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Abstract

For systems ofV charged fermions (e.g. electrons) interacting with loundjital op-
tical quantized lattice vibrations of a polar crystal weideupper and lower bounds on
the minimal energy within the model of H. Frohlich. The oplgrameters of this model,
after removing the ultraviolet cutoff, are the constalits>- 0 anda > 0 measuring the
electron-electron and the electron-phonon coupling gtien They are constrained by the
conditiony/2a. < U, which follows from the dependence &fanda on electrical prop-
erties of the crystal. We show that the layeasymptotic behavior of the minimal energy
Ey changes at/2a = U and thaty2a < U is necessary for thermodynamic stability:
for v/2a > U the phonon-mediated electron-electron attraction oveesothe Coulomb
repulsion and®y behaves like- N7/3.
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1 Introduction

We study a system a¥ electrons in a polar (ionic) crystal, modelled by a Hamilonderived
by H. Frohlich [12]. The model takes into account the elattelectron Coulomb repulsion,
and a linear interaction of the electrons with the longiadlioptical phonons. The model is
called the ’large polaron’ model, since it assumes that arpal (dressed electron) extends over
a region which is large compared to the ion-ion spacing. hiqadar the underlying discrete
(and infinite) crystal is replaced by a continuum. See [718].,

As is well-known, linear electron-phonon couplings indaceeffective pair attraction be-
tween electrons. This attraction competes with the eleettectron repulsion and may cause
a phase-transition as the electron-phonon interactiangth increases. This mechanism is
behind the production of Cooper pairs in the BCS model of lemerature superconductiv-
ity, and in high?}. superconductivity the role of many-polaron systems is dp@nestigated
[1, 8, 17].

The Frohlich Hamiltonian depends on two non-negative disienless quantitied/ and
«. The constant is the electron-electron repulsion strength, anid the Frohlich electron-
phonon coupling constant. Physically relevant models saésfy the constraint, cf. [4, 28],

V2a < U.

In this paper we prove upper and lower bounds on the minimaiggnFy of the N-
electron Frohlich Hamiltonian for alV and all non-negative values bf, «.. In the unphysical
regimev/2a > U, our results imply thatiy ~ —N7/3. In the physical regime we find
that Ey > —CN?, thus establishing a sharp transition in the ladgesymptotics ofEy at
V2 = U. This transition is due to the mediated attraction betwéectr@ns overcoming the
repulsion aty/2a = U in the limit of large N. In fact, the quantity/ — /2« appears in our
analysis as an effective Coulomb coupling strength. Weddsaonstrate that y < —aN and
Eniym < En+ E)inthe physical regime. We do not know whether or Bgt is an extensive
quantity, but if it is not extensive, then this must be duelazteon-phonon correlations, cf.
Proposition A.3.

We pause this discussion to introduce the mathematical mdte Frohlich Hamiltonian
describingV electrons in a polar crystal reads

N

> =34, +Vad(xe)] + Hpn + UV, (1.1)
=1

where the number operator
th:/ a*(k)a(k)dk,
R3

accounts for the kinetic energy of the phonons while the fiplerator

— L eik-ma e—ik-xa*
bo) = [l ak) + a0,

is responsible for the electron-phonon interaction. Hgre= 23/47. Finally the electron-
electron interaction is given by the sum of two-body Coulgookentials

1
Ve(zy, ..., on) = Z T~

1<i<j<N i — a5
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We work in units where the frequency of the longitudinal ogltiphononswr,o, Planck’s
constanti, and the electron band mass are equal to one.

Let F denote the symmetric Fock space ove(R3). The Hamiltonian (1.1) defines a
symmetric quadratic form ol = AV L?(R3) ® F, but, a priori, it is not well defined as a self-
adjoint operator. For that one must first impose an ultratioutoff on the electron-phonon
interaction: LetA > 0, and define the cutoff Hamiltonian as

N N
Hya = Z — 30y, + Hpn + \/EZ P (z) + UV,
= =1

where

1 .. .

Pp(x) = / eFTa(k) + e *Ta* (k)] dk.
k|<A Colk| [ )

The operatord] v 5 are self-adjoint orD(H,,) OD(ZL A,,), by the Kato-Rellich theorem,

and it is well known, cf. [2, 6, 13, 14, 27], th&ly o converges, ad — oo, in the norm-

resolvent sense to a semi-bounded, self-adjoint operatich we denote by . Thisimplies

that

EN = Alim EN,A (12)

if Exa:=info(Hya)andEy :=info(Hy).
The main goal of this paper is to investigate the laigdehavior of the minimal energy
Ey as a function ofy andU. Our first result is an upper bound in the regigiga > U.

Theorem 1.1. There is a constant' such that for allNV and forv/2a > U > 0
Ex < (V2a—U)2N3 (EPTF + CN—%).
Here Eprr < 0 is given by(1.3) below.

Theorem 1.1 is proved variationally by using Pekar's angaterms of a product state,
which is known to give the correct ground state energyfor= 1,2 in the largea limit
[9, 25, 26]. Taking the expectation value in a stfite) n ¢ ANL2(R?) @ F and explicitly
minimizing with respect te) we arrive at a Hartree-Fock type energy which is then eséichat
by a Thomas-Fermi energy. This allows us to scale out allmpaters and we are left with the
bound in Theorem 1.1, where

E = inf & , 1.3
PTF pZO,flplgx)d:czl pTF(P) (1.3)
5 X
rme(p) = (6 [ pide—y [ L g, (L4)
R3 re |z —yl

We note that in the error term in Theorem 1.1 the expomght can be replaced by any number
less thar2/33 at the expense of a larger and divergent constant

To show that the variational upper bound from Theorem 1.llmasght asymptotics iV
anda, we provide the following lower bound:
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Theorem 1.2. There exist€' > 0 such that for allN andv2a > U > 0,
Ey > —Ca(v2a — U)2N3 — Ca?N3~5 — 3N, (1.5)
where the constant'; is defined by(1.6).

This lower bound is obtained, essentially, by completing siquare with respect to cre-
ation and annihilation operators in the expressifif, + /o y_7_; ®(x;). The computation
brings out an effective Coulomb interaction with couplirigeagth—+/2«. Unfortunately, it
also yields an infinite self-energy, which must be dealt witfore completing the square. For
that we use a commutator argument from [25], which is resptn®or the error term in Theo-
rem 1.2. The resulting effective Hamiltonian with an attraec Coulomb potential is bounded
below by the 'gravitational collapse’ bound

N
J=1

due to Lévy-Leblond [20, Theorem 2]. Hence the presencheotonstanC in Theorem 1.2.
We now turn to the physical regimg2a < U. Here our lower bound holds for fermionic

and bosonic particles alike and hence it will not be optimathie fermionic case. Together

with Theorem 1.1 it demonstrates, however, that the moddergoes a sharp transition at

a=U/V2.
Theorem 1.3. For 0 < v2a < U,

D=

N b S NG (1.6)

1<j<l<N |z — el

U
U - \/ﬁa.

The proof of Theorem 1.3 is based on our estimate of the idlietvpart of the electron-
phonon interaction in the proof of Theorem 1.2. We do not kiyetvhow to incorporate the
Pauli-Principle into that estimate. In view of Propositi&r8 we expect a lower bound linear
in N in the fermionic case.

Last but not least there are the following universal vauizdi upper bounds faE/y and

En > —(£a’N? 4 3)

Enim.

Theorem 1.4. Forall N, M, « andU we have

Eny < —aN,
Eniyv < EnN+ Ep.

The boundE; < —a is well known from [19, 10] and it agrees with the result of anfial
computation off; by second order perturbation theory [11]. Also, it is cotesiswith Haga’s
computation ofF; including o?-terms [16, 11]. The boundZy < —aN follows from the
estimatest); < —a andEy < N Eq, the latter of which is a consequence of the second result
of Theorem 1.4. We remark th@ty .y, < Enx + Ejr holds quite generally for translation
invariant V-particle systems with interactions that go to zero withr@asing particle separa-
tion. In particular it holds for fermions and for distinghable particles alike. Numerically

There is a sign error in Feynman’s quote of Haga’s result.
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computed upper bounds di\ N)/N, for N = 2 through N = 32 can be found in the litera-
ture [5], but in the case of fermions they are not refined ehdadpe consistent with the bound
Eniv < En+ Epy.

In this paper we have omitted spin, but the Fermi statissdsken into account. There
are only few small modifications necessary for treating fens with ¢ spin states, such as
factor of ¢—2/3 in front of the Thomas-Fermi kinetic energy, which alters tipper bound in
Theorem 1.1 by a factor @f?/>.

The many-polaron model has also been studied with a confipatgntial of the form
Zévzl W (z¢), W(0) = 0 andWW > 0 included in the Hamiltonian [18]. We could include such
a potential in our work as well, but, at least in the regigizo > U this would not affect the
leading large/N behaviour ofE .

2 Upper boundson Ey

In this section we prove Theorem 1.1 and Theorem 1.4. Sif)¢e= limp_.oc En,a We only
need to deal with the self-adjoint operathiy o. Let f € Dy = ANLE(R?) N HY(R3Y)
be normalized and recall that the one-particle density imatrand the density functiop
associated wittf are defined by

y(z,2") == N . flx,zo,...;zN)f(2,2a,...,2N)d2y - - - dzN, (2.2)
R3(N—

p(l‘) = 7(1‘733) =N |f($,332,...,33'N)|2d$2"'d$]\[. (22)
R3(N-1)

In this paper the Fourier transforgof the density functiorp, or of any other function, is
defined by:

o) = [ e ptayda,
R3
that is, without a factor of2r)~3/2.

Proposition 2.1. Suppose/2« > U. Then for every one-particle density matsivon L2 (R?)
with0 <~ <1, Tr[y] = N, Tr[-A~] < o0, and forp(z) := y(z, x),

Ey < (\/504 — U)2 <% Tr[—A~] — %/Rﬁ 7p’(5)_p;y‘) dwdy)

2
~U(V2a — U)i / iG] dxdy.
RS |2 — Yl

Proof. This proof is based on the estimaig » < (f ®@n, Hy A f ®n) for suitable normalized
f € Dy andn € F. We begin by observing that the expectation value of theacten oper-
ator in a statef ® n may be represented in the following two waysyiandn are normalized,
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then

<f @, i Dp(ze)f @ 77>

(=1
N
= /RBN‘f(fﬂl,...,%N)PZVAW(I'g)dwl...dwN (23)
(=1
= (n,2a(p)n) (2.4)

whereVy ,(z) := (n, ®a(z)n), p is the density associated wih and
Balp) = [ pl@Pala)da

_ /wc L BRak) + pk)a* (k)] dk.

p
1< colk|

Hence if we define ) , := Y")", [~ 3¢ + v/aVa ,(z¢)] + UVe, then

(f @n,Hvaf @n) = (f, H{ A f) + (0, Honn)- (2.5)

The ground state energy of thé-body HamiltonianH}, , is bounded above by its ground
state energy in the Hartree-Fock approximation. By Lielasational principle, [23] and [3,
Corollary 1], this Hartree-Fock ground state energy is lo@ahabove by

U T — |y(z,y)|?
Eir (1) = Tr [( = 38+ VaVag)i] + 5 /R6 ol )p(ﬂ’; - Z( W eay  (26)
for any one-particle density matrixwith Tr[y] = N andp(z) = (=, z). Hence, in view of
(2.5), we conclude that

Ena < Exp(v,m) + (0, Honn) (2.7)
for all normalizedn € F. In order to minimize the right hand side with respecitave use
that (2.3) equals (2.4). It follows, by Lemma A.2, that
a |o(k)|?

inf a'Tr(V, + (n, H, = ——
per oy VAT (Vaa) = (. Hynn) 32 Jik<n K

dk. (2.8)

By combining (2.6), (2.7), and (2.8) and then lettihg— oo we arrive at

2
En < 3 Te[-Aq] + (U - \/ioz)%/ P@)ply) dzdy — v / It y)I” dedy  (2.9)
RS |7 — | 2 Jrs |z —yl
for any one-particle density matrix with Tr(y) = N andp(x) = v(z,z). Here (A.3) and
(1.2) were used also. In the cag@a = U it is clear from (2.9) or from (2.5) withy being
the vacuum vector, thaby < 0. In the case wher@ := v/2a — U > 0, we choose the
density matrixy on the formy = UpyU}; with Up defined by(Usyp) () := 33/2p(Bx). The
Proposition then follows fron/ ;AU = B2A and fromvy(z,y) = 3%5(Bx, By) by a simple
change of variables in the integrals of (2.9). O

The second ingredient for proving Theorem 1.1 is the follmpemma.
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Lemma 2.2. Letg € H?(R?) with ||g|| = 1. Then for every € L'(R3) with p > 0 and
Jgs p(x)da = N there exists a density matrixsuch thaty(z, z) = (p * |g|*)(z) and

Trf-2q) = $67°)3 [ p(@)ido -+ N Vgl

Proof. For the reader’s convenience, we recall the proof from [28ef621]. Lef\/ : R® — R
be defined byM (p, q) = 1if |p| < (67)*3p(q)'/3 and M (p, q) = 0 otherwise. Then

(2m)~? /R6 M(p,q)dpdg = /RS p(q)dg = N

(2m)~? /RGpZM(p’q)dpdq = %(67r)r2s/R3 p(q)3dg. (2.10)

We definey by
y=(2m)~° /R M (p, q)Tygdpd

wherell,, is the rank one projection given by

Hpgp = gpq /R" Ipg()p(2)d, Ipg(@) = eipxg(iﬂ —q).
It follows thaty(z, ) = [gs [g(z — q)[*p(q) dg, and from
Tr[-Allyg] = HVgqu2 =p*+ HV9”2 +2p - {g,—1Vyg),

and (2.10) we find the asserted expressiorligrA~]. O

Proposition 2.1 and Lemma 2.2 suggest the definition Bblaron Thomas-Fermi func-
tional by

errn(p) = #0m)} [ p)Fda =g [ HED i, (2.11)

wherep € LY(R3) N L3 (R3) andp > 0. If py(x) := N2p(N'/3z), then||pn |1 = Nlpl
and
7
Eptr(pn) = N3Eprr(p).

Hence it suffices to consider densitiesiith | p(z)dz = 1. Let

EPTF := inf {ngF(p)‘p > 0, / p(l’)dl’ == 1}
R3
which is finite by Lemma A.1.

Lemma2.3. Eprr < 0.

Proof. Givenp € L*(R3) N L53(R3) with p > 0 and [ pdx = 1, letpp(z) = R3p(R™'z).
Then [ps pr(z)dz = 1forall R > 0 and

p(ac)%dx - R_lé / P(x)py) dxdy.

_ 2
Eprr(pr) = R 21%(67T2)3 / rR6 T — Y|

R3

This is negative foiRR large enough. O
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Proof of Theorem 1.1. Letg € L%(R3) be given byg(z) = (27)~3/4e~*"/4 and sety. (z) =

e3/2g(x/¢), so that]|g|| = 1 foralle > 0. Let 3 = v2a — U > 0. If 3 = 0thenEy < 0

by Proposition 2.1. Hence it remains to consider the ¢gase 0. Every density function
pn € LY(R3) with ||py|l1 = N is of the formpy (z) = N2p(N/3z) with ||p||; = 1. From

Proposition 2.1 and Lemma 2.2 combined it follows that

BBy < &(67°)3 / p(@)sda — / dedywnmui (2.12)
R3 R6 -

wherepy. = pn * |g=|>. Supposel < u < 6/5 and letf(k) := E}F — ¢ **/2. Then

—

pne(k) = pn (k)lg:|*(k) = pn (k) f(ek) and

1—|f(k)]?
sup —— I g 213
P I @13)

By definition of f, by (2.13), and by Lemma A.1

/ PN(w)PN(y)dwdy _/ pN,e($)pN,€(y)dwdy
R6 R6

[z —y| [z —y|
1 on (k)2
~ o [ 0 rEnp 2 a
— igu—l/ 1-— ‘f(Ek?)P ‘ﬁ]\\[(l{})lz dk
o2 o k[T [R[Pn
L, o (k)2
< gkl
= opat /R e
= N2+%e“_12(2w)“_2csu /[R6 Tg(:m—)p;ﬁi) dxdy.
—H

Combining this estimate with (2.12), we see that

7
B2Ex < N3&prr(p) + Ne 2| Vg

+N2+%€H«—1(2ﬂ.)#—2 Cu / p(ZE)p(y) dilfdy
c3—p Jre v —yl*

for all p € L*(R3) with ||p||; = 1. If {p,} C L*(R") is a minimizing sequenc€prr(pn) —
Eptr asn — oo, then||p, [|5 /3 is bounded uniformly im, by definition of€pr and by (A.1)
with p = 1. It follows, again by (A.1), tha p,,(z)pn(y)/|z — y|*dzdy is bounded uniformly
in n for u < 6/5. Therefore, in the limit. — oo, we obtain

B2EN < N%EPTF + %N€_2 + N2+%6“_1C’u

where the constartt, is finite for u < 6/5 and wheré|Vg||? = 1/4 was used. Upon optimiz-
ing with respect t@ we arrive at

32Ey < N3E N5 D
N = PTF + w1y,

with a new constanD,,. This bound with the choicg = 37/31 < 6/5 proves Theorem 1.1.
O
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Proof of Theorem 1.4. We only need to prove thdl; < —«. The boundEy < —aN will
then follow fromE s < En + Ejy as pointed out in the introduction.
Following Nelson [27] we introduce

1 . .
JEI— [ Tak) — et (k)] dk.
co Jig<ni(l+ % )|l<:|

Then

eiBAHLAe_iBA = % (p2 +2a* - p+2p-a+a®+ (a*) + 2a*a) + Hpp — ey,  (2.14)

where
k .
a = va Telkxa(k) dk.
€ Jikj<a (14 5)[k|
1 1
[ —2/ ﬁdk
o Jikl<a [k[P(1+ %)

From (2.14) we see that, for all normaliz¢ds L?(R3),
(f@Q,ePrH pe 7 Prf @ Q) = (f,(=5A)f) — aea (2.15)

whereQ2 € F denotes the vacuum vector. Sineg o(—A) = 0 it follows from (2.15) that
Eq1n < —aep, Where

Alim eA:%/' ;derzl
—oo o Jrs |k[P(1+ %)
This concludes the proof of the first bound in Theorem 1.4.

A result similar toEn+ s < En + Ejy is expressed by Theorem 6 in [15]. A copy of
the proof of that theorem, with small modifications due todiferences of the Hamiltonians,
also proves the desired bound here. In fact, the main paheoptoof of [15, Theorem 6] is
Equation (19) and the equation thereafter, which show tiairtteraction between electrons
mediated by bosons decreases with increasing particleat&pa This part remains valid for
the coupling functiony| <a/(co|k|) of the HamiltonianH v 5. Other parts of the proof are
simplified due to the fact the phonon dispersion relatigr, is constant and hence a local
operator with respect to the boson position as measuréW hy O

3 Lower boundson Ey

In this section we prove Theorems 1.2, and 1.3. The first stép make sure that phonons
with large momenta contribute to lower order/ia To this end, for giveri(, A, 6, x > 0, we
define the operator

HN,A,K = —%(l—li)ZAg—l—(l—(;)th—FUVC
/=1

\kF

N
Z/ ¢ elk'”a(k‘) —I—e_ik'”a*(k‘)] dk.
= Ik

k<A Colk|
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Of course, later onj, x € (0,1) and K < A — oo. The following result, in the cas = 1,
is essentially due to Lieb and Thomas [25]. While a sharpfEykd < K is used in [25], we
work with a Gaussian cutoff since we need the Fourier transfaf the cutoff to be positive in
the proof of Lemma 3.2.

Lemma 3.1. Supposei, A, and U are positive,0 < § < 1 and letx := %C;{JXI where

I := (vV2—1)/y/7. Then

3
Hya > HNAK_% 3.1
Proof. Foreact € {1,..., N}, we introduce three high momenta modes by
o . _ () ;
20 = [ T0Gatar e 1,23}
) \k@
— e 4K .
T = Voaxatk)— ke,

col k[?
k; € R being thej-th component o € R? andx, the characteristic function of the sgt| <

A}. For later use we compute the inner product of two functi@iy.(@. By straightforward
computations,

/R 3 T (k)T (k) dk = §; (3.2)

35" 3K
where

2

R(1 _ —5\2
:Q/ A-e7) 624)d8
s 0 S

Note thatdr/c2 = +/2/m and thatl,, = limg_ Igr = (V2 — 1)/y/7 as defined in the
statement of the lemma. By definition &fy  x,

N
K
Hya = Hyax+Y (= 58+ 1) +0Hy, (3.3)
/=1
] W
19, = va — " [ wna(k) + hc]dk

kl<a  Colk|

where we introduced the operatolfg)A associated with the ultraviolet part of the electron-
phonon interaction. The key ingredient of this proof is that

Z peg, 2 — 297 (3.4)

wherep, ; := —i0/0,, ;. This identity |mpI|es that

3
YA Z Z
[ I m] < 23 lpemlll (2 — 29|

3
K 2 %
< Sh-d)+ 23 (2" - 27
j=1
K 4L O (6) | (0 (0«
< = — .
< glm=Am)+ > (2720 + 202, (@35)
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wherex > 0 is to be selected, and the estimate

Z Z Z l 0)x *
o, (ZS2 ) < 128 12 < S, (29 2 + 29 2

was used. From (3.2) and /i < I itis clear that

3
0% (£) 0)* O)* (€ l £)x*
SN2z + 2072 = N 22020 4+ (29, 2007
]:1 -
2al o a

Combining (3.5) and (3.6) we arrive at

N
0) 8aN I 4aN 1
izléf, =3 Z —Ag) + 3K — 7 Hpn + K
=1

which, by (3.3) and the choice = 8a NI, /(3K), proves the lemma. O
Lemma 3.2. Supposés, A, a, U andx are positive, and) < 6 < 1/2. Then
V2a 20N K
>l - — | —— - - . :
Hyax > —3(1 R)Z;Ag (1_5 U | Ve N (3.7)

Proof. By completing the square in annihilation and creation djpesa that is, by using

Lemma A.2, we see that
k|2

(1-96) ph+\r2/ |<Ae’l:(2 [e®Ta(k) + e oa* (k)] dk.
L
> - / €T bt g
- (1-9)qg P L
LI
aNK (3.8)

— e 27 ik m—xl)dk_
G ch/Rs TRE ¢ NG

The integral in (3.8) represents the electrostatic enefgyvo spherically symmetric, non-
negative charge distributions centerec: aaindzx,, respectively, each distribution having total
charge one, see (A.3). Hence Newton’s theorem, [24, The8rémimplies that

%2

- 2
/ © 7 (o) g < 2T
rs |k[? = |ay —

Sincec? = 2724/2, it follows that (3.8) is bounded below by

V2 aNK
- VC - )
1-6 (1—06)\/7

which proves the lemma.
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Proof of Theorem 1.2. We shall combine the Lemmas 3.1 and 3.2 with suitable chdmes
§ and K. First, suppose tha&lt < § < 1/2 and thats € (0,1). Sincev2a — U > 0,
by assumption of Theorem 1.2, the constant multiplying tbeemtial V- in Lemma 3.2 is
positive, and hence, after the scaling transformation

-1
w—><%—U> (1—-r)x

we may apply (1.6) and find that

R
Hyax > —%infcy(;—}Ag—Vc)—za\]/\;K
— (1—3? - U)2 r 2aNK

whereC is chosen such that (1.6) holds true.
We now make the choices

§=1N"5 and K = 132 ,aN'*5,

which imply thatx, as defined in Lemma 3.1, obeys= N ~1/9 = 5. Using that(1 —¢)~* <
1+2t,for0 <t <1/2, thatU < v2a, andl,//7 = (V2 —1)/7 < 1/(27), we find that

2
Hyax > —Ca [\/ia(l +20) — U}z(l + QR)N% _ g_a2N2+g

T
2
> Co[(V3a—UY +16%5)(1 + 20N} — o)
Y
> —Co[(V3a— U)N +18a2N5-3] — 2242 N5-3
Y

32
= —C’(;(\/ioz — U)zNg — (180(; + —)OzzN%_ .
3

=

O

Proof of Theorem 1.3. Finally we consider the case, whdre— Vv2a > 0. In Lemma 3.2 we
chooses = (U — v2a)/(2U) andK = 8aN1../(36), so thats = 1 in Lemma 3.1, and

\/ia_U—\/ia

V=157 2(1—90)

> 0.

From Lemma 3.1 and Lemma 3.2 it hence follows that

By 20NK 3 16l 5y 2V 3U

- VT 26 37 U-v2a U-—+2a’
wherel,, /7 = (vV2 - 1)/ < 1/(27). O
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A Auxiliary Results

LemmaA.l Suppose that € L'(R?) N L>3(R3), p > 0,0 < p < 6/5, and letpy (z) =
N2p(N'/3z). Then

p(@)p(y) i 5u
— - 77 < 6 6 '
/]RG iz — y| dedy < allplly * llells (A.1)
p(x)p(y) LG / |5(k)|?
dedy = (2 K dk A2
/]R6 |z — yl~ e (2m) Cu  JR3 |k|3—H (A-2)
p(x)p(y) 1 (k)|
= 53 k A3
LS et = 5 [ e (A3)
/ Mdmdy — N2+§/ p(x)p(y) dady (A4)
Re |T—ylH r6 | —y|H

where

& 1+4 -1+45
4\ 3 6 3 6 2 Ty
v (5) (&) @) e
in (A.1) and (A.2), respectively.

Inequality (A.1), in the special cage = 1, implies that€prr(p) is bounded below, and
moreover, that|pl|5,; is bounded unformly for densitigs with ||pl|; = 1 and&prr(p) <
Eprr + 1.

Proof of Lemma A.1For eachR > 0, by Holder’s inequality,

/ p(y) dy = / p(y) dy + / p(y) dy
R3 |2 —y|# le—y|<R [T — y[H le—y|>R [T — Y[H

2

8T 5 6
< Rs7#|plls + RH .
< (55) Rl + Rlol

By optimizing this bound w.r.ta? > 0 we obtain (A.1). Equation (A.2) follows from [24,
Corollary 5.10]. The facto(27)~* stems from the differences in the definition of the Fourier
transform. Equation (A.3) is the important special case 1 from (A.2), and (A.4) is straight-
forward to verify by a change of variables. O

LemmaA.2. Supposef € L?(R?). Then, for every > 0,

* FYIAY * 1
[, 60" (a0 + FEa(k) + 0)a* ()] i > =311
and the lower bound is attained by the expectation valuearcttherent statg € F,
defined byu(k)n = —5=1 f(k)n.
Proof. By completing the square in creation and annihilation djoesa

[, 60" @yalk) + FBalk) + f()a" (1)) ak

= [ oo+ TR+ 12 - EE

nll =1,

v

1 2
=l
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Proposition A.3. Suppose that/2a < U. ThenforallN,A > 0,and all f € ANL2(R?),n €
Fwith || f[| = [[nll = 1,

2
5/2\3
(f@n,Hvaf®@n) > —cig (37) U%N,

wherecy, = 1.68 or any other constant for which the Lieb-Oxford inequalittds.

Proof. As in the proof of Theorem 1.1

(fonHyaf®n)
= (f,(=3A+UVe)f) + (n, (Hpn + Vaga(p))n)

> (f,(—3A+UVo)f) — V2l ; p’(;)i_p(yy’)dwdy.

Using the Lieb-Thirring [24, Theorem 2.15] and the Lieb-@xf inequalities [22] we find that

(f@n,Hya(f @)
> crr /]1@3 P(m)gdw—F(U—\/ia)%/R dedy—UcL/ p(m)%dx (A.5)

6 |r—1yl R3

wherecrr = (35)%? ande;, = 1.68 or any other constant for which the Lieb-Oxford

inequality is satisfied. From(z)*/? = p(x)%°p(z)'/? and the Cauchy-Schwarz inequality,

for everye > 0,
/RS p(z)3da < (/RS p(x)%dx)é (/RS p(x)dxf
<a /R 3 pla)ids + % /R 3 p(x)dx) . (A.6)

The estimates (A.5) and (A.6) with= 2cp1/Ucy, prove the proposition. O

<

N[
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