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Upper bounds for Bermudan options on Markovian data
using nonparametric regression and a reduced number of
nested Monte Carlo steps

Michael Kohler, Adam Krzy zak, Harro Walk

Summary: This paper is concerned with evaluation of American optialse called Bermudan options in discrete
time. We use the dual approach to derive upper bounds on ittee @frsuch options using only a reduced number of
nested Monte Carlo steps. The key idea is to apply nonparamegjression to estimate continuation values and all
other required conditional expectations and to combinedkelting estimate with another estimate computed by using
only a reduced number of nested Monte Carlo steps. The etmatof the resulting estimate is an upper bound on
the option price. It is shown that the estimates of the oppigces are universally consistent, i.e., they converg@éo t
true price regardless of the structure of the continuatadnes. The finite sample behavior is validated by experiment
on simulated data.

1 Introduction

The main advantage of Monte Carlo methods for pricing Anagrioptions in discrete time, also called

Bermudan options, is that they can be computed quickly coetp@ other methods when the number of
underlying assets or state variables is large. One way tly #pgm is to use the dual representation of the
price V of an American option in discrete time given by

Vo = A}gﬁw E {t_InO.,{.i.).(,T (fe(Xe) — JVft)} . (1.1)
Here Xy, X1, ..., X7 denote the underlying Markovian process describing, thg.prices of the under-

lyings and the financial environment (like interest ratés,)ef; is the discounted payoff function and
is the set of all martingale&/, ..., M with M, = 0 (cf. Rogers (2001), Haugh and Kogan (2004), or
Section 8.7 in Glasserman (2004)). Neither the Markov pityp®or the form of the payoff as a function
of the stateX; is restrictive and can always be achieved by including smpphtary variables.

We next describe the optimal martingdlé” at which the infimum in (1.1) is reached. L&ttt +
1,...,T)betheclassofalft+1, ..., T}—valued stopping times, i.e., of all functions= 7( Xy, ..., Xr)
with values in{t + 1, ..., T} satisfying

{r=a} € F(Xo,...,X,) forallae{t+1,...,T}.

Let
()= sup  E{fr(X;)[X; =z}
T€T (t+1,...,T)

(t € {0,...,T —1}) be the so—called continuation values describing the véitieemption at time given
X: = z and subject to the constraint of holding the option at tintather than exercising it. It can be

AMS 1991 subiject classification: Primary 91B28, 60G40, 62G@condary 65C05, 93E24
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shown that the optimal martingaMd;" is given by
t
M =" (max{f(Xs),qs(Xs)} — gs-1(Xeo1))  (tE€{L,...,T}) (1.2)
s=1

(cf., e.g., Section 8.7 in Glasserman (2004)). Because of

qs—l(Xs—l) = E{max{fs(Xs)aqs(Xs)HXs—l} (13)

(cf. Tsitsiklis and van Roy (1999))/;" is indeed a martingale.

Using (1.3) (or other regression representations like tiesdn Longstaff and Schwartz (2001) or Egloff
(2005)) the continuation values can be estimated recuydiyehe Monte Carlo method. This approach has
been proposed for linear regression in Tsitsiklis and vay @899) and Longstaff and Schwartz (2001).
Egloff (2005), Egloff, Kohler and Todorovic (2007), Kohlé€rzyzak and Todorovic (2006), and Kohler
(2008a) introduced various estimates based on nonpaiamegjression.

With such estimateg, of ¢, the optimal martingald/; can be estimated by

t

M, = Z (max{fs(Xs), ds(Xs)} — E {max{ fs(Xs), (js(Xs)HXs—l}) (ted{1,...,T}H (1.9

s=1

andM, = 0. As long asE is an unbiased estimate of the corresponding conditiorzetation 7, will
be a martingale and according to (1.1)

E {m (00 - Mt)}

will be an upper bound on the price of the option. Similarreaties have been introduced in Rogers (2001)
and Haugh and Kogan (2004), where linear regression wastagstimate the continuation values recur-
sively, and where nested Monte Carlo was used to get unbéssiedatedt of the conditional expectation
occuringin (1.2) (cf. (1.3)). Jamshidian (2007) studiedtiplicative versions of this method. A compara-
tive study of multiplicative and additive duals is containe Chen and Glasserman (2007). Andersen and
Broadie (2004) derive upper and lower bounds for Americaioap based on duality.

Kohler (2008b) applied nonparametric regression in thigext. It was shown that the resulting esti-
mates of the option price converge to the true values regssdif the structure of the continuation values,
and that their performance on simulated data was superititet@stimates based on linear regression.
However, the use of nested Monte Carlo substantially irsédhe computational burden. In a Brownian
motion setting Belomestny, Bender and Schoenmakers (20@ppsed dual estimates of option prices
which do not require nested Monte Carlo and hence can be deahpignificantly faster.

In this article we introduce for general Markovian procasdaal Monte Carlo estimates based on
nonparametric regression which do not require many nestaté/Carlo steps. The key idea is to define
dual estimates where all conditional expectations arenastid by nonparametric regression. In general
there is no guarantee that the expectation of this kind afese is an upper bound on the option price.
However, by combining it with a dual estimate of the optioit@based on nonparametric regression and
nested Monte Carlo we construct another estimate, whiclttiagproperty, and which requires only a
reduced number of nested Monte Carlo steps. We show thatesuestimates are universally consistent,
i.e., they converge to the true price regardless of the tstre©f the continuation values. We illustrate the
finite sample behavior of our estimates by experiments onlsied data.

The definition of the estimates is given in Section 2. Our nifadoretical result concerning consistency
of the estimates is presented in Section 3 and proven inddegtiSection 4 contains an application of our
method to simulated data.

2 Definition of the estimate

Let Xo, X1,..., X7 be alR%~valued Markov process and lgt be the discounted payoff function which
we assume to be bounded in absolute valué bye assume that the data generating process is completely
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known, i.e., that all parameters of this process are alreatisnated from historical data. In this section we
describe dual Monte Carlo methods for estimatiofvgf

We start with the algorithm from Kohler (2008b) using neskédnte Carlo and nonparametric re-
gression. The algorithm uses artificially generated inddpat Markov processesX; ;}i—o,..7 (i =
1,2,...,n+ N,) which are identically distributed &sX, };—o.... 7. In addition we use random variables
{XZ-(,]:)}t:07...7T (i=n+1,...,n+ N,k =1,...,K,) which are constructed in such a way that given
X t—1 the random variables

1) K)
Xie, X)X

are i.i.d. and such that giveH; ;_; the random varlabIeXflt), . X( ") are independent of all other
random variables introduced above. In a first step theﬁmxatpllcatlons{Xl th=o,..7 (1 =1,2,....,n)

of the Markov process are used to define regression basedeNiamto estimateg,, ; of q;. Here any of
the estimates described in Egloff, Kohler and Todorovi®@Q0Kohler, Krzyzak and Todorovic (2006) or
Kohler (2008a) can be applied. In a second step the marér{@a?) is estimated by

t

Ky
M=y <max{fs(Xs,j),q N Zmax{fs (X)), Gns(X “?)) (2.1)

s=1

(te{1,...,T})andM, = 0. Since

—Zmax{fs XM, Gns (XTI (2.2)

is an unbiased estimate of the corresponding expectatiord{itoned on all dat®,, used in the definition
of ¢, and conditioned onX,_, ;), this is indeed a martingale. Consequently the expeciaifathe

estimate
n+Np

max_ (fi(Xe5) — M ;) (2:3)

t=0,...,T

~ 1
VO,n =

" j=n+1

is an upper bound o¥.

What makes the computation of the estimate time consumatharnested Monte Carlo steps needed
in (2.2). Here we need,, successors of the random varialife ; for eachj € {n +1,...,n+ N, }, so
we need to simulaté&/,, - K,, random variables for each time step. The problem with thisaswe need a
large numbelrV,, in order to ensure that the estimate (2.3) is close to its@=gen.

In the sequel we want to modify the definition of the estimatsuch a way that the estimate can be
computed faster. The main idea is to use a regression estimsitad of (2.2). A simple way to define
such an estimate is to set

t

M, = Z (max{fs(Xs), dn,s(Xs)} = dn,s—1(Xs-1))  (t€{L,...,T})

and to estimate the price of the option by

E* {t%laXT (ft(Xt) - ]\th)} ) (2.4)

.....

whereE* denotes the expectation conditioned®@p. However, since fot > 0

t—1

ft(Xt) - Mt < ft(Xt) - Z (qAn,s(Xs) - qAn,s—l(Xs—l)) - (ft(Xt) - qAn,t—l(Xt—l)) = (jn,O(XO)a

s=1

where we have equality in case thas the first index withf; (X;) > §¢,.+(X:), (2.4) is in fact equal to

E* {max{ fo(Xo), Gn,0(Xo0)}}
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and this will in general be no longer an upper boundfnwhich satisfies

Vo = E {max{ fo(Xo),q0(Xo)}}

(cf., e.g., Section 8.7 in Glasserman (2004)).

Instead, we use a second regression estifiate in order to estimate the conditional expectation
corresponding to (2.2). Here we will use a sample sit@rger tham. To be able to compute this estimate
quickly, we seth = K,, - n and compute the estimate by applying it to a sample of i. d. random
variables with the same distribution as

Kn
<Xslv = > max{£,(X(), cin.,s(Xi’“))}> .
" k=1

The regression function of this sample is

qz,s—l(x) =E" {max{fs(Xs)v (jn,s(Xs)}’Xs—l = SC} )

which is indeed the function we want to approximate.
Our corresponding estimate of the option price is

1 n+N,
Vl,n = N_n t:r%)lf,i,)fT (ft(Xt,j) — MtJ) (25)
j=n+1
where ,
My =" (max{fe(Xs;),dns(Xe )} = Gas1(Xe15)) (2.6)

s=1
Unfortunately, there is no guarantee that the expectafidii® estimate is indeed an upper bound on the
option price. To construct an estimate with that properiy,use an idea similar to control variates (cf.,
e.g., Section 4.1 in Glasserman (2004)) and combine (2t8)(®i3). To do this, we define the estimate

A 1 A
‘/2’71 - N 21 t:IBaXT (ft(XtJ) B Mtj)

1 n+Nn _ .
+t > <t_rgf})_<’T (fe(Xej) = Myy) = max (ft(Xt,j) - Mt,j)> ; 2.7)
whereN,, < N,, is an additional parameter of the estimate (apparentlydrcéseV,, = N, the estimates
(2.3) and (2.7) coincide). Thus in the present paper estirffaB), which has been proposed in Kohler
(2008b), is replaced by estimates (2.5) and (2.7). Cletinyexpectation of estimate (2.7) is equal to the
expectation o/, ,, and hence it provides an upper bound on the option price. Wecture that

max, (fe(Xoj) = M) and  max (ft(Xt,j) - Mt,j)

are close and therefore the standard deviation of
Jpax (fe(Xej) — My ) — Jpax (ft(Xt.,j) - Mt,j) (2.8)
is smaller than the standard deviation of
t:%lf_iffT (ft(Xt,j) - Mt,j) : (2.9)
As we will see in Section 4, this is indeed true in our simalatiThere the standard deviation of (2.8) will
be approximately half of the standard deviation of (2.9nc8ithe error of a Monte Carlo estimate of an

expectation is of order
S

VN,
wheres is the standard deviation arid, is the sample size, this allows us to chodée ~ N,,/4, which
for (2.7) drastically reduces the number of nested MontéoGdeps compared to (2.3).
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3 Main theorem
Our main theoretical result is the following theorem:
Theorem 1 LetL > 0, let Xo, X1, ..., X7 be alR%-valued Markov process and assume that the dis-

counted payoff functiorf; is bounded in absolute value ty Let the estimateﬁﬁm and VQn be defined
as in Section 2. Assume that the estimagigsof ¢, are bounded in absolute value yand satisfy

/|qn_¢(:c) — q(2)*Px, (dz) — 0 in probability, (3.1)
and that
N, — 00, N,, — o0 and Kn_ — 00 (n— 00). (3.2)
log N,
Then
Vi — Vo in probability (3.3)
and
Va.n — Vo in probability. (3.4)

The estimates defined in Egloff, Kohler and Todorovic (2088hler, Krzyzak and Todorovic (2006)
and Kohler (2008) satisfy (3.1) for all bounded Markov presms. Hence if we use any of these estimates
in the definition of our new estimate, we get universally ¢stesit upper bounds on the priceld.

Corollary 2 Let A, L > 0. Assume thak,, X1, ..., X7 is a[—A, A]%-valued Markov process and that
the discounted payoff functiofy is bounded in absolute value by. Let the estimates?lm and VQn
be defined as in Section 2 whejeis estimated by the least squares splines as in Egloff, Kare
Todorovic (2007), by the least squares neural networks &imler, Krzyzak and Todorovic (2006) or by
the smoothing splines as in Kohler (2008a). Chod$e N,, and K, such that

n

N, — 00, N, = 00 and — 00, (n—o0).
n

log N,
Then
Vln — Vo in probability

and
V., — Vo in probability.

Proof. The assertion follows from Theorem 1 above and Theorem 4Hgioff, Kohler and Todorovic
(2007), Corollary 1 in Kohler, Krzyzak and Todorovic (2QGd Theotem 1 in Kohler (2008). )
Remark. As stated in the last paragraph of Section 2 the expectatidbh o is an upper bound oby, i.e.,

Ef/Q.,n Z VO-

4  Application to simulated data

In this section, we illustrate the finite sample behavior of algorithm by comparing it with algorithms
for computing dual upper bounds with linear regressiongiiie regression representations proposed by
Tsitsiklis and Van Roy (1999) and Longstaff and SchwartD@0respectively, and by comparing it with
the algorithm in Kohler (2008b).

We consider an American option based on the average of fivelated stock prices. The stocks are
ADECCO R, BALOISE R, CIBA, CLARIANT and CREDIT SUISSE R. Theosk prices were observed



10 Kohler — Krzyzak — Walk
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Figure 4.1 Strangle spread payoff with strike prices 75, 90, 110 and 125

from Nov. 10, 2000 until Oct. 3, 2003 on weekdays when thekstoarket was open for the total of 756
days. We estimate the volatility from data observed in thet pg the historical volatility

0.3024 0.1354 0.0722 0.1367 0.1641
0.1354 0.2270 0.0613 0.1264 0.1610
o= 0.0722 0.0613 0.0717 0.0884 0.0699
0.1367 0.1264 0.0884 0.2937 0.1394
0.1641 0.1610 0.0699 0.1394 0.2535

We simulate the paths of the underlying stocks with a Blackefes model by
X, =x et eXi=1(0i Wi(t)=5-07 ;) (i=1,...,5),

where{W;(t) : t € R} } (j = 1,...,5) are five independent Wiener processes and where the paramete
are chosen as followszy = 100, » = 0.05 and components; ; of the volatility matrix as above. The
time to maturity is assumed to be one year. To compute thefpafythe option we use a strangle spread
function (cf. Figure 4.1) with strikes 75, 90, 110 and 125lagujto the average of the five correlated stock
prices.

We discretize the time intervf, 1] by dividing it into m = 48 equidistant time steps witly = 0 <
t1 < ... <ty = 1 and consider a Bermudan option with payoff function as akane exercise dates
restricted to{to, t1,...,tn}. We choose discount factoes” for j = 0,...,m. For the algorithm in
Kohler (2008b) we set, = 2000, nps = 1000 and!,, = 100, and for our newly proposed estimates we set
n = 2000, K,, = 20, N,, = 1000 andN,, = 250. For the other algorithms we use parameters 2000,

N,, = 1000 andK,, = 100.

For the algorithms using nonparametric regression we usmitimg splines as implemented in the
routine Tps() from the library “fields” in the statistics packag®, where the smoothing parameter is
chosen by generalized cross-validation. For the Longssatiwartz and Tsitsiklis—Van Roy algorithms we
use linear regression as implementedin

We apply all five algorithms to 100 independently generagétsl sf paths. For each algorithm and each
of the 100 sets of paths we compute our Monte Carlo estimate of themptige. We would like to stress
that for all estimates exceﬂ?ﬁ_,n the expectations are upper bounds to the true option prexeehlower
values indicate a better performance of these algorithms.
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TTVR LS K Vi V2

Figure 4.2 Upper bounds computed with a dual Monte-Carlo method basdihear regression and the Tsitsiklis—
Van Roy algorithm (TTVR), linear regression and the Lonfis&chwartz algorithm (LS), the algorithm proposed in
Kohler (2008b) (K) and the newly proposed smoothing splstevetesl; , (V1) andVa ,, (V2) in a 5-dimensional
case.

We compare the algorithms using boxplots for 186 upper bounds computed for each algorithm. As
we can see in Figure 4.2, all algorithm using nonparametgoassion are superior to Longstaff—Schwartz
and Tsitsiklis—Van Roy algorithms, since the lower boxmbthe upper bounds indicates better perfor-
mance.

Furthermore we can see that our newly proposed estiﬁ@@tmchieves similar values to the estimate
proposed in Kohler (2008b). Howeveffg,n can be computed for sample si3g, = 1000 approximately
20% faster. This computational advantage concerning comgtitine will grow if we want to have esti-
mates which are closer to their expectations and therefiocreaseVv,, .

In Figure 4.3 we compare the empirical standard deviatidrikevalues occuring in the arithmetic
means in

Wy s (fXe) — )
and
1 n+N, _ 9
-y <t—%1f“.)f:r (fu(Xe ) — My ) — (e, (ft(Xt.,j) - Mm‘))

" oj=n+1

occurring in our simulations marked yand2, resp. As one can see, the standard deviations of the terms
occurring in the second sum are indeed most of the time apped&ly at most half as large as the standard
deviations of the terms occurring in the first terms. Thisvghthat we can us#/,, of approximately one
quarter size ofv,,.
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5 Proof of Theorem 1
In the proof we will use the notation

1 n+Np,
Vo = Z ,ax (fe(Xe5) = M;;),

=0,...,

7n1

where
t

Mt*,j = Z (max{fs(Xs,j)a QS(XSJ)} - QS—I(XS—L]')) (t € {17 Tt T})

s=1

In the first step of the proafie show
Vo — Vo in probability. (5.1)

Let (th)t o..7 (7 =1,...,N,) be independent copies 0X;):—o
previously mtroduced data. Because of

7, which are independent of all

.....

.....

VO =E {tr{)laxT (ft(Xt) — Mt*)}
(cf. (1.1) and (1.2)) we have for ary> 0

P {|[Von = Vo| > €}

1 n+Ny t
_ p{ P IS (50x0 - 3= (mact (o) 00}
—qsl(XSLj))) — Wl > E}
1 N, t -
— P{ N_n 2 t:HOl,aX7 <.ft Xt J ; (max{fs s, )7 qS(XSJ)}

_QSl(Xsl,j))) -V

-}

¢ From this we can conclude (5.1) by an application of the ialarge numbers.
In the second step of the proge show that foralk € {1,...,7 — 1}

n+N,
— Z ln.s(Xaj) — qs(Xa )| — 0 (n— o0) in probability (5.2)
j=n+1

and
n+Nn
— Z lGn.s(Xs;) — 45(Xs;)| — 0 (n— oo) in probability. (5.3)
_] n+1

Set
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By the Cauchy-Schwarz inequality we have

n+Ny,
{ S Jna(X S<Xs,j>|\7>n}
" j=n+1
=B {lin.(X) - (X2 }
< \/E {lan.6) ~ 0.2,
- \/ [ linale) = 0.(0) PP ().

Sinceg, s andg, are bounded, assumption (3.1) together with the dominatedergence theorem yields

n+Ny,
{ S lins(Xe ) S<Xs,j>|}SE\//|qn,s<x>—qs<x>|2sz<dz>eo (n — o),

j=n+1

which in turn implies (5.2). By replacind, s by ;s in the above proof we get (5.3) as well.
In the third step of the proafie show (3.3). Observe

Vln_vo,n
1 n+Nn, R
SN, 2 e My = My
no T
1 n+Ny, t
< D max | > (max{ fu(Xo) dn(Xey)} — max{fu(Xes), as(Xe)})
n j=n+1 o s=1
1 n+N, t
o 2 max Y (a1 (Xag) = gam1(Xam )
noa T —1
T-1 1 n+Ny,
<> A > dns(Xey) = 0s(Xs )]
s=1 " j=n+41
n+Ny,
+Z Z |qnsl sg — (s— l(Xs 1j)|
g =n+1

where we have used
Gn7(x) = dar(r) =qr(z) =0 (z € RY).
By applying (5.2) and (5.3) we get
Vin — Vo — 0 in probability (5.4)

Finally (5.4) together with (5.1) yields (3.3).
In the fourth step of the prooafie show (3.4). Here we observe that the first three steps gbribwaf
yield R
Vi,n — Vo in probability.
In the same way one can prove

n+Nn
1 ~ . -
— E max (ft(Xm) — Mm) — Vp in probability.

n . =Uyeens
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Furthermore, by Theorem 1 in Kohler (2008b) we know

n+N,
1 _ . -
o Z max (fe(Xy;) — M, ;) — Vo in probability.
j=n+1
From this we conclude
1 n+Np
Von = 57 O e (1) = )
j=n+1
1 n+N, - 1 n+N,
+N_n Z Jpax (fe(Xi ) — My ) — N Jax, (ft(Xt,j) - Mt,j)
j=n+1 Jj=n+1
—Vo+W—Vo =V inprobability.
The proof is complete. O
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