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Abstract

For systems ofN charged fermions (e.g. electrons) interacting with longitudinal op-
tical quantized lattice vibrations of a polar crystal we derive upper and lower bounds on
the minimal energy within the model of H. Fröhlich. The onlyparameters of this model,
after removing the ultraviolet cutoff, are the constantsU > 0 andα > 0 measuring the
electron-electron and the electron-phonon coupling strengths. They are constrained by the
condition

√
2α < U , which follows from the dependence ofU andα on electrical prop-

erties of the crystal. We show that the largeN asymptotic behavior of the minimal energy
EN changes at

√
2α = U and that

√
2α ≤ U is necessary for thermodynamic stability:

for
√

2α > U the phonon-mediated electron-electron attraction overcomes the Coulomb
repulsion andEN behaves like−N7/3.
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1 Introduction

We study a system ofN electrons in a polar (ionic) crystal, modelled by a Hamiltonian derived
by H. Fröhlich [12]. The model takes into account the electron-electron Coulomb repulsion,
and a linear interaction of the electrons with the longitudinal optical phonons. The model is
called the ’large polaron’ model, since it assumes that a polaron (dressed electron) extends over
a region which is large compared to the ion-ion spacing. In particular the underlying discrete
(and infinite) crystal is replaced by a continuum. See [7, 11,19].

As is well-known, linear electron-phonon couplings inducean effective pair attraction be-
tween electrons. This attraction competes with the electron-electron repulsion and may cause
a phase-transition as the electron-phonon interaction strength increases. This mechanism is
behind the production of Cooper pairs in the BCS model of low temperature superconductiv-
ity, and in high-Tc superconductivity the role of many-polaron systems is being investigated
[1, 8, 17].

The Fröhlich Hamiltonian depends on two non-negative dimensionless quantities,U and
α. The constantU is the electron-electron repulsion strength, andα is the Fröhlich electron-
phonon coupling constant. Physically relevant models mustsatisfy the constraint, cf. [4, 28],

√
2α < U.

In this paper we prove upper and lower bounds on the minimal energy EN of the N -
electron Fröhlich Hamiltonian for allN and all non-negative values ofU , α. In the unphysical
regime

√
2α ≥ U , our results imply thatEN ∼ −N7/3. In the physical regime we find

that EN ≥ −CN2, thus establishing a sharp transition in the largeN -asymptotics ofEN at√
2α = U . This transition is due to the mediated attraction between electrons overcoming the

repulsion at
√

2α = U in the limit of largeN . In fact, the quantityU −
√

2α appears in our
analysis as an effective Coulomb coupling strength. We alsodemonstrate thatEN ≤ −αN and
EN+M ≤ EN +EM in the physical regime. We do not know whether or notEN is an extensive
quantity, but if it is not extensive, then this must be due to electron-phonon correlations, cf.
Proposition A.3.

We pause this discussion to introduce the mathematical model. The Fröhlich Hamiltonian
describingN electrons in a polar crystal reads

N∑

ℓ=1

[
− 1

2∆xℓ
+
√

αΦ(xℓ)
]
+ Hph + UVC, (1.1)

where the number operator

Hph =

∫

R3

a∗(k)a(k)dk,

accounts for the kinetic energy of the phonons while the fieldoperator

Φ(x) =

∫

R3

1

c0|k|
[
eik·xa(k) + e−ik·xa∗(k)

]
dk,

is responsible for the electron-phonon interaction. Herec0 := 23/4π. Finally the electron-
electron interaction is given by the sum of two-body Coulombpotentials

VC(x1, . . . , xN ) =
∑

1≤i<j≤N

1

|xi − xj|
.
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We work in units where the frequency of the longitudinal optical phonons,ωLO, Planck’s
constant~, and the electron band mass are equal to one.

Let F denote the symmetric Fock space overL2(R3). The Hamiltonian (1.1) defines a
symmetric quadratic form onH = ∧NL2(R3)⊗F , but, a priori, it is not well defined as a self-
adjoint operator. For that one must first impose an ultraviolet cutoff on the electron-phonon
interaction: LetΛ > 0, and define the cutoff Hamiltonian as

HN,Λ =

N∑

ℓ=1

−1
2∆xℓ

+ Hph +
√

α

N∑

ℓ=1

ΦΛ(xℓ) + UVC,

where

ΦΛ(x) =

∫

|k|≤Λ

1

c0|k|
[
eik·xa(k) + e−ik·xa∗(k)

]
dk.

The operatorsHN,Λ are self-adjoint onD(Hph)∩D(
∑N

ℓ=1 ∆xℓ
), by the Kato-Rellich theorem,

and it is well known, cf. [2, 6, 13, 14, 27], thatHN,Λ converges, asΛ → ∞, in the norm-
resolvent sense to a semi-bounded, self-adjoint operator,which we denote byHN . This implies
that

EN = lim
Λ→∞

EN,Λ (1.2)

if EN,Λ := inf σ(HN,Λ) andEN := inf σ(HN ).

The main goal of this paper is to investigate the largeN behavior of the minimal energy
EN as a function ofα andU . Our first result is an upper bound in the regime

√
2α > U .

Theorem 1.1. There is a constantC such that for allN and for
√

2α ≥ U ≥ 0

EN ≤ (
√

2α − U)2N
7
3

(
EPTF + CN− 1

17

)
.

HereEPTF < 0 is given by(1.3)below.

Theorem 1.1 is proved variationally by using Pekar’s ansatzin terms of a product state,
which is known to give the correct ground state energy forN = 1, 2 in the largeα limit
[9, 25, 26]. Taking the expectation value in a statef ⊗ η ∈ ∧NL2(R3) ⊗ F and explicitly
minimizing with respect toη we arrive at a Hartree-Fock type energy which is then estimated
by a Thomas-Fermi energy. This allows us to scale out all parameters and we are left with the
bound in Theorem 1.1, where

EPTF = inf
ρ≥0,

R

ρ(x)dx=1
EPTF(ρ), (1.3)

EPTF(ρ) := 3
10 (6π2)

2
3

∫

R3

ρ(x)
5
3 dx − 1

2

∫

R6

ρ(x)ρ(y)

|x − y| dxdy. (1.4)

We note that in the error term in Theorem 1.1 the exponent1/17 can be replaced by any number
less than2/33 at the expense of a larger and divergent constantC.

To show that the variational upper bound from Theorem 1.1 hasthe right asymptotics inN
andα, we provide the following lower bound:
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Theorem 1.2. There existsC > 0 such that for allN and
√

2α ≥ U ≥ 0,

EN ≥ −CG(
√

2α − U)2N
7
3 − Cα2N

7
3
− 1

9 − 3N
1
9 , (1.5)

where the constantCG is defined by(1.6).

This lower bound is obtained, essentially, by completing the square with respect to cre-
ation and annihilation operators in the expressionHph +

√
α
∑n

j=1 Φ(xj). The computation
brings out an effective Coulomb interaction with coupling strength−

√
2α. Unfortunately, it

also yields an infinite self-energy, which must be dealt withbefore completing the square. For
that we use a commutator argument from [25], which is responsible for the error term in Theo-
rem 1.2. The resulting effective Hamiltonian with an attractive Coulomb potential is bounded
below by the ’gravitational collapse’ bound

N∑

j=1

−1
2∆j −

∑

1≤j<ℓ≤N

1

|xj − xℓ|
≥ −CGN

7
3 (1.6)

due to Lévy-Leblond [20, Theorem 2]. Hence the presence of the constantCG in Theorem 1.2.
We now turn to the physical regime

√
2α < U . Here our lower bound holds for fermionic

and bosonic particles alike and hence it will not be optimal in the fermionic case. Together
with Theorem 1.1 it demonstrates, however, that the model undergoes a sharp transition at
α = U/

√
2.

Theorem 1.3. For 0 <
√

2α < U ,

EN ≥ −
(

16
3πα2N2 + 3

) U

U −
√

2α
.

The proof of Theorem 1.3 is based on our estimate of the ultraviolet part of the electron-
phonon interaction in the proof of Theorem 1.2. We do not knowyet how to incorporate the
Pauli-Principle into that estimate. In view of PropositionA.3 we expect a lower bound linear
in N in the fermionic case.

Last but not least there are the following universal variational upper bounds forEN and
EN+M .

Theorem 1.4. For all N,M , α andU we have

EN ≤ −αN,

EN+M ≤ EN + EM .

The boundE1 ≤ −α is well known from [19, 10] and it agrees with the result of a formal
computation ofE1 by second order perturbation theory [11]. Also, it is consistent with Haga’s
computation ofE1 including α2-terms1 [16, 11]. The boundEN ≤ −αN follows from the
estimatesE1 ≤ −α andEN ≤ NE1, the latter of which is a consequence of the second result
of Theorem 1.4. We remark thatEN+M ≤ EN + EM holds quite generally for translation
invariantN -particle systems with interactions that go to zero with increasing particle separa-
tion. In particular it holds for fermions and for distinguishable particles alike. Numerically

1There is a sign error in Feynman’s quote of Haga’s result.
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computed upper bounds onE(N)/N , for N = 2 throughN = 32 can be found in the litera-
ture [5], but in the case of fermions they are not refined enough to be consistent with the bound
EN+M ≤ EN + EM .

In this paper we have omitted spin, but the Fermi statistics is taken into account. There
are only few small modifications necessary for treating fermions with q spin states, such as
factor of q−2/3 in front of the Thomas-Fermi kinetic energy, which alters the upper bound in
Theorem 1.1 by a factor ofq2/3.

The many-polaron model has also been studied with a confiningpotential of the form∑N
ℓ=1 W (xℓ), W (0) = 0 andW ≥ 0 included in the Hamiltonian [18]. We could include such

a potential in our work as well, but, at least in the regime
√

2α > U this would not affect the
leading largeN behaviour ofEN .

2 Upper bounds on EN

In this section we prove Theorem 1.1 and Theorem 1.4. SinceEN = limΛ→∞ EN,Λ we only
need to deal with the self-adjoint operatorHN,Λ. Let f ∈ DN = ∧NL2(R3) ∩ H1(R3N )

be normalized and recall that the one-particle density matrix γ and the density functionρ
associated withf are defined by

γ(x, x′) := N

∫

R3(N−1)
f(x, x2, . . . , xN )f(x′, x2, . . . , xN )dx2 · · · dxN , (2.1)

ρ(x) := γ(x, x) = N

∫

R3(N−1)

|f(x, x2, . . . , xN )|2dx2 · · · dxN . (2.2)

In this paper the Fourier transform̂ρ of the density functionρ, or of any other function, is
defined by:

ρ̂(k) =

∫

R3

e−ik·xρ(x)dx,

that is, without a factor of(2π)−3/2.

Proposition 2.1. Suppose
√

2α ≥ U . Then for every one-particle density matrixγ onL2(R3)

with 0 ≤ γ ≤ 1, Tr[γ] = N , Tr[−∆γ] < ∞, and forρ(x) := γ(x, x),

EN ≤ (
√

2α − U)2
(

1
2 Tr[−∆γ] − 1

2

∫

R6

ρ(x)ρ(y)

|x − y| dxdy

)

−U(
√

2α − U)1
2

∫

R6

|γ(x, y)|2
|x − y| dxdy.

Proof. This proof is based on the estimateEN,Λ ≤ 〈f ⊗η,HN,Λf ⊗η〉 for suitable normalized
f ∈ DN andη ∈ F . We begin by observing that the expectation value of the interaction oper-
ator in a statef ⊗ η may be represented in the following two ways: iff andη are normalized,
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then

〈
f ⊗ η,

N∑

ℓ=1

ΦΛ(xℓ)f ⊗ η
〉

=

∫

R3N

|f(x1, . . . , xN )|2
N∑

ℓ=1

VΛ,η(xℓ) dx1 . . . dxN (2.3)

= 〈η,ΦΛ(ρ)η〉 (2.4)

whereVΛ,η(x) := 〈η,ΦΛ(x)η〉, ρ is the density associated withf , and

ΦΛ(ρ) :=

∫

R3

ρ(x)ΦΛ(x) dx

=

∫

|k|≤Λ

1

c0|k|
[
ρ̂(k)a(k) + ρ̂(k)a∗(k)

]
dk.

Hence if we defineHη
N,Λ :=

∑N
ℓ=1[−1

2∆ℓ +
√

αVΛ,η(xℓ)] + UVC , then

〈f ⊗ η,HN,Λf ⊗ η〉 = 〈f,Hη
N,Λf〉 + 〈η,Hphη〉. (2.5)

The ground state energy of theN -body HamiltonianHη
N,Λ is bounded above by its ground

state energy in the Hartree-Fock approximation. By Lieb’s variational principle, [23] and [3,
Corollary 1], this Hartree-Fock ground state energy is bounded above by

EN,Λ
HF (γ, η) := Tr

[(
− 1

2∆ +
√

αVΛ,η

)
γ
]
+

U

2

∫

R6

ρ(x)ρ(y) − |γ(x, y)|2
|x − y| dxdy (2.6)

for any one-particle density matrixγ with Tr[γ] = N andρ(x) = γ(x, x). Hence, in view of
(2.5), we conclude that

EN,Λ ≤ EN,Λ
HF (γ, η) + 〈η,Hphη〉 (2.7)

for all normalizedη ∈ F . In order to minimize the right hand side with respect toη, we use
that (2.3) equals (2.4). It follows, by Lemma A.2, that

inf
η∈F ,‖η‖=1

[√
α Tr(VΛ,ηγ) + 〈η,Hphη〉

]
= − α

c2
0

∫

|k|≤Λ

|ρ̂(k)|2
|k|2 dk. (2.8)

By combining (2.6), (2.7), and (2.8) and then lettingΛ → ∞ we arrive at

EN ≤ 1
2 Tr[−∆γ] + (U −

√
2α)1

2

∫

R6

ρ(x)ρ(y)

|x − y| dxdy − U

2

∫

R6

|γ(x, y)|2
|x − y| dxdy (2.9)

for any one-particle density matrixγ with Tr(γ) = N andρ(x) = γ(x, x). Here (A.3) and
(1.2) were used also. In the case

√
2α = U it is clear from (2.9) or from (2.5) withη being

the vacuum vector, thatEN ≤ 0. In the case whereβ :=
√

2α − U > 0, we choose the
density matrixγ on the formγ = Uβ γ̃U∗

β with Uβ defined by(Uβϕ)(x) := β3/2ϕ(βx). The
Proposition then follows fromU∗

β∆Uβ = β2∆ and fromγ(x, y) = β3γ̃(βx, βy) by a simple
change of variables in the integrals of (2.9).

The second ingredient for proving Theorem 1.1 is the following lemma.
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Lemma 2.2. Let g ∈ H2(R3) with ‖g‖ = 1. Then for everyρ ∈ L1(R3) with ρ ≥ 0 and∫
R3 ρ(x)dx = N there exists a density matrixγ such thatγ(x, x) = (ρ ∗ |g|2)(x) and

Tr[−∆γ] = 3
5(6π2)

2
3

∫

R3

ρ(x)
5
3 dx + N‖∇g‖2.

Proof. For the reader’s convenience, we recall the proof from [22, Page 621]. LetM : R
6 → R

be defined byM(p, q) = 1 if |p| ≤ (6π)2/3ρ(q)1/3 andM(p, q) = 0 otherwise. Then

(2π)−3

∫

R6

M(p, q)dpdq =

∫

R3

ρ(q)dq = N

(2π)−3

∫

R6

p2M(p, q)dpdq = 3
5(6π)

2
3

∫

R3

ρ(q)
5
3 dq. (2.10)

We defineγ by

γ = (2π)−3

∫

R6

M(p, q)Πpqdpdq

whereΠpq is the rank one projection given by

Πpqϕ = gpq

∫

R3

gpq(x)ϕ(x)dx, gpq(x) = eipxg(x − q).

It follows thatγ(x, x) =
∫

R3 |g(x − q)|2ρ(q) dq, and from

Tr[−∆Πpq] = ‖∇gpq‖2 = p2 + ‖∇g‖2 + 2p · 〈g,−i∇g〉,

and (2.10) we find the asserted expression forTr[−∆γ].

Proposition 2.1 and Lemma 2.2 suggest the definition of aPolaron Thomas-Fermi func-
tional by

EPTF(ρ) := 3
10 (6π2)

2
3

∫

R3

ρ(x)
5
3 dx − 1

2

∫

R6

ρ(x)ρ(y)

|x − y| dxdy, (2.11)

whereρ ∈ L1(R3) ∩ L5/3(R3) andρ ≥ 0. If ρN (x) := N2ρ(N1/3x), then‖ρN‖1 = N‖ρ‖1

and
EPTF(ρN ) = N

7
3 EPTF(ρ).

Hence it suffices to consider densitiesρ with
∫

ρ(x)dx = 1. Let

EPTF := inf
{
EPTF(ρ)

∣∣∣ρ ≥ 0,

∫

R3

ρ(x)dx = 1
}

which is finite by Lemma A.1.

Lemma 2.3. EPTF < 0.

Proof. Givenρ ∈ L1(R3) ∩ L5/3(R3) with ρ ≥ 0 and
∫

ρ dx = 1, let ρR(x) = R−3ρ(R−1x).
Then

∫
R3 ρR(x)dx = 1 for all R > 0 and

EPTF(ρR) = R−2 3
10(6π2)

2
3

∫

R3

ρ(x)
5
3 dx − R−1 1

2

∫

R6

ρ(x)ρ(y)

|x − y| dxdy.

This is negative forR large enough.
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Proof of Theorem 1.1. Let g ∈ L2(R3) be given byg(x) = (2π)−3/4e−x2/4 and setgε(x) =

ε−3/2g(x/ε), so that‖gε‖ = 1 for all ε > 0. Let β =
√

2α − U ≥ 0. If β = 0 thenEN ≤ 0

by Proposition 2.1. Hence it remains to consider the caseβ > 0. Every density function
ρN ∈ L1(R3) with ‖ρN‖1 = N is of the formρN (x) = N2ρ(N1/3x) with ‖ρ‖1 = 1. From
Proposition 2.1 and Lemma 2.2 combined it follows that

β−2EN ≤ 3
10(6π2)

2
3

∫

R3

ρN (x)
5
3 dx − 1

2

∫

R6

ρN,ε(x)ρN,ε(y)

|x − y| dxdy + N‖∇gε‖2, (2.12)

whereρN,ε = ρN ∗ |gε|2. Suppose1 < µ < 6/5 and letf(k) := |̂g|2 = e−k2/2. Then

ρ̂N,ε(k) = ρ̂N (k)|̂gε|2(k) = ρ̂N (k)f(εk) and

sup
k 6=0

1 − |f(k)|2
|k|µ−1

≤ 1. (2.13)

By definition off , by (2.13), and by Lemma A.1
∫

R6

ρN (x)ρN (y)

|x − y| dxdy −
∫

R6

ρN,ε(x)ρN,ε(y)

|x − y| dxdy

=
1

2π2

∫

R3

(1 − |f(εk)|2) |ρ̂N (k)|2
|k|2 dk

=
1

2π2
εµ−1

∫

R3

1 − |f(εk)|2
|εk|µ−1

|ρ̂N (k)|2
|k|3−µ

dk

≤ 1

2π2
εµ−1

∫

R3

|ρ̂N (k)|2
|k|3−µ

dk

= N2+ µ
3 εµ−12(2π)µ−2 cµ

c3−µ

∫

R6

ρ(x)ρ(y)

|x − y|µ dxdy.

Combining this estimate with (2.12), we see that

β−2EN ≤ N
7
3EPTF(ρ) + Nε−2‖∇g‖2

+N2+ µ
3 εµ−1(2π)µ−2 cµ

c3−µ

∫

R6

ρ(x)ρ(y)

|x − y|µ dxdy

for all ρ ∈ L1(R3) with ‖ρ‖1 = 1. If {ρn} ⊂ L1(Rn) is a minimizing sequence,EPTF(ρn) →
EPTF asn → ∞, then‖ρn‖5/3 is bounded uniformly inn, by definition ofEPTF and by (A.1)
with µ = 1. It follows, again by (A.1), that

∫
ρn(x)ρn(y)/|x− y|µdxdy is bounded uniformly

in n for µ < 6/5. Therefore, in the limitn → ∞, we obtain

β−2EN ≤ N
7
3 EPTF + 1

4Nε−2 + N2+ µ
3 εµ−1Cµ

where the constantCµ is finite forµ < 6/5 and where‖∇g‖2 = 1/4 was used. Upon optimiz-
ing with respect toε we arrive at

β−2EN ≤ N
7
3 EPTF + N

9+5µ
3+3µ Dµ

with a new constantDµ. This bound with the choiceµ = 37/31 < 6/5 proves Theorem 1.1.
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Proof of Theorem 1.4. We only need to prove thatE1 ≤ −α. The boundEN ≤ −αN will
then follow fromEN+M ≤ EN + EM as pointed out in the introduction.

Following Nelson [27] we introduce

BΛ := −
√

α

c0

∫

|k|≤Λ

1

i(1 + k2

2 )|k|
[
eik·xa(k) − e−ik·xa∗(k)

]
dk.

Then

eiBΛH1,Λe−iBΛ = 1
2

(
p2 + 2a∗ · p + 2p · a + a2 + (a∗)2 + 2a∗a

)
+ Hph − αeΛ, (2.14)

where

a :=

√
α

c0

∫

|k|≤Λ

k

(1 + k2

2 )|k|
eikxa(k) dk.

eΛ :=
1

c2
0

∫

|k|≤Λ

1

|k|2(1 + k2

2 )
dk

From (2.14) we see that, for all normalizedf ∈ L2(R3),

〈f ⊗ Ω, eiBΛH1,Λe−iBΛf ⊗ Ω〉 =
〈
f, (−1

2∆)f
〉
− αeΛ (2.15)

whereΩ ∈ F denotes the vacuum vector. Sinceinf σ(−∆) = 0 it follows from (2.15) that
E1,Λ ≤ −αeΛ, where

lim
Λ→∞

eΛ =
1

c2
0

∫

R3

1

|k|2(1 + k2

2 )
dk = 1.

This concludes the proof of the first bound in Theorem 1.4.
A result similar toEN+M ≤ EN + EM is expressed by Theorem 6 in [15]. A copy of

the proof of that theorem, with small modifications due to thedifferences of the Hamiltonians,
also proves the desired bound here. In fact, the main part of the proof of [15, Theorem 6] is
Equation (19) and the equation thereafter, which show that the interaction between electrons
mediated by bosons decreases with increasing particle separation. This part remains valid for
the coupling functionχ|k|≤Λ/(c0|k|) of the HamiltonianHN,Λ. Other parts of the proof are
simplified due to the fact the phonon dispersion relationωLO is constant and hence a local
operator with respect to the boson position as measured byi∇k.

3 Lower bounds on EN

In this section we prove Theorems 1.2, and 1.3. The first step is to make sure that phonons
with large momenta contribute to lower order inN . To this end, for givenK,Λ, δ, κ > 0, we
define the operator

HN,Λ,K := −1
2(1 − κ)

N∑

ℓ=1

∆ℓ + (1 − δ)Hph + UVC

+
√

α

N∑

ℓ=1

∫

|k|≤Λ

e−
|k|2

4K2

c0|k|
[
eik·xℓa(k) + e−ik·xℓa∗(k)

]
dk.
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Of course, later on,δ, κ ∈ (0, 1) andK < Λ → ∞. The following result, in the caseN = 1,
is essentially due to Lieb and Thomas [25]. While a sharp cutoff |k| ≤ K is used in [25], we
work with a Gaussian cutoff since we need the Fourier transform of the cutoff to be positive in
the proof of Lemma 3.2.

Lemma 3.1. SupposeK,Λ, α and U are positive,0 < δ < 1 and letκ := 8αN
3Kδ I∞, where

I∞ := (
√

2 − 1)/
√

π. Then

HN,Λ ≥ HN,Λ,K − 3

2δ
. (3.1)

Proof. For eachℓ ∈ {1, . . . , N}, we introduce three high momenta modes by

Z
(ℓ)
j :=

∫

R3

T
(ℓ)
j (k)a(k)dk, j ∈ {1, 2, 3},

T
(ℓ)
j (k) :=

√
αχΛ(k)

1 − e−
|k|2

4K2

c0|k|3
kje

−ik·xℓ,

kj ∈ R being thej-th component ofk ∈ R
3 andχΛ the characteristic function of the set{|k| ≤

Λ}. For later use we compute the inner product of two functionsT
(ℓ)
j . By straightforward

computations, ∫

R3

T
(ℓ)
j (k)T

(ℓ)
j′ (k) dk = δjj′

α

3K
I Λ

K
, (3.2)

where

IR :=

√
2

π

∫ R

0

(1 − e−
s2

4 )2

s2
ds.

Note that4π/c2
0 =

√
2/π and thatI∞ = limR→∞ IR = (

√
2 − 1)/

√
π as defined in the

statement of the lemma. By definition ofHN,Λ,K,

HN,Λ = HN,Λ,K +
N∑

ℓ=1

(
− κ

2
∆ℓ + I

(ℓ)
K,Λ

)
+ δHph (3.3)

I
(ℓ)
K,Λ :=

√
α

∫

|k|≤Λ

1 − e−
|k|2

4K2

c0|k|
[
eik·xℓa(k) + h.c.

]
dk

where we introduced the operatorsI
(ℓ)
K,Λ associated with the ultraviolet part of the electron-

phonon interaction. The key ingredient of this proof is that

I
(ℓ)
K,Λ =

3∑

j=1

[
pℓ,j, Z

(ℓ)
j − Z

(ℓ)∗
j

]
(3.4)

wherepℓ,j := −i∂/∂xℓ,j
. This identity implies that

∣∣〈η, I
(ℓ)
K,Λη〉

∣∣ ≤ 2

3∑

j=1

‖pℓ,jη‖‖(Z(ℓ)
j − Z

(ℓ)∗
j )η‖

≤ κ

2
〈η,−∆ℓη〉 +

2

κ

3∑

j=1

〈η,−(Z
(ℓ)
j − Z

(ℓ)∗
j )2η〉

≤ κ

2
〈η,−∆ℓη〉 +

4

κ

3∑

j=1

〈η, (Z
(ℓ)∗
j Z

(ℓ)
j + Z

(ℓ)
j Z

(ℓ)∗
j )η〉, (3.5)
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whereκ > 0 is to be selected, and the estimate

|〈η, (Z
(ℓ)
j )2η〉| ≤ ‖Z(ℓ)∗

j η‖‖Z(ℓ)
j η‖ ≤ 1

2〈η, (Z
(ℓ)
j Z

(ℓ)∗
j + Z

(ℓ)∗
j Z

(ℓ)
j )η〉

was used. From (3.2) andIΛ/K ≤ I∞ it is clear that

3∑

j=1

(Z
(ℓ)∗
j Z

(ℓ)
j + Z

(ℓ)
j Z

(ℓ)∗
j ) =

3∑

j=1

2Z
(ℓ)∗
j Z

(ℓ)
j +

[
Z

(ℓ)
j , Z

(ℓ)∗
j

]

≤ 2αI∞
3K

Hph +
α

K
I∞. (3.6)

Combining (3.5) and (3.6) we arrive at

±
N∑

ℓ=1

I
(ℓ)
K,Λ ≤ κ

2

N∑

ℓ=1

(−∆ℓ) +
8αNI∞
3κK

Hph +
4αNI∞

κK
,

which, by (3.3) and the choiceκ = 8αNI∞/(3Kδ), proves the lemma.

Lemma 3.2. SupposeK,Λ, α, U andκ are positive, and0 < δ ≤ 1/2. Then

HN,Λ,K ≥ −1
2(1 − κ)

N∑

ℓ=1

∆ℓ −
(√

2α

1 − δ
− U

)
VC − 2αNK√

π
. (3.7)

Proof. By completing the square in annihilation and creation operators, that is, by using
Lemma A.2, we see that

(1 − δ)Hph +

√
α

c0

N∑

ℓ=1

∫

|k|≤Λ

e−
|k|2

4K2

|k|
[
eik·xℓa(k) + e−ik·xℓa∗(k)

]
dk.

≥ − α

(1 − δ)c2
0

N∑

j,ℓ=1

∫

R3

e−
|k|2

2K2

|k|2 eik·(xj−xℓ) dk

= − 2α

(1 − δ)c2
0

∑

j<ℓ

∫

R3

e−
|k|2

2K2

|k|2 eik·(xj−xℓ) dk − αNK

(1 − δ)
√

π
. (3.8)

The integral in (3.8) represents the electrostatic energy of two spherically symmetric, non-
negative charge distributions centered atxj andxℓ, respectively, each distribution having total
charge one, see (A.3). Hence Newton’s theorem, [24, Theorem9.7], implies that

∫

R3

e−
|k|2

2K2

|k|2 eik·(xj−xℓ) dk ≤ 2π2

|xj − xℓ|
.

Sincec2
0 = 2π2

√
2, it follows that (3.8) is bounded below by

−
√

2α

1 − δ
VC − αNK

(1 − δ)
√

π
,

which proves the lemma.
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Proof of Theorem 1.2. We shall combine the Lemmas 3.1 and 3.2 with suitable choicesfor
δ and K. First, suppose that0 < δ ≤ 1/2 and thatκ ∈ (0, 1). Since

√
2α − U ≥ 0,

by assumption of Theorem 1.2, the constant multiplying the potential VC in Lemma 3.2 is
positive, and hence, after the scaling transformation

x →
(√

2α

1 − δ
− U

)−1

(1 − κ)x

we may apply (1.6) and find that

HN,Λ,K ≥ −

(√
2α

1−δ − U
)2

1 − κ
inf σ

( N∑

ℓ=1

−1

2
∆ℓ − VC

)
− 2αNK√

π

≥ −CG

(√
2α

1−δ − U
)2

1 − κ
N

7
3 − 2αNK√

π
,

whereCG is chosen such that (1.6) holds true.

We now make the choices

δ = 1
2N− 1

9 and K = 1
332I∞αN1+ 2

9 ,

which imply thatκ, as defined in Lemma 3.1, obeysκ = 1
2N−1/9 = δ. Using that(1− t)−1 ≤

1 + 2t, for 0 ≤ t ≤ 1/2, thatU ≤
√

2α, andI∞/
√

π = (
√

2 − 1)/π ≤ 1/(2π), we find that

HN,Λ,K ≥ −CG

[√
2α(1 + 2δ) − U

]2
(1 + 2κ)N

7
3 − 32

3π
α2N2+ 2

9

≥ −CG

[
(
√

2α − U)2 + 16α2δ
]
(1 + 2κ)N

7
3 − 32

3π
α2N

7
3
− 1

9

≥ −CG

[
(
√

2α − U)2N
7
3 + 18α2N

7
3
− 1

9
]
− 32

3π
α2N

7
3
− 1

9

= −CG(
√

2α − U)2N
7
3 −

(
18CG +

32

3π

)
α2N

7
3
− 1

9 .

Proof of Theorem 1.3. Finally we consider the case, whereU −
√

2α > 0. In Lemma 3.2 we
chooseδ = (U −

√
2α)/(2U) andK = 8αNI∞/(3δ), so thatκ = 1 in Lemma 3.1, and

U −
√

2α

1 − δ
=

U −
√

2α

2(1 − δ)
> 0.

From Lemma 3.1 and Lemma 3.2 it hence follows that

EN ≥ −2αNK√
π

− 3

2δ
= −16I∞

3
√

π
α2N2 2U

U −
√

2α
− 3U

U −
√

2α
,

whereI∞/
√

π = (
√

2 − 1)/π ≤ 1/(2π).
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A Auxiliary Results

Lemma A.1. Suppose thatρ ∈ L1(R3) ∩ L5/3(R3), ρ ≥ 0, 0 < µ < 6/5, and letρN (x) =

N2ρ(N1/3x). Then
∫

R6

ρ(x)ρ(y)

|x − y|µ dxdy ≤ aµ‖ρ‖
2− 5µ

6
1 ‖ρ‖

5µ
6
5
3

(A.1)

∫

R6

ρ(x)ρ(y)

|x − y|µ dxdy = (2π)−µ c3−µ

cµ

∫

R3

|ρ̂(k)|2
|k|3−µ

dk (A.2)

∫

R6

ρ(x)ρ(y)

|x − y| dxdy =
1

2π2

∫

R3

|ρ̂(k)|2
|k|2 dk (A.3)

∫

R6

ρN (x)ρN (y)

|x − y|µ dxdy = N2+ µ
3

∫

R6

ρ(x)ρ(y)

|x − y|µ dxdy (A.4)

where

aµ :=

(
4π

3

)µ
3
(

6

5µ

)1+ µ
3
(

6

5µ
− 1

)−1+ µ
2

, cµ := π−µ
2 Γ(

µ

2
)

in (A.1) and (A.2), respectively.

Inequality (A.1), in the special caseµ = 1, implies thatEPTF(ρ) is bounded below, and
moreover, that‖ρ‖5/3 is bounded unformly for densitiesρ with ‖ρ‖1 = 1 andEPTF(ρ) ≤
EPTF + 1.

Proof of Lemma A.1.For eachR > 0, by Hölder’s inequality,
∫

R3

ρ(y)

|x − y|µ dy =

∫

|x−y|≤R

ρ(y)

|x − y|µ dy +

∫

|x−y|≥R

ρ(y)

|x − y|µ dy

≤
(

8π

6 − 5µ

) 2
5

R
6
5
−µ‖ρ‖ 5

3
+ R−µ‖ρ‖1.

By optimizing this bound w.r.toR > 0 we obtain (A.1). Equation (A.2) follows from [24,
Corollary 5.10]. The factor(2π)−µ stems from the differences in the definition of the Fourier
transform. Equation (A.3) is the important special caseµ = 1 from (A.2), and (A.4) is straight-
forward to verify by a change of variables.

Lemma A.2. Supposef ∈ L2(R3). Then, for everyδ > 0,
∫

R3

[
δa∗(k)a(k) + f(k)a(k) + f(k)a∗(k)

]
dk ≥ −1

δ
‖f‖2

and the lower bound is attained by the expectation value in the coherent stateη ∈ F , ‖η‖ = 1,
defined bya(k)η = −δ−1f(k)η.

Proof. By completing the square in creation and annihilation operators
∫

R3

[
δa∗(k)a(k) + f(k)a(k) + f(k)a∗(k)

]
dk

=

∫

R3

[
δ
(
a∗(k) +

f(k)

δ

)(
a(k) +

f(k)

δ

)
− |f(k)|2

δ

]
dk

≥ −1

δ
‖f‖2.
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Proposition A.3. Suppose that
√

2α ≤ U . Then for allN,Λ > 0, and allf ∈ ∧NL2(R3), η ∈
F with ‖f‖ = ‖η‖ = 1,

〈f ⊗ η,HN,Λf ⊗ η〉 ≥ −c2
L

5

6

(
2

3π

)2
3

U2N,

wherecL = 1.68 or any other constant for which the Lieb-Oxford inequality holds.

Proof. As in the proof of Theorem 1.1

〈f ⊗ η,HN,Λf ⊗ η〉
= 〈f, (−1

2∆ + UVC)f〉 + 〈η, (Hph +
√

αφΛ(ρ))η〉

≥ 〈f, (−1
2∆ + UVC)f〉 −

√
2α1

2

∫

R6

ρ(x)ρ(y)

|x − y| dxdy.

Using the Lieb-Thirring [24, Theorem 2.15] and the Lieb-Oxford inequalities [22] we find that

〈f ⊗ η,HN,Λ(f ⊗ η)〉

≥ cLT

∫

R3

ρ(x)
5
3 dx + (U −

√
2α)1

2

∫

R6

ρ(x)ρ(y)

|x − y| dxdy − UcL

∫

R3

ρ(x)
4
3 dx (A.5)

wherecLT = 3
10 (3π

2 )2/3 and cL = 1.68 or any other constant for which the Lieb-Oxford
inequality is satisfied. Fromρ(x)4/3 = ρ(x)5/6ρ(x)1/2 and the Cauchy-Schwarz inequality,
for everyε > 0,

∫

R3

ρ(x)
4
3 dx ≤

(∫

R3

ρ(x)
5
3 dx

) 1
2
(∫

R3

ρ(x)dx

) 1
2

≤ 1
2

(
ε

∫

R3

ρ(x)
5
3 dx +

1

ε

∫

R3

ρ(x)dx

)
. (A.6)

The estimates (A.5) and (A.6) withε = 2cLT/UcL prove the proposition.
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8000 Århus C, Denmark
E-Mail: jacob@imf.au.dk





Erschienene Preprints ab Nummer 2007/001
Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints

2009/008 Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED

2009/007 Griesemer, M.; Moeller, J.S.: Bounds on the minimal energy of translation
invariant n-polaron systems

2009/006 Demirel, S.; Harrell II, E.M.: On semiclassical and universal inequalities for eigen-
values of quantum graphs
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