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Strong Laws of L arge Numbersand Nonparametric
Estimation

Harro Walk

Revidierte Fassung vom 29.04.2010

Abstract Elementary approaches to classic strong laws of large ntswnise a monotonicity argument or a
Tauberian argument of summability theory. Together wilules on variance of sums of dependent random
variables they allow to establish various strong laws afjéamumbers in case of dependence, especially
under mixing conditions. Strong consistency of nonparametgression estimates of local averaging type
(kernel and nearest neighbor estimates), pointwise asagetiL,, can be considered as a generalization
of strong laws of large numbers. Both approaches can be asstablish strong universal consistency in
the case of independence and, mostly by sharpened intkyrabsumptions, consistency ungemixing

or a-mixing. In a similar way Rosenblatt-Parzen kernel dens#iifmates are treated.

1 Introduction

The classic strong law of large numbers of Kolmogorov dedtls imdependent identically distributed in-
tegrable real random variables. An elementary approaclthéas given by Etemadi (1981). He included
the arithmetic means of nonnegative (without loss of gditgyaandom variables truncated at the number
equal to the index, between fractions with the flia*1] summands in the numerator and the denominator
aN and fractions with the firstaN | summands in the numerator and the denominaor (a > 1, ratio-
nal), investigated the almost sure (a.s.) convergencevimhaf the majorant sequence and the minorant
sequence by use of Chebyshev’s inequality and let thea g&. This method was refined by Etemadi
(1983) himself, Csorgd, Tandori and Totik (1983) and Glrarand Goswami (1992, 1993) and extended to
the investigation of nonparametric regression and dempstiynates under mixing conditions by Irle (1997)
and to the proof of strong universal pointwise consisterfayearest neighbor regression estimates under
independence by Walk (2008a).

Another approach to strong laws of large numbers was prabbgeNalk (2005b). Classic elementary
Tauberian theorems (Lemma 1a,b) in summmability theogmatb conclude convergence of a sequence
(sn) of real numbers from convergence of their arithmetic me@ssgmmability, Cesaro summability
of (sy)) together with a so-called Tauberian condition on variatd the original sequences,). If ()
itself is a sequence of basic arithmetic megast---- +an)/n, as the realization in the strong law of large
numbers, then the Tauberian condition simply means(datis bounded from below. In this context the
other assumptiondz-summability of the sequence of basic arithmetic meansyiglly replaced by the
more practicable, but equivalef@z-summability of(a,), see Lemma la. For the sequence of nonnega-
tive truncated random variables centered at their expentatvhich are bounded by the finite expectation
in Kolmogorov’s strong law of large numbers, the simple Tendn condition is obviously fulfilled. To
show almost sure (a.sQx-summability of the sequence to 0, it then suffices to showcmsvergence

of a series of nonnegative random variables by taking eqtieas, see Theorem la. The summmability
theory approach has been extended by Walk (2005a, 2008Is}ablish strong universabh-consistency
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6 Harro Walk

of Nadaraya-Watson type kernel regression estimates fumdiependence) and strong consistency under
mixing conditions and sharpened moment condition8oth described approaches have different areas of
application and will be used in this paper.

In Section 2 strong laws of large numbers under conditionthercovariance and more generally under
conditions on the variance of sums of random variables (fdrad.) and under mixing conditions (Theo-
rem 2) are stated. For the two latter situations proofs wastihmmability theory approach are given. We
shall deal withp-mixing anda-mixing conditions. Theorem 2a specialized to the case dépendence
states Kolmogorov’s strong law of large numbers and is aequesnce of Theorem 1a, which itself is an
immediate consequence of the Tauberian Lemma 1a.

Section 3 deals with strong pointwise consistency of Nagai&atson kernel regression estimates under
p-mixing anda-mixing (Theorem 3), Devroye-Wagner semirecursive keregtession estimates unger
mixing (Theorem 4) an#,-nearest neighbor regression estimates under indepea(iEneorem 5). In the
proof of Theorem 3 truncation of the response variablessisfied by a monotonicity argument of Etemadi
type, asymptotic unbiasedness is established by a geredtdliebesgue density theorem of Greblicki,
Krzyzak and Pawlak (1984), and a.s. convergence aftecaition and centering at expectations is shown
by exponential inequalities of Peligrad (1992) and Rhort20102). Theorem 4 is a result on strong univer-
sal pointwise consistency, i.e., strong pointwise coasisy for each distribution afX,Y) with E|Y| < o

(X d-dimensional prediction random vect¥rreal response random variable); it is an extension from in-
dependence (Walk (2001)) prmixing due to Frey (2007) by use of the Tauberian Lemma 2 oighted
means. Theorem 5 is a strong universal consistency resdlatif (2008a). Its proof uses Etemadi’s mono-
tonicity argument and will be omitted. Irle (1997) uses miiand boundedness assumptions (Remark
5). Section 4 first points out strong universalconsistency (strong,-consistency for all distributions

of (X,Y) with E{|Y|?} < « under independence) &§-nearest neighbor, semirecursive Devroye-Wagner
kernel and Nadaraya-Watson type kernel estimates (Dewtogle (1994), Gyorfi, Kohler and Walk (1998)
and Walk (2005a), respectively), see Theorem 6 (withoubPrdynderp- and a-mixing and sharpened
moment conditions, Theorem 7 (Walk 2008b) states sttgrgonsistency of Nadaraya-Watson regression
estimates. Its proof uses the summability theory approadwall be omitted.

The final Section 5 deals with Rosenblatt-Parzen kerneliggeastimates undep- and a-mixing. Li-
consistency (Theorem 8) is proven by use of a monotonicgymment of Etemadi type.

2 Strong laws of large numbers

The following lemma states elementary classical Taubetti@orems of Landau (1910) and Schmidt
(1925). They allow to conclude Cesaro summabili@i-Summability, i.e., convergence of arithmetic
means) fronC,-summability or to conclude convergence fr@summability, in each case under an ad-
ditional assumption (so-called Tauberian condition). Aresponding result of Szasz (1929) and Karamata
(1938) concerns weighted means (Lemma 2). Referencessfee ind related results are Hardy (1949), pp.
121, 124-126, 145, Zeller and Beekmann (1970), pp. 101,108,113, 117, Korevaar (2004), pp. 12-16,
58, compare also Walk (2005b, 2007).

Lemma 1. a) Let the sequend@n)nen Of real numbers satisfy

=

T Sa—0 @

(ngrl) ]=1li=

i.e., G-summability ofan)nen to O, or sharper

2
00 1 n
5 a(3a) <o @

irr11f ap > —oo. 3

and the Tauberian condition
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Then
Ly a0 @
— a — 0.
n i;
b) Let the sequende,)neny Of real numbers satisfy
n
} s —0 (5)
=
and the Tanberian condition
liminf (sy—su) >0 forM — o, M <N, N/M— 1, (6)

ie.,
liminf (s\, —Su,) >0
for each sequencéMn,Np)) in N2 with My — 0, My < Ni, No/Mp — 1 (0 — o).
Then
S, — 0. (7)

To make the paper more self-contained we shall give diremfsrof Lemma 1a and Lemma 1b. Remark
1b states (with proof) that Lemma 1b implies Lemma 1a. Thatimis|s| and|[s] fot the integer part and
the upper integer part of the nonnegative real nurslval be used.

Proof (of Lemma 1).

a) (2) implies (1), because

12l P a0
ﬁgli;aj Smnjzl<izlai> —0 (n—>oo)

by the Cauchy-Schwarz inequality, (2) and the Kroneckentem(3) means,
> —c,ne N, for somec € R, . With

n n
th = Za;, Wp i= th, neN,
i= j=

fork e {1,...,n} one obtains

n+k
Wn+k - Wn - tnk+ Z (tj - tn) 2 ktn - kZC,
j=n+1
n
Wik — Wh = th(—K) + (th—1tj) > —ktn — k?c
j=n—k+1

(compare Taylor expansion), thus

Wi — Wi ke t Whik —Wn ke
Un=Wnk 2t I Pk = Wn B2
nk n n nk n

(1) implies
on:=max{|w ;| =1,...,2n} = o(n?),

k(n) := min{1+ [\/0n],n} = o(n).

Therefore
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[th] - 20n k(n)

n ~ nk(n n
i.e. (4).
b) With

forke {1,...,[3]} we obtain as before

n+k
Znik—Zn=SK+ Y (Sj—%),
j=n+1

n

k—Zn=S(—k —5j),
Zn k— 2= Sn( )+J_:nZk+l(s1 Sj)

thus forn> 2

—in sup |Z_-j|+(5n—3j(n,k))
K/Njeqig)g)+1..)
nz, n—Kkz_g .
< -3 e
~kn k n—k+je{nmm ..... n}(s1 Si)
<%

N+Kzyk Nz :
- ——2_  min (si—
k ntk kn je{n+1‘|...‘n+k}( i~ )

1+k/n 1z
<2 w B e
K/ jenntt,.} | (Sj+(nk) )

IN

with suitablej(n,k) € {n—k+1,...,n}, j*(n,k) € {n+1,...,n+k}. Now choos&=k(n) e {1,...,[3]}

|z

such thak(n)/n — 0 so slowly that, besides spg s 5,1, Tj‘ — 0 (n— o) (by (5)), even

W]r-‘)- Sup @*0 (n—>oo),
- €318+ )

Therefore and bk(n)/n — 0 (once more) together with (6) we obtain

0< liminf (Sn — Sj(n,k(n)))
< liminf s, <limsups,
< —liminf (Sj*(n,k(n)) — S’]) <0,

which yields (7). O
Remark 1.

a) Assumption (6) in Lemma 1b is fulfilled if
Sl — S = Un+Vn+Wn

with up = O (%), convergence of L 57 1ivi), Ti i NWZ < oo.
For

N N 1

g Un| < const ——)
n=M+1 n=M+1 n
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N N
1
Vol = g =(nvy)
n=fTr1 n=friah
1 N 1 M N 1 n
= |— nv,— — nvh + |V"
L™ W™ Y S

(by partial summation)

n N 1
ZliVi‘ —
i= n=M+1 n

1
< o0o(1) +sup| —
< o(l) n€£<n+1

-0,

and (by the Cauchy-Schwarz inequality)

N

forM — o, M <N,N/M — 1.
b) Lemma 1b implies Lemma la. For, under the assumptions wini& 1a, withs, := (a1 +--- +an)/n
one has

1n

-y x

”k;

1 n 10 1k
S a - a oo4ai
a2, %t +ak)+nk;k(k+1)111( 1t ay)

(by partial summation)
—0 (n — oo)

by (1), i.e., (5) is fulfilled. Further, with suitablec R,

@ 1 1
Sit1— S = n <n n+1>(al+ +an;1)
- _¢_1
2 —n n5n+1
::Un+Vn

(by (3)), whereu, = O (1) and

10 1n
D R

by (5). Thus, by a), (6) is fulfilled. Now Lemma 1b yields (7.§.i (4).
¢) Analogously to b) one shows that Lemma 1b implies the wvaohLemma la where assumption (3) is
replaced bya, > —cp, n € N, for some sequenden) in R, with convergence o(% S ci) .

Part a) of the following Theorem 1 immediately follows frorerhma 1a, compare Walk (2005b), see the
proof below. Part b) is due to Chandra and Goswami (1992, Y1888 has been shown by a refinement
of Etemadi’s (1981, 1983) argument. Part c) contains thesaiaRademacher-Menchoff theorem and is
obtained according to Serfling (1970b), proof of TheoremtRete; its condition can be slightly weakend

(see Walk (2007))Cov,. denotes the nonnegative part@dv, i.e., max0,Cov}.

Theorem 1. Let (Y,) be a sequence of square integrable real random variables. If
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a) Yn > 0, SUpEY;,, < 0 and
n

SV {3y} <o ®

or
1n

b) Y, >0, — EY, d

) Yo > S:]Jpnk; i < o an

o0 1 n © 1 noj
SYCovi(iY) <o (& T Y Y Covi(¥,Y) <w
nzl n2 i; n 3 'Zl

Iog n+ 1)

)Z

then

ZCOV‘F Y| aYn)

iii(Y EY) —0 as 9

Proof (of Theorem 1apbviously(Y, — EY;,) is bounded from below. (8) yields

n 2

i;(Yi —EY)

Thus (9) follows by Lemma 1la. O

21
2 7

n=1

<o as

Remark 2. Analogously one can show that in Theorem 1a the conditiopEBYp
< oo may be replaced by convergence of the sequ(eﬁcg}‘:l EYi) . Instead of Lemma 1a one uses Remark
1c which is based on Lemma 1b.

Theorem 1a and a corresponding theorem for weighted meaesl fmn Lemma 2 below allow to apply
results on the variance of sums of dependent random vasi§de Theorem 2a and Theorem 4, respec-
tively, with proofs). In the special case of independendedrem 2a is Kolmogorov's strong law of large
numbers, and its proof by Theorem la is elementary.

Remark 3. If the square integrable real random variabfgsatisfy
|Cov(M, Yp)| <r(li—i]),
then

i%r(n) <

or in the case of weak stationarity the weakest possibleitond

= loglogn

n; nlogn r(n) <eo

1 n
r]Zl(Y EY) —0 as

imply

(see Walk (2005b) and Gaposhkin (1977), respectively).

Lemma 2 generalizes Lemma 1a and will be applied in Section 3.

Lemma 2. LetO < S T oo with Bh1/Bn — 1 and sety, := Bn— Bn-1 (n € N) with By :=0. Let (ay) be a
sequence of real numbers bounded from below. If
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10 " k
PPN PRL I
or sharper
2
3 (3wa) <o
n=1 n k=1
then
18 0
Bni;v.a :

Also Chandra and Goswami (1992, 1993) gave their result iroeergeneral form with An and 1/ j2
(and ¥n?) replaced by 1B, and /B2 (and (B — Bn-1)/B3), respectively, in Theorem 1b above, where
0< BT oo

The following theorem establishes validicity of the strdany of large numbers under some mixing condi-
tions. Part a) comprehends Kolmogorov’s classic strongdalarge numbers for independent identically
distributed integrable real random variables and, as élwsdan be generalized to the case of random vari-
ables with values in a real separable Banach space.

We shall use th@-mixing and thea-mixing concept of dependence of random variables.(EZgtncn be

a sequence of random variables on a probability sp@ce7, P). .7 denotes ther-algebra generated by
(Zm, . ..,Zn) for m< n. The p-mixing anda-mixing coefficients are deflned by

Pni= supsup[|corr(U V);U € Lo(Z5),V e Lo(Fpn), U,V real-valued,

0 := supsup{|P(ANB) — P(A)P(B); Ac Z{,Bc Z0},
keN
respectively. The sequenc¢g,) is called p-mixing, if pn — 0, and a-mixing, if an — 0 (N — o). It

holds 4, < py, (see, e.g., Gyorfi et al. (1989), p. 9, and Doukhan (19943) plog, below denotes the
nonnegative part of log, i.e., mé& log}.

Theorem 2. Let the real random variables,Yoe identically distributed.

a) If E|Y1| < w0 and if (Yy) is independent or, more generalfy;-mixing with
5 Lo
n:1n n 9

. 1
e.g., ifph=0 <W) for somed > 0,

then
1 n
— ZlYl —EY; as
n&

a1) If E{|Y1|log, |Y1|} < andif(Yy) is p—mixing, then
1 n
5 I;Yl —EY; as

b) If E{|Y1|log, |Y1|} < e and if (Yy) is a—mixing withay = O(n~¢) for

someqa > 0, then
n

1 21Yi —EY; as
né

Proof. LetY, > 0 without loss of generality. We s&‘,ic] =Ynl{y,<c}, €>0.



12 Harro Walk

a) We use a well-known truncation argument. BecaugeYpk «, we have a.sY;, = YA“] for some random
index on. Therefore and becauseﬁ)@@ — EY, it suffices to show

L& (il eyl
ﬁi;(Yi ~EY")—0 as
Because o¥" > 0, EY\" < EY < », by Theorem 1a it is enough to show

i iVar{ S Y[i]} < 00,
n=1 n3 izi I

Application of Lemma 3a below for real random variablesgsel

Var {i\q“]} <CrE { (YA“])Z} = CnE{(Yl[n])z}.

with some constar@@ € R_.. In the special case of independence one immediately olitarinequality
with C = 1. ¢ From this and the well-known relation

$ 3e(07) -3 34 e
- 21/ 1,i] 2R{1 dt iiz
< i;T /(iilﬁi]tzR(l(dt)

< 2EY; <

we obtain the assertion.

a) Lete= 711, K= %. From the integrability assumption we obtain as in the fiegp ©f the proof of Theorem

3 below (specialization t&, = cons) that

3|I—‘
=]

(Y vl ])—»o as.

As in part a) it is enough to show

i iVar{ S Y“K]} < 00
n=1 nd i; I

Application of Lemma 3a below for real random variablesgsel

ar {iYi“K]} < C(E)nlJrEE { (YA”K]) 2} < C(g)n1+£+2;<

for someC(¢€) < » and thus the assertion.
b) Letk = %min{l, a}.Asin @) itis enough to show

i iVar{ S Y“K]} < 00
n=1 nd izi I

Application of Lemma 3b below for real random variables gl
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n .
Var Y['K] — O n2xt+2-min{l,a} log(n—+1)
(7)o |

and thus the assertion.
O

Part a) of the following lemma is due to Peligrad (1992), sifion 3.7 and Remark 3.8. Part b) is an
immediate consequence of an inequality of Dehling and Bih{l1982), Lemma 2.2. Parts c¢) and d) are due
to Liebscher (1996), Lemma 2.1, and Rio (1993), pp. 592, Eectively.

Lemma 3. a) Let(Z,) be ap—mixing sequence of square integrable variables with vainesreal sepa-
rable Hilbert space. Then for eaeh> 0

n
Var { zizi} <C(g)n**¢ max Varz
ic =1..,n

for some Q¢) < . If additionally

l . 21
Z Paon < ® O, equwalently,z =Pn < o,
=1 =L

then
n
Var { ZZ;} <Cn mlax VarZ;
= i=1,...,n
for some C< .

b) Let(Z,) be ana-mixing sequence of essentially bounded random variablbsvalues in a real sepa-
rable Hilbert space witla, = O(n~ %) for somea > 0, then

n .
var { lei} < crP MLt og(n+1) m
i& i=1

ax (ess sup|Z)?
n

for some C< . In the casen # 1 the assertion holds without the factor
log(n+1).

c) Let(Zn) be ana—mixing sequence of real random variables with= O(n~%) for somea > 1 and
E{|Zn?9/(@"D} < 00, n€ N. Then

a-1

- {le} < Cnlogin+1) mav (E4/2/(* 1 }) *

for some C< oo.

d) Let(Z,) be a weakly stationargr-mixing sequence of identically distributed real randomatales with
an = O(8") for somes € (0,1) andE{Z?log, |Z1|}
< oo, then

n
Var { lei} <CnE{Zflog, |Z1|}
i=

for some C< .

3 Pointwise consistent regression estimates

In regression analysis, on the basis of an observed d-dioreisandom predictor vectot one wants to
estimate the non-observed real random response valaljef (X) with a suitable measurable function
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f : RY — R. In case of a square integrabiene is often interested to minimize therisk or mean squared
errorE{|f(X) —Y|?}. As is well known the optimaf is then given by the regression functiorof Y on X
defined bym(x) := E{Y|X = x}. This follows from

EIT(X) =Y} = [ 1100 =mOo (e + E{Im(x) = Y2},

where 1 denotes the distribution oX. Usually the distributionPx v, of (X,Y), especiallym, is un-
known. If there is the possibility to observe a training sege(X;,Y:), (X2,Y2), ... of (d+ 1)-dimensional
random vectors distributed 1ikéX,Y) up to the indexn, one now wants to estimata by my(x) :=

M (X1, Y1, ..., %n, Yn; X) in such a way that

[ M - mx2u(d 0 (0 )

almost surely (a.s.) or at least in probability. Inspiredrbx) = E(Y|X = x), x € RY, one uses local
averaging methods, wherg(x) is estimated by the average of thogavhereX; is close tox. Inspired by
the above minimum property one also uses least squares dsetirhich minimize the empirical; risk
over a general se#, of functions. The classic partitioning regression ester(@gressogram) is a local
averaging method as well as a least squares method whgecensists of the functions which are constant
on each set belonging to a partitic#, of RY.

A frequently used local averaging estimate is the regradséonel estimate of Nadaraya and Watson. It
uses a kernel functioli : RY — R , usually with 0

< [K(X)A(dx) <o (A denoting the Lebesgue-Borel measureZy), e.g.,K

= 1g,, (naive kerne)K(x) = (1— |\x||2)150'1(x) (Epanechnikov kernel) (x)

= (1—[x|[2)21s,, (%) (quartic kernel) and (x) = e~ ¥I*/2 (Gaussian kernel), witk € RY, and bandwidth
hn € (0,), usually satisfyindy, — 0, nhd — oo

(n— ), e.g.,hh=cnY(c>0,0< yd < 1). (S§nforxe RY, h > 0 denotes the sphereRf with center

x and radius.) The estimatom, is defined by

T YK (XH:Q) xeRY (10)
YK (

X=X\
)

with 0/0 := 0. Theky-nearest neighbokg — NN) regression estimat®, of mis defined by

Mh(x) =

1 n
My (X) = zin{X, is among thé, NNs of xin (Xg,...,Xn)} (11)

with ky € {1,...,n—1}, n > 2, usually satisfyind,/n — 0, ky — o (n — o). Ambiguities in the defini-
tion of NNs (on the basis of the Euclidean distanc&f) can be solved by random tie-breaking. As to
references see Gyorfi et a. (2002).

A regression estimation sequence is called strongly usaligr(L,-)consistent (usually in the case that the
sequence of identically distributed + 1)-dimensional random vecto(Xs, Y1), (X2,Y2), ... is indepen-
dent), if

[ M%)~ mx)2u(d — 0 as (12)
for all distributions of(X,Y) with E{Y?} < c. It is called strongly universally pointwise consistent, i
my(x) — m(x) as. modu

for all distributions of (X,Y) with E|Y| < . (modu means that the assertion holds foralmost all
x € RY.) Correspondingly one speaks of weak consistency if onechasergence in first mean (or in
probability).
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Results on strong universal pointwise lor—consistency will be stated which generalize Kolmogorov’s
strong law of large numbers. If the independence conditienet is relaxed to a mixing condition, mostly
the moment conditiolE|Y| < c or E{|Y|?} < o for pointwise orL,-consistency, respectively, has to be
strengthened t&{|Y|log, |Y|} < e or higher moment conditions. We shall ysemixing anda-mixing
conditions. No continuity assumptions on the distributadiX will be made.

This section and the next section deal with strong pointw@ssistency and with strorg-consistency,
respectively.

In this section, more precisely, strong pointwise conaisgeof Nadaraya-Watson estimates (Theorem 3),
strong universal pointwise consistency of semi-recurBigeroye-Wagner estimates (Theorem 4), both un-
der mixing conditions, and strong universal pointwise ¢steaicy ofk,-nearest neighbor estimates under
independence (Theorem 5) are stated.

Theorem 3. Let (X,Y), (X1,Y1),(X2,Y2),... be identically distributedd + 1)—dimensional random vec-
tors with E{|Y|log, |Y|} < e. Let K be a measurable function ar? satisfying gH(||x||) < K(x) <
coH (|[X]]), x € RY, for somed < ¢; < ¢, < o and a nondecreasing function R, — R, with H(+0) >0
and /H(t) — 0 (t — »), e.g., naive, Epanechnikov, quartic and Gaussian kernelnre N, with band-
width h, > 0O, define m by (10).

a) If the sequenc@ Xy, Yn)) is p—mixing withp, = O(n~P) for somep > 0 and if h, is chosen asf=cn ¥
withc>0,0< yd < 2p/(1+2p), then

my(X) — m(x) as. mody.

b) If the sequenc@Xn,Yn)) is a—mixing witha, = O(n~?) for somea > 1 and if h, is chosen as h=
cnYwithc>0,0< yd < (2a —2)/(2a + 3), then

my(x) — m(x) as. mody.

Remark 4. Theorem 3 in both versions a) and b) comprehends the casel@bémdent identically dis-
tributed random vectors with choitg = cn~Y satisfying O< yd < 1 treated in Kozek, Leslie and Schuster
(1998), Theorem 2, with a somewhat more general choitg,dfut with a somewhat stronger integrability
condition such a& {|Y|log, |Y|(log, log, [Y|)}*®} < o for somed > 1. In the proof of Theorem 3 ex-
ponential inequalities of Peligrad (1992) and Rhomari @@0gether with the above variance inequalities
and a generalized Lebesgue density theorem due to Grelickizak and Pawlak (1984) together with a
covering lemma for kernels are used. In the independenedicaglassic Bernstein exponential inequality,
see Gyorfi et al. (2002), Lemma A.2, can be used.

Regarding Lemma 3a,c we can state the exponential ineiggadit Peligrad (1992) and Rhomari (2002)
for p-mixing and a-mixing sequences, respectively, of bounded real randamhlas in the following
somewhat specialized form.

Lemma 4. Let Z,, n€ N, be bounded real random variables and set

Ly := max ess supz|.
i=1,...n

a) Let(Z,) be p-mixing withp, = O(n~?) for somep > 0. Then there are constantg,c, € (0,) such
n

thatforallne N, >0
P (Zi—EZ)| > ¢&"
{Z' | }

Cre*
< crex — .
<C p( 1 aE{jz2n) 2+ Lnnl/(1+2p)>

b) Let(Z,) be a-mixing witha, = O(n~9) for somea > 1. Then there are constantg,c; € (0,%) such
thatforallne N, €* >0, B € (0,1)
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n

P{ _;(Zi —-EZ)| > 8*}

< 4exp(—

C1(£*)2 )

.....

The following generalized Lebesgue density theorem is dugreblicki, Krzyzak and Pawlak (1984) (see
also Gyaorfi et al. (2002), Lemma 24.8).

Lemma5. Let K as in Theorem 3) < hy — 0 (n — ), and letu be a probability measure a%y. Then
for all p-integrable functions f RY — R,

K () fon(y
TR () m(dy

The next lemma is due to Devroye (1981) (see also Gyorfi §2@02), Lemma 24.6).

— f(x) modp.

Lemma 6. Let u be a probability mesaure a4 and0 < hy — 0 (n — ). Then

H(S, hn)

liminf d

>0 modu.

It follows a covering lemma. It can be proven as Lemma 23.6yidrG et al. (2002) wher& = K is used.

Lemma7. LetH,H and ISIZ be functions as H and K, respectively, in Theorem 3. Thastsgke (0, o)
depending only on K an such that for all > 0 and ue RY

Proof (of Theorem 3)i suffices to show

Mh(X) := —Z?ZMK (%)
nfK (Xh—’nt) u(dt)

because this result together with its special cas¥ ferconst= 1 yields the assertion. L¥t>0,0< K <1,
without loss of generality.

In the first step, for an arbitrary fixed> 0 andY;" := Yim =Yily<ix), we show

—m(x) as mody, (13)

S0 =YK (52)
n K (%2) miay

—0 as modyu, (14)

which together with (16) below yields the assertion. TheatiohKp(x) for K(¥) (x € RY, h > 0) will be
used.
According to a monotonicity argument of Etemadi (1981),(ft) it suffices to show

on+1

Yt (= Y) Ky (X—=X)
Vol = S e (et (a0

—0 as modpu.

We notice
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hon /honi1 = 2
thus
Khpn = Kn Moni1 (Zy) = Kh2n+1
and, because of Lemma 7,

Khzn (x—2
/ TKn JanH@

2|"H»1
Khzn L1 (X=2)
[ Koo (x— D) (dlt)

p(dx) <€ < oo

for all ze RY and alln. Therefore, with suitable constartg c4(k),

00 on+1

EZ/Vn @ <8y 2"y EMN-Y)

n=1 i=

<¢ < Z 2n> EYily.ix)
i=1 \n=max{1,|(logi)/(log2)| -1}

001 (o] n
<yl / VR/(dv)

i=1 ' j=TiK] (J,i+1

This yields (14) — In the second step we show

s fr ()

K (Xh—) ) — m(x) mod . (15)
We have
SLE{WK ()} E{vke)}
n/K Xh—) d) K () k()

by Lemma 5. Because of Lemma 6 we have

n

n/K (Xh_t> p(dt) > d*(x)nt " — o mod p

(compare (18) below), thus
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L ) . K

oK@y T k()

|' JE{Y1yoy [ X =t}K (Xh_*t) u(dt)

" JK(5!) iy

E(Y1ly<y [ X =X) modu

(for eachN € N, by Lemma 5).
—E(Y[X=x)=mXx) (N— ),

which leads to (15). Together with (17) below we shall have
Y YK (Xﬁnxi)
n[K (Xh—*t) p(dt)
which together with (14) yields (13)- In the third step we show
s [k () —EV K (5]

n K (L) ki

distinguishing the cases of pymixing and b)a-mixing.

—m(x) as mody, (16)

—0 as modu a7)

a) Accordingto Lemma 6

u ({xe RY liminf M?igh) = 0}> =0.

Neglecting this set we have

(e e = g, (5 uia

> d(x)hj = d*(x)n"* (18)

for all nwith suitablec* > 0, r* > 0, d*(x) > 0. Choose an arbitrarg > 0. Noticing

E{(Yi*K (XE:Q»Z} gnZK/K (Xr;t)u(dt) (i=1...,n),

by Lemma 4a witke* = en [ K(Xh—;t)u(dt) we obtain for suitabley, c; € (0,)
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ad 1 4 X =X
nzlp{nm(xh—)mdt) iZ[YK(th )-erk (7)) ”}
» coen [K (Xh—*nt) p(dt)
<c exp| — 7%
n=1 nl/ZnK(f K (Xh—;t)ﬂ(dt)) + nknl/(1+2p)

hd 1
<cC exp (— —=Cp€
nzl 2

il () e ()

<a)y eXp(—%Czé‘min{d*(X)%n%K%Vd,d*(x)anlTlZﬁyd})
n=1

(by 18)
® o1 1 1
—ay exp(—%czemin{d*(x)%,d*(x)} nm'”{szyd’lKHZPVd})
n=1
< comod 4,

if1—yd—2«k >0and1-1/(1+2p)— yd— k > 0. Both conditions are fufilled under the assumptions
onp andy, if k > 0 is chosen sufficiently small. Thus (17) is obtained by theeB&antelli lemma.
b) As in a) we have (18). Choose an arbitrary- 0. For suitable constants;, ¢, by Lemma 4b with

e =enfK (Xh—;t) p(dt) andp € (0,1) we obtain fore sufficiently small

n . X— X
Z[ () e ()]
—eue?? (KO u()”
nZ+1llog(n+ 1)(fK(xht yu(dt))l- 1/a+£n1+K+BjK(Xh—) (dt)
+<m>”
< 42 exp( C;g /K (Xh t) (dt)

.min{snlzK(log(n+1))1 </K <Xr;t) u(dt)) 1/01’ n1KB}>

oo 20" z s+ % 1-(ra)p

[ee]

nzf’{n TSIt

<4\ exp
2,

<4 S exp _ G g xn v
S (5™

-min {ed* (x)Y/an1=2k=yd/a(Jog(n+ 1)) 72, niKP })

Feoe2d(x) 2 )3 nS+E (B o mod i,
=1
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ifl—yd(a+1)/a—2k >0,1-B—yd—k >0and—4+2(1+a)B—k —yd
> 0. These conditions are fulfilled under the assumptionsrandy, if one choose$ = 5/(3+ 2a)
andk > 0 sufficiently small. Thus (17) is obtained. O

If the above Nadaraya-Watson kernel regression estimatepisiced by the semi-recursive Devroye-
Wagner (1980b) kernel regression estimate, then strongetsal pointwise consistency in the case of
independent identically distributed random vectpXs, Y,) can be stated, i.e., under the only condition
E|Y1| < o strong consistenci, -almost everywhere (see Walk (2001)). This result has betsmded to
the p-mixing case under the conditichpn < « by Frey (2007). The case of bound€édvas treated by
Ferrario (2004) under more genecaimixing andp-mixing conditons on the basis of the generalized The-
orem 1b mentioned in context of Lemma 2.

In the following the result of Frey (2007) and its proof wik lgiven.

Theorem 4. Let (X,Y), (X1,Y1), (X2,Y2),... be identically distributedd + 1)-dimensional random vec-
tors withE|Y| < co. Let K be a symmetric measurable function®thsatisfying glgr <K < colgyp for
somed < R< o0, 0 < ¢; < € <  (so-called boxed kernel with naive kerneHKlsg,, as a special case).
With ne Nand h, > 0 set

Ma(X) := 2 YK (%) x e R

k()

Where% := 0. If the sequenc@Xy, Yn)) is p-mixing withy pn <
(e.g.,on = 0O(n"P) for somep > 1) and if h, is choosen asfh=cn Y withc> 0,0 < yd < %, then

my(x) — m(x) as. mody.

Theorem 4 comprehends Kolmogorov’s strong law of large rensfspecial case thatis a Dirac mea-
sure). The semirecursive kernel estimate has the numeribaintage that a new observation leads only
to an addition of a new summand in the numerator and in therderador, but the observations obtain
different weights. In the proof we give in detail only the pahich differs from the proof in Walk (2001).

Proof (of Theorem 4)\Without loss of generality assunye> 0.The case of bounded] also with denomi-
nator replaced by its expectation, is comprehended by Fe(2004). Therefore in the cagdY| < w it is
enough to show existence ota (0, ) independent of the distribution ¢X,Y) with

. Y YiK (%)
limsup
e 1450 K ()

(compare Lemma 8 below). Let the compact supporKdby covered by finitely many closed spheres
Si,...,Sy with radiusR/2. Fixk € {1,...,N}. For allt € RY and alln € N, from x € t + hyS; it can be

concluded
()22 (7)) s (o(+) @

foralli={1,...,n}. It suffices to show

Y, YiK (%) Is. (%) <dm(x) as modpu (21)

<cmXx) as modu (19)

lITjotjp 1 n oKXt d
+2|:1j hj IJ( t)

for somec’ < «. With

1 X—t

rn:=rnp(t) = —/K (—) Liihys (X)H(AX), Ry:=r1+---+ry, NEN,
C2 hn
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fort € R we can choose indicgs = p(t,k,i) T o (i — o) such that

Ry <i+1,

[ee]

holds. Forp(t,k, -) we define the inverse functiarit,k,-) onN by
q(t,k,n) :=max{i € N; p(t,k,i) <n}.

Set
Zi :=Yly<qx ki) 1 €N

Now it will be shown

2t 2 () 1a () & 2K () 1a (1)}

—0 as  modu

i_ii/K (XT_It) p(dt) 1o modp

because of K (Xh—*lt) p(dt) > ciu(x+hiS1) > cic(x)hd by Lemma 6 withe(x)
>0 modu andy hd = o by 0< yd < 1. FurtherZ, > 0 and

IimsupEan (7)1 (XF‘—XH) < lim Ok (& m(x) modp
K () m(d ( )u (dt)
by Lemma 5. Withw;(x) := Z;K ( ) 1s, ( ) we obtain
Var { ivvmx)}

< Ve (W) 5 e (Ver (Wi()})? (Var {w(x)})?
= A7)

<y Var {VVJ(X)}JF% i pjjy [Var {Wj(x) } + Var {W (x)}]

=1 J=11=11#]

< (14—2% pJ-) iVar {Wi(x)}
=1 =1
=c i Var {W;(x) }

with ¢* < o by the assumption ofpn), thus

21

(22)

(23)

(24)

(25)
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o [K (%) u(dvar {1,wi(x)}
B (o 50y K (50 )]
o K (%) u() 3 var {wi(}

A (cr 30 1K (550 iy

p(dt)
—t

—c Yy Var (W} Y o ) uien)’
u

= 5 (e + 50 K (R

with suitablec™ < c. Now, by (20),
5 e )

T3 (e 50 6 (52 mies)’

o o E{ZAPXa=t}K (%) 1s (%
|l

ci+3ita /2K (STTt)

C1e | IR @K () 1s (5
"2 [ e e G )
25 / 2 (s P ) K (1) 5 (Xh_nt)u(dx) p(dt)
. (1450 K (5°) 16 () meas)
t

1
O Il S (Jioai PRoxa(@V)) &

T R2
C1 n=1

LK) 15 (62
D1+ st k(%) 1s (5 n@s)

00
>
n=p(tk,i
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3 i 00 . 1

(by23)
<— IR VR (dV dt
/|0 R )]u( )
< 2y .
=3 <o
Therefore % «
o [K (%) p(dt)var{s"_,Z;K 1g (52
() moover {512k () (1))
=2 (et 3ra K (35 pat))
and (24) follows by Lemma 2.
In the next step we notice
o EzK (R 16 () s moK (35 u(dy
limsup <lim
S fKCR ) p) et 3 MK (2R
=m(x) modu
because of (25) and Lemma 5. This together with (24) yields
Yi1ZK 1s
limsup — ( ) ( )gm(x) a.s. modyu. (26)
cl+zi":11r<(%)u<dt>
In the last step one obtains (21) from (26) and (25) by nagicin
3 Planss (500) #vass (5] <o mod 27)
n

whereS:= SR, together with the Borel-Cantelli lemma, and (27) followsrfr
[ P> 60 k1) Xo € X (57180 (e
v n=1
/5 ( [P >atkmix =t 1xhn<sqsk><t>u<dt>) u(dx)
v n=1

_ i/P[Y>q(t,k,n)|X:t]u(t+hn(5ﬂ3<))ll(dt)

p(t.k,i+1)

S/ZPYE (i+2X =t 5 ut+m(SNS) H(dy
CZ ZPYE (i + 12X =] (i +2)p(dt)

(by 22)
< 3%y <o, 0
C1
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Forkn-nearest neighbor regression estimation with integrasipense random variabfeandd-dimensional
predictor random vectaoX on the basis of independent data, the following theoreneststrong univer-
sal pointwise consistency, i.e., strong consiste®gylmost everywhere for general distribution(of,Y)
with E|Y| < e. The estimation is symmetric in the data, does not use ttadabservations and contains
Kolmogorov’s strong law of large numbers as the special tzes# is a Dirac measure. It can be consid-
ered as a universal strong law of large numbers for conditierpectations. Let for the observed copies
of (X,Y) theky-nearest neighbokg¢-NN) regression estimaten(x) of m(x) := E(Y|X = x) be defined by
(12).

Theorem 5. Let (X,Y), (X1,Y1), (X2,Y2),... be independent identically distributéd + 1)-dimensional
random vectors WitfE|Y| < . Choose k€ min{[crf],n— 1} with ¢ >0, B € (0,1) forn€ {2,3,...}.
Then

my(x) — m(x) as. mody.

As to the proof (with somewhat more geneka) and related results we refer to Walk (2008a). The
proof uses Etemadi’'s (1981) monotonicity argument, a gdized Lebesgue density theorem concern-
ing Emy(x) — m(x) mod i, a covering lemma for nearest neighbors and Steele’s (1¢88)on of the
Efron-Stein inequality for the variance of a function of @méndent identically distributed random vari-
ables.

Whether at least in the case of independence strong uniyerisdéwise consistency for Nadaraya-Watson
kernel regression estimates or for classic partitioniggassion estimates holds, is an open problem.

Remark 5. Let the situation in Theorem 5 be modified by assuming thaségeiencéXi,Y:), (X2,Y2), ...
of identically distributed(d + 1)-dimensional random vectors &-mixing with a, = O(n~9) such that
0<1-B<min{a/2,a/(a+ 1)} and thaty; is bounded. Let tie-breaking be done by enlarging the di-
mensiond of the predictor vectors td+ 1 by use of new (independent!) random variables equidigtih
on [0,1] as additional components (see Gyorfi et al. (2002), pp.@6Bhen Theorem 2 in Irle (1997)
states

my(X) — m(x) as. mody.

Analogously, by use of Lemma 3a, one obtains the same cogweegassertion und@r-mixing where
0<1l-B<1l

4 L,-consistent regression estimates

The pioneering paper on universal consistency of nonpdramegression estimates is Stone (1977). It
contains a criterion of weak universia-consistency of local averaging estimates under indeperede
The conditions fok,-nearest neighbor estimates and for Nadaraya-Watsonllestimates were verified
by Stone (1977) and by Devroye and Wagner (1980a) and Spiegednd Sacks (1980), respectively. The
following theorem concerns strong universatconsistency ok,-nearest neighbor estimates (Devroye
et al. (1994)), of semirecursive Devroye-Wagner kernehegtes (Gyorfi, Kohler and Walk (1998)) and
modified Nadaraya-Watson kernel estimates (Walk 2005a).

Theorem 6. Let (X,Y), (X1,Y1), (X2,Y2), ... be independent identically distributéd + 1)-dimensional
random vectors witlE{Y?} < oo,

a) Let the k—NN regression estimates,rof m be defined by (11) withy ke {1,...,
n—1}, n> 2, satisfiying k/n — 0, ky/logn — o (n — ) and random tie-breaking. Then (12) holds.
b) Let the semirecursive Devroye-Wagner kernel regressstimates m n > 2, be defined by

Y1K(0) + 3L, YK (%)
Mn(X) := AN
K(O)+ZP:2K(%)

x € RY,
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with symmetricA —integrable kernel K RY — R, satisfying
aH([[x]) <K(x) < BH([[X]), xRS,

for somed < a < B < « and nonincreasing HR ; — R with H(+0) > 0 and with bandwidths > 0
satisfying
hh] 0 (n— o), Zzhd_oo

e.g., h=cnYwithc> 0,0 < yd < 1. Then (12) holds.
c) Let the Nadaraya-Watson type kernel regression estsmaien € N, be defined by

_ EinzlYiK(Xﬁ )
0= max{é,Zinle (Xﬁf)}’ R

with an arbitrary fixedd > 0, a smooth kernel KRY — R, (see below) and bandwidthg b 0 satis-

fying

hn 10, nhf—o (n—w), hy—hni1=0O(ha/n),
e.g.,lh=cnYwithc>0,0< yd < 1. Then (12) holds.

In Theorem 6¢ the modification of Nadaraya-Watson estimaiasists of a truncation of the denominator
from below by an arbitrary positive constant, see Spiegelarad Sacks (1980)). Smooth kernel means
a kernelK of the formK(x) = H(||x||), whereH is a continously differentiable nonincreasing function
onR, with 0 < H(0) < 1, [H(s)s" 1ds < « such thatR with R(s) := ’H’(s)?/H(s), s> 0 (0/0 :=

0), is bounded, piecewise continuous and, saufficiently large, nonincreasing withR(s)s”1ds < .
Examples are the quartic and the Gaussian kernel. In thé pfdhveorem 6a one shows

lim SUpE T max / 1;x; is among thec, nearest neighbors afin (X...., Xn)}l-l(dx)

n—oo

< const< o as.

and uses Kolmogorov’s strong law of large numbers¥pr YZ,... and Lemma 8 (withp = 2, & = 0)
below. Theorem 6b is proven by martingale theory, a coveairggment and Lemmas 5, 6 and 8 (with
p=2, d =0). In both cases, for details and further literature we reféyorfi et al. (2002). In the proof
of Theorem 6¢ strong consistency for boundfe(lue to Devroye und Krzyzak (1989)), Lemma 8 (with
p =2, 0 = 0) and summability theory (Lemma 1b), together with Lemma6,5 and Steele’s (1986)
version of the Efron-Stein inequality for variances areduse

The following lemma (see Gyorfi (1991), Theorem 2 with praoid Gyorfi et al. (2002), Lemma 23.3;
compare also the begin of the proof of Theorem 4) allows taecedoroblems of strong consistency of
kernel or nearest neighbor regression estimates to twdairmppblems. It holds more generally for local
averaging estimation methods.

Lemma 8. Let p> 1 andd > 0 be fixed. Denote the Nadaraya-Watson or semirecursive pewdagner
or ka-NN regression estimates in the context{af- 1)-dimensional identically distributed random vectors
(XaY)a (xlaYl)a (XZaYZ)a oo

by my. The following statement a) is implied by statement b):

a) for all Y withE{|Y|<1+5>p} <o

/|mn (X)|Pu(dx) - 0 as,;

b) for all bounded Y
[ 1m0~ mju(ex 0 as.



26 Harro Walk

and there exists a constankce such that for all Y> 0 with E {Y”‘S} < o0
Iimsup/mn(x)u(dx) <cEY as. (28)

For fixedd > O statement a) for p- 1 follows from a) for p= 1.

If we allow stronger moment conditions dn(andX) we can relax the independence assumption for kernel
estimates. Here Nadaraya-Watson kernel estimateare considered with kernelé : R — R, of the
formK(x) = H(|||x/|), x€ RY, whereH : R, — R is a Lipschitz continuous nonincreasing function with
0 < H(0) <1 and [H(s)s" 1ds < o such that the functios — s|H’(s)| (definedA -almost everywhere
on Ry ) is nonincreasing fos sufficiently large (e.g., Epanechnikov, quartic and Gaurssiernel). The
following result (Walk (2008b)) concerris-consistency.

Theorem 7. Let (X,Y), (X1,Y1), (X2,Y2),... be identically distributedd + 1)-dimensional random vec-
tors with E{|Y|P} < o for some p> 4, E{||X||9} < o for some ¢> 0. Choose bandwidthsyh= cn™

(c>0, 0< yd < 1). If the sequencé(Xn,Yy)) is p-mixing and0 < yd < 1— % - %—‘é or if it is a-mixing
with a, =0(n~%), a > 0, with 0 < yd < min{1,a} — % — %—‘é, then

[ Ima) ~mix)Pu(@x 0 as

If Y is essentially bounded, then no moment conditioXXasneeded and the conditions pare 0< yd < 1

in the p-mixing case and & yd < min{1,a} in the a-mixing case. IX is bounded, then the conditions
onyare O<yd <1— % in the p-mixing case and & yd < min{l,a} — % in the a-mixing case. In
this context we mention that a measurable transformatiof f boundedX does not change the risk
E{[Y —m(X)[?}.

In the proof of Theorem 7, by Lemma 8 we treat the correspandjpconsistency problem witip > 2.
The integrability assumption ofiallows to truncat&; (> 0) ati'/P. Because of

St () 5ty ()
STk (52) n K (%) u(ay
YK (XH:Q)

nfK (%2) m(dy

it suffices to investigate the convergence behavior of ttierleerm and of the simplified estimator

1
p

Sn _17

ZinzlYil[Yigil/p]K (?1_?)
JISEIICH
considered as a random variable with values in the real ablgaHilbert spack, (). This can be done by
use of the Tauberian Lemma 1b, the covering Lemma 7 and Lerarha8 the variance of sums of Hilbert

space valued random variables under mixing together wigisaltrof Serfling (1970a), Corollary A 3.1, on
maximum cumulative sums.

5 Rosenblatt-Par zen density estimates under mixing conditions

In this section we investigate the Rosenblatt-Parzen kelewsity estimates in view of strorg- con-
sistency under mixing conditions, namedy and a-mixing. In the latter case the-mixing condition in
Theorem 4.2.1 (iii) in Gyorfi et al. (1989) (see also Gyorfdaviasry (1990)) is weakened, essentially to
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that in Theorem 4.3.1 (iii) there on the Wolverton-Wagnet ¥amato recursive density estimates. In the
proof we use Etemadi’s concept and not Tauberian theorgusecin the latter case a Lipschitz condition
on the kernel should be imposed.

Theorem 8. Let the d-dimensional random vectorg X € N, be identically distibuted with density f, and
assume thatX,) is p-mixing or a-mixing withan, = O(n~%) for somea > 0. If for the Rosenblatt-Parzen
density estimates

fa(X) == fa(Xg,..., Xm;X) := %iK <%) , xeRd (29)

the kernel K is chosen as a squareintegrable density ofRY with K(rx) > K(x) for 0 <r < 1 and the
bandwidths are of the formph=cn™, 0 < ¢ < o, with 0 < yd < 1 in the p-mixing case and < yd <
min{1, a} in the a-mixing case, then

/ fa(X) — F(X)|A(dX) — 0 as (30)

Proof. Because of the simple structure of the denominator in (29rare use Etemadi’s monotonicity
argument. LetQ, <7, P) be the underlying probability space. For ratioaat 1 andn € N set

q(a,n):=min{a;a¥ >n,Ne N}, p(an):=q(an)/a

Then for f,, one has the majorant

( ) 1 [a(a,n)] ( X )
ga,n,:)=———-—— K
p(amhg, i; No(an)

and a corresponding minora(a,n,-). Let | - |1 and| - ||» denote the norms ih;(A) andL2(A ), respec-
tively. In order to show

Hg(a,n,) —al+Vde1 -0 (n—w) as,

[aNJrlw
Zl W —arifll -0 (N—w) as,
= 1

1 Y.
Wi (0= R K<Xh NK)
a

haN+1

with

it suffices, according to Gyorfi et al (1989), pp. 76, 77, towh

"aN+1‘|
iZ\ EWni—al™f|| -0 (31)
1
and
"aNJrl'I
Izi (VN,i — EVNJ) —0 as (32)

2
(31) follows from Theorem 1 in Chapter 2 of Devroye and Gy(fi85). Noticing

L 27
IVhillz = —ges—hi ( [K©2A@9))
aN+1

one obtains
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2
o [aNJrlw

NzlE ZI (Vi —EW)|| <o

2
by Lemma 3a,b and thus (32). Analogously one has

|b(a,n,:)—at"f|; -0 as.
Thus for P-almost all realisatioms(a,n,-) < fi < g*(a,n,-), one obtains that for all rational> 1
lg*(a,n,-) —atf|ly — 0, [Ib*(an,-)—a*"f|y 0.

Let (nk) be an arbitrary sequence of indicesNnThen a subsequencey, ) exists such that for all rational
a> 1 (by Cantor’s diagonal method)

g*(avnkp')—>a1+ydfa b*(aanha')qailiydf

A-almost everywhere, thu’g*kI — f A-almost everywhere and, by the Riesz-Vitali-Scheffé Iefm|m,1‘k| -
f|l1 — O. Thereforel| f — f||1 — 0, i.e., (30) is obtained. O

In order to establish in the situation of Theorem 8 strongstsiancyA -almost everywhere for boundé&d

in thea-mixing case one needs to strengthen the conditioptord < yd < min{$, GLH}, accordingto Irle
(1997). Another result, where the freedom of choice in Teao8 is preserved, is given in the following
corollary. The proof is similar to that of Theorem 8 and wil bmitted. It uses variance inequalities of
Peligrad (1992) and Rio (1993), respectively (see Lemmad)3a,

Corollary 1. Let the density K be as in Theorem 3. Assume further the ¢onslibf Theorem 8 with
(Xn) p-mixing or (X,) weakly stationary andx-mixing with a, = O(d") for somed € (0,1) and
JK(x)2log, K(x)A (dx) < oo, further0 < yd < 1. Then

fa(x) — f(x) as. modA.
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