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Abstract

In this paper, we study convergence of two different iterative regularization methods for

nonlinear ill-posed problems in Banach spaces. One of them is a Landweber type iteration

the other one the iteratively regularized Gauss-Newton method with an a posteriori chosen

regularization parameter in each step. We show that a discrepancy principle as a stopping

rule renders these iteration schemes regularization methods, i.e., we prove their convergence

as the noise level tends to zero. The theoretical findings are illustrated by two parameter

identification problems for elliptic PDEs.

1 Introduction

This article is concerned with iterative solutions of nonlinear ill-posed operator equations in Banach
spaces. Hence we consider an equation

F (x) = y (1)

where F : D(F ) ⊆ X → Y is a nonlinear operator between Banach spaces X and Y . Instead of
exact data y we assume that only noisy data yδ with noise level δ are given such that

∥
∥yδ − y

∥
∥ ≤ δ . (2)

Equation (1) is ill-posed in the sense that the solution of (1) does not depend continuously on the
data and thus a direct inversion of noise-contaminated data yδ would not lead to a meaningful
solution. Hence a stable solution of (1) requires regularization techniques which are continuous
approximations to F−1. Iterative methods are widely used as regularizations of nonlinear prob-
lems.
Operator equations like (1) are thoroughly studied in the case of Hilbert spaces X and Y . Thereby
the Landweber method and the Gauss - Newton method are very popular iterative solvers; con-
vergence and stability of both of them have been well investigated. A convergence analysis of the
Landweber iteration is found in Hanke, Neubauer and Scherzer [12]. The article [2] deals with the
convergence of the iteratively regularized Gauss - Newton method. Convergence with rates of this
iteration has been proven in [14]. Other iterative techniques that have been studied to solve (1)
in Hilbert spaces are the Levenberg - Marquardt scheme [11], the method of conjugate gradients
[10] and inexact Newton regularizations [19]. Overviews of iterative regularization methods for
inverse problems in Hilbert spaces are also found in the books [17], [20] and [8]. A book which is
entirely dedicated to iterative solvers for nonlinear operator equations is [16].
Linear ill-posed problems in Banach spaces is a growing and very lively area of research. Over the
last few years a lot of theoretical and practical results have been formulated. We only name here
a few. In [21] the authors presented a nonlinear extension of the Landweber method to Banach
spaces using duality mappings. The iterative minimization of Tikhonov functionals in Banach
spaces was outlined in [3] and convergence was proven. The article [22] deals with the solution of
convex split feasibility problems in Banach spaces by cyclic projections. Convex feasibility prob-
lems in connection with Bregman projection methods are also investigated in [1]. Convergence
rates results for Tikhonov regularization in Banach spaces have been formulated in [13]. A general
treatise of quantitative aspects of regularizations for ill-posed problems in Banach spaces is [18].
So far, to the authors best knowledge, iterative solvers for nonlinear ill-posed problems in Banach
spaces have not been formulated. To this end we extend in this article the well-known Landweber
method and the iteratively regularized Gauss - Newton method (IRGNM) to that case, prove
their convergence and demonstrate their applicability to two parameter identification problems
for elliptic PDEs.
We give a brief overview of the article. Section 2 provides the mathematical setup, the iterative
methods are formulated and all mathematical ingredients which are necessary for the following
investigations are briefly summarized. In Section 3 we show that the Landweber type iteration
converges if the step size is chosen appropriately. The convergence of the IRGNM under a certain
additional condition for the regularization parameter is proven in Section 4. In Section 5 finally
we present parameter identification problems for two elliptic boundary value problems and prove
that these problems actually fulfill the conditions that guarantee convergence of both methods.
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2 Mathematical setup

In subsection 2.1 we introduce a Landweber type method and the iteratively regularized Gauss -
Newton - method (IRGNM) to solve (1). The concept of duality mappings in Banach spaces that
is involved in the formulation of the Landweber type method is shortly summarized in subsection
2.2 along with essential results on Bregman distances which are needful for the convergence theory.
Here, we refer to the corresponding literature for a detailed outline. The essential assumptions on
the forward operator F which are supposed to be valid through the whole article are formulated
in subsection 2.3.

2.1 Iterative methods

In analogy to the Landweber method in Hilbert spaces we will study the generalization of the
nonlinear method from [21] to solve (1)

Jp(x
δ
k+1) = Jp(x

δ
k) − µkF

′(xδ
k)∗jr(F (xδ

k) − yδ) , (3)

xδ
k+1 = J∗

q (Jp(x
δ
k+1)) , k = 0, 1, . . .

Here F ′(x) is the Fréchet derivative of F at x which has to exist for using (3). The nonlinear
operators Jp, jr and J∗

q are duality mappings from X , Y and X∗ to their duals, respectively. The
concept of duality mappings is concisely explained in subsection 2.2. The stepsize µk has to be
chosen in an appropriate manner to guarantuee convergence of the method, see (15).
The second method which is considered in this article can be seen as a generalization of the
iteratively regularized Gauss - Newton method (IRGNM)

xδ
k+1 ∈ argminx∈D(F )

∥
∥Tk(x− xδ

k) +Rk

∥
∥

r
+ αk ‖x− x0‖p , k = 0, 1, . . . (4)

where we abbreviate
Tk = F ′(xδ

k) , Rk = F (xδ
k) − yδ ,

p, r ∈ (1,∞), and x0 is some a priori guess. In (4) F ′(x) denotes some linearization of F at x ∈ X
satisfying a tangential cone condition according to (9), which does not necessarily imply Fréchet
differentiability of F . Note that in case of Hilbert spaces X , Y with p = r = 2 this iteration
coincides with the known IRGNM from, e.g., [2], [14]

xδ
k+1 = xδ

k − (T ∗
kTk + αkI)

−1
(

T ∗
kRk + αk(xδ

k − x0)
)

. (5)

For the solution of the convex minimization problem in (4) we refer, e.g., to [3].
The stopping index k∗ = k∗(δ) of the iterations will in both cases be determined by a discrep-

ancy type principle
k∗(δ) = min{k ∈ IN :

∥
∥F (xδ

k) − yδ
∥
∥ ≤ Cdpδ} , (6)

2.2 Duality mappings and Bregman distances

Let X be a real Banach space with dual X∗. For p > 1 the subdifferential mapping Jp := ∂fp :
X → 2X∗

of the convex functional x 7→ 1
p‖x‖p is called the duality mapping of X with gauge

function t 7→ tp−1. It is an in general nonlinear, set-valued mapping characterized by

x∗ ∈ Jp(x) ⇔ 〈x∗ , x〉 = ‖x‖p and ‖x∗‖ = ‖x‖p−1 ,

where we write 〈x∗ , x〉 = 〈x , x∗〉 = x∗(x) for the application of x∗ ∈ X∗ on x ∈ X . For q > 1
with 1

p + 1
q = 1 we denote by J∗

q the duality mapping of the dual X∗ with gauge function t 7→ tq−1.
Throughout this paper X is supposed to be uniformly smooth and uniformly convex, hence it is
reflexive and the dual X∗ has the same properties. For an overview of the precise definitions of
smoothness and convexity and the interplay with duality mappings we refer to [21], a comprehen-
sive treatise can be found in [7]. Here it suffices to know that under our assumptions the duality

6



mappings Jp and J∗
q are both single-valued, uniformly continuous on bounded sets and bijective

with (Jp)
−1 = J∗

q . We will also consider the case of X being p-convex which is equivalent to the
dual being q-smooth, i.e. there exists a constant Cq > 0 such that the following inequality holds
for all x∗, y∗ ∈ X∗, see [23]:

‖x∗ − y∗‖q ≤ ‖x∗‖q − q 〈J∗
q (x∗) , y∗〉 + Cq‖y∗‖q . (7)

To analyse the convergence of the Landweber type method we employ the Bregman distance
∆p(x, y) between x, y ∈ X , defined as

∆p(x, y) =
1

q
‖x‖p − 〈Jp(x) , y〉 +

1

p
‖y‖p .

In Hilbert spaces we have ∆2(x, y) = 1
2‖x− y‖2. This notion of distance goes back to Bregman

[4] and has succesfully been used in investigations of problems in Banach space settings, see e.g.
[1, 5, 13, 22]. In general ∆p is not a metric but it has some distance-like properties, especially we
have

∆p(x, y) ≥ 0 and ∆p(x, y) = 0 ⇔ x = y .

Furthermore in a p-convex space X there exists some constant cp > 0 such that for all x, y ∈ X
we have

∆p(x, y) ≥ cp ‖x− y‖p . (8)

In the following Y is allowed to be an arbitrary Banach space and we write jr for a single-valued
selection of the possibly multi-valued duality mapping of Y with gauge function t 7→ tr−1, r > 1.
Possible further restrictions on X and Y will be indicated in the respective theorems.

2.3 Assumptions on the forward operator

The main assumption that we postulate for the forward operator to hold is the tangential cone
condition

‖F (x) − F (x̄) − F ′(x)(x − x̄)‖ ≤ ctc ‖F (x) − F (x̄)‖ ∀x, x̄ ∈ B (9)

for some 0 < ctc < 1, where

B =

{
B∆

ρ (x†) in case of (3)
D(F ) ∩ Bρ(x0) in case of (4)

Here, Bρ(x0) denotes the closed ball of radius ρ > 0 around x0 (possibly also ρ = ∞ and Bρ(x0) =
D(F )), and B∆

ρ (x†) = {x ∈ X |∆p(x, x
†) ≤ ρ} is a ball with respect to the Bregman distance

around some solution x† of (1). Additionally we assume

• continuity of F and of F ′ as well as

B∆
ρ (x†) ⊆ D(F ) (10)

in case of (3);

• (weak) sequential closedness in the sense that either

(xn ⇀ x ∧ F (xn) → f)

⇒ (x ∈ D(F ) ∧ F (x) = f)
(11)

or
(Jp(xn − x0) ⇀ x∗ ∧ F (xn) → f)

⇒ (x := J∗
q (x∗) + x0 ∈ D(F ) ∧ F (x) = f)

(12)

for all (xn)n∈IN ⊆ X in case of (4). Note that by J∗
q = J−1

p we have Jp(x− x0) = x∗.

7



Note that nonemptyness of the interior (with respect to the norm) of D(F ) is sufficient for
(10); in a p-convex X this is an immediate consequence of (8), and in the general uniformly convex
case this follows e.g. from the proof of Theorem 2.12 (e) in [21].

Remark 1. We point out that so far, convergence of the IRGNM has been studied under somewhat
stronger conditions on F even in the Hilbert space setting, compare [14, 16].

The tangential cone condition (9) allows to show existence of an x0-minimum-norm solution
as in the Hilbert space situation:

Proposition 1. (Proposition 2.1 in [16] and Lemma 2.10 in [21])
Let (9) hold and D(F ) ∩ Bρ(x0) = Bρ(x0) (i.e., D(F ) has nonempty interior).

(i) Then for all x ∈ Bρ(x0)

Mx := {x̃ ∈ Bρ(x0) : F (x̃) = F (x)} =
(

x+ N (F ′(x))
)

∩ Bρ(x0)

and
N (F ′(x)) = N (F ′(x̃)) for all x̃ ∈Mx.

Moreover,
N (F ′(x)) ⊇ {t(x̃− x) : x̃ ∈Mx, t ∈ IR} ,

where instead of ⊇ equality holds if x ∈ int(Bρ(x0)).

(ii) If F (x) = y is solvable in Bρ(x0), then an x0-minimum-norm solution x† exists and is
unique.

For x† ∈ int(Bρ(x0)) we have

Jp(x
†) ∈ R(F ′(x†)∗) (13)

and if for some x̃ ∈ Bρ(x0)

Jp(x̃) ∈ R(F ′(x†)∗) and x̃− x† ∈ N (F ′(x†))

holds, then x̃ = x†.

Proof. Part (i) follows analogously to part (i) of the proof of Proposition 2.1 in [16] which remains
valid in Banach spaces without any modification. Part (ii) can be seen exactly as the respective
assertion in the linear case as stated and proved in Lemma 2.10 of [21] up to the following small
modification in the proof of (13) due to the restriction to a neighborhood of x0:
For any z ∈ N (F ′(x†)) there exists an ǫ > 0 such that

x† ± ǫz ∈
(

x† + N (F ′(x†))
)

∩ Bρ(x0) = {x̃ ∈ Bρ(x0) : F (x̃) = y} .

Hence, by Theorem 2.5 in [21]

〈Jp(x
†), x†〉 ≤ 〈Jp(x

†), x† ± ǫz〉 ,

i.e. 〈Jp(x
†), z〉 = 0.

3 Convergence of the Landweber type iteration

Proposition 2. Assume that X∗ is q-smooth, that a solution x† ∈ Bρ(x0) to (1) exists, that F
satisfies (9) with ctc sufficiently small, that F and F ′ are continuous and that (10) holds. Let Cdp

be chosen sufficiently large so that

c1 := ctc +
1 + ctc
Cdp

< 1 . (14)
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Then, with the choice

µk :=
(1 − c1)

p−1

Cp−1
q

‖Rk‖p−r

max{1, ‖Tk‖p} ≥ 0 (15)

with Cq being the constant in (7), monotonicity of the Bregman distances

∆p(x
δ
k+1, x

†) − ∆p(x
δ
k, x

†) ≤ − (1 − c1)
p

pCp−1
q

‖Rk‖p

max{1, ‖Tk‖p} (16)

as well as xk+1 ∈ D(F ) holds for all k ≤ k∗(δ) − 1.

Proof. Following the lines of the proof of the first part of Theorem 3.3 in [21], and using
∥
∥F (xδ

k) − yδ − Tk(xδ
k − x†)

∥
∥ ≤ ctc

∥
∥F (xδ

k) − y
∥
∥ + δ

≤ ctc
∥
∥F (xδ

k) − yδ
∥
∥ + (1 + ctc)δ

and (6) we have

∆p(x
δ
k+1, x

†) − ∆p(x
δ
k, x

†)

=
1

q

(∥
∥xδ

k+1

∥
∥

p −
∥
∥xδ

k

∥
∥

p
)

− 〈Jp(x
δ
k+1) − Jp(x

δ
k), x†〉

= ∆p(x
δ
k+1, x

δ
k) − µk〈jr(F (xδ

k) − yδ), Tk(xδ
k − x†)〉

= ∆p(x
δ
k+1, x

δ
k)

−µk

(∥
∥F (xδ

k) − yδ
∥
∥

r − 〈jr(F (xδ
k) − yδ), F (xδ

k) − yδ − Tk(xδ
k − x†)〉

)

≤ ∆p(x
δ
k+1, x

δ
k) − µk

(

1 −
(

(ctc +
1 + ctc
Cdp

)

︸ ︷︷ ︸

=c1

) ∥
∥F (xδ

k) − yδ
∥
∥

r
,

where by inequality (7) we estimate

∆p(x
δ
k+1, x

δ
k) =

1

q

(∥
∥Jp(x

δ
k) − µkT

∗
k jr(F (xδ

k) − yδ)
∥
∥

q −
∥
∥Jp(x

δ
k)

∥
∥

q
)

+µk〈T ∗
k jr(F (xδ

k − yδ), xδ
k〉

≤ Cq

q
µq

k max{1, ‖Tk‖q} ‖Rk‖q (r−1) .

Hence we arrive at

∆p(x
δ
k+1, x

†) − ∆p(x
δ
k, x

†)

≤ −µk (1 − c1)
∥
∥F (xδ

k) − yδ
∥
∥

r
+
Cq

q
µq

k max{1, ‖Tk‖q} ‖Rk‖q (r−1) .

and with the choice of µk (15) assertion (16) is proven.
Adapting the proof of the second part of Theorem 3.3 in [21] to the nonlinear case, the con-

vergence result Theorem 2.4 in [16] can be generalized to the Banach space setting:

Theorem 1. Let the assumptions of Proposition 2 be satisfied. Then the Landweber iterates xk

according to (3) applied to exact data y converge to a solution of F (x) = y. If R(F ′(x)) ⊆
R(F ′(x†)) for all x ∈ Bρ(x0), then xk converges to x† as k → ∞.

Proof. The only point where the nonlinearity has to be taken into account is

|〈Jp(xkn) − Jp(xkl
), xkn − x〉 =

∣
∣
∣
∣
∣

kn−1∑

k=kl

µk〈T ∗
k jr(F (xk) − y), xkn − x〉

∣
∣
∣
∣
∣

≤
kn−1∑

k=kl

µk ‖jr(F (xk) − y)‖ ‖Tk(xkn − x)‖ ,

9



where we can estimate

‖Tk(xkn − x)‖
≤ ‖Tk(xkn − xk)‖ + ‖Tk(xk − x)‖
≤ ‖F (xkn) − F (xk)‖ + ‖F (xk) − y‖

+ ‖F (xkn) − F (xk) − Tk(xkn − xk)‖ + ‖F (xk) − F (x) − Tk(xk − x)‖
≤ (1 + ctc)(‖F (xkn) − F (xk)‖ + ‖F (xk) − y‖)
≤ 3(1 + ctc) ‖F (xk) − y‖ .

For the sake of simplicity we restricted ourselves here to the case of a q-smooth dual. Let
us mention that the same results can be proven (but in more technical way) if we only require
uniform smoothness by adapting a similar proof technique and parameter choice as in [21, 3].

Theorem 2. Let the assumptions of Theorem 1 hold with additionally Y being uniformly smooth
and let k∗(δ) be chosen according to the stopping rule (6), (14). Then the Landweber iterates

xδ
k∗(δ) according to (3) converge to a solution of (1) as δ → 0. If R(F ′(x)) ⊆ R(F ′(x†)) for all

x ∈ Bρ(x0), then xδ
k∗(δ) converges to x† as δ → 0.

Proof. By the uniform smoothness of Y the duality mapping jr is also single-valued and uniformly
continuous on bounded sets (cf. Theorem 2.3 (c) in [21])). Hence, for a fixed iteration index k,
by continuity of F , F ′, Jp, J

∗
q and jr , the coefficient µk and hence the iterate xδ

k continuously

depend on the data yδ.
Let (δn)n∈IN be an arbitrary null sequence and (kn := k∗(δn))n∈IN the corresponding sequence

of stopping indices.
The case of (kn)n∈IN having a finite accumulation point can be treaten as in the proof of

Theorem 2.6 of [16] without any changes also in the Banach space case.
As a matter of fact, this also holds true for the case kn → ∞ as n → ∞, although at a first

glance it looks as if the triangle inequality would be required which we do not have for the Bregman
distance: Let x be a solution to (1). For arbitrary ǫ > 0, by Theorem 1 we can find k such that
∆(xk, x) <

ǫ
2 and, by Theorem 2.12 (c) in [21], there exists n0 such that for all n ≥ n0 we have

kn ≥ k and |∆(xδn

k , x) − ∆(xk, x)| < ǫ
2 . Hence, by Proposition 2

∆(xδn

kn
, x) ≤ ∆(xδn

k , x) ≤ ∆(xk, x) + |∆(xδn

k , x) − ∆(xk, x)| < ǫ .

4 Convergence of the IRGNM

Making use of the variational characterization (4), we provide a convergence proof with an a
posteriori (instead of the so far usual a priori) choice of αk in each step. Namley αk is chosen as
a solution to

∥
∥Tk(xδ

k+1(α) − xδ
k) +Rk

∥
∥ = θ ‖Rk‖

for some θ ∈ (0, 1), or rather in a relaxed form such that

θ ‖Rk‖ ≤
∥
∥Tk(xδ

k+1(α) − xδ
k) +Rk

∥
∥ ≤ θ ‖Rk‖ (17)

for some 0 < θ ≤ θ < 1, (cf. [11]), which corresponds to an inexact Newton method, and more
precisely, to a discrepancy principle with artificial noise level θ ‖Rk‖. Here,

xδ
k+1(α) ∈ argminx∈D(F )

∥
∥Tk(x− xδ

k) +Rk

∥
∥

r
+ α ‖x− x0‖p

.

In the convergence proof we make use of the following lemma that contains a general analytical
assertion.
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Lemma 1. Let X be a reflexive and strictly convex Banach space let D ⊆ X be nonempty.
Moreover, assume that either

(a) A : D ⊆ X → Y is weakly closed and Y reflexive

or

(b) A : D ⊆ X → Y is weak-to-weak continuous and D weakly closed.

Denote for α > 0
x(α) = argminx∈DΦα(x) .

where φα(x) := ‖Ax‖r
Y + α ‖x− x0‖p

X . Then ψ̂ : α 7→ ‖Ax(α)‖r
Y is a continuous function on

(0,∞). Furthermore the mapping α 7→ x(α) is continuous in case X is uniformly convex.

Proof. From (a) or (b) existence and from strict convexity of X uniqueness of x(α) follows by
standard arguments.

We at first prove monotonicity of the mappings ψ̂ and α 7→ ‖x(α) − x0‖X in the sense that

α1 ≤ α2 ⇒
{ ‖x(α1) − x0‖X ≥ ‖x(α2) − x0‖X

ψ̂(α1) ≤ ψ̂(α2)
. (18)

Monotonicity of α 7→ ‖x(α) − x0‖X follows from

Φα1(x(α1)) ≤ Φα1(x(α2)) (19)

= Φα2(x(α2)) + (α1 − α2) ‖x(α2) − x0‖p
X

≤ Φα2(x(α1)) + (α1 − α2) ‖x(α2) − x0‖p
X

which implies (α1 − α2)
(
‖x(α2) − x0‖p

X − ‖x(α1) − x0‖p
X

)
≥ 0. Monotonicity of ψ̂ follows from

(19) and the monotonicity of α 7→ ‖x(α− x0)‖X .
To show continuity, let α > 0, αn → α, which implies α ≤ αn ≤ α for some α, α > 0. For all
n ∈ IN we have, by minimality of x(αn)

Φαn(x(αn)) ≤ Φαn(x(α)) ≤ C .

Hence, ‖x(αn)‖X , ‖Ax(αn)‖Y are uniformly bounded by C, C/α, respectively, and there exists a
subequence αnk

such that x(αnk
) converges weakly to some x∗ ∈ D.

In case (a), by reflexivity of Y , a subsequence of Ax(αnk
) (denoted again by Ax(αnk

)) converges
weakly to some y∗ ∈ Y and by weak closedness x∗ ∈ D, Ax∗ = y∗ holds.
In case (b), by weak closedness of D we have x∗ ∈ D, and by weak continuity of A, Ax(αnk

)
converges weakly to Ax∗.
By the weak lower semicontinuity of the norms we get

Φα(x∗) ≤ lim inf
k→∞

Φαnk
(x(αnk

)) ≤ lim sup
k→∞

Φαnk
(x(αnk

))

≤ lim sup
k→∞

Φαnk
(x(α)) = Φα(x(α)) ,

where we have used minimality of the x(αnk
) in the third inequality. Since in a strictly convex X

the minimizer of Φα is unique, we must have x∗ = x(α) and thus it also follows that

lim
k→∞

Φαnk
(x(αnk

)) = Φα(x(α)) . (20)

In case αnk
≥ α for all k we get by (18)

‖x(α) − x0‖p
X ≤ lim inf

k→∞
‖x(αnk

) − x0‖p
X

≤ lim sup
k→∞

‖x(αnk
) − x0‖p

X ≤ ‖x(α) − x0‖p
X .

11



Hence limk→∞ ‖x(αnk
) − x0‖p

X = ‖x(α) − x0‖p
X and from (20) we then further deduce limk→∞ ψ̂(αnk

) =

ψ̂(α).

In case αnk
≤ α for all k we at first similarly conclude by the monotonicity of ψ̂ (18) that

limk→∞ ψ̂(αnk
) = ψ̂(α) and then again with (20) that limk→∞ ‖x(αnk

) − x0‖p
X = ‖x(α) − x0‖p

X .

Subsequence arguments finally yield continuity of α 7→ ψ̂(α) and α 7→ ‖x(α) − x0‖X . The latter
together with the weak convergence of x(αn) to x(α) implies strong convergence in a uniformly
convex X .

We now formulate the main convergence theorem of this section.

Theorem 3. Assume that a solution x† ∈ Bρ(x0) to (1) exists, and that F satisfies (9) with ctc
sufficiently small as well as (11) or (12), let

ctc < θ < θ < 1 ,

and let Cdp be chosen sufficiently large so that

ctc +
1 + ctc
Cdp

≤ θ and ctc <
1 − θ

2
. (21)

Moreover, assume that either

(a) F ′(x) : X → Y is weakly closed for all x ∈ D(F ) and Y reflexive

or

(b) D(F ) weakly closed.

Then for all k ≤ k∗(δ) − 1 with k∗(δ) according to (6), the iterates

xδ
k+1 :=

{
xδ

k+1 = xδ
k+1(αk) , αk as in (17) if

∥
∥Tk(x0 − xδ

k) +Rk

∥
∥ ≥ θ ‖Rk‖

x0 else

are well-defined.
Moreover there exists a weakly convergent subsequence of

{

xδ
k∗(δ) if (11) holds

Jp(x
δ
k∗(δ) − x0) if (12) holds

and along every such weakly convergent subsequence xδ
k∗(δ) converges strongly to a solution of (1)

as δ → 0. If the solution x† to (1) is unique, then xδ
k∗(δ) converges strongly to x† as δ → 0.

Proof. Well-definedness of αk in case
∥
∥Tk(x0 − xδ

k) +Rk

∥
∥ ≥ θ ‖Rk‖ can be seen as follows: By

minimality of xδ
k+1(α) we have, for

ψ(α) =
∥
∥Tk(xδ

k+1(α) − xδ
k) +Rk

∥
∥

that
ψ(α)r + α

∥
∥xδ

k+1(α) − x0

∥
∥

p ≤
∥
∥Tk(x† − xδ

k) +Rk

∥
∥

r
+ α

∥
∥x† − x0

∥
∥

p
,

hence

lim sup
α→0

ψ(α) ≤
∥
∥Tk(x† − xδ

k) +Rk

∥
∥

r ≤ (ctc +
1 + ctc
Cdp

) ‖Rk‖

by (2), (6), (9). On the other hand, again minimality of xδ
k+1(α) yields

ψ(α)r + α
∥
∥xδ

k+1(α) − x0

∥
∥

p ≤
∥
∥Tk(x0 − xδ

k) +Rk

∥
∥

r
,
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so that
∥
∥xδ

k+1(α) − x0

∥
∥

p ≤ 1

α

∥
∥Tk(x0 − xδ

k) +Rk

∥
∥

r → 0 as α→ ∞

so by continuity of Tk and the norms, there exists an ᾱ > 0 such that

ψ(ᾱ) > θ/θ lim
α→∞

ψ(α) = θ/θ
∥
∥Tk(x0 − xδ

k) +Rk

∥
∥ ≥ θ ‖Rk‖ .

To conclude existence of an αk satisfying (17), it remains to show continuity of ψ, which we
do by using the fact that the uniformly convex Banach space X is reflexive and strictly convex,
and setting Ax = Tk(x− xδ

k) +Rk, D = D(F ) in lemma 1.
In case αk can be chosen according to (17), by (4) we have for any solution x† ∈ Bρ(x0) of (1)

∥
∥Tk(xδ

k+1 − xδ
k) +Rk

∥
∥

r
+ αk

∥
∥xδ

k+1 − x0

∥
∥

p

≤
∥
∥Tk(x† − xδ

k) +Rk

∥
∥

r
+ αk

∥
∥x† − x0

∥
∥

p
, (22)

which together with (2), (17), (6), (9) (see (17)), yields

θr ‖Rk‖r
+ αk

∥
∥xδ

k+1 − x0

∥
∥

p ≤ (ctc +
1 + ctc
Cdp

)r ‖Rk‖r
+ αk

∥
∥x† − x0

∥
∥

p
(23)

for all k ≤ k∗(δ) − 1, provided xk ∈ Bρ(x0). By (21) this implies
∥
∥xδ

k+1 − x0

∥
∥ ≤

∥
∥x† − x0

∥
∥ , (24)

which trivially holds in the alternative case
∥
∥Tk(x0 − xδ

k) +Rk

∥
∥ > θ ‖Rk‖, in which we set xδ

k+1 =
x0.

Estimate (24) allows us to conclude that xδ
k ∈ Bρ(x0) for all k ≤ k∗(δ) by an inductive

argument.
Moreover, for all k ≤ k∗(δ) − 1

∥
∥F (xδ

k+1) − yδ
∥
∥

≤
∥
∥Tk(xδ

k+1 − xδ
k) +Rk

∥
∥ +

∥
∥F (xδ

k+1) − F (xδ
k) − Tk(xδ

k+1 − xδ
k)

∥
∥

≤ θ
∥
∥F (xδ

k) − yδ
∥
∥ + ctc

∥
∥F (xδ

k+1) − F (xδ
k)

∥
∥

hence, by the triangle inequality

∥
∥F (xδ

k+1) − yδ
∥
∥ ≤ θ + ctc

1 − ctc

∥
∥F (xδ

k) − yδ
∥
∥ ,

which by (21) implies k∗(δ) <∞. Setting k = k∗(δ) − 1 in (24), we arrive at
∥
∥
∥xδ

k∗(δ) − x0

∥
∥
∥ ≤

∥
∥x† − x0

∥
∥ . (25)

Hence there exist weakly convergent subsequences
(xl)l∈IN := (xδl

k∗(δl)
)l∈IN and (Jp(x

l − x0))l∈IN := (Jp(x
δl

k∗(δl)
− x0))l∈IN. The weak limit x̄ of

any weakly convergent subsequence (xl)l∈IN (or x̄ := J∗
q (x̄∗) + x0 with the weak limit x̄∗ of

(Jp(x
l − x0))l∈IN) by

∥
∥F (xl) − y

∥
∥ ≤ (Cdp + 1)δl → 0 as l → ∞

and the (weak) sequential closedness of F (11) (or (12)) defines a solution x̄ of (1). Hence we can
insert x̄ in place of x† in (25) to obtain, in case of (11),

‖x̄− x0‖ ≤ lim inf
l→∞

∥
∥xl − x0

∥
∥ ≤ lim sup

l→∞

∥
∥xl − x0

∥
∥ ≤ ‖x̄− x0‖

by the weak lower semicontinuity of the norm, i.e. convergence of
∥
∥xl − x0

∥
∥ to ‖x̄− x0‖. Since

X is uniformly convex and xl weakly converges to x̄, this yields norm convergence of xl to x̄. In
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case of (Jp(x
l − x0))l∈IN weakly converging to x̄∗ and (12), convergence in the Bregman distance

can be established by the argument

0 ≤ ∆p(x
l − x0, x̄− x0)

=
1

q

(∥
∥xl − x0

∥
∥

p

︸ ︷︷ ︸

≤‖x̄−x0‖
p

− ‖x̄− x0‖p
)

+ 〈x∗ − Jp(x
l − x0), x̄− x0〉

︸ ︷︷ ︸

→0 as l→∞

,

which by Theorem 2.12 (d) in [21] implies strong convergence.
In case of uniqueness of x†, a subsequence-subsequence argument yields overall convergence.

5 Examples

In this section, we consider two examples of parameter identification model problems, which have
been used several times in the literature to illustrate convergence conditions (see, e.g., [9], [12],
[19], [11], [15]). Since we wish to considerably expand the possibilities for choosing preimage and
image space as compared to the Hilbert space case, we put some effort in exploiting the range
of exponents in the underlying Lp spaces. A motivation for this is e.g. the fact that using an
image space with large exponent and a preimage space with small exponent corresponds to making
the degree of ill-posedness as small as possible. The latter – i.e. using p smaller than two in the
definition of the preimage space – additionally favours sparse solutions, which has recently become
a quite important trend in many inverse problems applications.

In the first example, we consider identification of the space-dependent coefficient c in the elliptic
boundary value problem

−∆u+ cu = f in Ω (26)

u = 0 on ∂Ω (27)

from measurements of u in Ω (note that inhomogeneous Dirichlet boundary conditions can be
easily incorporated into the right hand side f if necessary). Here Ω ⊆ IRd, d ∈ {1, 2, 3} is assumed
to be a smooth bounded domain. The forward operator

F : D(F ) ⊆ X = LP (Ω) → Y = LR(Ω) (28)

can be written as
F (c) = L(c)−1f (29)

with

L(c) : H2(Ω) ∩H1
0 (Ω) → L2(Ω)

u → −∆u+ cu (30)

With (30), the derivative can formally be written as

F ′(c)h = −L(c)−1[h · F (c)] .

To achieve smoothness and uniform convexity of X , we assume

P ∈ (1,∞) . (31)

Depending on whether we need (10) (for Landweber) or weak sequantial closedness (for IRGNM)
we define D(F ) in two different ways:

In the first case, i.e., for Landweber iteration, we assume that

P ≥ d

2
(32)

14



and, in order to achieve a nonempty interior of the domain (10), similarly to [12], set

D(F ) = {c ∈ LP (Ω) | ‖c− ĉ‖LP (Ω) ≤ β for some ĉ ∈ L∞(Ω) with ĉ ≥ 0 a.e.} , (33)

where β < min{1/ ‖id‖H1
0 (Ω)→L2P/(P −1)(Ω) , 1/ ‖id‖W 2,k∩H1

0 (Ω)→LP k/(P−k)(Ω)}, for some

k ∈ [ã, b̃] ∩ (1,∞) with (34)

ã = max{2d/(d+ 2), dR/(d+ 2R)} ,
b̃ = min{P, 2d/max{0, d− 2}, R, PR/(P +R)}

= min{2d/max{0, d− 2}, PR/(P +R)}
and (k < P ∧ R <∞) or k > d/2 .

It is readily checked that under the already made assumptions (31), (32) existence of such a k is
equivalent to

R >
P

P − 1
, R ≥ 2dP

dP + 2P − 2d
. (35)

Well-definedness and continuity of F, F ′ follows from the following auxiliary result.

Lemma 2. Let (31), (32) hold. The operator L(c)−1 : Lk(Ω) →W 2,k(Ω)∩H1
0 (Ω), where W 2,k ∩

H1
0 (Ω) is equipped with the norm

‖v‖W 2,k(Ω)∩H1
0 (Ω) = ‖∆v‖Lk(Ω) + ‖v‖H1

0 (Ω) ,

is bounded for any

k ∈ [a, b] ∩ (1,∞) with (36)

a = 2d/(d+ 2) ,

b = min{P, 2d/max{0, d− 2}} ,
and k < P or k > d/2 .

Proof. In the following, we will make use of Sobolev’s embedding theorem several times, therefore
we recall that the embedding id : W s,p(Ω) → W t,q(Ω) for some bounded C1-smooth domain
Ω ⊆ IRd is continuous for 0 ≤ t ≤ s, p, q ∈ [1,∞] (note that by the boundedness of Ω we need not
stipulate p ≤ q) if

q <∞ ∧ s− d

p
≥ t− d

q
,

or

q = ∞ ∧ s− d

p
> t .

Rewriting the PDE (26) as
−∆u+ ĉu = f − (c− ĉ)u , (37)

we get by testing with u and integrating by parts

‖u‖2
H1

0 (Ω) ≤
∫

Ω

(
|∇u|2 + ĉu2

)
dx =

∫

Ω

(
fu− (c− ĉ)u2

)
dx

≤ ‖f‖Lk(Ω) ‖u‖Lk/(k−1)(Ω) + ‖c− ĉ‖LP (Ω) ‖u‖
2
L2P/(P−1)(Ω) ,

hence by

(

2P/(P − 1) <∞ ∧ 1 − d

2
≥ 0 − d

2P/(P − 1)

)

⇔
(

P > 1 ∧ P ≥ d

2

)

,
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(

k/(k − 1) <∞ ∧ 1 − d

2
≥ 0 − d

k/(k − 1)

)

⇔
(

k > 1 ∧ k ≥ 2d

d+ 2

)

,

and Poincaré’s inequality

‖u‖H1
0 (Ω) ≤

1

1 − ‖id‖H1
0 (Ω)→L2P/(P−1)(Ω) β

‖id‖H1
0 (Ω)→Lk/(k−1)(Ω) ‖f‖Lk(Ω)

Moreover, from (37) we get by Hölder’s inequality with

k ≤ P

and (

k <∞ ∧ 1 − d

2
≥ 0 − d

k

)

⇔
(

k <∞ ∧ k ≤ 2d

max{0, d− 2}

)

,

(

Pk/(P − k) <∞ ∧ 2 − d

k
≥ 0 − d

Pk/(P − k)

)

⇔
(

k < P ∧ P ≥ d

2

)

,

(

Pk/(P − k) = ∞ ∧ 2 − d

k
> 0

)

⇔
(

k = P ∧ k >
d

2

)

,

with C1 := ‖id‖W 2,k∩H1
0 (Ω)→LP k/(P−k)(Ω),

‖∆u‖Lk(Ω) ≤ ‖f‖Lk(Ω) + ‖ĉ‖L∞(Ω) ‖u‖Lk(Ω) + ‖c− ĉ‖LP (Ω) ‖u‖LPk/(P−k)(Ω)

≤ ‖f‖Lk(Ω) + ‖ĉ‖L∞(Ω) ‖id‖H1
0 (Ω)→Lk(Ω) ‖u‖H1

0 (Ω)

+ ‖c− ĉ‖LP (Ω) C1(‖∆u‖Lk(Ω) + ‖u‖H1
0 (Ω)) ,

hence

‖∆u‖Lk(Ω) ≤
1

1 − βC1

(

‖f‖Lk(Ω) +
{

‖ĉ‖L∞(Ω) ‖id‖H1
0 (Ω)→Lk(Ω) + βC1

}

‖u‖H1
0 (Ω)

)

To show the tangential cone condition with the choice (33), we consider k according to Lemma
2, denote C2 = ‖id‖W 2,k(Ω)∩H1

0 (Ω)→LR(Ω), and estimate

‖F (c+ h) − F (c) − F ′(c)[h]‖LR(Ω)

=
∥
∥L(c)−1[h · (F (c+ h) − F (c))]

∥
∥

LR(Ω)

≤ C2

∥
∥L(c)−1

∥
∥

Lk(Ω)→W 2,k(Ω)∩H1
0 (Ω)

‖h · (F (c+ h) − F (c))‖Lk(Ω)

≤ C2

∥
∥L(c)−1

∥
∥

Lk(Ω)→W 2,k(Ω)∩H1
0 (Ω)

‖F (c+ h) − F (c)‖LR(Ω) ‖h‖LRk/(R−k)(Ω)

≤ C2

∥
∥L(c)−1

∥
∥

Lk(Ω)→W 2,k(Ω)∩H1
0 (Ω)

‖id‖LP (Ω)→LRk/(R−k)(Ω) ·
· ‖F (c+ h) − F (c)‖LR(Ω) ‖h‖LP (Ω) .

by
(

R <∞ ∧ 2 − d

k
≥ 0 − d

R

)

⇔
(

R <∞ ∧ k ≥ dR

d+ 2R

)

(

R = ∞ ∧ 2 − d

k
> 0

)

⇔
(

R = ∞ ∧ k >
d

2

)

(

k < R ∧ Rk

R− k
≤ P

)

⇔
(

k < R ∧ k ≤ PR

P +R

)

(note that by P < ∞ and k ≤ P the case k = R cannot occur), which together with (36) is
equivalent to (34).

Consequently we have
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Corollary 1. Let F be defined by (28), (29), (33), with P , R satisfying (31), (32), (35).
Then the assumptions (9), (10), continuity of F, F ′ of Theorem 1 for the Landweber iteration (3)
are satisfied so local convergence with exact data holds.
If additionally R ∈ (1,∞) holds, then we can also conclude local convergence with noisy data
according to Theorem 2.

In the second case, i.e., for the IRGNM, we use

D(F ) = {c ∈ L∞(Ω) | γ̄ ≥ c ≥ 0 a.e.} (38)

for some γ̄ > 0, see, e.g, [15], for which the weak sequential closedness (11) can be seen as follows:
Any sequence (cn)n∈IN ⊆ D(F ), (with cn ⇀ c and un := F (cn) → u) has a weakly L∞-subsequence
cnk

whose limit lies in D(F ) and by a density argument has to coincide with c, i.e., D(F ) is weakly
closed. To show that F (c) = u, i.e., that u weakly solves (26), (27), we use the fact that un is
uniformly bounded in H2(Ω)∩H1

0 (Ω) and therefore has a weak H2(Ω)∩H1
0 (Ω) accumulation point

which again by a density argument coincides with u and lies in H2(Ω) ∩H1
0 (Ω). Let (cnk

)k∈IN,
(unk

)k∈IN be subsequences that converge weakly in LP (Ω) and (by uniform boundedness of un in
H2 and compactness) strongly in L6P/(5P−6)(Ω) respectively, such that additionally unk

converges
weakly in H1

0 , and consider the limit k → ∞ in the following identity

∀w ∈ H1
0 (Ω) :

∫

Ω

fw dx =

∫

Ω

∇unk
∇w dx +

∫

Ω

cuw dx

+

∫

Ω

cnk
(unk

− u)w dx +

∫

Ω

(cnk
− c)uw dx

→
∫

Ω

∇u∇w dx+

∫

Ω

cuw dx

where we have used uniform LP (Ω) boundedness of cnk
and the mentioned strong convergence of

unk
as well as Hölder’s inequality for the term

∫

Ω cnk
(unk

−u)wdx. Note that this weak sequential
closedness would remain valid also with (33), and that we did not even make use of convergence
of un in LR(Ω).

Since for the choice (38), L(c)−1 is bounded as an operator from L2(Ω) to H2(Ω) ∩H1
0 (Ω), F

also satisfies the tangential cone condition provided

R ≥ 2 ,
2R

R− 2
≤ P (39)

since

‖F (c+ h) − F (c) − F ′(c)[h]‖LR(Ω)

=
∥
∥L(c)−1[h · (F (c+ h) − F (c))]

∥
∥

LR(Ω)

≤ ‖id‖H2(Ω)→LR(Ω)

∥
∥L(c)−1

∥
∥

L2(Ω)→H2(Ω)
‖h · (F (c+ h) − F (c))‖L2(Ω)

≤ ‖id‖H2(Ω)→LR(Ω)

∥
∥L(c)−1

∥
∥

L2(Ω)→H2(Ω)
‖F (c+ h) − F (c)‖LR ‖h‖L2R/(R−2)

≤ ‖id‖H2(Ω)→LR(Ω)

∥
∥L(c)−1

∥
∥

L2(Ω)→H2(Ω)
‖id‖LP (Ω)→L2R/(R−2)(Ω) ·

· ‖F (c+ h) − F (c)‖LR ‖h‖LP .

Corollary 2. Let F be defined by (28), (29), (38), with P,R satisfying (31), (39).
Then the assumptions (9), (11), D(F ) weakly closed, of Theorem 3 for the IRGNM (5) are satisfied,
so local convergence with noisy data according to Theorem 3 holds.

The second example is concerned with the identification of the space-dependent coefficient a
in

−∇(a∇u) = f in Ω (40)

u = 0 on ∂Ω (41)
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Again, Ω ⊆ IRd, d ∈ {1, 2, 3} is assumed to be a smooth bounded domain. Here we have to make
sure that a is bounded away from zero by an appropriate definition of D(F ) in

F : D(F ) ⊆ X → Y = LR(Ω) , (42)

F (a) = L(a)−1f , (43)

with

L(a) : H2(Ω) ∩H1
0 (Ω) → L2(Ω)

u → −∇(a∇u) (44)

to maintain ellipticity.
Following [11] we choose

X = W 1,Q(Ω), D(F ) = {a ∈ X | a ≥ α} (45)

with α > 0 and
Q > d , (46)

which indeed implies that F (a) maps into H2(Ω)∩H1
0 (Ω) ⊆ LR(Ω) for any R ∈ [1,∞], that D(F )

has nonempty interior with respect to the norm in X (and hence with respect to the Bregman
distance) and that the weak sequential closedness of D(F ), i.e., an ⇀ a ⇒ a ∈ D(F ), (which is
also the first part of (11),) holds. To show that also un = F (an) → u ⇒ F (a) = u, consider the
identity

∀w ∈ H1
0 (Ω) :

∫

Ω

fw dx =

∫

Ω

ank
∇unk

∇w dx

=

∫

Ω

a∇u∇w dx +

∫

Ω

ank
∇(unk

− u)∇w dx

+

∫

Ω

(ank
− a)∇u∇w dx

→
∫

Ω

a∇u∇w dx

along a subsequence ank
, unk

such that (by uniform boundedness of un inH2(Ω) and compactness)
∇(unk

− u) → 0 strongly in L2(Ω), and ank
− a ⇀ 0 weakly in L∞, where we use uniform

boundedness of ank
in L∞(Ω), and the fact that ∇u∇w lies in the dual of L∞(Ω).

Under the assumption
Q ∈ (1,∞) , (47)

X is uniformly smooth and uniformly convex, cf., e.g., [23].

The tangential cone condition can be seen as follows: Using the function space V = D(Ω)
‖·‖V

with
‖v‖V = ‖∆v‖LR/(R−1)(Ω) + ‖∇v‖LQR/(QR−Q−R)(Ω) ,

we estimate

‖F (a+ h) − F (a) − F ′(a)[h]‖LR(Ω)

=
∥
∥L(a)−1[∇(h∇(F (a + h) − F (a)))]

∥
∥

LR(Ω)

≤
∥
∥L(a)−1

∥
∥

V ∗→LR(Ω)
‖∇(h∇(F (a + h) − F (a)))‖V ∗ ,

where for all v ∈ V
∫

Ω

∇(h∇(F (a+ h) − F (a))) v dx
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=

∫

Ω

∇(h∇v) (F (a+ h) − F (a)) dx

≤ ‖F (a+ h) − F (a)‖LR(Ω)

(

‖h∆v‖LR/(R−1)(Ω) + ‖∇h∇v‖LR/(R−1)(Ω)

)

≤ ‖F (a+ h) − F (a)‖LR(Ω)

(

‖h‖L∞(Ω) ‖∆v‖LR/(R−1)(Ω) +

+ ‖∇h‖LQ(Ω) ‖∇v‖LQR/(QR−Q−R)(Ω)

)

≤ ‖F (a+ h) − F (a)‖LR(Ω)

(

‖id‖W 1,Q(Ω)→L∞(Ω) + 1
)

‖h‖W 1,Q(Ω) ‖v‖V ,

where we have used the assumption (46) and additionally

Q ≥ R

R− 1
. (48)

It remains to show that L(a)−1 : V ∗ → LR(Ω) is bounded:

Lemma 3. Let (46), (48),

R ≤ 2d

max{0, d− 2} and (R <∞ ∨ d < 2) (49)

and either

(i)
‖∇a‖LQ

α
‖id‖

W 2,R/(R−1)(Ω)∩H1
0 (Ω)→W

1,QR/(QR−Q−R)
0 (Ω)

< 1

or

(ii)
QR

QR−Q−R
≤ 2 .

(50)

Then the operator L(a)−1 : V ∗ → LR(Ω) is bounded.

Proof. By density of D(Ω) in LR/(R−1)(Ω) we have

∥
∥L(a)−1

∥
∥

V ∗→LR(Ω)
= sup

06=v∗∈V ∗

∥
∥L(a)−1[v∗]

∥
∥

LR(Ω)

‖v∗‖Y ∗

= sup
06=v∗∈V ∗

sup
06=y∈D(Ω)

∫

Ω L(a)−1[v∗] y

‖v∗‖Y ∗ ‖y‖LR/(R−1)(Ω)

= sup
06=v∗∈V ∗

sup
06=y∈D(Ω)

∫

Ω v
∗ L(a)−1[y]

‖v∗‖V ∗ ‖y‖LR/(R−1)(Ω)

=
∥
∥L(a)−1

∥
∥

LR/(R−1)(Ω)→V

For any y ∈ LR/(R−1)(Ω) we get for the solution w = L(a)−1y by testing −∇(a∇w) = y with w
and using Hölder’s inequality

‖∇w‖2
L2(Ω) ≤ 1

α
‖y‖LR/(R−1)(Ω) ‖w‖LR(Ω)

≤ 1

α
‖y‖LR/(R−1)(Ω) ‖id‖V →LR(Ω) ‖w‖V (51)

by (

R <∞ ∧ 2 − d

R/(R− 1)
≥ 0 − d

R

)

⇔
(

R <∞ ∧ R ≤ 2d

max{0, d− 2}

)

,

(

R = ∞ ∧ 2 − d

R/(R− 1)
> 0

)

⇔ (R = ∞ ∧ d < 2) ,
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(note that by Q > d there holds 1 − d
QR/(QR−Q−R) = 1 − d

R/(R−1−Q/R) < 2 − d
R/(R−1) , so indeed

the Laplace term in the definition of the V norm gives the stronger embedding result).
Moreover, by −a∆w = y + ∇a∇w

‖∆w‖LR/(R−1)(Ω) ≤
1

α

(

‖y‖LR/(R−1)(Ω) + ‖∇a‖LQ(Ω) ‖∇w‖LQR/(QR−Q−R)(Ω)

)

. (52)

So in case (i) with

‖v‖W 2,R/(R−1)(Ω)∩H1
0 (Ω) = ‖∆v‖LR/(R−1)(Ω) + ‖v‖H1

0 (Ω) ,

C1 = ‖id‖
W 2,R/(R−1)(Ω)∩H1

0 (Ω)→W
1,QR/(QR−Q−R)
0 (Ω)

,

where we have used

2 − d

R/(R− 1)
> 1 − d

QR/(QR−Q−R)
⇐ Q > d ,

(hence by the strict inequality also the case QR/(QR − Q − R) = ∞ in Sobolev’s embedding
theorem is covered,) we can estimate

‖∇w‖2
L2(Ω)

≤ 1

α
‖y‖LR/(R−1)(Ω) ‖id‖V →LR(Ω)

(

(1 + C1) ‖∆w‖LR/(R−1)(Ω) + C1 ‖∇w‖L2(Ω)

)

≤ 1

2ǫ

1

α2
‖y‖2

LR/(R−1)(Ω) ‖id‖
2
V →LR(Ω) +

+ǫ
(

(1 + C1)
2 ‖∆w‖2

LR/(R−1)(Ω) + C2
1 ‖∇w‖2

L2(Ω)

)

hence

‖∇w‖2
L2(Ω)

≤ 1

1 − C2
1 ǫ

(
1

2ǫ

1

α2
‖y‖2

LR/(R−1)(Ω) ‖id‖
2
V →LR(Ω) + ǫ(1 + C1)

2 ‖∆w‖2
LR/(R−1)(Ω)

)

≤ 1

1 − C2
1 ǫ

(
1√
2ǫ

1

α
‖y‖LR/(R−1)(Ω) ‖id‖V →LR(Ω) +

√
ǫ(1 + C1) ‖∆w‖LR/(R−1)(Ω)

)2

(53)

Moreover, by (52)

‖∆w‖LR/(R−1)(Ω) ≤ 1

α

(

‖y‖LR/(R−1)(Ω) + ‖∇a‖LQ(Ω) C1 ‖w‖W 2,R/(R−1)(Ω)∩H1
0 (Ω)

)

Hence,

‖∆w‖LR/(R−1)(Ω)

≤ 1

α− ‖∇a‖LQ(Ω) C1

(

‖y‖LR/(R−1)(Ω) + ‖∇a‖LQ(Ω) C1 ‖∇w‖L2(Ω)

)

, (54)

which by inserting (53) with ǫ sufficiently small so that

1

α− ‖∇a‖LQ(Ω) C1
‖∇a‖LQ(Ω) C1

1
√

1 − C2
1ǫ

√
ǫ(1 + C1) < 1

gives
‖∆w‖LR/(R−1)(Ω) ≤ C1 ‖y‖LR/(R−1)(Ω)
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for some constant C1 = C1(α, ‖∇a‖LQ(Ω)). Re-inserting this into (53) gives

‖∇w‖L2(Ω) ≤ C2 ‖y‖LR/(R−1)(Ω)

for some constant C2 = C2(α, ‖∇a‖LQ(Ω)), hence

‖w‖V ≤ (C1(1 + C1) + C2C1) ‖y‖LR/(R−1)(Ω) .

In case (ii) with
C̃1 = ‖id‖L2(Ω)→LQR/(QR−Q−R)(Ω) ,

the estimates simplify to

‖∇w‖2
L2(Ω)

≤ 1

α
‖y‖LR/(R−1)(Ω) ‖id‖V →LR(Ω)

(

‖∆w‖LR/(R−1)(Ω) + C̃1 ‖∇w‖L2(Ω)

)

≤ 1

2ǫ

1

α2
‖y‖2

LR/(R−1)(Ω) ‖id‖
2
V →LR(Ω) + ǫ

(

‖∆w‖2
LR/(R−1)(Ω) + C̃2

1 ‖∇w‖2
L2(Ω)

)

hence

‖∇w‖2
L2(Ω)

≤ 1

1 − C̃2
1 ǫ

(
1

2ǫ

1

α2
‖y‖2

LR/(R−1)(Ω) ‖id‖
2
V →LR(Ω) + ǫ ‖∆w‖2

LR/(R−1)(Ω)

)

≤ 1

1 − C̃2
1 ǫ

(
1√
2ǫ

1

α
‖y‖LR/(R−1)(Ω) ‖id‖V →LR(Ω) +

√
ǫ ‖∆w‖LR/(R−1)(Ω)

)2

(55)

and

‖∆w‖LR/(R−1)(Ω) ≤ 1

α

(

‖y‖LR/(R−1)(Ω) + ‖∇a‖LQ(Ω) C̃1 ‖∇w‖L2(Ω)

)

. (56)

The rest follows analogously to case (i).

Corollary 3. Let F be defined by (42), (43), (45), with Q,R satisfying (46), (47), (48), (49).
Then the assumptions (9), (11), D(F ) weakly closed, of Theorem 3 for the IRGNM (5) are satisfied,
so local convergence with noisy data according to Theorem 3 holds.
Moreover, the assumptions (9), (10), continuity of F, F ′ of Theorem 1 for the Landweber iteration
(3) are satisfied so local convergence with exact data holds.
If additionally R ∈ (1,∞) holds, then we can also conclude local convergence of Landweber with
noisy data according to Theorem 2.

Conclusions

We presented two iterative methods for solving nonlinear operator equations in Banach spaces.
The first one was a Landweber type method, the second one was the iteratively regularized Gauss
- Newton method. Provided that the nonlinearity of the forward operator obeys a tangential cone
condition we could prove convergence for both methods. Furthermore we showed that both meth-
ods are stable with respect to noisy data, if the stopping index is chosen due to an appropriate
discrepancy principle. The two examples for parameter identification problems of elliptic bound-
ary value problems demonstrate that there are interesting applications for which all conditions,
that are necessary for the well-definedness and convergence of the methods, are satisfied. A sequel
of this article is supposed to contain numerical evaluations of the methods with the help of these
applications.
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