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On Torsion Subgroups in Integral Group Rings

of Finite Groups∗

A. Bächle and W. Kimmerle
IGT, Fachbereich Mathematk

Universität Stuttgart
D - 70550 Stuttgart

In honour of K. W. Gruenberg

1 Introduction

Throughout G is a finite group. The integral group ring of G is denoted by ZG and V(ZG) is the
subgroup of the unit group U(ZG) consisting of the units with augmentation 1.
The question whether a finite subgroup H of V(ZG) is isomorphic to a subgroup of G may be
seen as a question on G however as well as on H in the sense of [15, Problem 19]. J. A. Cohn
and D. Livingstone showed that if H is a cyclic group of prime power order then the question
has always an affirmative answer [5, Theorem 4.1]. Till 2006 no other general result was known
without specifying G. In the mean time it has been proved that V(ZG) has a subgroup isomorphic
to Cp × Cp if, and only if, G has such a subgroup [17], [12]. The main reason why there are no
further general results is that very little is known on the torsion subgroups of V(ZG) when G is a
simple or almost simple group.
Therefore it is necessary to strengthen efforts on integral group rings of finite simple groups. Quite
satisfactory results have been obtained for the series PSL(2, q) [14]. In this article we continue
this study with respect to the series of the Suzuki groups Sz(q) = 2B2(q), q = 22m+1, in order to
get results for all minimal simple groups G.
Note that in integral group rings of finite groups subgroups H of finite order are not always
contained in a group basis.1 This is another reason for the failure of general results. H. Zassenhaus
conjectured that each finite subgroup H of V(ZG) is conjugate within QG to a subgroup of G.
This conjecture known as third Zassenhaus conjecture, usually denoted by ZC3, does not hold.
Even group bases need not be isomorphic [10]. ZC3 has been verified by A. Weiss when G is
nilpotent [25]. It is open in the case when H is a p-group or abelian. The subcase when H is
cyclic - known as first Zassenhaus conjecture ZC1 - has been extensively studied in the last years.
A positive solution to ZC1 is known mainly for special classes of soluble groups. The weaker
question whether cyclic subgroups of V(ZG) are isomorphic to a subgroup of G [21, Problem 8]
has an affirmative answer when G is soluble [11]. Again with respect to simple or almost simple
groups almost nothing was known till 2006.

It is obvious to study first the weaker question whether the prime graph Π(V(ZG)) - nowadays
called the Gruenberg-Kegel graph - coincides with that one of G [15, Problem 21]. Note that the
vertices of the Gruenberg-Kegel graph are the primes dividing the order of a torsion element of
the group. Two different vertices p and q are connected by an edge if, and only if, there is an
element of order p · q.

∗Typing errors corrected, June 2010
1A subgroup H of V(ZG) with |H| = |G| is a Z -basis of ZG and is called a group basis. It consists of linearly

independent elements.
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An algorithm described by I. S. Luthar and I. B. S. Passi [18] for proving ZC1 for the alternating
group A5 and an extension of this algorithm with Brauer characters developed by M. Hertweck [13]
led to positive answers for several simple or almost simple groups of the question on Π(V(ZG))
within the last years, cf. [16], [4].

The article is organized as follows. In Section 2 we study the Gruenberg-Kegel graph of specific
subgroups of V(ZG) for an arbitrary finite group G. Among other this leads to the following

Theorem A. Let H be a group basis of ZG and let U be an isolated subgroup of H. Then the
normalized torsion elements of the centralizer ring CZG(U) are the central elements of U. Moreover
Π (NV(ZG)(U)) = Π (NH(U)).

In Section 3 we consider torsion subgroups of V(ZG) for groups G with abelian Sylow subgroups.
We show that finite 2-subgroups of V(ZG) are rationally conjugate to a subgroup of G provided
G has elementary abelian Sylow subgroups of order at most 8. In the next section we study with
the Luthar-Passi-Hertweck method torsion units of ZPSL(3, 3) and obtain that Π(PSL(3, 3)) =
Π(V(ZPSL(3, 3))). The results on the torsion units of the minimal simple group PSL(3, 3) are used
in the final section. There we show with the generic character table of Sz(q) that elementary abelian
subgroups of V(ZSz(q)) are isomorphic to subgroups of Sz(q) and consider the same question with
respect to PSL(3, 3). Together with the results on ZPSL(2, q) obtained in [14] we get the following
conclusions:

Theorem B. Let G be a simple group which admits a non-trivial partition. Let H be a finite
subgroup of V(ZG). Then for each prime p the p-rank of H is less or equal than that one of G.

Proposition C. Let G be a minimal simple group and let H be an elementary abelian subgroup
of V(ZG). Then H is isomorphic to a subgroup of G except possibly the case that H ∼= C3

3 and
G = PSL(3, 3).

2 Gruenberg-Kegel graph

By [5] we know that the primes dividing the order of a torsion unit of V(ZG) are primes dividing
|G|. Thus Π(V(ZG)) and Π(G) have the same vertices. The Gruenberg-Kegel graphs of G and
V(ZG) can therefore differ only when the latter has more edges.
Our first observation shows that such an additional edge must arise between torsion units which
are both not contained in a group basis of ZG.

Lemma 2.1. Let W be a subgroup of a group basis H of V(ZG). Let p and q be different primes.
Assume that w ∈ W with o(w) = p commutes with a unit u ∈ V(ZG) of order q. Then there is an
element h ∈ CH(W ) of order q.

If u =
∑

g∈G zgg ∈ ZG is a unit and C is a conjugacy class of G the partial augmentation of u
with respect to C is

εC(u) :=
∑

g∈C

zg.

The augmentation map ε : ZG −→ Z,
∑

g∈G zgg 7−→ ∑

g∈G zg shows that the sum over all
partial augmentations of a unit u of V(ZG) is 1. Moreover by S. D. Berman and G. Higman the
1-coefficient of u is zero provided u 6= 1. For the proof of Lemma 2.1 we use the following result on
partial augmentations due to M. Hertweck. For the convenience of the reader we state it because
it is frequently used in this article.

Theorem 2.2. [13, Theorem 2.3] Let G be a finite group and u ∈ V(ZG) a torsion unit of order
k. Let C be a conjugacy class of G and let g ∈ C. Then εC(u) = 0 provided o(g) ∤ k.

Proof of Lemma 2.1. Let u =
∑

g∈H zgg. Because u has order q it follows from Theorem 2.2

6



that εC(u) = 0 for each H-conjugacy class C which does not consist of elements of order q. Thus

s :=

k∑

i=1

εCi
(u) = 1 ,

where C1, . . . , Ck denote the conjugacy classes of H of the elements of order q. By assumption
w−1uw = u. Thus w acts on the coefficients zg of u. If there is no element of order q of H which
commutes with w each class Ci consists of 〈w〉-orbits of length p. Hence for each i the partial
augmentation εCi

(u) is divisible by p and therefore s as well. This contradiction completes the
proof.

Lemma 2.1 suggests to define a subgraph Πr(V(ZG)) of Π(V(ZG)) as follows. It has the same
vertices as Π(V(ZG)) but two different vertices p and q are linked by an edge if, and only if, the
centralizer CV(ZG)(g) of an element g ∈ G of order p contains an element of order q. Then we get
immediately from Lemma 2.1

Corollary 2.3. Let G be a finite group and let H be a group basis of V(ZG). Then

Π(H) = Πr(V(ZG)).

Proof. By the class sum correspondence Π(H) = Π(G). Then the corollary follows from Lemma
2.1.

A subgroup U of a finite group G is called isolated, if for each non-trivial element u of U the
centralizer CG(u) is contained in U and if for each g ∈ G the intersection of U with Ug is trivial or
coincides with U. A finite group has an isolated subgroup if, and only if, its Gruenberg-Kegel graph
is disconnected and this is the case if, and only if, its augmentation ideal decomposes [9, Thm.
1 and Prop. 4] and [26, Theorem 6]. Note that the proof of these equivalences requires the
classification of the finite simple groups. The question on the decomposition of augmentation
ideals was certainly the motivation for K. W. Gruenberg and O. Kegel to determine precisely the
structure of finite groups G with disconnected Π(G) [26, Theorem A]. Isolated subgroups are Hall
subgroups. Thus the first part of Theorem A of the introduction is a special case of the following

Theorem 2.4. Let H be a group basis of ZG and let W be a Hall subgroup of H. Assume that
for each prime p ∈ π(W ) there is a w ∈ W of order p such that CH(w) ≤ W. Then the normalized
torsion elements of the centralizer ring CZG(W ) are the central elements of W.

Proof. Let u ∈ CV(ZG)(W ) be of prime order q. Assume there is a p ∈ π(W ) different from q. By
assumption there is w ∈ W with o(w) = p whose H-centralizer is contained in W. By Lemma 2.1
we see that q divides the order of CH(w). It follows that q ∈ π(W ).
Let Q be a Sylow q-subgroup of W and let v ∈ CV(ZG)(W ) of prime power order qm. Assume that
v is not contained in W , then 〈v, Q〉 is a finite q-group of order strictly bigger than Q. But W is
supposed to be a Hall subgroup of H and it is well known that the order of a torsion subgroup
of V(ZG) divides the order of G. This shows that |Q| < | 〈v, Q〉 | is impossible and we get that
v ∈ W. Now it follows that each torsion element of CV(ZG)(W ) is contained in W.

The next result is mentioned in [16].

Proposition 2.5. Let G be a Frobenius group and C be a Frobenius complement of G. Then

Π(V(ZG)) = Π(G) and Π(V(ZC)) = Π(C).

Proof. By [16, Proposition 4.3] Π(V(ZG)) = Π(G) provided G has a normal soluble subgroup N
such that Π(V(ZH/N)) = Π(H/N). Thus, if G is soluble, the statement follows immediately. An
insoluble Frobenius group is a soluble extension of A5 or S5. The same holds for C. But for A5

and S5 the first Zassenhaus conjecture ZC1 is valid [18], [19]. This completes the proof.
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Proof of Theorem A. It remains to prove the second part. So let U be an isolated subgroup
of the group basis H. Put V = V(ZG). If NH(U) = U then H is a Frobenius group and U a
Frobenius complement. By Proposition 2.5 we get that Π(V ) = Π(H). Because Π(U) is a full
subgraph of Π(H) the Gruenberg-Kegel graph of NV (U) must coincide with that one of U.

Assume now that NH(U) > U. Then NH(U) is a Frobenius group with kernel U and by a well
known result of Thompson the Frobenius kernel U is nilpotent. Let x ∈ NV (U) be of order r · q
where r and q are different primes. If r and q divide |U | then they are linked by an edge even in
Π(U) because of the nilpotency of U.
Suppose q ∈ π(U) and r /∈ π(U). Clearly we may write x = xr · xq with o(xr) = r, o(xq) = q
and xr · xq = xq · xr . Let Q be a Sylow q-subgroup of U. Because U is isolated it follows that
NH(Q) = NH(U). Now Coleman’s Lemma [6] says that

NV (Q) = NH(U) · CV (Q).

Note that NV (U) ≤ NV (Q). Thus we can write xr = gr · cr and xq = gq · cq with gr, gq ∈ NH(U)
and cr, cq ∈ CV (Q) ∩ NV (U). Consider the surjective group homomorphism

ϕ : NV (U) −→ NH(U)/CH(Q).

Clearly CV (Q) ∩ NV (U) coincides with the kernel of ϕ.
Now ϕ(x) = ϕ(gq) ·ϕ(gr). Because q and r are not connected in Π(NH(U)) we see that ϕ(gq) = 1
or ϕ(gr) = 1. If the latter holds then xr is a torsion unit in CV (Q) of order r. Consequently by
Lemma 2.1 we get that there are elements of order r in the centralizer CH(w) of a non-trivial
element w of Q. But CH(w) ≤ U because U is isolated contradicting that r /∈ π(U). This shows
that we must have ϕ(gq) = 1. So xq ∈ CV (Q) and by Theorem 2.4 we get that xq ∈ Z(Q). By
Lemma 2.1 we see that CH(xq) has an element of order r. But CH(xq) ≤ U, r /∈ π(U) and we have
reached at a contradiction.
Suppose q /∈ π(U) and r /∈ π(U). As in the preceeding case it follows that ϕ(gr) 6= 1 and ϕ(gq) 6= 1.
Then ϕ(x) = ϕ(gr) · ϕ(gq) is an element of order r · q. But then NH(U) has an element of order
r · q and there is an edge between the vertices r and q in Π(NH(U)).

3 Groups with abelian Sylow p-subgroups

Proposition 3.1. Assume that G has an elementary abelian Sylow 2-subgroup. Then 2-subgroups
of V(ZG) are isomorphic to a subgroup of G.

Proof. By [5] we know that 2-elements of V(ZG) are involutions. Thus any finite 2-subgroup of
V(ZG) is elementary abelian. Because the order of a finite subgroup of V(ZG) divides the order
of G the result follows.

The next proposition in this section is an obvious generalization of a result of [7, Proposition 2.11]
on soluble groups.

Proposition 3.2. Assume that G is a finite p-constrained group. Suppose that G has abelian
Sylow p-subgroups. Then a p-subgroup of V(ZG) is rationally conjugate to a subgroup of G.

Proof. By [7, Lemma 2.1] we may assume that Op′(G) = 1. By assumption G is p-constrained.
Thus the generalized Fitting subgroup coincides with the Fitting subgroup F (G). But F (G) =
Op(G) because Op′(G) = 1. Thus we get CG(Op(G)) ⊂ Op(G). By assumption G has abelian
Sylow p-subgroups. Thus it follows that G has a normal Sylow p-subgroup P.
Now by a theorem of A. Weiss [21, 38.12] we get that all finite p-subgroups of V(ZG) are conjugate
within QG to a subgroup of P.

Corollary 3.3. Let G be a group with abelian Sylow 2-subgroup whose invariants are pairwise
different. Then finite 2-subgroups of V(ZG) are rationally conjugate to a subgroup of G.
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Proof. It follows from Burnside’s transfer theorem that G has a normal 2-complement. Thus we
may apply Proposition 3.2 and the result follows.

Note, if one likes to use the theorem of Feit and Thompson, the corollary follows also from [7,
Proposition 2.11].

The next result indicates that conjugacy may also hold in the case when G is not p - constraint.

Proposition 3.4. Let G be a group whose Sylow 2-subgroups are Kleinian four groups or elemen-
tary abelian of order 8. Then each 2-subgroup of V(ZG) is rationally conjugate to a subgroup of
G.

Proof. If G is soluble the result follows from Proposition 3.2. We may assume that G has no
normal subgroup of odd order and that G is insoluble.

If Sylow 2-subgroups of G are isomorphic to C2 × C2 then G has a simple non-abelian normal
subgroup S and G/S is of odd order. By Walter’s classification of the simple groups with abelian
Sylow 2-subgroups [24, Theorem I] it follows that S is isomorphic to PSL(2, q), where q is congruent
to 3 or 5 modulo 8.
All involutions in a simple group S with abelian Sylow 2-subgroups are conjugate. By Theorem 2.2
we get that all involutions in V(ZG) are rationally conjugate. By Proposition 3.1 an elementary
abelian 2-subgroup H of V(ZG) is isomorphic to a subgroup U of G. Let σ be such an isomorphism
then χ(σ(h)) = χ(h) for each irreducible character of G. By [21, Lemma 37.6] H and U are
rationally conjugate.

Assume now that the Sylow 2-subgroups of G are isomorphic to C3
2 . Then - again assuming that

G is insoluble and has no normal subgroup of odd order - G has either a simple normal subgroup
with elementary abelian Sylow 2-subgroups of order 8 or a normal subgroup isomorphic to C2 ×S
and S is isomorphic to PSL(2, q), where q is congruent to 3 or 5 modulo 8. In the first case we
see as in the foursubgroup case that all involutions in V(ZG) are conjugate and the result follows
analogously.
In the latter case G has a central subgroup C = 〈t〉 of order 2. Because G has abelian Sylow
2-subgroups it follows that G ∼= C ×A, where A is a group of automorphisms of S which contains
S = InnS. A has only one conjugacy class of involutions. Thus all involutions in V(ZA) are
conjugate within QA. By Theorem 2.2 it follows that the first Zassenhaus conjecture holds for
elements of order two in G.

G has three conjugacy classes of involutions represented by t, t · u and u, where u is an involution
of S. Let H be an elementary abelian subgroup of V(ZG) of order 4. Assume that H has two
involutions h1, h2 with the same partial augmentations as u. Then define an isomorphism between
H and a Sylow 2-subgroup P of S by sending hi to two different involutions of P. It follows as
above that H and P are conjugate within QG.
Assume now that H has two involutions h1, h2 with the same partial augmentations as t · u. Let
P = 〈u1, u2〉 be a Sylow 2-subgroup of S. Let K = 〈t · u1, t · u2〉 . Then define an isomorphism
between H and K by sending hi to t · ui. Note that H must have at least one involution h with
the same partial augmentations as u. Thus as before we see that H and K are conjugate within
QG.

Finally suppose that H is elementary abelian of order 8. The surjective ring homomorphism
κ : ZG −→ ZG/C induces for each torsion subgroup U ≤ V(ZG) a group homomorphism τU

from U into V(ZG/C). If u is a non-trivial element of the kernel of τU then u must have a non-
trivial partial augmentation on the class {t}. Because t is central we get by a well known result
of S. D. Berman [2] that u coincides with t. On the other hand because the order of a torsion
subgroup of V(ZG/C) divides |G/C| the order of the image of H under τH is at most 4. Therefore
we may write H = 〈t〉 × H0. By the previous we know that H0 is rationally conjugate to a
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subgroup of G. Because t is central the same conjugation takes H into a subgroup of G.

4 Torsion units of V(ZPSL(3, 3))

First we explain briefly the method of Luthar and Passi extended by Hertweck.

Let u ∈ V(ZG) be a torsion unit of order k. Let ζ be a primitive k-th root of unity and denote
by Irr G = {χ1, . . . , χh} the set of the ordinary irreducible characters of G. Denote by εCj

(u), j ∈
{1, . . . , h} the partial augmentation of u with respect to the conjugacy class Cj . In order to show
that u is rationally conjugate to a group element g ∈ G, it suffices to show that εC(ud) = εC(gd)
for all conjugacy classes C of G and all divisors d of k [20, Theorem 2.5]. In particular this means
εCj

(u) = 1 for one index j and that all other partial augmentations vanish. If k = p is a prime
then the last condition suffices to show rational conjugacy by Theorem 2.2.
Denote by µℓ(u, χi) the multiplicity of ζℓ as eigenvalue of Di(u), where Di is a complex represen-
tation affording χi.
For each i ∈ {1, . . . , h} and each ℓ ∈ {0, . . . , k − 1} the following equation admits the calculation
of this multiplicity via values of the irreducible characters on powers of u.

µℓ(u, χi) =
1

k

∑

d|k

TrQ(ζd)/Q(χi(u
d)ζ−dℓ)

=
1

k

∑

d|k
d 6=1

TrQ(ζd)/Q(χi(u
d)ζ−dℓ) +

1

k
TrQ(ζ)/Q(χi(u)ζ−ℓ). (1)

Inductively the first term in (1), denoted by ai,ℓ, may be assumed to be known.

ai,ℓ =
1

k

∑

d|k
d 6=1

TrQ(ζd)/Q(χi(u
d)ζ−dℓ) =

1

k

∑

d|k
d 6=1

TrQ(ζd)/Q(χi(g
d)ζ−dℓ).

Let gj be a representative of Cj . Because of χi(u) =
∑h

j=1 εCj
(u)χi(gj) the second term in (1) is

1

k
TrQ(ζ)/Q(χi(u)ζ−ℓ) =

1

k

h∑

j=1

εCj
(u)TrQ(ζ)/Q(χ(gj)ζ

−ℓ).

This leads to a system of linear equations in the unknowns εCj
(u) of the form

Tε + a = µ,

where

T =
1

k











TrQ(ζ)/Q(χ1(g1)ζ
−0) ... TrQ(ζ)/Q(χ1(gh)ζ−0)

TrQ(ζ)/Q(χ1(g1)ζ
−1) ... TrQ(ζ)/Q(χ1(gh)ζ−1)

...
...

...
...

TrQ(ζ)/Q(χh(g1)ζ
−k+1) ... TrQ(ζ)/Q(χh(gh)ζ−k+1)











∈ Qhk×h,

ε =






εC1
(u)
...

εCh
(u)




 ∈ Qh, a =











a1,0

a1,1

...

...
ah,k−1











, µ =











µ0(u, χ1)
µ1(u, χ1)

...

...
µk−1(u, χh)











∈ Qhk.
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Because the multiplicities µℓ(u, χi) are non-negative integers, bounded above by the degree χi(1),
this gives restrictions on the partial augmentations which have sometimes the desired partial
augmentations of u as the only solutions.
Hertweck extended the method of Luthar and Passi to p-regular elements and Brauer characters.
Let p be a prime and ϕ a Brauer character. ϕ can be extended to p-regular torsion elements of
ZG.
Let C1, . . . , Cr the conjugacy classes of p-regular elements. Then

ϕ(u) =
r∑

j=1

εCj
(u)ϕ(gj),

where gj denotes a representative of the conjugacy class Cj . [13, Theorem 3.2].

Let (K, R, R) be a p-modular system sufficiently large for G with charK = 0 and let u be a p-
regular torsion unit of order k of V(ZG). Denote by ζ a primitive k-th root of unity of R (identify
the k-th roots of unity of R and that one of K). Let d be a representation affording ϕ, then
µℓ(u, ϕ, p) denotes the multiplicity of ζℓ as eigenvalue of d(u).

Then analogously to the case of ordinary characters

µℓ(u, ϕ, p) =
1

k

∑

d|k

TrQ(ζd)/Q(ϕ(ud)ζ−dℓ)

for 0 ≤ ℓ ≤ k − 1.

The Luthar-Passi-Hertweck method is of course supported by general results on partial augmen-
tations of a torsion unit u of V(ZG). Some of them are stated at the beginning of Section 2. For
the following note that exp PSL(3, 3) = 8 · 3 · 13 and PSL(3, 3) has elements of order 6.

Proposition 4.1. Let G = PSL(3, 3) and u ∈ V(ZG). Then

a) u is rationally conjugate to an element of G provided o(u) ∈ {2, 4, 8, 13}.

b) There are no elements of order 26 and 39 in V(ZG).

Proof. We use parts of the ordinary character table shown in table 2 and parts of the 3-modular
Brauer table as shown in table 1. These character tables have been taken from [8].2 Throughout
u denotes a torsion unit of the considered order and we apply the Luthar-Passi-Hertweck method.
Note that

∑h
j=1 εCj

(u) = 1 because u is normalized.

• Torsion units of order 2 of V(ZG) are conjugate within QG to group elements.
By Berman and Higman and Theorem 2.2 the only possibly non-zero partial augmentation
is ε2a(u).3

• Torsion units of order 4 of V(ZG) are conjugate within QG to group elements.
We get

2µ0(u, ϕ2, 3) = −ε2a(u) + ε4a(u) + 1 ≥ 0,

2µ2(u, ϕ2, 3) = ε2a(u) − ε4a(u) + 1 ≥ 0.

Adding the first inequation with ε2a(u) + ε4a(u) − 1 ≥ 0 and the second with
−ε2a(u) − ε4a(u) + 1 ≥ 0 it follows that 0 ≤ ε4a(u) ≤ 1 .
As ε2a(u)+ε4a(u) = 1, we have (ε2a(u), ε4a(u)) ∈ {(0, 1), (1, 0)}. By a result of A. A. Bovdi [3]
the sum over all partial augmentations on classes of order pm of a unit of order pn is divisible
by p provided m < n. Thus the latter pair is impossible.

2obtained in GAP by the commands CharacterTable("PSL(3,3)"), CharacterTable("PSL(3,3)") mod 3 rsp.
3Throughout we use the GAP - notation for the conjugacy classes
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1a 2a 4a 8a 8b 13a 13b 13c 13d

ϕ2 3 −1 1 A A C C G G

ϕ4 6 2 . B −B D D H H

A = −1 + ζ8 + ζ3
8 = −1 +

√
2i B = −ζ8 − ζ3

8 = −
√

2i
C = ζ13 + ζ3

13 + ζ9
13 D = ζ2

13 + ζ4
13 + ζ5

13 + ζ6
13 + ζ10

13 + ζ12
13

G = ζ2
13 + ζ5

13 + ζ6
13 H = ζ4

13 + ζ7
13 + ζ8

13 + ζ10
13 + ζ11

13 + ζ12
13

Table 1: Parts of the 3-modular Brauer table of PSL(3, 3)

• Torsion units of order 8 of V(ZG) are conjugate within QG to group elements.
Using ϕ4 we obtain

µ0(u, ϕ4, 3) = ε2a(u) + 1 ≥ 0

µ4(u, ϕ4, 3) = −ε2a(u) + 1 ≥ 0

and hence −1 ≤ ε2a(u) ≤ 1. This forces ε2a(u) = 0, again by [3]. With this restriction we
get

2µ0(u, ϕ2, 3) = ε4a(u) − ε8a(u) − ε8b(u) + 1 ≥ 0,

2µ4(u, ϕ2, 3) = −ε4a(u) + ε8a(u) + ε8b(u) + 1 ≥ 0.

Adding with ε4a(u)+ε8a(u)+ε8b(u)−1 ≥ 0 and −ε4a(u)−ε8a(u)−ε8b(u)+1 ≥ 0, respectively,
we get

0 ≤ ε4a(u) ≤ 1

and again by [3] this yields ε4a(u) = 0. The inequalities

2µ1(u, ϕ2, 3) = ε8a(u) − ε8b(u) + 1 ≥ 0

2µ5(u, ϕ2, 3) = −ε8a(u) + ε8b(u) + 1 ≥ 0

together with ε8a(u)+ε8b(u)−1 ≥ 0 and −ε8a(u)−ε8b(u)+1 ≥ 0 show ε8a(u), ε8b(u) ∈ {0, 1}.
Thus u is conjugate to an element of G within QG.

• Torsion units of order 13 of V(ZG) are conjugate within QG to group elements.
We get the inequalities

13µ1(u, ϕ2, 3) = 10ε13a(u)− 3ε13b(u)− 3ε13c(u)− 3ε13d(u) + 3 ≥ 0, (2)

13µ2(u, ϕ2, 3) = − 3ε13a(u)− 3ε13b(u)+10ε13c(u)− 3ε13d(u) + 3 ≥ 0, (3)

13µ4(u, ϕ2, 3) = − 3ε13a(u)+10ε13b(u)− 3ε13c(u)− 3ε13d(u) + 3 ≥ 0, (4)

13µ7(u, ϕ2, 3) = − 3ε13a(u)− 3ε13b(u)− 3ε13c(u)+10ε13d(u) + 3 ≥ 0. (5)

Adding (5) and three times ε13a(u) + ε13b(u) + ε13c(u) + ε13d(u) − 1 ≥ 0 gives ε13d(u) ≥ 0.
By adding (2), (3), (4) and four times −ε13a(u) − ε13b(u) − ε13c(u) − ε13d(u) + 1 ≥ 0 we get
ε13d(u) ≤ 1. By symmetry in the inequations (2), (3), (4), (5) and the augmentation we
get the same results for ε13a(u), ε13b(u) and ε13c(u). Hence there is only one non-vanishing
partial augmentation and we are done.

• There is no torsion unit of order 26 in V(ZG).
χ8 vanishes on all elements of order 13. Thus we get

13µ0(u, χ8) = 12ε2a(u) + 14 ≥ 0

13µ13(u, χ8) = −12ε2a(u) + 12 ≥ 0

12



1a 2a 3a 3b 4a 6a 8a 8b 13a 13b 13c 13d

χ2 12 4 3 . . 1 . . −1 −1 −1 −1
χ3 13 −3 4 1 1 . −1 −1 . . . .
χ8 26 2 −1 −1 2 −1 . . . . . .

Table 2: Parts of the ordinary character table of PSL(3, 3)

and hence −1 ≤ ε2a(u) ≤ 1. This contradicts the fact that

µ0(u, χ3) = −18

13
ε2a(u) +

5

13

is a non-negative integer.

• There is no torsion unit of order 39 in V(ZG).
As χ8 vanishes on the classes of elements of order 13 and χ8(3a) = χ8(3b) the a8,ℓ are
independent of the partial augmentations of u3 and u13 and the inequalities

13µ0(u, χ8) = −8ε3a(u) − 8ε3b(u) + 8 ≥ 0

13µ13(u, χ8) = 4ε3a(u) + 4ε3b(u) + 9 ≥ 0

hold for every set of partial augmentations of u3 and u13.
Hence we see −2 ≤ ε3a(u) + ε3b(u) ≤ 1. But this violates

µ1(u, χ8) = − 1

39
ε3a(u) − 1

39
ε3b(u) +

9

13
∈ Z

in all of the possible cases.

Corollary 4.2. The Gruenberg-Kegel graphs of PSL(3, 3) and V(ZPSL(3, 3)) coincide:

•
2

•
3

•
13

5 Elementary abelian subgroups

Proposition 5.1. Let G = PSL(3, 3), p ∈ {2, 3, 13} and H ≤ V(ZG) an elementary abelian
p-group,

H ∼= Cp × ... × Cp
︸ ︷︷ ︸

k−times

.

a) If p = 2, then k ≤ 2 and H is isomorphic to a subgroup of G.

b) If p = 3, then k ≤ 3.

c) If p = 13, then k ≤ 1 and H is isomorphic to a subgroup of G.

Proof. We use again parts of the ordinary character table of G, cf. table 2. We extend the
representation affording irreducible character χ of G to a representation ρ of CG. Then ρ restricted
to H has character χH .

• p = 2. Consider (χ3)H . Because every involution of V(ZG) is rationally conjugate to an
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element of the class 2a we get

N0 ∋ (1H , (χ3)H)H =
1

|H |
∑

h∈H

1H(h)χ3(h
−1) =

1

|H | (χ3(1) + (|H | − 1)(−3))

=
1

2k

(
13 + (2k − 1)(−3)

)
.

Thus 13 + (2k − 1)(−3) ≥ 0 and it follows that k ≤ 2.

• p = 3. As the sum of augmentations of the elements of order 3 on the classes of elements of
order 3 is 1 and χ8 takes the value −1 on all group elements of order 3 we get

N0 ∋ (1H , (χ8)H)H =
1

|H |
∑

h∈H

1H(h)χ8(h
−1) =

1

|H | (χ8(1) + (|H | − 1)(−1))

=
1

3k

(
26 + (3k − 1)(−1)

)
.

This shows 26 + (3k − 1)(−1) ≥ 0 and therefore k ≤ 3.

• p = 13. A similar argument as in the above case gives

N0 ∋ (1H , (χ2)H)H =
1

|H |
∑

h∈H

1H(h)χ2(h
−1) =

1

|H | (χ2(1) + (|H | − 1)(−1))

=
1

13k

(
12 + (13k − 1)(−1)

)
.

Hence 12 + (13k − 1)(−1) ≥ 0 which implies k ≤ 1.

Remark 5.2. The case p = 13 in Proposition 5.1 follows also from [12, Corollary 1] because Sylow
13-subgroups of PSL(3, 3) are cyclic.
Looking solely at ordinary characters it is not possible to show that C3

3 does not occur as a
subgroup of V(ZPSL(3, 3)).

Proposition 5.3. Each elementary abelian subgroup of V(ZSz(q)) is isomorphic to a subgroup of
Sz(q).

Proof. Let H ≤ V(ZSz(q)) be an elementary abelian p-group of order pk. If p is odd the Sylow
p-subgroups of Sz(q) are cyclic. By [12, Corollary 1] all finite p-subgroups of V(ZSz(q)) are cyclic
and isomorphic to a subgroup of Sz(q).

Assume now that p = 2. Consider the generic character table of Sz(q) as given in [8], cf. table
3. As in the proof of Proposition 5.1 we extend the representation of Sz(q) which affords δ1 to
a representation ρ of of CSz(q). Then ρ restricted to H has character (δ1)H . Because Sz(q) has
only one conjugacy class of involutions all non-trivial elements of H are rationally conjugate to
an involution t of Sz(q). Thus for the multiplicity of the trivial character 1H of H in (δ1)H with
r = 2m we get

(1H , (δ1)H)H =
1

|H |
∑

h∈H

1H(h)δ1(h
−1) =

1

|H |(δ1(1) + (|H | − 1)δ1(t))

=
1

2k
(r(q − 1) + (2k − 1)(−r)) =

1

2k
(rq − 2kr).

Since (1H , (δ1)H)H ∈ N0 we see that rq − 2kr ≥ 0. Thus it follows that k ≤ 2m + 1.
On the other hand the centre of a Sylow 2-subgroup of Sz(q) is isomorphic to C2m+1

2 . Consequently
H is isomorphic to a subgroup of Sz(q).
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1 xa yb zc t f f−1

1 1 1 1 1 1 1 1
α q2 1 −1 −1 . . .
βj q2 + 1 ωja + ω−ja . . 1 1 1

γ
(1)
k (q − 1)(q − 2r + 1) . g(b, k) . 2r − 1 −1 −1

γ
(2)
ℓ (q − 1)(q + 2r + 1) . . h(c, ℓ) −2r − 1 −1 −1
δ1 r(q − 1) . 1 −1 −r ri −ri
δ2 r(q − 1) . 1 −1 −r −ri ri

with q = 22m+1, r = 2m, x, y, z, t, f ∈ G and ω, ζ, η, i ∈ C, where

x has order q − 1, ω is a primitive (q − 1)-th root of unity
y has order q + 2r + 1, ζ is a primitive (q + 2r + 1)-th root of unity
z has order q − 2r + 1, η is a primitive (q − 2r + 1)-th root of unity
t is an involution,
f has order 4, i is a primitive 4-th root of unity.

Further

g(b, k) = −ζkb − ζkbq − ζ−kb − ζ−kbq ,

h(c, ℓ) = −ηℓc − ηℓcq − η−ℓc − η−ℓcq,

and 1 ≤ a, j ≤ 1
2 (q − 2), b, k ∈ I1 and c, ℓ ∈ I2. I1 and I2 are appropriate index sets with

|I1| = q+2r
4 , |I2| = q−2r

4 .

Table 3: Generic character table of Sz(q)

Corollary 5.4. Let H be an elementary abelian 2- or 5-subgroup of V(ZSz(q)). Then H is ratio-
nally conjugate to a subgroup U of Sz(q).

Proof. By 5.3 there is an isomorphism ϕ : H −→ U ≤ Sz(q). Then for h ∈ H and all χ ∈ Irr(Sz(q))
we see that χ(h) = χ(ϕ(h)) because Sz(q) has only one conjugacy class of elements of order 2,
5 rsp. Thus we may apply [21, Lemma 37.6] and it follows that H and U are conjugate within
QG..

Remark 5.5. In [1, Korollar 4.2] it is shown that Π(V(ZSz(8))) = Π(Sz(8)). Even each cyclic
subgroup of V(ZSz(8)) is isomorphic to a subgroup of Sz(8).

Proof of Theorem B. It suffices to show the result when H is elementary abelian. M. Suzuki
classified the simple groups with a non-trivial partition [22]. These are the groups PSL(2, q) and
Sz(q). By [14, Theorem 2.1] we get that the 2-rank of an elementary abelian subgroup H is
less or equal to the 2-rank of PSL(2, q). For odd primes p not dividing q the Sylow subgroups of
PSL(2, q) are cyclic. Again by [12, Corollary 1] all finite p-subgroups of V(ZPSL(2, q)) are cyclic
and therefore isomorphic to a subgroup of PSL(2, q). If the characteristic q = pf is odd the Sylow
p-subgroups are elementary abelian. Because |H | divides |G| the result follows also in this case.
Finally Proposition 5.3 concludes the proof.

Proof of Proposition C. By a famous result of J. Thompson a minimal simple group is iso-
morphic to a group of the series Sz(q), PSL(2, q) or to PSL(3, 3) [23]. The result follows now from
Proposition 5.1, Proposition 5.3 and from [12], [14] as in the proof of Theorem B.
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