terms of tractor
calculus. In fact, any standard tractor I on a conformal space (M, c), which is parallel with respect
to the canonical tractor connection ∇, corresponds to a so-called almost Einstein structure σI

(cf. [12, 21]). In general, an almost Einstein structure σI has a non-trivial scale singularity set
Σ(σI), and off this scale singularity the conformal structure c contains an Einstein metric, which
stems from σI . In case the scale singularity Σ(σI) is a hypersurface in M this Einstein metric is
asymptotically hyperbolic at Σ(σI) (on both sides of the hypersurface). Hence, if the underlying
conformal space (M, c) is a closed space, i.e., a compact space without boundary, we say here the
almost Einstein structure σI gives rise to a conformally closed Poincaré-Einstein metric on the
closed space (M, c) with scale singularity Σ(σI). In this sense conformally closed Poincaré-Einstein
metrics are a subclass of conformally compact Poincaré-Einstein metrics.

In the work [14] we have studied conformal spaces (M, c), which admit multiple almost Einstein
structures. A main result of this work is the finding that, if (M, c) is a closed conformal space with
multiple almost Einstein structures, then (M, c) is either conformally equivalent to the Möbius
sphere (the standard model of Riemannian conformal geometry), or else any almost Einstein
structure σ on (M, c) admits a hypersurface scale singularity Σ(σ). Immediately the question
arises whether these hypersurface scale singularities can intersect non-trivially on (M, c). On the
Möbius sphere this certainly happens. The main motivation of the current work is the geometric
description of such instances, in general.

Using the existence result for solutions of a non-characteristic PDE, one can introduce so-called
special defining functions for the boundary of a Poincaré-Einstein space. With respect to such a
special defining function the Poincaré-Einstein metric on the interior can be presented in normal
form near the boundary (cf. [16]). Similarly, we will describe in the current work normal form
metrics in the conformal class c of a closed space M with multiple almost Einstein structures,
whose scale singularities have a non-trivial intersection set Σ(S). In short, the resulting geometric
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description says that (M, c) is (locally near Σ(S)) a so-called collapsing sphere product alias Sl-
doubling. The Sl-doubling construction was introduced in [24]. This construction assigns to any

given asymptotically hyperbolic space F
m+1

and any number l ≥ 0 in a natural way a smooth
conformal manifold DlF of dimension m+ l+1 (without boundary). The bulk of this construction
is simply the Riemannian product space of a round unit l-sphere Sl with the interior Einstein
space F , i.e., a special Einstein product in the sense of [13]. Then the l-sphere Sl collapses at the
boundary of F , which gives rise to the so-called pole of the collapsing sphere product. Exactly at
this pole the hypersurface scale singularities of certain multiple almost Einstein structures on DlF
intersect. An important tool for the prove of this geometric description and the normal form in
our situation uses the classical results about essential conformal transformation groups on closed
conformal spaces by Obata and Lelong-Ferrand in [27, 25].

The existence of a non-trivial intersection set Σ(S) of hypersurface scale singularities for mul-
tiple almost Einstein structures on a conformal space (Mn, c) has further interesting implications.
For example, it is well known that the hypersurface scale singularity Σ(σ) of a single almost Ein-
stein structure σ is totally umbilic in (Mn, c). In fact, the use of special defining functions shows
that Σ(σ) is a minimal hypersurface with respect to certain metrics in c on M . This feature
generalises to the intersection set Σ(S) for ℓ > 1 hypersurface scale singularities: the set Σ(S) is
a totally umbilic submanifold of codimension ℓ, and Σ(S) is also minimal in M with respect to
certain metrics in c. Moreover, the conformal holonomy group of a space (Mn, c) with intersec-
tion set Σ(S) 6= ∅ is decomposable. It was proven in [22] that a conformal space (Mn, c) with
decomposable conformal holonomy is locally almost(!) everywhere conformally equivalent to a
special Einstein product (cf. also [2]). In fact, the intersection set Σ(S) of hypersurface scale
singularities, which stem from ℓ > 1 linearly independent ∇-parallel standard tractors (i.e. al-
most Einstein structures), provides in general an example for such points, where (Mn, c) is locally
not conformally equivalent to a special Einstein product. This feature will be discussed in detail
in [23]. Finally, note that we have constructed an explicit Ricci-flat Fefferman-Graham ambient
metric for special Einstein products in [13]. In case (Mn, c) is closed with Σ(S) 6= ∅ we can
construct an explicit Ricci-flat Fefferman-Graham ambient metric for (Mn, c) as well (see [24]),
i.e., we have found an explicit Fefferman-Graham ambient metric construction for certain almost
Einstein spaces!

In Section 2 to 4 we review topics about conformal geometry, tractor calculus, almost Einstein
structures, Poincaré-Einstein spaces, conformal Killing p-forms and special Einstein products as
we will need them during the course of the paper. In Section 5 we discuss multiple almost
Einstein structures (with scale singularity) on a conformal space (M, c). The existence of ℓ linearly
independent ∇-parallel standard tractors Ii gives rise via the wedge product to a ∇-parallel ℓ-
form tractor α, which in turn corresponds to a so-called decomposable nc-Killing (ℓ− 1)-form α−

(cf. [21]). In case all Ii’s have hypersurface singularities Σ(Ii) the zero set of α− coincides with
the intersection of the Σ(Ii)’s (cf. Theorem 5.2). Section 6 is the heart of the paper. There we
derive under the assumption of closeness for (M, c) a normal form for the ℓ-form tractor α in a
neighbourhood of its singular set Σ(S) =

⋂
i Σ(Ii) (cf. Proposition 6.7). This normal form is

the key to the geometric description of (M, c) with non-trivial intersection set Σ(S). The precise
statements are made in Section 7 (cf. Proposition 7.2 and Theorem 7.3). Finally, in Section
8 we discuss the extrinsic curvature properties of the singularity submanifold Σ(S) in (M, c)
(cf. Theorem 8.4 and 8.5). In particular, we present a tractor formulation, which implies total
umbilicity in higher codimension (cf. Theorem 8.3).

2 Conformal geometry and tractor calculus

Let Mn be a smooth manifold of dimension n ≥ 3. Recall that a Riemannian conformal structure
on M is a smooth R+-ray subbundle Q ⊂ S2T ∗M , whose fibre over p ∈M consists of conformally
related positive definite metrics on TpM . Smooth sections of Q are metrics on M and we denote
the set of all such sections by c. Any two sections g, g̃ ∈ c are then related by g̃ = e2ϕg for
some function ϕ ∈ C∞(M), i.e., g and g̃ are conformally equivalent metrics on M . The principal
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R+-bundle π : Q → M induces for any representation t ∈ R+ 7→ t−w/2 ∈ End(R), w ∈ R, a
natural real line bundle E [w] over M , which is called the conformal density bundle of weight w. If
V is any vector bundle of tensors on M , we obtain for w ∈ R the tensor bundle V [w] := V ⊗ E [w]
of conformal weight w. We write g for the conformal metric on (M, c), that is the tautological
section of S2T ∗M [2] := S2T ∗M ⊗ E [2] determined by Q. Note that every density bundle E [w],
w ∈ R, is trivialised by any metric g ∈ c, i.e., a section of E [w] is via g a real function on M .

In [29] the notion of tractor bundles in conformal geometry was introduced (see also [4]). For a
given choice of metric g ∈ c, the standard tractor bundle T = TM of the conformal space (M, c),
may be identified with the direct sum

T ∼=g R ⊕ TM ⊕ R ,

i.e., a section T in T consists of a triple (a, ψ, b), where a, b are real functions and ψ is a vector field
on M . We also set s− := (1, 0, 0) and s+ := (0, 0, 1), which allows us to write T = as− + ψ + bs+
with respect to g. Under a conformal rescaling of g to g̃ = e2ϕ · g (by a smooth function ϕ) the
triple (a, ψ, b) transforms by the rule

(ã, ψ̃, b̃) = ( eϕa , e−ϕ · (ψ + a · gradg(ϕ)) , e−ϕ · (b− dϕ(ψ) − a

2
|gradgϕ|2g) ) , (1)

i.e., g̃ gives rise to a different identification of the tractor bundle T with the direct sum R⊕TM⊕R.
Transforming a triple (a, ψ, b) twice in a row with respect to some rescaling functions ϕ1, ϕ2

produces the same result as transforming (a, ψ, b) once with respect to ϕ1 +ϕ2. This explains the
naturalness of the tractor bundle T for the conformal structure c onM . In fact, the transformation
rule (1) shows that T invariantly admits a composition structure

T = E [1] +

�
� TM [−1] +

�
� E [−1] ;

E [−1] may be naturally identified with a subbundle of T and TM [−1] is a subbundle of the
quotient bundle T /E [−1]. We denote by Π the natural projection from T to E [1].

The tractor bundle T of (M, c) carries an invariant metric 〈·, ·〉T of signature (1, n+ 1) and a
canonical invariant connection ∇, which preserves this tractor metric 〈·, ·〉T . The metric 〈·, ·〉T is

given for any T = (a, ψ, b), T̂ = (â, ψ̂, b̂) ∈ T with respect to g ∈ c by

〈T, T̂ 〉T = ab̂+ âb + g(ψ, ψ̂) . (2)

The tractor connection ∇ satisfies

∇X




a

ψ

b


 =




X(a) − g(X,ψ)

∇g
Xψ + b ·X − a · Pg(X)

X(b) + P
g(X,ψ)


 (3)

for any X ∈ TM , where ∇g denotes the Levi-Civita connection of g on TM , and

P
g =

1

n− 2

(
scalg

2(n− 1)
−Ricg

)

is the Schouten tensor in terms of the Ricci tensor Ricg and the scalar curvature scalg of g. With
P

g(X) we denote the vector in TM , which is dual to P
g(X, ·) via g.

More generally, we have the p-form tractor bundles on a conformal space (Mn, c) of dimension
n ≥ 3. For the definition of these bundles, let T ∗ = T ∗M denote the dual vector bundle to the
standard tractor bundle T on (M, c). The dual tractor bundle T ∗ is canonically identified with
T via the tractor metric 〈·, ·〉T . Then we obtain from T ∗ via the exterior product ∧ the p-form
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tractor bundles ΛpT ∗, p = 0, · · · , n + 2. The p-form tractor bundles ΛpT ∗ admit the invariant
composition structure

Λp−1T ∗M [p] +

�
� (

ΛpT ∗M [p] ⊕ Λp−2T ∗M [p− 2]
) +

�
� Λp−1T ∗M [p− 2] (4)

with natural projection
Π : ΛpT ∗ → Λp−1T ∗M [p],

i.e., for any section α ∈ Γ(ΛpT ∗) the projection Π(α) is a (p − 1)-form on (M, c) of conformal
weight p.

The composition structure (4) splits with respect to any g ∈ c into the direct sum

Λp−1T ∗M ⊕ ΛpT ∗M ⊕ Λp−2T ∗M ⊕ Λp−1T ∗M ,

and thus Π(α) is identified via g with a (p − 1)-form α− ∈ Ωp−1(M). We write α− = Πg(α) to
indicate the scale dependence of α− on g ∈ c. If we denote by s♭

− the dual of s− ∈ T and by s♭
+

the dual of s+ ∈ T , then any p-form tractor α can be written with respect to g as

α = s♭
− ∧ α− + α0 + s♭

− ∧ s♭
+ ∧ α∓ + s♭

+ ∧ α+ (5)

with uniquely determined differential forms α− ∈ Ωp−1(M), α0 ∈ Ωp(M), α∓ ∈ Ωp−2(M) and
α+ ∈ Ωp−1(M) (cf. [21]). This makes the splitting of (4) explicit. Alternatively, we write the
quadruple (α−, α0, α∓, α+) as a diamond

α ∼=g




α−

α0 α∓

α+


 .

The transformation of the quadruple (α−, α0, α∓, α+) for conformally related metrics g, g̃ ∈ c can
be deduced from (1). Note that, since Π(α) has conformal weight p, the (p− 1)-form α− = Πg(α)
rescales for g̃ = e2ϕg by α̃− = Πg̃(α) = epϕ ·α−. Also note that the tractor connection (3) extends
naturally to covariant derivatives ∇ on all p-form tractor bundles ΛpT ∗. Explicit formulae for ∇
acting on ΛpT ∗ with respect to a metric g ∈ c can be deduced from (3) (cf. e.g. [21, 15]).

3 Almost Einstein structures and Poincaré-Einstein metrics

A standard tractor T ∈ Γ(T ) with ∇T = 0 on (M, c) is called ∇-parallel. The corresponding
density σ = Π(T ) ∈ Γ(E [1]) is an almost Einstein structure on (M, c). We explain this notion and
recall some basic facts about almost Einstein structures (cf. e.g. [12, 21]). Moreover, we explain a
relation of almost Einstein structures with hypersurface singularity and Poincaré-Einstein metrics.

3.1 Almost Einstein structures

As discussed in [4], there exists an invariant second order differential operator D : Γ(E [1]) → Γ(T )
for densities of weight 1 over a conformal space (Mn, c), n ≥ 3. This differential operator D is
acting with respect to a metric g ∈ c on real functions s ∈ C∞(M) by

Dgs =




s

gradg(s)

�
gs


 , (6)
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where �
g := − 1

n (∆g − trgP
g) with Laplacian ∆gs = trg∇gds. For an invariant construction of D

see [11]. It is a matter of fact that for densities σ ∈ Γ(E [1]) the equation

∇Dσ = 0 (7)

is equivalent to
trace-free part of (∇gds − s · Pg) = 0 , (8)

where s is the function which corresponds via a choice of metric g ∈ c to the density σ. In turn, it is
also true that if a tractor T satisfies ∇T = 0 then the component s = Πg(T ) = 〈T, s+〉T ∈ C∞(M)
of T with respect to g ∈ c satisfies (8) and Dgs = T .

It is well known that a solution σ of (7) without zeros on (M, c) has the property that g̃ = σ−2
g

is an Einstein metric on M in the conformal class c, i.e., Ricg̃ = scalg̃

n · g̃. On the other hand, if
a metric s−2 · g in the conformal class c = [g] on M is Einstein then s satisfies (8) with respect
to g. However, in general one has to expect that a solution of (7), resp., (8), admits a non-trivial
zero set on M . In this case the existence of an Einstein metric in c, which exists globally on M is
not guaranteed. Note that, if a solution s of (8) vanishes identically on some open subset of M ,
then it follows directly from expression (6) for the parallel standard tractor Dgs that s ≡ 0 is the
trivial solution on M . This argument proves that the zero set of a non-trivial solution s of (8) is
always singular on M , i.e., the complement of the zero set of s is dense in M .

Definition 3.1 Let (Mn, c), n ≥ 3, be a conformal space with standard tractor bundle T .

1. We call (Mn, c) an almost Einstein space if a ∇-parallel standard tractor I 6= 0 exists.

2. If I 6= 0 in Γ(T ) is ∇-parallel, then we call σ = Π(I) an almost Einstein structure of (M, c).
Accordingly, if g ∈ c is a choice of metric, then we call a non-trivial solution s ∈ C∞(M) of
(8) an almost Einstein structure of (M, g).

3. If I 6= 0 in Γ(T ) is ∇-parallel, then we denote the singular zero set of the almost Einstein
structure σ = Π(I) by Σ(σ) (resp. Σ(I)). We call Σ(σ) the scale singularity set of σ (resp.
I).

On an almost Einstein manifold (M, c, I) (or (M, c, σ) with σ = Π(I)) we shall write S(I)
(or S(σ)) as a shorthand for −〈I, I〉T . This may be viewed as scalar curvature quantity for the
structure, since off the singularity set Σ(I) we have S(I) = scalg

n(n−1) for the metric g = σ−2
g. The

following result is a direct consequence of (2) and (3).

Theorem 3.2 [12] Let (M, c, I) be an almost Einstein space of Riemannian signature with σ =
Π(I) and S(σ) = −〈I, I〉T . If S(σ) > 0 then Σ(σ) is empty and (M,σ−2

g) is Einstein with
positive scalar curvature; if S(σ) = 0 then Σ(σ) is either empty or consists of isolated points and
(M r Σ(σ), σ−2

g) is Ricci-flat; if S(σ) < 0 then the scale singularity set Σ(σ) is either empty or
else is a smooth hypersurface, and (M r Σ(σ), σ−2

g) is Einstein of negative scalar curvature.

3.2 The relation to Poincaré-Einstein spaces

In the present article we are interested in the case of (multiple) almost Einstein structures σ with
hypersurface singularity. This case is closely related to the geometry of asymptotically hyperbolic
metrics and Poincaré-Einstein spaces as follows. Let (M, c) be a Riemannian conformal space
admitting an almost Einstein structure σ ∈ Γ(E [1]) with scalar curvature S(σ) = −1 and Σ(σ) 6= ∅.
If g ∈ c is a metric on M , then the corresponding solution s = Πg(Dσ) of (8) vanishes exactly on
Σ(σ) and we have ds 6= 0 for any p ∈ Σ(σ). Hence the real function s has positive and negative
values on M . We set M+(s) := {x ∈M |s(x) ≥ 0}. By construction, the space M+(s) is a smooth
manifold with boundary Σ(σ), for which s serves as a defining function. The interior M+(s) of
M+(s) is the open subset of M , where s is positive.
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Since 〈Dσ,Dσ〉T = 1, we have |gradgs|g = 1 on the hypersurface Σ(σ). This shows that the
metric g+ = s−2g is asymptotically hyperbolic, i.e., the sectional curvature of g+ is asymptotically
constant −1 at each boundary point of Σ(σ) in M+(s). The metric g+ is also Einstein with

Ricg+ = −(n− 1)g+

on the interior M+(s). Thus (M+(s), g+) is a Poincaré-Einstein space in the usual sense (cf. e.g.
[8, 16]). The boundary Σ(σ) with induced conformal structure [g|TΣ(σ)] is called a conformal

infinity of the interior space (M+(s), g+). In case M+(s) is compact the Poincaré-Einstein metric
g+ on M+(s) is called conformally compact (since the metric s2g+ is obviously smooth on the
compact space M+(s) up to the boundary Σ(σ)). In this situation the interior (M+(s), g+) is
geodesically complete.

Definition 3.3 Let σ be an almost Einstein structure with S(σ) = −1 and Σ(σ) 6= ∅ on a closed
(= compact without boundary) conformal space (M, c). Then we call g+ = σ−2

g on M r Σ(σ) a
conformally closed Poincaré-Einstein metric.

Note that the construction as described above can also be applied to the almost Einstein
structure −s on (M, g). In general, the spaces M+(s) and M+(−s) equipped with the metric
g+ = s−2g are not isometric, even not locally near the hypersurface Σ(σ). In case the two spaces
are isometric the Poincaré-Einstein metric g+ is said to be even (see Definition 3.6).

It is also well known that if σ is an almost Einstein structure on (M, c) with S(σ) < 0 and
Σ(σ) 6= ∅, then the scale singularity set Σ(σ) is a totally umbilic smooth hypersurface in (M, c)
(see Section 8). In fact, the scale singularity set Σ(σ) satisfies an even stronger assertion.

Lemma 3.4 [16] Let (M, c, I) be an almost Einstein space with S(I) = −1 and Σ(I) 6= ∅ and let
g ∈ c be an arbitrary smooth metric on M . Then there exists a unique smooth function ω on some
open neighbourhood Uω of Σ(I) in M with ω|Σ(I) ≡ 1 such that

I ∼=g̃




s̃

gradg̃ s̃

0


 (9)

with respect to the metric g̃ := e2ωg on Uω.

Proof. We set s = Πg(I) and s̃ = Πg̃(I) with respect to g̃ = e2ωg. Then we have s̃ = eωs
and ds̃ = eω(ds + sdω). The condition (9) for s̃ on some neighbourhood of Σ(I) is equivalent to
|gradg̃ s̃|g̃ ≡ 1. The latter condition in turn is equivalent to

2g(gradgs, gradgω) + s|gradgω|2g =
1 − |gradgs|2g

s
= �

gs .

This is a non-characteristic first oder PDE for ω, so there exists a solution in some neighbourhood
Uω of Σ(I) in M with arbitrarily prescribed ω on Σ(I). A solution ω of this PDE with boundary
condition ω|Σ(I) ≡ 1 is unique. �

Note that I restricts to a normal standard tractor on the hypersurface Σ(I) in (M, c) in the
sense of [4]. In general, the normal standard tractor of a hypersurface Σ is given (up to a sign)
with respect to a metric on the ambient space by NΣ = (0, n,H), where n is a unit normal vector
field on Σ in the ambient space, and H denotes the mean curvature of Σ in direction of n. This
shows that with respect to a metric g̃ = e2ωg as in Lemma 3.4 for any boundary data, the mean
curvature Hg̃ of Σ(I) vanishes identically. We conclude that Σ(I) is a minimal and totally geodesic
smooth hypersurface of (Uω, g̃) (cf. Section 8).

A metric of the form g̃ = e2ωg as in Lemma 3.4 has another special feature. It can be written
in a certain normal form. To derive this normal form, we consider the almost Einstein structure
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s̃ with respect to g̃ as a coordinate function on Uω. For convenience, let us assume that Σ(I)
is closed. Then there exists some ε > 0 such that Σ(I) × (−ε, ε) is uniquely identified with a
neighbourhood Uε of Σ(I) in Uω via the flow of the gradient gradg̃ s̃.

Proposition 3.5 [16] Let (M, c, I) be an almost Einstein space with S(I) = −1 and Σ(I) 6= ∅.

1. A metric g̃ as in Lemma 3.4 restricted to a neighbourhood Uε of Σ(I) is isometric to ds̃2 +gs̃

on Σ(I) × (−ε, ε), where gs̃ is some smooth family of metrics on Σ(I).

2. The asymptotically hyperbolic Einstein metric g+ = s̃−2 · g̃ on Uε r Σ(I) is then given in
normal form by s̃−2 ·

(
ds̃2 + gs̃

)
on Σ(I) × {(−ε, 0) ∪ (0, ε)}.

The proof of the normal form (1) and (2) of Proposition 3.5 works the same as for conformally
compact Poincaré-Einstein spaces with boundary in [16]. Only a slight modification is necessary,
since we are dealing here with a hypersurface Σ(I) in a space M without boundary. We omit
the details of this modified proof. Also note that the assumption of closeness for Σ(I) is only
made in order to have a global parameter ε at hand. In the non-compact case the normal forms
of Proposition 3.5 are locally valid when g̃ is restricted to an appropriate neighbourhood of an
arbitrary point of the hypersurface Σ(I).

The almost Einstein structure s̃ = Πg̃(I) on a neighbourhood Uω as given in Lemma 3.4 is
called a special defining function for the hypersurface Σ(I). The corresponding Poincaré-Einstein
metric g+ on M rΣ(I) is called even if the map (x, s̃) ∈ Σ(I)× (−ε, ε) 7→ (x,−s̃) ∈ Σ(I)× (−ε, ε)
is an isometry for the normal form metric (1) ds̃2 + gs̃ of Proposition 3.5, i.e., we simply have
gs̃ = g-s̃ for the family of metrics on Σ(I). This definition of evenness is in the sense of [10]. The
definition does not depend on the special defining function s̃, resp., the boundary data for the
solution ω of Lemma 3.4 (which determine s̃).

Definition 3.6 Let (M, c, I) be an almost Einstein space with S(I) = −1 and Σ(I) 6= ∅. We
call σ = Π(I) an even almost Einstein structure on (M, c) if the corresponding Poincaré-Einstein
metric g+ = σ−2

g on M r Σ(I) is even in the sense of [10].
Alternatively, on a closed space (M, c) one can say an almost Einstein structure σ = Π(I) with

hypersurface singularity Σ(I) 6= ∅ is even if and only if there exists a conformal diffeomorphism Φ
of (M, c), which satisfies Φ∗σ = −σ.

The main intention of the present article is to generalise the results of Lemma 3.4 and Propo-
sition 3.5 to the case when (M, c) is a closed conformal space with multiple almost Einstein
structures and intersecting hypersurface singularities. We will develop the corresponding normal
form problem in the following sections (cf. Proposition 6.7). It will turn out that multiple al-
most Einstein structures (resp. conformally closed Poincaré-Einstein metrics) with intersecting
hypersurface singularities are typically even.

4 Normal conformal Killing p-forms and

special Einstein products

The equation ∇α = 0 for a (p + 1)-form tractor α ∈ Γ(Λp+1T ∗) on (M, c) is eligible for any
p = 0, . . . , n + 1. If this equation is satisfied, we call α a ∇-parallel (p + 1)-form tractor. The
corresponding p-form ̺ := Π(α) of conformal weight p+ 1 is a so-called normal conformal Killing
p-form on (M, c) (cf. [21]). For p = 0 this is an almost Einstein structure as introduced in
the previous section. For 0 < p < n and simple α the corresponding structure is locally up to
singularities that of a special Einstein product (cf. [22, 2, 13]).
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4.1 Nc-Killing p-forms

Let (Mn, c) be a conformal space of dimension n ≥ 3. The (p + 1)-form tractor bundle Λp+1T ∗

is equipped with the induced tractor connection and ∇α = 0 is a conformally covariant PDE for
α ∈ Γ(Λp+1T ∗). Similar to (6), a certain conformally covariant second order differential operator

D : Ωp(M)[p+ 1] → Γ(Λp+1T ∗)

was introduced in [7], which acts naturally on p-forms of conformal weight p+ 1. The operator D
satisfies Π◦D = id on Ωp(M)[p+1], and moreover, D◦Π is the identity on ∇-parallel (p+1)-form
tractors. The operator D was computed in [21] with respect to a metric g ∈ c when acting on
nc-Killing p-forms α− = Πg(α). As result we have

Dgα− =




α−

1
p+1dα−

1
n−p+1d

∗α−

�pα−


 , (10)

where d∗ denotes the codifferential with respect to g and

�p :=
1

n− 2p

(
1

p+ 1
d∗d+

1

n− p+ 1
dd∗ + trgP

g

)
for n 6= 2p , (11)

which is �p = −1
n−2p (∆g − trgP

g) with Laplacian ∆g := trg(∇g)2. For n = 2p the operator �n/2

can be expressed with respect to a (local) g-orthonormal frame {v1, . . . , vn} of TM by

�n/2α− :=
1

n− p

(
1

p+ 1
d∗d +

n∑

i=1

vi − (P(vi, ·) ∧ α−)

)
. (12)

The immediate consequence of (10) and a formula for the induced connection ∇ from (3) is
that the tractor equation ∇α = 0 is equivalent with respect to an arbitrary g ∈ c to the system

∇g
Xα− − 1

p+ 1
X − dα− +

1

n− p+ 1
X♭ ∧ d∗α− = 0 (13)

−P(X)♭ ∧ α− +
1

p+ 1
∇g

Xdα− +X♭ ∧ �pα− = 0 (14)

P(X) − α− +
1

n− p+ 1
∇g

Xd
∗α− +X − �pα− = 0 (15)

1

p+ 1
P(X) − dα− +

1

n− p+ 1
P(X)♭ ∧ d∗α− + ∇g

X�pα− = 0 (16)

of partial differential equations for α− = Πg(α), where X ∈ TM is arbitrary with dual 1-form
X♭ = g(X, ·). By construction, this set of equations is conformally covariant. In fact, the first
equation (13) alone is conformally covariant and simply says that α− = Πg(α) is a so-called
conformal Killing p-form on (M, g), resp., ̺ = Π(α) is a conformal Killing p-form of weight
p + 1 on (M, c) (cf. [28]). If, in addition, a conformal Killing p-form α− satisfies the equations
(14) to (16), then we call α− a normal conformal Killing p-form, resp., in short we say α− is
a nc-Killing p-form (cf. [21]). It follows immediately from (13) - (16) that the zero set Σ(α−)
of a non-trivial nc-Killing p-form α− is singular. This also shows that the natural projection
Π : Γ(Λp+1T ∗) → Ωp(M)[p+1] restricts to an isomorphism of the space of ∇-parallel (p+1)-form
tractors and the space of nc-Killing p-forms of weight p+ 1 on (M, c).

If (M, c) is an oriented conformal space we can introduce a Hodge ∗-operator acting on (p+1)-
form tractors. The ∗-operator is uniquely defined by the relation

α ∧ ∗α = 〈α, α〉T · vol(T )
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for any α ∈ Λp+1T ∗, where vol(T ) denotes the volume form tractor due to the given orientation and
〈·, ·〉T is the induced tractor metric on (p+1)-form tractors (cf. [21]). Obviously, since the Hodge ∗-
operator is ∇-parallel, a (p+1)-form tractor is ∇-parallel if and only if the corresponding (n−p+1)-
form tractor ∗α is ∇-parallel. With the conventions of [21] we have Πg(∗α) = (−1)p ∗ Πg(α), i.e.,
if α− is a nc-Killing p-form then the usual Hodge dual ∗α− is a nc-Killing (n − p)-form as well.
Note that locally on (M, c) we can always introduce some orientation. We will do this occasionally
in order to have a Hodge dual at hand for local computations on p-forms.

With respect to g ∈ c the content of the curvature Ω∇ of the tractor connection ∇ consists of
the Weyl tensor W g and the Cotton tensor Cg. The Weyl tensor W g is the traceless part of the
Riemannian curvature tensor, and Cg(X,Y ) := (∇g

XP
g)(Y ) − (∇g

Y P
g)(X) for X,Y ∈ TM . We

also set Cg(X,Y, Z) := g(Cg(X,Y ), Z) for Z ∈ TM . The tractor curvature Ω∇ acts trivially on
any ∇-parallel (p+ 1)-form tractor α. This implies directly the following curvature conditions for
the existence of a nc-Killing p-form α− = Πg(α) on (M, g):

W g(X,Y ) • α− = 0 (17)

W g(X,Y ) • dα− = (p+ 1)Cg(X,Y )♭ ∧ α− (18)

W g(X,Y ) • d∗α− = −(n− p+ 1)Cg(X,Y ) − α− (19)

W g(X,Y ) • �pα− = −




1

p+1C
g(X,Y ) − dα−

+ 1
n−p+1C

g(X,Y )♭ ∧ d∗α−



 , (20)

where • denotes the induced action of End(TM) on differential forms ΛT ∗M . Moreover, we define
the Bach tensor by

Bg(X,Y ) :=

n∑

i=1

(∇g
vi
Cg)(Y, vi, X) −

n∑

i=1

W g(Pg(vi), X, Y, vi)

with respect to some local g-orthonormal frame {v1, . . . , vn}. Taking the divergence on both sides
of the equations (17) - (20) results in

(n− 4) · Cg
X • α− = 0 (21)

(n− 4) · Cg
X • dα− = −(p+ 1) · Bg(X)♭ ∧ α− (22)

(n− 4) · Cg
X • d∗α− = (n− p+ 1) · Bg(X) − α− (23)

(n− 4) · Cg
X • �pα− =




1

p+1B
g(X) − α−

+ 1
n−p+1B

g(X)♭ ∧ α−



 (24)

where Cg
X := Cg(·, ·, X) for X ∈ TM .

4.2 Special Einstein products

Let α ∈ Λp+1
x T ∗ be some (p + 1)-form tractor at a point x of (M, c). We say α is a simple (or

decomposable) tractor if α is a non-vanishing ∧-product α1 ∧ · · · ∧ αp+1 of 1-form tractors αi,
i = 1, . . . , p + 1. As one can easily see from (5), if α is simply so are the corresponding non-
trivial exterior forms α−, α0, α∓ and α+ with respect to any g ∈ c. In particular, if α is a simple
∇-parallel (p + 1)-form tractor on (M, c), then the corresponding nc-Killing p-form α− ∈ Ωp(M)
is simple off its zero set Σ(α−) for any g ∈ c. If we assume in addition that the singularity set
Σ(α−) is empty, then we have a non-vanishing length function e−ϕ := |α−|g with respect to g ∈ c.
In this case we can rescale the metric g by g̃ = e2ϕg such that the rescaled nc-Killing p-form
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α̃− = Πg̃(α) = e(p+1)ϕα− has constant norm 1. It was observed in [22] that simple ∇-parallel
(p+ 1)-form tractors without singularities occur typically on special Einstein products.

Definition 4.1 Let (M1, g1) and (M2, g2) be Einstein spaces of dimension n1 > 0 and n2 > 0,
respectively, such that n1 + n2 ≥ 3 and

n1(n1 − 1)scalg2 = −n2(n2 − 1)scalg1 . (25)

Then we call the Riemannian product space (M, g) := (M1×M2, g1×g2) a special Einstein product.

Note that Definition 4.1 is also valid for n1 ≤ 2 or n2 ≤ 2. Here any 1-dimensional space is
considered to be Einstein. A 2-dimensional Einstein space has constant sectional curvature.

If (M, g1 × g2) is a special Einstein product of oriented spaces, then the (pull-backs of the)
volume forms vol(g1) and vol(g2) are nc-Killing forms of degree n1 and n2, respectively, on M
with conformal structure c = [g1 × g2]. Moreover, one can easily see from (10) that D(vol(g1)) ∈
Γ(Λn1+1T ∗) and D(vol(g2)) ∈ Γ(Λn2+1T ∗) are simple ∇-parallel form tractors. On the other
hand, we have the following result.

Theorem 4.2 [22] Let α be a simple ∇-parallel (p+1)-form tractor with 0 < p < n such that Π(α)
does nowhere vanish on (M, c). Then let g̃ ∈ c be the metric, for which the p-form α̃− = Πg̃(α)
has constant norm 1.

1. The p-form α̃− is simple and parallel with respect to the Levi-Civita connection ∇g̃ of g̃.

2. The metric g̃ is locally isometric to a special Einstein product g1 × g2.

Note that, in Theorem 4.2, at least one of the scalar curvatures scalg1 or scalg2 is non-zero
if 〈α, α〉T 6= 0. In case α is null g1 × g2 is a product of Ricci-flat metrics, i.e., the product itself
is Ricci-flat. If M in Theorem 4.2 is a simply connected closed space, then (M, g̃) is globally a
special Einstein product of two simply connected closed spaces.

5 Multiple almost Einstein structures

Let (Mn, c) be a Riemannian conformal space of dimension n ≥ 3. We use the following standard
notions in regard to (M, c). The set of all smooth conformal transformations of (Mn, c) is denoted
by Aut(M, c), i.e., Aut(M, c) consists of all diffeomorphism Φ of M with Φ∗

g = g. The set
Aut(M, c) is in a natural way a finite dimensional Lie group, which acts smoothly on (M, c). The
corresponding Lie algebra is denoted by aut(M, c). Moreover, we have the set

inf(M, c) := { V ∈ X(M)| LV g = 0 }

of conformal Killing vector fields on (M, c). The set inf(M, c) equipped with the commutator [·, ·]
of vector fields is a finite dimensional Lie algebra. In general, aut(M, c) is properly contained in
inf(M, c), since not any conformal Killing vector has to be complete on M .

Furthermore, let T be the standard tractor bundle of (M, c). Then we denote by P(T ) ⊂ Γ(T )
the set of ∇-parallel standard tractors. The set P(T ) is a vector space of finite dimension N :=
dim(P(T )) ≤ n+2. Since the tractor connection ∇ preserves the tractor metric 〈·, ·〉T , a symmetric
bilinear form 〈·, ·〉P is naturally induced on P(T ). In fact, any tractor T ∈ P(T ) is uniquely
determined by its value Tx at a single point x ∈ M , and the definition 〈T, T 〉P := 〈Tx, Tx〉T is
independent of x ∈M . This shows that with respect to any (orthonormal) basis of Tx, x ∈M , the
space (P(T ), 〈·, ·〉P ) is identified with a subspace of the (n+2)-dimensional Minkowski space R

1,n+1.
The symmetric bilinear form 〈·, ·〉P on P(T ) admits a unique signature (N+,N−,N0), where N+

denotes the maximal possible dimension of a positive definite subspace in P(T ). Accordingly,
N−,N0 are defined as the maximal dimensions for negative definite and totally null subspaces in
P(T ), respectively. Note that for the case of Riemannian conformal geometry the tractor metric
〈·, ·〉T admits Lorentzian signature. Hence N−,N0 are either 0 or 1. If N− = 1 then N0 = 0.
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5.1 The general case

Now let S be a linear subspace of dimension ℓ ≤ N in P(T ). Then we can choose a basis
I(S) := {I1, . . . , Iℓ} of linearly independent tractors of S in P(T ). We set

αI(S) := I♭
1 ∧ · · · ∧ I♭

ℓ ,

where I♭ := 〈I, ·〉T denotes the dual of a standard tractor I. This wedge product of dual 1-form
tractors is a ℓ-form tractor. Since the I♭

j ’s are ∇-parallel, the ℓ-form tractor αI(S) is ∇-parallel as
well. Hence Π(αI(S)) is a nc-Killing l-form with l := ℓ−1 of conformal weight ℓ (for 0 < ℓ < n+2).
In particular, any pair {I1, I2} of linearly independent tractors in P(T ) gives rise to a nc-Killing
1-form βI1,I2 := Π(I♭

1 ∧ I♭
2) on (M, c). Such a 1-form βI1,I2 of conformal weight 2 is dual via the

conformal metric g to a uniquely determined conformal Killing vector field, which we denote by
VI1,I2 . We define

infS(M, c) := span{ V ∈ X(M)| V = VI1,I2 for some I1, I2 ∈ S } .

Lemma 5.1 The subset infS(M, c) of inf(M, c) with commutator [·, ·] is a Lie subalgebra of di-

mension ℓ(ℓ−1)
2 for any subspace S ⊂ P(T ).

Proof. Let I1, . . . , Iℓ be a basis of S. We set P2(S∗) := span{I♭
i ∧ I♭

j | i, j = 1, . . . , ℓ }. The

projection Π restricted to P2(S∗) admits no kernel. Thus the vector space infS(M, c) is spanned

by the ℓ(ℓ−1)
2 linearly independent vector fields {VIi,Ij

| i 6= j, i, j ∈ {1, . . . , ℓ} }.
Next we notice that the 2-form tractor bundle Λ2T ∗ is canonically identified with the adjoint

tractor bundle A via the tractor metric 〈·, ·〉T . The adjoint tractor bundle A admits a natural
fibrewise bracket operation {·, ·} : A⊗A → A (cf. e.g. [5]). Via the identification Λ2T ∗ ∼= A the
bracket {·, ·} induces a bracket {·, ·}P on P2(S∗). One can easily check that for any i1, i2, i3, i4 ∈
{1, . . . , ℓ} the bracket {I♭

i1
∧ I♭

i2
, I♭

i3
∧ I♭

i4
}P is again a linear combination of generating elements of

P2(S∗).
Now we observe that from Proposition 3.6 of [5] the relation Π({A,B}P) = −[Π(A),Π(B)]

follows for any A,B ∈ P2(S∗). Hence the Lie bracket [·, ·] on infS(M, c) is closed. �

Note that the map A ∈ P2(S∗) 7→ −Π(A) ∈ inf(M, c) admits no kernel. Hence (P2(S∗), {·, ·}P)
and (infS(M, c), [·, ·]) are isomorphic as Lie algebras. Since any fibre (Ax, {·, ·}x), x ∈ M , of the
adjoint tractor bundle is isomorphic to the Lie algebra so(1, n+1) of the Möbius group in dimension
n, the above proof also shows that infS(M, c) is (naturally up to conjugation) a Lie subalgebra
of so(1, n + 1). It is not difficult to identify infS(M, c) ∼= P2(S∗) explicitly as Lie subalgebra
of so(1, n + 1). In fact, if S is non-degenerate in P(T ) with respect to 〈·, ·〉P , then P2(S∗) is
isomorphic to the orthogonal Lie algebra so(S), that is so(a−, a+) ⊂ so(1, n+ 1), where (a−, a+)
is the signature of S in P(T ). Note that so(S) ⊂ so(1, n + 1) is the Lie algebra of a compact
connected subgroup of the Möbius group for a− = 0. In case S is degenerate, the Lie algebra
P2(S∗) is isomorphic to the annihilator p ⊂ so(1, a+) ⊂ so(1, n+ 1) of a null vector in R

1,a+ .
As we discussed in Section 3, any I ∈ P(T ) corresponds to an almost Einstein structure

σ = Π(I) on (M, c). With respect to a metric g ∈ c on M the almost Einstein structure σ is
represented by a solution s := Πg(I) of (8). The dual tractor I♭ is then given as a triple by
(s, ds,�gs). More generally, if S ⊂ P(T ) is a subspace with basis I(S) := {I1, . . . , Iℓ}, ℓ ≤ N , we
denote the corresponding almost Einstein structures by σi, resp., si with respect to g ∈ c. The
four components of the ℓ-form tractor αI(S) with respect to some g ∈ c are then given by

α− = Σℓ
j=1(−1)j+1sj · ds1 ∧ · · · d̂sj · · · ∧ dsℓ

α0 = ds1 ∧ · · · ∧ dsℓ

α∓ = Σi<j(−1)i+j+1(si�
gsj − sj�

gsi) · ds1 ∧ · · · d̂si · · · d̂sj · · · ∧ dsℓ

α+ = Σℓ
j=1(−1)j+1

�
gsj · ds1 ∧ · · · d̂sj · · · ∧ dsℓ ,

(26)
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where the hat ̂ denotes omission of the underlying term.
The ℓ-form tractor αI(S) is by construction ∇-parallel and simple. From Section 3 we know

that all non-trivial components of (α−, α0, α∓, α+) are simple. In particular, the nc-Killing l-form
α− = Π(αI(S)), l = ℓ−1, is simple off its zero set. Then, by Theorem 4.2, the conformal structure
c on M is locally off the singularity set represented by a special Einstein product. However, it
might well be that α− does admit zeros on a space (M, c). This is suggested by the fact that a
single almost Einstein structure does admit zeros, in general. We set

Σ(S) := { x ∈M | Π(αI(S))(x) = 0 } .

Obviously, this definition of Σ(S) depends only on the subspace S ⊂ P(T ), but not on the choice
of basis {I1, . . . , Iℓ} which defines αI(S). In fact, note that αI(S) can be seen as a constant multiple
of a volume form tractor for S. Their singularity sets are identical.

Theorem 5.2 Let S ⊂ P(T ) be a linear subspace of dimension ℓ with basis {I1, . . . , Iℓ} on a
Riemannian conformal space (Mn, c) of dimension n ≥ 3.

1. If S is Euclidean then Σ(S) =
⋂ℓ

i=1 Σ(σi). The singularity set Σ(S) is either empty or else
a smooth submanifold of codimension ℓ in M . The exterior differential of Πg(αI(S)) does
not vanish in some neighbourhood Ug of Σ(S) with respect to any g ∈ c.

2. If S is degenerate then Σ(S) =
⋂ℓ

i=1 Σ(σi). The singularity set Σ(S) is either empty or else
consists of isolated points in M .

Proof. From (26) we see immediately that
⋂ℓ

i=1 Σ(σi) ⊂ Σ(S). On the other hand, let

xo ∈ M r
⋂ℓ

i=1 Σ(σi) be an arbitrary point. Then there exists some k ∈ {1, . . . , ℓ} such that
σk 6= 0 on some neighbourhood U of xo. After changing the enumeration we can assume k = 1.
We set g = σ−2

1 g on U , which is an Einstein metric. With respect to g we have s1 = 1 and
ds1 = 0 on U . This shows α− = ds2 ∧ · · · ∧ dsℓ on U . If α−(xo) = 0, then we see from (26) that
dα−(xo) = 0 and �

gα−(xo) = 0 as well. Obviously, this implies 〈αI(S), αI(S)〉T < 0, i.e., such a

xo does not exist if S is Euclidean or degenerate in P(T ). We conclude Σ(S) =
⋂ℓ

i=1 Σ(σi) in
these cases.

Now let us assume that S is Euclidean with Σ(S) 6= ∅ and {I1, . . . , Iℓ} is an orthonormal basis.
Then we have dsi 6= 0 for all i ∈ {1, . . . , ℓ} at any xo ∈ Σ(S) for any g ∈ c. In fact, since the Ii’s
are assumed to be pairwise orthogonal standard tractors, the dsi’s are pairwise orthogonal at any
xo ∈ Σ(S) as well. This proves that α0 = 1

ℓdα− does not vanish at any xo ∈ Σ(S) for any g ∈ c,

which also shows that the intersection
⋂ℓ

i=1 Σ(σi) is a submanifold of codimension ℓ in M .
In case S is degenerate there exists a Ricci-flat scale σ in the span of the σi’s on (M, c). We

know from Theorem 3.2 that the singularity set of the Ricci-flat scale σ is either empty or consists
of isolated points. This proves that Σ(S) ⊂ Σ(σ) is either empty or consists of isolated points. �

The proof also shows that if S is not indefinite with dim(S) = n+1 then Σ(S) = ∅. Note that,

if the subspace S ⊂ P(T ) is indefinite, then we have Σ(S) 6⊂ ⋂ℓ
i=1 Σ(σi), in general. We find such

examples on the Möbius sphere, which we want to discuss next. Note that the Möbius sphere is
the only closed Riemannian conformal space, which admits an indefinite subspace S ⊂ P(T ) of
dimension ℓ > 1 (cf. [14]).

5.2 The model space

So let us consider the Minkowski space R
1,n+1 of dimension n+ 2, n ≥ 3, with metric (·, ·)1,n+1.

In R
1,n+1 we have the null quadric L = {x ∈ R

1,n+1|(x, x)1,n+1 = 0}. Let L+ denote the forward
part of Lr {0}. The projectivation PL ∼= Sn of the null cone L is a model for the Möbius sphere,
the standard model of Riemannian conformal geometry. In fact, the Minkowski metric (·, ·)1,n+1

induces in a natural way a conformal class of metrics on PL, which are all conformally flat. The
R+-bundle π : L+ → PL is naturally isomorphic to the bundle Q of conformally related metrics
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on PL, and the Minkowski space R
1,n+1 serves as a Fefferman-Graham ambient metric space for

the Möbius sphere PL (cf. [8, 10]). As explained in [6], the tractor bundle T of PL is naturally
identified with (TR

1,n+1|L+
)/ ∼, where the equivalence relation ∼ is as follows: for p, q ∈ L+ we

have Tp ∼ Tq if and only if p and q lie in the same null ray of L+ and Tp, Tq are parallel vectors on
R

1,n+1 according to the usual parallelism of R
1,n+1 as affine space. Then the tractor metric and

connection are induced by (·, ·)1,n+1 and the Levi-Civita connection on R
1,n+1, respectively. It

follows that there is 1-to-1-correspondence of parallel vector fields on R
1,n+1 and parallel standard

tractors in Γ(T ) on PL. In particular, the space P(T ) of PL has dimension n+ 2.
The almost Einstein structures on PL can be viewed in the following way. Let P be an arbitrary

vector in R
1,n+1. Then we have the orthogonal hyperplanes P⊥ := {x ∈ R

1,n+1|(x, P )1,n+1 = 0}
and P⊥(±1) := {x ∈ R

1,n+1|(x, P )1,n+1 = ±1} to P in R
1,n+1. We define G to be the intersection

(P⊥(1) ∩ L+) ∪ (P⊥(−1) ∩ L+) of the latter hyperplanes with the forward null cone L+, and by
Gπ we denote the image of G in PL under π. The image Gπ is PL minus the projective null cone
of P⊥. The intersection G determines uniquely a section γ of π : L+ → PL over Gπ , i.e., a metric
gγ on Gπ. In fact, this metric gγ is isometric to the restriction of the Minkowski metric (·, ·)1,n+1

to the submanifold G of R
1,n+1 (which is identified via π with Gπ). The metric gγ is Einstein

with constant sectional curvature −(P, P )1,n+1. Note that if P is a timelike vector, the projective
null cone of P⊥ is empty, i.e., gγ is a globally defined round metric on PL. If P is spacelike, the
image Gπ is PL minus the sphere, which is the projective null cone of P⊥. In this case gγ is a
hyperbolic metric on Gπ. And, if P is null, then Gπ is PL minus the null ray {RP}. The metric
gγ on Gπ is Euclidean.

Now let S′ be a linear subspace of R
1,n+1 with basis {P1, . . . , Pℓ}. Every basis vector Pi, i =

1, . . . , ℓ, determines a parallel standard tractor Ii and a corresponding almost Einstein structure
σi on the Möbius sphere PL. In particular, S′ is naturally identified with a subspace S of P(T ).
Also, the ℓ-form P ♭

1 ∧· · ·∧P ♭
ℓ on R

1,n+1 corresponds to the parallel ℓ-form tractor α = I♭
1∧· · ·∧I♭

ℓ

with singularity set Σ(α) := {q ∈ PL|Π(α)(q) = 0} on PL. Obviously, if S ′ is Euclidean, then
we have Σ(α) = P(L ∩ S′⊥) = P(L ∩ ⋂i P

⊥
i ) =

⋂
i Σ(σi). If S′ is degenerate, then we have

Σ(α) = P(L∩S′⊥) = P(L∩S′) = {RP}, where RP is the unique real null line in S ′. This explains
the statements of Theorem 5.2 for the case of the Möbius sphere. On the other hand, if S ′ is
indefinite we can choose a basis {A1, . . . , An−ℓ} of the orthogonal complement S′⊥, which gives
rise to parallel standard tractors B1, . . . , Bn−ℓ on PL. Then we also have the parallel (n − ℓ)-
form tractor α⊥ := B♭

1 ∧ · · · ∧ B♭
n−ℓ, which is (up to a constant multiple) Hodge dual to α

on PL. We observe that the singularity sets Σ(α) and Σ(α⊥) are identical. This shows that
Σ(α) = P(L ∩ S′) 6= ∅ if ℓ > 1, although

⋂
i Σ(σi) = ∅.

Finally, note that any conformal Killing vector in infS(PL), S′ ∼= S, is induced in a natural
way by a wedge product of a pair of vectors in S ′. Let V ∈ infS(PL) be such a vector field induced
by Q1, Q2 ∈ S′ and let P be another parallel vector on R

1,n+1, which induces an Einstein metric
gγ on the subspace Gπ of PL as described above. Then it is straightforward to see that the vector
field V restricted to Gπ is Killing with respect to gγ if P is orthogonal to Q1 and Q2 ∈ S′. In
fact, infS(PL) is a Lie algebra of Killing vectors with respect to gγ on Gπ if and only if (Gπ , gγ)
comes from an orthogonal vector P to S′. In particular, if S′ is an Euclidean subspace of R

1,n+1,
then infS(PL) is a Lie algebra of Killing vectors for any round metric on PL, which is induced by
a timelike vector P ∈ S′⊥.

6 A local geometric description

We assume the following setting throughout this section. Let (Mn, c) be a Riemannian conformal
space of dimension n ≥ 3 with standard tractor bundle T . The space of ∇-parallel standard
tractors on (M, c) is denoted by P(T ). Then let S ⊂ P(T ) be an Euclidean subspace of dimension
ℓ ≥ 2 with a fixed orthonormal basis I(S) := {I1, . . . , Iℓ}. The corresponding almost Einstein
structures are denoted by σj := Π(Ij), j = 1, · · · , ℓ, where every σj has negative scalar curvature
S(σj) = −1. We set αI(S) := I♭

1 ∧· · ·∧ I♭
ℓ , which is a ∇-parallel ℓ-form tractor. The zero set of the

corresponding nc-Killing l-form Π(αI(S)), l := ℓ − 1, is denoted by Σ(S). We assume Σ(S) 6= ∅,
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which implies ℓ < n + 1. Then, as discussed in Theorem 5.2, Σ(S) is a smooth submanifold of

codimension ℓ in M , which coincides with the intersection
⋂ℓ

j=1 Σ(σj) of the scale singularities
of the σj ’s. Moreover, importantly, let us assume in addition that M is a closed space. We aim
to study the local geometry of (M, c) in a neighbourhood of (a point of) the singularity set Σ(S)
for ℓ ≥ 2. For ℓ = 1 this problem is solved by Proposition 3.5. (Note that by Theorem 1.2 of
[14] any almost Einstein structure on a closed Riemannian conformal space (M, c) has to have a
hypersurface scale singularity, unless (M, c) is conformally equivalent to the Möbius sphere.)

6.1 The cocloseness

The following general result for closed spaces will be used.

Theorem 6.1 [27, 25] The automorphism group Aut(M, c) of a closed conformal space (Mn, c)
of dimension n is essential if and only if (M, c) is conformally equivalent to the round sphere
(Sn, grd) of dimension n.

In other words, Theorem 6.1 says that whenever (Mn, c) is not conformally equivalent to the
round sphere (Sn, grd), then there exists a metric g∗ ∈ c such that Aut(M, c) acts as a group
of isometries on the Riemannian manifold (M, g∗). Note that a conformal transformation group
Aut(M, c) is essential if and only if it is non-compact. This result has an important consequence
for our discussion here.

Corollary 6.2 Let (Mn, c) be a closed Riemannian conformal space of dimension n ≥ 3 and
let S be an Euclidean subspace of (P(T ), 〈·, ·〉P). Then there exists a metric g∗ ∈ c on M such
that infS(M, c) is a Lie subalgebra of iso(M, g∗), the Lie algebra of Killing vector fields of the
Riemannian manifold (M, g∗).

Proof. Since M is assumed to be closed, every conformal vector field V ∈ inf(M, c) on M is
complete, i.e., the flow ΦV of V is a 1-parameter group of conformal transformations on (M, c).
Consequently, infS(M, c) is the Lie algebra of some connected subgroup InfS(M, c) of Aut(M, c).
In case (M, c) is not conformally equivalent to the standard sphere there exists a metric g∗ ∈ c
such that Aut(M, c) acts by isometries. In particular, InfS(M, c) acts by isometries. This implies
that any V ∈ infS(M, c) is a Killing vector field with respect to this metric g∗ on M .

Recall from Section 5 that infS(M, c) is in any case the Lie algebra of a compact connected
subgroup of the Möbius group. In fact, we have infS(M, c) = so(l) ⊂ so(1, n + 1), l := ℓ − 1.
In case (Mn, c) is conformally equivalent to the standard sphere Sn, the automorphism group
Aut(M, c) is the Möbius group. Hence InfS(M, c) is the compact connected subgroup of the
Möbius group, whose Lie algebra is infS(M, c) ⊂ so(1, n + 1). Thus we can conclude again that
infS(M, c) is a Lie algebra of Killing vector fields for some metric g∗ ∈ c. (In fact, the explicit
discussion of the Möbius sphere PL at the end of Section 5 explains as well that infS(Sn, [grd]) is
a Lie algebra of Killing vector fields for certain round metrics on Sn.) �

In particular, Corollary 6.2 implies that for any pair Ii, Ij ∈ I(S) the corresponding nc-Killing
1-form βIi,Ij

= Πg∗
(I♭

i ∧ I♭
j ), which is dual to the vector field VIi,Ij

, is coclosed with respect to g∗
, i.e., d∗βIi,Ij

= 0. Then expression (26) for d∗βIi,Ij
shows that the cocloseness of all the βIi,Ij

’s
is equivalent to

si�
g∗sj − sj�

g∗si = 0 for all i, j ∈ {1, . . . , ℓ} , (27)

where si := Πg∗
(Ii) This condition and again (26) for the l-form α− = Πg∗

(αI(S)) show that
d∗α− = 0 on (M, g∗).

Lemma 6.3 Let (Mn, c) be a closed Riemannian conformal space of dimension n ≥ 3 and let
S ⊂ (P(T ), 〈·, ·〉P ) be an Euclidean subspace with orthonormal basis I(S) = {I1, . . . , Iℓ}. Then
there exists a metric g∗ ∈ c such that the nc-Killing l-form α− = Πg∗

(αI(S)) is coclosed.
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So far we observe from our discussion that the diamond for αI(S) with respect to the metric
g∗ ∈ c of Lemma 6.3 takes the form

αI(S)
∼=g∗




α−

1
ℓdα− 0

�
g∗α−


 .

In the following, we will explore further properties of those metrics g∗ ∈ c, for which Πg∗
(αI(S)) is

coclosed. Our ultimate ambition is to show that there exist ǧ ∈ c onM such that both d∗Πǧ(αI(S))
and �

ǧΠǧ(αI(S)) vanish simultaneously.

6.2 Deriving the normal form

So let us fix an arbitrary metric g∗ ∈ c on M such that the l-form α− = Πg∗
(αI(S)) is coclosed.

Lemma 6.4 1. �
g∗α− = f∗ · α− for some smooth function f∗ on M .

2. d∗dα− = f+ · α− for some real function f+ on M .

Proof. (1) Let si = Πg∗
(Ii) be the almost Einstein structure to Ii with respect to g∗ for some

arbitrary i ∈ {1, . . . , ℓ}. Then let g = e2ϕg∗ be a metric such that |deϕsi|g ≡ 1, whose existence is
guaranteed by Lemma 3.4 on some neighbourhood of Σ(Ii). We have

�
g∗si

si
=

1 − |dsi|2g∗

2s2i
=

1 − |deϕsi|2g + e−2ϕs2i |deϕ|2g∗

2s2i
=

|dϕ|2g∗

2

on that neighbourhood. This shows that the quotient f∗ := �
g∗si

si
is everywhere smooth on

M . In particular, from (27) we can conclude that I♭
i = (si, dsi, f∗si) with respect to g∗ for all

i ∈ {1, . . . , ℓ}. Obviously, (26) implies α+ = �
g∗α− = f∗α−.

(2) Expression (11) for n 6= 2l immediately implies d∗dα− = f+ · α− with f+ = (l + 1)((n −
2l)f∗ − trPg∗).

For n = 2l we have the following argument. Let Ann(α−) := {X ∈ TM |X − α− = 0 } denote
the annihilator of the l-form α− with orthogonal complement Ann⊥g∗

(α−) in TM . It follows
from (15) that P

g∗(X,Y ) = 0 for any X ∈ Ann(α−), Y ∈ Ann⊥g∗
(α−). This shows that for

any x ∈ M r Σ(S) we can find an orthonormal basis v := {v1, . . . , vn} of (TxM, g∗) such that
{v1, . . . , vn−l} spans Ann(α−) and such that P

g∗

x is diagonal with respect to v, i.e., the vi’s are
eigenvectors of P

g∗

x : TxM → TxM .
Now, from (12) we have the expression

d∗dα− = (l + 1) ·
(
((n− l)f∗ − trPg∗)α− + Σn

i=1P(vi)
♭ ∧ (vi − α−)

)
.

Since α−(x) is simple at x ∈M r Σ(S), it is clear that the expression Σn
i=1P(vi)

♭ ∧ (vi − α−)(x)
is just some multiple of α−(x) for any x ∈ M r Σ(S), i.e., d∗dα− = f+α− for some smooth
function f+ on M r Σ(S). For x ∈ Σ(S) we have d∗dα− = α− = 0. �

Recall from Theorem 5.2 that there exists an open neighbourhood Ug∗
of Σ(S) in M where

1
ℓdα− = ds1 ∧ · · · ∧ dsℓ does not vanish. Obviously, the annihilator Ann(dα−) := {X ∈
TUg∗

|X − dα− = 0 } is an integrable smooth distribution of rank n − ℓ in TUg∗
, i.e., there

exist smooth integral leaves Int(dα−) in Ug∗
of codimension ℓ with tangent space Ann(dα−).

(Note that in the extremal case we have ℓ = n, which says that the integral leaves of Ann(dα−)
are all single points.)

Lemma 6.5 The g∗-orthogonal complement Ann⊥g∗
(dα−) of the annihilator Ann(dα−) in TUg∗

is an integrable distribution of rank ℓ.
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Proof. Without loss of generality we can assume that the neighbourhood Ug∗
is orientable,

i.e., we can define a Hodge ∗-operator with respect to g∗ for p-forms on Ug∗
(cf. Section 4). We

set β := ∗dα−. The g∗-orthogonal complement of Ann(dα−) is the annihilator Ann(β), which
is a smooth distribution of rank ℓ in TUg∗

. We want to show that Ann(β) is integrable, i.e.,
[X,Y ] − β = 0 for any vector field X,Y ∈ Γ(Ann(β)) on Ug∗

. The latter condition is equivalent
to

dβ(X,Y, ·) = 0 for any X,Y ∈ Ann(β) . (28)

In fact, since Σ(S) is singular in Ug∗
and Ann(β) is smooth of constant rank, it is enough to check

(28) for any X,Y ∈ Ann(β) on Ug∗
r Σ(S).

For this purpose recall that dα− = γ ∧ α− for some 1-form γ on Ug∗
r Σ(S), i.e., we have

Ann(dα−) ⊂ Ann(α−) and Ann(∗α−) ⊂ Ann(β). In fact, Ann(∗α−) has codimension 1 in

Ann(β) on Ug∗
r Σ(S). This shows via the identity dβ = (−1)n+p2+1f+ ∗ α−, obtained from

Lemma 6.4, that dβ(X,Y, ·) = 0 for any X,Y ∈ Ann(β) on Ug∗
r Σ(S). �

Now let q ∈ Σ(S) be an arbitrary singular point and let Uq be some appropriate neighbourhood
of q in Ug∗

. Then we can choose functions (x1, . . . , xn−ℓ) on Uq, which serve as coordinates on the
integral leaves of Ann(dα−), with x1 = · · · = xn−ℓ = 0 at q ∈ Uq. On the other hand, the functions
(s1, . . . , sℓ) serve as coordinates on the integral leaves of the orthogonal distribution Ann⊥g∗

(dα−),
and the merged set (s1, . . . , sℓ, x1, . . . , xn−ℓ) of functions forms a smooth coordinate system on

Uq ⊂ M . We set r :=
√

Σℓ
i=1s

2
i and w :=

√
Σn−ℓ

i=1 x
2
i . Obviously, there exist reals r̃, w̃ > 0 such

that the product Bℓ
r̃ × Bn−ℓ

w̃ of balls is a neighbourhood of q in Uq. For convenience, we assume

in the following Uq = Bℓ
r̃ × Bn−ℓ

w̃ for some small r̃, w̃ > 0 with respect to the given coordinates.
Lemma 6.5 shows that the metric g∗ takes with respect to such coordinates on Uq around q ∈ Σ(S)
the form

g∗ = g∗1(s1, . . . , sℓ, x1, . . . , xn−ℓ) + g∗2(s1, . . . , sℓ, x1, . . . , xn−ℓ) ,

where g∗2 is a smooth metric on the integral leaves of Ann(dα−) and g∗1 is a smooth metric on
the orthogonal leaves (for fixed (s1, . . . , sℓ) and (x1, . . . , xn−ℓ)), respectively. Note that if ℓ = n
we have no xi-coordinates, but the functions (s1, . . . , sℓ) alone serve as coordinates on Uq. The
tensor g∗2 is absent in this case.

Lemma 6.6 (1) The metric g∗1 takes for any q ∈ Σ(S) on an integral leaf of Ann⊥g∗
(dα) in

some ball neighbourhood Uq = Bℓ
r̃ ×Bn−ℓ

w̃ ⊂M the form

g∗1 =
dr2

1 − 2f∗r2
+ r2grd ,

where r =
√

Σℓ
i=1s

2
i and grd is the round metric on the unit sphere Sl of dimension l = ℓ− 1.

(2) The function f∗ depends on (x1, . . . , xn−ℓ) and the radial coordinate r (but not indepen-
dently on the coordinate functions (s1, . . . , sℓ)).

(3) The tensor g∗2 depends on (x1, . . . , xn−ℓ) and the radial coordinate r (but not independently
on the coordinate functions (s1, . . . , sℓ)).

Proof. (1) From 〈Ii, Ij〉T = δij and Ii ∼=g∗
(si, grad

g∗si, f∗si) we obtain gij
∗1 :=

g∗(grad
g∗si, grad

g∗sj) = δij − 2f∗sisj for any i, j ∈ {1, . . . , ℓ}. The inverse of the (ℓ × ℓ)-matrix

(gij
∗1) is given by (δij + 2f∗

1−2f∗r2 sisj). These are the coefficients of g∗1 with respect to the dsi⊗dsj ’s

on Uq. Also note dr2(∂si, ∂sj) = 1
r2 sisj for any i, j = 1, . . . , ℓ. With 〈·, ·〉ℓ = dr2 + r2grd (the

Euclidean metric) we obtain g∗1 = 〈·, ·〉ℓ + 2f∗r2

1−2f∗r2 dr
2 = dr2

1−2f∗r2 + r2grd.

(2) The l-form α− is nc-Killing on (M, g∗). Note that the restriction of α− to the integral
leaves Int⊥g∗

(dα−) = {xi = const.} of Ann⊥g∗
(dα−) is a non-trivial l-form, which we denote by

α− again. Since X − α− = 0 and by (13) ∇g∗

X α− = 0 for any X ∈ Ann(dα−), we have ∇g∗1α− =
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∇g∗α−|Int⊥g∗
(dα−) and d∗α− = d∗α−|Int⊥g∗

(dα−) = 0 with respect to g∗1 on Int⊥g∗
(dα−). This

shows that α− on Int⊥g∗
(dα−) satisfies

∇g∗1α− =
1

l + 1
dα− ,

i.e., α− is a Killing l-form on any integral leaf {xi = const.} of Ann⊥g∗
(dα−).

Furthermore, note that α− ∧ rdr = r2

ℓ dα−, where |α−|g∗1
= r, |rdr|g∗1

= r
√

1 − 2f∗r2 and

| 1ℓdα−|g∗1
=
√

1 − 2f∗r2. This shows that the 1-form rdr√
1−2f∗r2

is (locally) Hodge ∗-dual to α− on

the leaves Int⊥g∗
(dα−) with respect to g∗1. Then, since α− is conformal Killing, the dual vector

field V = r
√

1 − 2f∗r2 · ∂r of rdr√
1−2f∗r2

with respect to g∗1 is a conformal vector field on any leaf

Int⊥g∗
(dα−) = {xi = const.}, i.e., LV g∗1 = λg∗1 for some function λ on Uq.

Now let W be any vector field on Uq r Σ(S) with W (r) = 0, i.e., W is tangential to the
cylinders {r = const.} in Uq r Σ(S) and, in particular, g∗1-orthogonal to V . Then we compute

0 = λg∗1(V,W ) = (LV g∗1)(V,W ) = W
(
r
√

1 − 2f∗r2
)
· g∗1(V, ∂r) .

This proves W (f∗) = 0 for any tangent vector field W to {r = const.}, i.e., the function f∗ on Uq

depends only on (x1, . . . , xn−ℓ) and the radial coordinate r.
(3) From |α−|g∗

= r we see that α̃− = r−ℓα− = Πg̃(αI(S)) has constant norm with re-
spect to g̃ = r−2g∗ on Uq r Σ(S). According to Theorem 4.2 this implies that α̃− is ∇g̃-
parallel and g̃ = r−2g∗ is a Riemannian product space. In fact, note that Ann(α̃−) is spanned
by {∂r, ∂x1, . . . , ∂xn−ℓ} on Uq r Σ(S) and its integral leaves have coordinates (r, x1, . . . , xn−ℓ).
Since g∗ is radial symmetric on the leaves {x1, . . . , xn−ℓ = const.}, it follows that the spheres
{r, xi = const.} in Uq rΣ(S) are the integral leaves of Ann⊥g̃

(α̃−). Obviously, the rescaled metric
g̃ splits by

grd ×
(

r−2dr2

1 − 2f∗r2
+ r−2g∗2

)
(29)

into a Riemannian product metric with respect to the orthogonal integral leaves of Ann⊥g̃
(α̃−)

and Ann(α̃−) on Uq r Σ(S). This means g̃2 := r−2dr2

1−2f∗r2 + r−2g∗2 on Int(α̃−) does not depend on

the coordinates of spheres Int⊥g̃
(α̃−) = {r, xi = const.}, i.e., g̃2 depends solely on the coordinates

(r, x1, . . . , xn−ℓ). �

In summary, Lemma 6.6 shows that any metric g∗ ∈ c on M , for which α− = Πg∗
(αI(S))

is coclosed, has locally on some ball neighbourhood Uq = Br̃ × Bw̃ of an arbitrary q ∈ Σ(S) a
coordinate expression of the form

g∗ =
dr2

1 − 2f̃∗(r, xi)r2
+ r2grd + g̃∗2(r, xi) . (30)

with f̃∗(r, x1, . . . , xn−ℓ) := f∗(s1, . . . , sℓ, x1, . . . , xn−ℓ) and g̃∗2(r, x1, . . . , xn−ℓ) :=
g∗2(s1, . . . , sℓ, x1, . . . , xn−ℓ) for r =

√
Σis2i . Moreover, it follows from the discussion of

Section 4 that (29) is a special Einstein product on Sℓ−1 × ((0, r̃) ×Bw̃) , i.e., (30) is conformally
equivalent to a special Einstein product off the singularity {r = 0}.

Proposition 6.7 Let (Mn, c) be a closed Riemannian conformal space of dimension n ≥ 3 and
let S ⊂ (P(T ), 〈·, ·〉P ) be an Euclidean subspace with orthonormal basis I(S) = {I1, . . . , Iℓ}, ℓ ≥ 2,
Σ(S) 6= ∅, and corresponding ℓ-form tractor αI(S). Then for any g ∈ c there exists a unique metric

ǧ ∈ c on some open neighbourhood ǓS of Σ(S) in M with the following properties:

1. ǧ = g on Σ(S)
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2. �
ǧsi = 0 for any si := Πǧ(Ii), i = 1, . . . , ℓ, on ǓS , i.e.,

I♭
i

∼=ǧ




si

dsi

0


 for all i = 1, . . . , ℓ,

3. d∗α− = 0 and �
ǧα− = 0 for α− = Πǧ(αI(S)) on ǓS , i.e.,

αI(S)
∼=ǧ




α−

1
ℓdα− 0

0


 .

4. For any q ∈ Σ(S) there exists a neighbourhood Ǔq ⊂ ǓS and a family of smooth metrics ǧt,
t ∈ [0, ε), on Σ(S) ∩ Ǔq such that g+ := t−2(dt2 + ǧt) is an even Poincaré-Einstein metric
on the interior of [0, ε) × (Σ(S) ∩ Ǔq), and ǧ on Ǔq is isometric to

dr2 + r2grd + ǧr , (31)

where r :=
√

Σℓ
i=1s

2
i and grd is the round metric on the (ℓ− 1)-sphere Sℓ−1. For ℓ = n, the

normal form is dr2 + r2grd.

Proof. Let g ∈ c be an arbitrary choice of metric on M , and let g∗ ∈ c be a metric as
guaranteed by Lemma 6.3, for which α∗

− = Πg∗
(αI(S)) is coclosed. Then there exists a unique

function ω0 ∈ C∞(Σ(S)) such that g = e2ω0g∗ on Σ(S). We first construct for any q ∈ Σ(S) a
metric ǧq ∈ c on some neighbourhood Ǔq such that the statements (1) to (4) of Proposition 6.7
are satisfied on (Ǔq, ǧq). In a final step we will show that statements (1) to (3) are globally true
on the union ǓS :=

⋃
q∈Σ(S) Ǔq, which is a neighbourhood of Σ(S) in M .

So let q ∈ Σ(S) be an arbitrary point and let Uq = Bℓ
r̃×Bn−ℓ

w̃ be a ball neighbourhood with co-
ordinates (s∗1, . . . , s

∗
ℓ , x

∗
1, . . . , x

∗
n−ℓ), where s∗i := Πg∗

(Ii), i = 1, . . . , ℓ. The metric g∗ on Uq is given

by (30). We can use (30) through restriction to define the metric h∗ := dt2

1−2f̃∗(t,x∗

i
)t2

+ g̃∗2(t, x
∗
i )

on some open U ⊂ R
n−ℓ+1 with coordinates (t, x∗1, . . . , x

∗
n−ℓ), t ∈ (−r̃, r̃). By construction, this

is a smooth Riemannian metric h∗, which is even in the sense that h∗(t, x
∗) = h∗(−t, x∗) for any

t ∈ (−r̃, r̃). In fcact, since (29) is a special Einstein product, the coordinate t is an almost Einstein
structure on (U, h∗) with scale singularity {t = 0}. (We have S(I) = −1 for the corresponding
parallel tractor I.) Thus we can apply Lemma 3.4 to obtain a function ω on a neighbourhood of
{t = 0} in U with boundary condition ω|{t=0} = ω0 such that the differential dť of ť := eωt has

norm 1 with respect to the rescaled metric ȟ := e2ωh∗. (For the boundary condition ω|{t=0} = ω0

note that by construction the subset {t = 0} of U can be considered in a natural way as a subset
of Σ(S).) Since the solution ω is uniquely determined by the boundary condition ω0, the function
ω has to be even in the coordinate t, i.e., ω(t, x∗) = ω(−t, x∗).

Next we use the solution ω to define a function ωl on a neighbourhood of q = (0, . . . , 0, x∗o) ∈
Σ(S) in Uq ⊂ M as follows. We can assume that the solution ω is given on a neighbourhood of
q′ = (0, x∗o) ∈ U of the form (−ε, ε)× U ′, where ε > 0 and U ′ has coordinates (x∗1, . . . , x

∗
n−ℓ). For

such a domain we define the radial symmetric function

ωl : Bℓ
ε × U ′ → R,

(s∗1, . . . , s
∗
ℓ , x

∗) 7→ ω(r∗, x∗) ,

where r∗ :=
√

Σℓ
i=1s

∗2
i and Bℓ

ε is a ℓ-dimensional ball of radius ε with respect to the coordinates
(s∗1, . . . , s

∗
ℓ ). Since ω is an even function, we know from Lemma 3.3 of [24] that the function ωl is

smooth on the subset Bℓ
ε × U ′ of Uq in Mn.
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Now we rescale the metric g∗ on Ǔq := Bℓ
ε × U ′ by ǧq := e2ωlg∗. We claim that this metric

ǧq on Ǔq satisfies the desired properties of Proposition 6.7. Certainly, by construction we have
(1) ǧq = g on Σ(S) ∩ Ǔq. Furthermore, since ωl is radial symmetric with respect to r∗ =

√
Σis∗i

on Ǔq, we obtain from (30) gradg∗ωl = (1 − 2f̃∗(r
∗)r∗2)(∂r∗ωl)∂r∗ . The transformation rule

d∗α̌− = e(−l+1)ωl( d∗α∗
− + (n+ 1)gradg∗ωl − α∗

−) then shows that d∗α̌− = 0. In particular, from

Lemma 6.4 we have �
ǧq α̌− = f̌ α̌− for some smooth function f̌ on Ǔq. Hence, in order to prove

the assertions (2) and (3) on Ǔq, we only need to show f̌ = 0.
In fact, we have f̌ = 0 for the following reason. We set si := Πǧq

(Ii), i = 1, . . . , ℓ, and

r :=
√

Σℓ
i=1s

2
i . The metric ǧq restricted to the submanifold A := {s2 = · · · = sℓ = 0} in Ǔq is by

construction isometric to ȟ. Now, if we set t = s1, then we have dt = dr and |dt|ȟ = |dr|ǧq
on A.

However, by construction of the solution ω we also have |dt|ȟ = 1, which shows f̌ = 0 on A. Since
the function f̌ is radial symmetric, this is only possible if f̌ = 0 everywhere on Ǔq.

With f̌ = 0 and (30) we have found for ǧq the local coordinate expression

ǧq = dr2 + r2grd + g̃2(r, x1, . . . xn−ℓ)

on a neighbourhood Ǔq of q ∈ Σ(S). We set ǧt := ǧq(s1, . . . , sℓ, x1, . . . , xn−ℓ) for t =
√

Σℓ
i=1s

2
i ,

which defines a smooth family of metrics on U ′ = Σ(S)∩ Ǔq . By construction of the solution ω, we
know that the metric dt2 + ǧt on (−ε, ε)×U ′ is even in the coordinate t. Moreover, the coordinate
t is an almost Einstein structure, whose corresponding parallel tractor I has scalar curvature −1,
i.e., g+ := t−2(dt2 + ǧt) is an even Poincaré-Einstein metric on (the interior of) [0, ε) × U ′.

Finally, we have to show that (1) to (3) are globally true on some neighbourhood of Σ(S) in
M . For this purpose we choose for any q ∈ Σ(S) a local solution (Ǔq, ǧq) as constructed above.
Then we simply set ǓS :=

⋃
q∈Σ(S) Ǔq. Since the metric ǧq is uniquely determined on every

neighbourhood Ǔq, q ∈ Σ(S), by the properties (1) to (3), it is clear that for any q, q′ ∈ Σ(S)
with Ǔq ∩ Ǔq′ 6= ∅ the metrics ǧq and ǧq′ coincide on the overlap Ǔq ∩ Ǔq′ . This shows that the
ǧq’s define a smooth metric ǧ on the neighbourhood ǓS of Σ(S) in M . Obviously, the metric ǧ
satisfies (1) to (3) by construction, and ǧ is uniquely determined by these properties. Statement
(4) is true for any q ∈ Σ(S) on the open neighbourhood Ǔq of q in ǓS . �

6.3 Remarks about Proposition 6.7

The existence of the metric ǧ is always guaranteed on an open neighbourhood ǓS of the singularity
set Σ(S) in M . In fact, since M is closed, there does exist a řo > 0 such that the tube Ǔřo

:= {x ∈
M | r(x) < řo} is contained in ǓS . Therefore, it is often convenient to use some tube neighbourhood
Ǔt, t > 0, of the singularity set Σ(S). However, note that in general a tube neighbourhood of Σ(S)
need not be homeomorphic to a product of Σ(S) with some ball Bℓ

řo
of radius řo in R

ℓ. This is the
reason why statement (4) about the normal form (31) of Proposition 6.7 is only formulated locally
in a neighbourhood of a single point q ∈ Σ(S). The local neighbourhood can always be assumed
to be homeomorphic to a product Bℓ

řo
× U ′, where U ′ is some neighbourhood of q in Σ(S).

Proposition 6.7 is the generalisation of Lemma 3.4 and the normal form of Proposition 3.5 to
closed Riemannian conformal spaces admitting multiple almost Einstein structures with intersect-
ing scale singularities. However, while the normal form for ℓ = 1 of Proposition 3.5 might well be
based on an uneven Poincaré-Einstein metric, the Poincaré-Einstein metric involved in the normal
form (31) of Proposition 6.7 for ℓ > 1 has to be even in the sense of [10] (cf. Definition 3.6). This
follows from the above proof. This behaviour can also be explained by the action of the conformal
transformation group InfS(M, c) with Lie algebra infS(M, c) on the closed space (M, c). In fact,
note that by (31) the metric ǧ restricted to the integral leaves of Ann⊥ǧ

(dα−) on a tube Ǔřo
with

appropriate radius řo > 0 is the flat metric dr2 + r2grd, and there the conformal Killing vector
fields Vi,j , i, j ∈ {1, . . . , ℓ} are given by si∂sj − sj∂si. Thus the Vi,j ’s are complete on the tube
Ǔřo

, and the action of InfS(M, c) restricted to Ǔřo
is well defined and isometric with respect to ǧ.

For example, if we set i = 1, j = 2, then the flow ΦV1,2
of V1,2 only rotates the (s1, s2)-plane in

Ǔřo
, whereas the other coordinates remain constant. In particular, the rotation ΦV1,2

(π) by 180o
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is an isometry of (Ǔřo
, ǧ) with Φ∗

V1,2
(π)(σi) = −σi, i = 1, 2. The restriction of ΦV1,2

(π) to the

(n− ℓ+ 1)-dimensional submanifold A := {s2 = . . . = sℓ = 0} in Ǔřo
is an isometric reflection at

Σ(S), which maps s1 to −s1. Note that ǧ restricted to A is locally isometric to dt2 + ǧt (as in
(4) of Proposition 6.7). Thus the existence of the reflection ΦV1,2

(π) on A forces by definition the
evenness of the underlying Poincaré-Einstein metric g+ = t−2(dt2 + ǧt) of the normal form (31).

As example, let us consider the round unit sphere Sn in R
n+1 with standard coordinates

(x1, . . . , xn+1). We denote the restriction of the coordinate function xi to Sn by si for any
i = 1, . . . , n + 1. The functions si, i = 1, . . . , n + 1, are almost Einstein structures on Sn with
respect to the round metric grd (induced by the embedding Sn ⊂ R

n+1). The corresponding
parallel tractors Ii := Dgrdsi, i = 1, . . . , n+1, are pairwise orthogonal with S(Ii) = −1, and Σ(Ii)
is an equator on Sn for any i = 1, . . . , n + 1. Now let Jℓ ⊂ {1, · · · , n + 1} be a collection of ℓ
indices with 2 ≤ ℓ ≤ n. After a renumeration we can simply assume Jℓ = {1, . . . , ℓ}. We denote
by S the span of the Ii, i ∈ Jℓ, with basis I(S) = {I1, . . . , Iℓ}. Note that Σ(S) is the intersection
of ℓ (orthogonal) equators on Sn, i.e., Σ(S) is a sphere of dimension n− ℓ in Sn. We call Σ(S) a
pole of codimension ℓ in Sn. It is straightforward to check that all the vector fields Vi,j , i 6= j ∈ Jℓ

are Killing with respect to grd on Sn. In particular, the nc-Killing l-form α− = Πgrd
(αI(S)) is

coclosed on (Sn, grd). However, the length |dsi|grd
is not constant 1 in any neighbourhood of Σ(Ii)

for any i ∈ Jℓ.
Now, Proposition 6.7 guarantees a conformal factor ωl on a (tube) neighbourhood ǓS of the

pole Σ(S) such that for the rescaled metric ǧ = e2ωlgrd simultaneously every almost Einstein
structure ši = Πǧ(Ii), i ∈ Jℓ, has a differential dši of constant length 1. The tube neighbourhood

ǓS can be chosen as Sn
r {Σℓ

i=1s
2
i = 1}. We set ř :=

√
Σℓ

i=1š
2
i . Then the rescaled metric ǧ on

ǓS takes the form
dř2 + ř2gl

rd + (1 − (ř/2)2)2gn−l−1
rd .

Note that dř2 +(1− (ř/2)2)2grd is the hyperbolic metric written with respect to a special defining
function ř for the boundary (cf. e.g. [16]).

7 Sl-doubling and main result

In [24] we have invented the Sl-doubling of an even asymptotically hyperbolic space (F , g+) with
boundary N . We will see in this section that the Sl-doubling is (locally) the underlying model for
closed spaces admitting multiple almost Einstein structures with intersecting scale singularities.

We briefly recall the Sl-doubling construction for l ≥ 0. A detailed explanation can be found

in [24]. Let F
m+1

be a smooth manifold of dimension m+ 1 ≥ 1 with boundary N , and let g+ be
an even asymptotically hyperbolic metric on the interior F = F rN , i.e., the sectional curvature
of g+ is asymptotically constant 1 at each boundary point. Obviously, the product Sl × F of the
l-dimensional standard sphere Sl with F has boundary Sl ×N . Now let

Λ : Sl × F → DlF

be the map, which identifies the sphere Sl at (each point of) the boundary N to a single point. It
was shown in [24] that the resulting quotient space DlF with final topology is a manifold without
boundary. Moreover, if the boundary N of the smooth manifold F is equipped with an even
structure, then DlF is in a naturally way a smooth manifold (without boundary). In fact, in our
case the even structure on N is uniquely determined by the even AH metric g+ on the interior
F . Thus we have established the natural construction of a smooth manifold DlF of dimension
ml := m+ l + 1 from the even asymptotically hyperbolic space (F , g+).

Furthermore, we denote the image Λ(Sl ×N) of identified points in DlF by Np. The set Np is
a smooth submanifold of codimension l+ 1 in DlF . We call Np the pole of DlF , and DlF rNp is
the bulk of DlF , which is by construction diffeomorphic to the product space Sl×F . The product
Sl × F admits the conformal structure [grd × g+], which is the conformal class of the product
metric grd × g+. It is straightforward to show that this conformal structure on the bulk Sl × F
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extends smoothly to DlF . We denote the resulting conformal structure on DlF by cl[g+], and we
call (DlF , cl[g+]) the Sl-doubling (alias collapsing l-sphere product) of (F , g+).

Certain metrics g in cl[g+] on DlF can be presented in normal form locally around the pole
Np. For this, let r ≥ 0 be a special defining function on a neighbourhood U of N in F with respect
to g+, i.e., we have N = {r = 0} and |dr|ḡ = 1 on U with respect to the metric ḡ = r2g+. Via
the flow of the gradient gradḡ(r) of the special defining function r with respect to ḡ we obtain a
natural identification of a collar neighbourhood Uε of N in F with [0, ε)×N for some small ε > 0.
The metric g+ is given on [0, ε) × N with respect to r in normal form by r−2(dr2 + gr), where
gr is a smooth 1-parameter family of metrics on the boundary N (cf. e.g. [16] and Proposition
3.5). Now, the pull-back of the special defining function r to the product Sl × F induces via Λ
a function rl on the neighbourhood DlU of the pole Np in DlF . In fact, the function rl vanishes
exactly on the pole Np, and the set DlUε = {x ∈ DlU : rl(x) < ε} is an ε-tube neighbourhood of
Np in DlF . The tube neighbourhood DlUε is via rl (resp. r) uniquely identified with Bl+1

ε ×N
such that rl represents the radial coordinate of the ball Bl+1

ε in R
l+1. It was shown in [24] that

the metric gl of the form
(dr2l + r2l · grd) + grl

, (32)

defined on Bl+1
ε × N , represents the conformal class cl[g+] of the Sl-doubling DlF around the

pole Np. Note that dr2l + r2l · grd is the flat metric on the factor Bl+1
ε , and grl

is a metric on the
factor N , attached to any x ∈ Bl+1

ε ×N with radial coordinate rl. In fact, the normal form (32)
characterises the Sl-doubling construction exclusively.

Theorem 7.1 [24] Let gt, t ∈ [0, ε), be any family of metrics on a manifold N such that gl :=
(dr2 + r2grd) + gr is a smooth metric on the product space Bl+1

ε × N with radial coordinate r.
Then gl represents the conformal class cl[g+] of the Sl-doubling of g+ := t−2(dt2 + gt) defined on
the interior of F = [0, ε)×N . In particular, g+ is a smooth even asymptotically hyperbolic metric
on (0, ε) ×N .

Obviously, we can apply Theorem 7.1 to the normal form (31) derived in statement (4) of
Proposition 6.7. The immediate consequence is the following local result.

Proposition 7.2 Let (Mn, c), n ≥ 3, be a closed Riemannian conformal space admitting an
Euclidean subspace S ⊂ P(T ) of dimension ℓ > 1 with Σ(S) 6= ∅. Then there exists for any
p ∈ Σ(S) a neighbourhood Uq of q in M such that (Uq, c) is conformally equivalent to the Sl-
doubling (DlF , cl[g+]), l := ℓ− 1, of some Poincaré-Einstein space (F , g+) of dimension n− l.

Note that Σ(S) ∩ Uq in the situation of Proposition 7.2 coincides with the pole Np of the
Sl-doubling (DlF , cl[g+]). We also have a global result.

Theorem 7.3 Let (Mn, c) and S ⊂ P(T ) as in Proposition 7.2. If MrΣ(S) is simply connected,
then (Mn, c) is conformally equivalent to the Sl-doubling (DlF , cl[g+]) of some simply connected,
conformally compact Poincaré-Einstein space (F , g+) of dimension n− l such that the singularity
set Σ(S) corresponds to the pole Np.

Proof. Let I(S) = {I1, . . . , Iℓ} be an orthonormal basis of S with corresponding ℓ-form
tractor αI(S). The nc-Killing l-form Π(αI(S)) has no zeros on M r Σ(S). Hence there exists a
unique metric g̃ ∈ c on M r Σ(S) such that α̃− = Πg̃(αI(S)) has constant length 1 with respect
to g̃. Note that any curve γ in M r Σ(S) has infinite length with respect to g̃ if γ converges
to Σ(S), i.e., g̃ is geodesically complete. Then, since M r Σ(S) is simply connected, it follows
from Theorem 4.2 that the Riemannian manifold (M r Σ(S), g̃) is isometric to a special Einstein
product (M1 × M2, g1 × g2). Since we know by Proposition 7.2 that (M, c) is locally around
any point of Σ(S) conformally equivalent to an Sℓ-doubling, it is clear that one of the factors,
(M1, g1) or (M2, g2), is a round Sl-sphere. We can assume (M1, g1) = (Sl, grd). (Then (M2, g2)
has negative scalar curvature −(n − l)(n − l − 1)). Now let p ∈ M1

∼= Sl be a fixed point. We
obtain an embedding ι : x ∈ M2 7→ (p, x) ∈ M r Σ(S). The closure of the image of ι in M is
ι(M2) ∪ Σ(S). We set F := M2 ∪ Σ(S), which is compact and admits via ι the smooth structure
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of an (n − l)-dimensional manifold with boundary N := Σ(S), interior M2 and metric g+ := g2.
Note that M2 is simply connected.

We show now that g+ is an AH Einstein metric. In particular, (F , g+) will be a conformally
compact Poincaré-Einstein space, whose Sl-doubling (DlF , cl[g+]) is conformally equivalent to
(Mn, c). For this, let ǧ be a metric on a neighbourhood of ǓS of S in M as guaranteed by
Proposition 6.7. We set ř := Σℓ

i=1š
2
i for ši := Πǧ(Ii). We can assume ǓS = Ǔřo

for some řo > 0.
By construction, the function ř is constant on the spheres M1 × {q} for any q ∈ M2, and the
restriction of ř to ǓS ∩ (ι(M2) ∪ Σ(S)) induces via the pull-back with ι a defining function r on
a collar of the boundary N = Σ(S) in F . In particular, we see that ǓS is via ř diffeomorphic
to Bℓ

řo
× Σ(S)! Moreover, with (4) of Proposition 6.7 we see that g+ is AH Einstein and r is a

special defining function for g+ on the interior M2 of F . Then from the local result of Proposition
7.2 we conclude that ǓS is (globally!) the collapsing l-sphere product of a collar of N in F such
that Σ(S) and Np coincide. However, then it is also clear that (Mn, c) is globally equivalent to
the Sl-doubling of (F , g+) such that Σ(S) and Np correspond. �

Alternatively, we can describe (F , g+) of Theorem 7.3 as the orbit space under the action of
InfS(M, c) on (M, c) (cf. Section 7 of [24]).

8 The scale singularity Σ(S) as minimal submanifold

We show here that the scale singularity Σ(S) for S ⊂ P(T ) Euclidean is a totally umbilic subman-
ifold of (M, c). In fact, for certain metrics in c the singularity set Σ(S) is a minimal submanifold.
This discussion includes a tractor formulation, which implies total umbilicity in higher codimen-
sion.

Let (Mn, g) be an arbitrary Riemannian space and let Nm, dim(N) = m, be a submanifold of
Mn with codimension s := n−m. The restriction of the tangent bundle TM to the submanifold N
admits a natural g-orthogonal decomposition into the tangential part TN with projection pr and
the bundle T⊥N of normal vectors on N in M with projection pr⊥. The restriction gN := g|TN

is a Riemannian metric on N , and the Levi-Civita connection ∇gN of gN is the tangential part of
∇g (restricted to tangent vector fields on N).

Definition 8.1 The second fundamental form of a submanifold Nm in (M, g) is given by the
normal part

IIg(X,Y ) := pr⊥ ◦ ∇g
XY, X, Y ∈ X(N),

of the Levi-Civita connection of g on M . The mean curvature of N in (M, g) is the trace Hg :=
1
m trgII

g. If m > 1 and IIg has only a trace part, i.e., II = Hg ⊗ gN on N , then we call N a
totally umbilic submanifold of (M, g).

If g̃ = e2ϕg, ϕ ∈ C∞(M), is any conformally equivalent metric to g on M , we have

∇g̃
XY = ∇g

XY + dϕ(X)Y + dϕ(Y )X − g(X,Y ) · gradgϕ

for X,Y ∈ X(M). This relation and the fact that the decomposition TN ⊕ T⊥N is conformally
invariant imply the transformation rules

II g̃ = IIg − pr⊥(gradgϕ) ⊗ gN and H g̃ = e−2ϕ(Hg − pr⊥(gradgϕ)) . (33)

We see that N is totally umbilic in (M, g) if and only if N is totally umbilic in (M, g̃), i.e., the
notion of total umbilicity of N as submanifold of the conformal space (M, [g]) is well defined. In
particular, it is clear that if N is totally geodesic in (M, g) (i.e. IIg = 0), then N is totally umbilic
in (M, [g]).

Our next aim is to formulate a tractor condition for a submanifold (of higher codimension)
in a conformal space, which implies total umbilicity. This tractor formulation is in the spirit of
[4] concerning hypersurfaces. Let (M, c) be a Riemannian conformal space with standard tractor
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bundle T and let Nm be a submanifold of codimension s in (M, c). For convenience, we assume
here that the normal bundle T⊥N is orientable. (Locally on N , this is always the case without any
further assumption!) Then with respect to g ∈ c on M we can choose a volume form vol(g|T⊥N )
of T⊥N . We set

IN :=




0

vol(g|T⊥N ) 0

Hg
− vol(g|T⊥N )


 . (34)

Via the identification ΛsT ∗ ∼=g Λs−1T ∗M [s] ⊕ (ΛsT ∗M [s] ⊕ Λs−2T ∗M [s− 2]) ⊕ Λs−1T ∗M [s− 2]
we understand IN as a section of the s-form tractor bundle ΛsT ∗ of M restricted to N . In fact,
the transformation rule for s-form tractors (induced by (1)) and the transformation (33) of the
mean curvature show the independence of the definition of IN from the choice of metric g ∈ c on
M (up to a choice of orientation on T⊥N).

Alternatively, the s-form tractor IN can be presented as a simple wedge product of 1-form
tractors. For this, let {n1, . . . , ns} be an oriented g-orthonormal (local) frame of the normal
bundle T⊥N . Then we set

Ni :=




0

ni

νi


 , i = 1, . . . , s,

where νi := g(H,ni) is the mean curvature of N in normal direction ni. The normal standard
tractor frame {N1, . . . , Ns} on N in (M, c) is independent of the choice of metric as (33) shows.
If αi denotes the dual 1-form tractor to Ni, i = 1, . . . , s, via the tractor metric 〈·, ·〉T , we have
IN = α1 ∧ · · · ∧ αs.

Definition 8.2 Let Nm, m ≥ 1, be a submanifold of codimension s > 0 in a Riemannian confor-
mal space (M, c) (with oriented T⊥N).

1. We call IN as defined in (34) the normal s-form tractor of N in (M, c).

2. We say N is a strongly umbilic submanifold of (M, c) if IN is ∇-parallel along N , i.e.,

∇XIN = 0 ∀X ∈ TN .

Note that Definition 8.2 (1) for codimension s = 1 is equivalent to the classical definition of
the normal tractor of a hypersurface in [4]. A hypersurface N in (M, c) is totally umbilic if and
only if the corresponding normal tractor IN is ∇-parallel along N . For higher codimension s > 1
we have at least the following (weaker) result.

Theorem 8.3 Any strongly umbilic submanifold Nm, m > 1, of codimension s > 0 in a Rieman-
nian conformal space (M, c) is totally umbilic.

Proof. We compute with respect to an arbitrary metric g ∈ c, and an (oriented) g-
orthonormal local frame {n1, . . . , ns} of T⊥N . The corresponding normal 1-form tractors are
then given by αi = (0, ηi, νi), i = 1, . . . , s, with ηi := g(ni, ·). Covariant differentiation with
respect to the tractor connection ∇ gives

∇Xαi =




0

∇Xηi + νig(X, ·)
X(νi) + P

g(X,ni)
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for X ∈ TN and i = 1, . . . , s. We set κ(X) := Σs
i=1(X(νi)+P

g(X,ni))ni and βi := −g(IIo(·, ·), ni)
for i = 1, . . . , s, where IIo denotes the trace-free part of the second fundamental form II. Then we
obtain with IN = α1 ∧ · · · ∧ αs:

∇XIN =




0

Σs
i=1η1 ∧ · · · ∧ ηi−1 ∧ βi(X, ·) ∧ ηi+1 ∧ · · · ∧ ηs 0

κ(X) − vol(g|T⊥N )


 .

The condition ∇XIN = 0 for all X ∈ TN implies βi = 0 for all i = 1, . . . , s, i.e., IIo vanishes and
N is totally umbilic. �

We can apply Theorem 8.3 to the situation of multiple almost Einstein structures with inter-
secting scale singularities.

Theorem 8.4 Let (Mn, c), n ≥ 3, be a Riemannian conformal space admitting an Euclidean
subspace S ⊂ P(T ) of dimension ℓ > 0 with Σ(S) 6= ∅.

1. The scale singularity Σ(S) is a totally umbilic submanifold of codimension ℓ in M (for
n− ℓ > 1).

2. For any g ∈ c there exists a metric ǧ ∈ c on M with ǧ|TΣ(S) = g|TΣ(S) such that Σ(S) is
totally geodesic and minimal in (M, ǧ).

Proof. (1) Let I(S) := {I1, . . . , Iℓ} be an orthonormal basis of S. We set ni := gradg(si) for
si = Πg(Ii). Each scale singularity Σ(Ii), i = 1, · · · , ℓ, is totally umbilic in M , and Ii is given on
Σ(Ii) with respect to some g ∈ c by (0, ni,�

gsi). A straightforward calculations shows

Hg
i =

1

n
∆gsi

for the mean curvature of Σ(Ii), i = 1, · · · , ℓ, in (M, g) (cf. [12]). In particular, we have
g(ni,∇g

XX) = 1
n∆gsi · |X |2g for any tangent vector X ∈ TΣ(Ii) and any i = 1, · · · , ℓ. Now

let {e1, . . . , en−ℓ} be some orthonormal frame of the tangent bundle TΣ(S) of the scale singularity
Σ(S). Then we have

Hg
I(S) =

1

n− ℓ
· Σn−ℓ

i=1 Σℓ
j=1g(nj,∇g

ei
ei)nj =

1

n
Σℓ

j=1∆
gsj · nj

for the mean curvature of Σ(S) in M .
On the other hand, for αI(S) = I♭

1 ∧ · · · ∧ I♭
ℓ we have

αI(S)
∼=g




0

η1 ∧ · · · ∧ ηℓ 0
(

1
nΣℓ

j=1∆
gsj · nj

)
− η1 ∧ · · · ∧ ηℓ


 ,

on Σ(S), where ηj := g(nj, ·) for j = 1, · · · , ℓ. Note that vol(g|T⊥Σ(S)) = η1 ∧ · · · ∧ ηℓ. This proves
IΣ(S) = αI(S) on Σ(S). Since αI(S) is ∇-parallel, it follows that IΣ(S) is ∇-parallel along Σ(S).
With Theorem 8.3 we conclude that Σ(S) is totally umbilic in M for dimΣ(S) = n− ℓ > 1.

(2) First, note that a submanifold is by definition minimal if the mean curvature vanishes
identically, i.e., a submanifold is totally geodesic if and only if it is totally umbilic and minimal.

If M is closed then we can use the metric ǧ ∈ c on M of Proposition 6.7. Obviously, we have

IΣ(S) = αI(S)
∼=ǧ




0

vol(g|T⊥Σ(S)) 0

0






Closed Poincaré-Einstein metrics with intersecting scale singularities 29

on Σ(S), which proves that Hg
I(S) vanishes identically. For arbitrary M we will present a general

prove after the proof of Theorem 8.5 below. �

Finally, we observe that the scale singularity Σ(S) in (M, c) is not only totally umbilic, but
also satisfies additional extrinsic curvature properties. Here we denote by W g|Σ(S) and Cg|Σ(S)

the restriction to Σ(S) of the Weyl and Cotten tensor on M with respect to g ∈ c, respectively.
The (intrinsic) Weyl and Cotten tensor of Σ(S) are denoted by WΣ(S), resp., CΣ(S).

Theorem 8.5 Let Σ(S) be a scale singularity in (M, c) as in Theorem 8.4 of dimension
dim(Σ(S)) ≥ 3 with normal bundle T⊥Σ(S). Let g ∈ c be an arbitrary metric. Then

1. n − W g = 0 for any normal vector n ∈ T⊥Σ(S).

2. If dim(M) ≥ 5, then n − Cg = 0 for any n ∈ T⊥Σ(S).

3. WΣ(S) = W g|Σ(S) and CΣ(S) = Cg|Σ(S).

Proof. (1) Let I(S) := {I1, . . . , Iℓ} be an orthonormal basis of S, and let ni := gradg(si) for
si = Πg(Ii). Then ni − W g = 0 follows immediately from (18) for α− := si, i = 1, . . . , ℓ. Since
{n1, . . . , nℓ} is a basis of T⊥Σ(S), the first statement follows. In the same manner statement (2)
follows from (20) and (22) if dim(M) ≥ 5.

(3) First, let us assume ℓ = 1, i.e., we have a ∇-parallel tractor I1 on M with hypersurface
singularity Σ(I1). In this case statement (3) follows directly from Theorem 4.5 of [12]. In fact,
it was shown in [12] that the restriction of the subbundle I⊥1 ⊂ T to the hypersurface Σ(I1)
is naturally identified with the tractor bundle T Σ(I1) of Σ(I1). Moreover, the restriction of the
tractor connection ∇ to I⊥1 → Σ(I1) gives rise to the canonical tractor connection ∇Σ(I1) on
T Σ(I1) → Σ(I1). It follows with Ω∇I1 = 0 that the tractor curvature Ω∇ of T restricts naturally
to the tractor curvature of ∇Σ(I1) on T Σ(I1). In particular, we obtain WΣ(I1) = W g|Σ(I1) and

CΣ(I1) = Cg|Σ(I1).
Now let ℓ > 1 be arbitrary. Note that above argument from [12] also shows that any Ii,

i = 2, . . . , ℓ, restricts to a ∇Σ(I1)-parallel tractor on Σ(I1). The scale singularity of the restriction
of Ii is Σ(I1)∩Σ(Ii) for i = 2, . . . , ℓ. In particular, Σ(I1)∩Σ(I2) is a totally umbilic hypersurface
in Σ(I1), and Theorem 4.5 of [12] shows again that the Weyl tensor W and the Cotton tensor
C of Σ(I1) restrict to W and C of Σ(I1) ∩ Σ(I2), i.e., WΣ(I1)∩Σ(I2) = W g|Σ(I1)∩Σ(I2) and

CΣ(I1)∩Σ(I2) = Cg|Σ(I1)∩Σ(I2). This argument applies iteratively in ℓ steps, altogether. This

finally proves WΣ(S) = W g|Σ(S) and CΣ(S) = Cg|Σ(S). �

Proof of Theorem 8.4 (2). Let M be arbitrary. We set Σ0(S) := M and Σj(S) :=⋂j
i=1 Σ(Ii) for j = 1, . . . , ℓ. Then, with the argument from the above proof it is clear that the

trace-free part IIo of Σk+1(S) in Σk(S) vanishes for any k = 0, . . . , ℓ− 1. Lemma 3.4 shows that
for any metric g(ℓ) in the conformal class c restricted to Σ(S) there is a metric g(ℓ − 1) on a
neighbourhood of Σ(S) in Σℓ−1(S) such that Σ(S) is minimal in Σℓ−1(S) with respect to g(ℓ− 1).
Now, if we use g(k) as boundary condition on (a neighbourhood of Σk+1(S) in) Σk(S), then we
obtain by iterated application of Lemma 3.4 for each k = ℓ − 1, . . . , 1 a metric g(k − 1) on a
neighbourhood of Σk(S) in Σk−1(S), for which Σk(S) is minimal in Σk−1(S).

The ultimate metric g(0) is defined on a neighbourhood of Σ(S) in M . We can extend g(0)
smoothly to a metric ǧ ∈ c on M . Then we have ǧ|TΣ(S) = g(ℓ), where g(ℓ) is the initial and

arbitrary choice in c on Σ(S). We set si := Πǧ(Ii). We have by construction dsj(∇ǧ
XX) = 0 for

any j = 1, . . . , ℓ and any X tangent to Σ(S). This shows that Σ(S) is minimal in (M, ǧ). �
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