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Abstract

The problem of exercising an American option in discrete time in an optimal way is
considered. In contrast to existing literature the algorithm proposed in this paper is
completely nonparametric in the sense that it does not rely on any specific model for the
generation of the asset values. It is shown that the algorithm is universally consistent in
the sense that the achieved expected payoff converges to the optimal value whenever the
returns of the underlying asset are stationary and ergodic. The algorithm is illustrated by

applying it to simulated data.

AMS classification: Primary 91G70; secondary 60G40, 62G0S.
Key words and phrases: American options, ergodicity, optimal exercising, optimal stop-

ping, stationarity, universal consistency.

1 Introduction

In this paper the problem of exercising an American option in discrete time (also called
Bermudan option) in an optimal way is considered. This problem can be formulated in a
mathematical way as following: Let (X;) ez be positive random variables defined on the
same probability space describing the values of the underlying asset of the option at time
points j € Z. For simplicity we consider only the case that X; be real-valued, i.e., we
consider only options on a single asset. Let f : R — R be the payoff function of the option,
which we assume to be nonnegative, bounded and measurable, e.g., f(z) = max{K —z,0}
in case of an American put option with strike K. Let r be the riskless interest rate. If we

™t so for asset

get the payoff at time ¢ > 0 we discount it towards zero by the factor e~
value z at time ¢ the discounted payoff of the option is e™"* - f(z).

Let L > 0 be the expiration date of our option. In the sequel we renormalize the payoff
function such that we can assume Xy = 100, and we consider an American option on X;
with exercise opportunities restricted to {0,1,..., L} (sometimes also called Bermudan

option). Any rule for exercising such an option within {0,1,...,L} can rely only on

the values of the asset at times j < k in case that it decides to exercise the option



at time k. Therefore it can be described by a stopping time 7, i.e., by a measurable
function of ..., X 1, Xo,..., X where the event [t = k] is contained in the o-algebra
F(o..,X_1,X0,...,X) generated by ..., X_1, Xo,..., Xi. Let 7(0,...,L) be the set of
all such stopping times. Any stopping time 7 describing the exercising of an American

option yields in the mean the payoff

E (e_T'T ' f(XT)) )

and it is this quantity which we want to maximize, i.e., we want to construct a stopping
time 7* € 7(0, ..., L) such that
Voim  sup E{ef(X)} =E{eT - f(Xrn)}

7T (0,...,L)
It is well-known that in complete and arbitrage-free markets Vj is exactly the price of the
above option (see, e.g., Karatzas and Shreve (1995)). However, in this article we are not
so much interested in determing the price of the option in a complete and arbitrage-free
market, instead we want to find an optimal strategy for exercising a given American option
in discrete time even if the market is not complete or not arbitrage-free. So in this sense
we are mainly dealing with the situation of the holder of the option.

The standard approach to exercise an American option in an optimal way is to assume
some kind of more or less restrictive mathematical model for the financial market (e.g., a
Black-Scholes model) and to determine the optimal exercising strategy in this model (e.g.
by solving free-boundary problems, see, e.g., Elliott and Kopp (1999)). In this article we
are interested in a completely nonparametric approach to this problem, i.e., we want to
avoid any model assumption for the values of the underlying asset. Instead we assume
only that the corresponding returns form a stationary and ergodic sequence.

More precisely at time n we assume that X_,,, ..., Xy are given and we want to

construct a stopping time

such that

converges to Vj.



In the definition of our estimates we firstly use results from the general theory of op-
timal stopping showing that an optimal stopping time can be constructed by computing
so-called continuation values, which describe the value of the option given an observed
value of the underlying stock under the contraint of holding the option rather than exer-
cising it (cf., e.g., Chow, Robbins and Siegmund (1971) or Shiryayev (1978)). Secondly
we use that these continuation values can be represented as conditional expectations (cf.,
e.g., Tsitsiklis and van Roy (1999), Longstaff and Schwarz (2001) or Egloff (2005)), and
our algorithm uses techniques from nonparametric regression to estimate these conditional
expectations from stationary and ergodic data. This is in general a rather challenging task,
where usually extremely complex and data consuming algorithms are necessary (cf., e.g.,
Morvai, Yakowitz and Gyo6rfi (1996)). But in case that it is enough to construct algorithms
which converge in the so-called Cesaro sense, a relatively simple and nice algorithm exists
(cf., e.g., Section 27.5 in Gyorfi et al. (2002)), which uses techniques from the theory
of prediction of individual sequences (cf., e.g., Cesa-Bianchi and Lugosi (2006)). These
techniques have already been used successfully in the contex of portfolio optimization (cf.,
e.g., Gyorfi, L., Lugosi, G. and Udina, F. (2006), Gyorfi, L., Udina, F. and Walk, H. (2008)
and the references therein). In this paper we introduce as main trick an averaging of such
estimates and show that by using this trick we can derive a consistency result of our es-
timated stopping rule from Cesaro consistency of the underlying regression estimates. So
in the definition of our estimate we thirdly apply estimates defined by use of ideas from
the theory of prediction of individual sequences.

In order to simplify our notation we ignore throughout this article measurability prob-
lems occuring in connection with suprema of random variables over uncountable sets of
stopping times. These problems are well understood and could be treated rigorously by
using essential suprema (cf., e.g., Section 1.6 in Chow, Robbins and Siegmund (1971)).
Furthermore we do not indicate in our notation that relations in connection with condi-
tional expectations hold only almost sureley or almost everywhere.

The algorithm computing estimates of the optimal stopping time is described in Section
2, the main result is formulated in Section 3, and the algorithm is illustrated by applying
it to simulated data in Section 4. Section 5 contains the proof of the main result, proofs

of auxiliary results are given in the appendix.



2 Construction of an approximation of the optimal stopping
time

Our first idea is to use results from the general theory of optimal stopping in order to
determine the optimal stopping time 7*. Define the so-called continuation value describing
the value of the option given ..., X 1 = 2_1,X¢g = zg, ..., X = x; subject to the

constraint of holding it at time ¢ € {0,..., L — 1} rather than exercising it by

(..., x_1,20,...,T)

= sup E(e_’"'Tf(XT)|...,X_1:x_l,X()::EO,...,Xt::Et),
T€T (t+1,...,L)

where 7(t+1,...,L) is the set of all stopping times with values in {t + 1,¢+2,...,L},
and by

qr.(...,xo,...,xp) =0,
and define the so-called value function which describes the value we get in the mean if

we sell the option in an optimal way after time t — 1 given ..., X_1 = x_1,Xo0 = xo, ...,

X =z by

‘/1&("'733—17:1707"')3313)

= sup E{e"" f(X))]....,X1=2_1,X0=w0,.... Xy =a}. (1)
7€T (t,t+1,...,L)

For t € {—1,0,...,L — 1} set

mo=inf{s>t+1:¢q(..., X 1,X0,...,Xs) <e " f(X)}. (2)

We can conclude from the general theory of optimal stopping (see, e.g., Chow, Robbins

and Siegmund (1971) or Shiryayev (1978)):
Lemma 1 It holds

Viloooyz_1,20,. .., 2¢) = E{e_T'Tfflf(XTttl)]...,X_l =z_1,X0=2x0,...,X; = xt}

(3)
fort€A{0,...,L}. Furthermore

Vo:= sup E {e_T'T . f(XT)} =E {G_T'T* : f(Xr*)} (4)
T€7(0,...,L)



is fulfilled for
=1 =inf{j €{0,1,...,L} : e f(X;) > q;(..., X1, X0,...,X;)}.

For the sake of completeness a proof of Lemma 1 is given in the appendix.

From Lemma 1 we get that it suffices to compute the continuation values qq, ..., qr—1
in order to construct the optimal stopping rule 7*. In Tsitsiklis and van Roy (1999),
Longstaff and Schwarz (2001) and Egloff (2005) it is shown that in case of Markovian
processes the continuation values can be computed recursively by evaluation of conditional
expectations. In our next lemma we show that this is also true in the setting considered

in this paper.
Lemma 2 The continuation values satisfy

gi(...,x_1,20,...,25)
= E{ max {e—r~(j+1) : f(Xj+1)7 Qj—l-l(' e 7X—17X07 s an-i-l)}

‘...,X_l =11, Xo=10,...,X; ::pj}, (5)
and
¢i(...,x_1,20,...,25) = E{e_T'T;f(XT;_«)|...,X_1 =x_1,X0=20,...,X; = xj} (6)
for any 5 € {0,1,..., L —1}.

Lemma 2 can be proven as in the case of Markovian processes, for the sake of completeness
the proof is given in the appendix.

Usually in applications the (joint) distribution of the asset prices is unknown and
therefore it is impossible to use (5) (or (6)) in order to compute the continuation values. In
the sequel we will try to estimate them by using (recursively defined) regression estimates
in order to approximate the conditional expectations in (5). To do this we use for any
n € N the asset values until time —n in order to construct an estimate of the optimal
stopping rule for selling the American option on the data Xo, ..., Xr.

Next we describe how we construct estimates q(.">(X_n, oo Xj)of gi (..., Xo, ..., Xj).

J
Here the estimates will depend only on the returns of the arguments X_,,,..., X;.



The estimates are defined recursively with respect to j € {0,...,L}. For j = L we

have qr, = 0 and in this case we set

Given q“j(-i)l (defined on (0, 00 )?*"*2) for some j € {0,1,...,L—1} we define d§n) as follows.
We start with defining (jj(f& h - The definition will depend on parameters £ € N and

h > 0 and a kernel function K : R7***!1 — R, which we define by
K(v) = H (o3,

where ||v||2 denotes the Euclidean norm of v and H : Ry — R is a given nonincreasing

and continuous function satisfying
H(0)>0 and t-H(t)—0 (t— c0),

(e.g., H(v) = e¥"). Using these parameters we use local averaging to define

4(n)

j,(k,h)(u_”’ ce s UQy e UG)
—(J+1) u . (k)
o (41 itj+ (n+i
= Z max{e G+ )f<100T> 7Qj+1 (u—nv"'auiv"'vui—l-j—l-l)}
i=—n+k+1 v
(e ) (=)
Ui—k—1 Yitj—1 U_k—1 Uj—1
Ui Uigj o\ Yk uj
—(F+1) K (ul7k717---7ul+j71) (u—k—l’m’“jfl)
l=—n+k+1 h
for u_p, € (0,00), ..., u; € (0,00). Here we set
~(n) _
% (o) =0

fork2n—j—1,and8::0.

Let A, > 0 be such that h, — 0 for r — 0o and set
P :={(k,h.) : k,reN}.
For (k,h) € P define the cumulative loss of the corresponding estimate by
Lnj(k,h) := Ly j(x_p, .., 25),k, h)

n—1 )
— () ( . . )
= qj,(k,h) x—n,---,x—n-‘,-za---,x—n-i-z—l—]

T—n+i

2
—r(7 T —n+i+j A1
— Inax {e . f <100 : M) 7QJ('Z-{)-1(‘T—717 R e PR 7$—n+i+j+1)} ) .

10



Put ¢ = 8B? (where we assume that the payoff function is bounded by B), let (pg., )k,
be a probability distribution such that p;, > 0 for all k,r € N, and define weights, which

depend on these cumulative losses, by

() ()

— — —n-Lp j(k,hy)/c
Wi ke = wn,k,r($—”7 C ) = Py € milohe)]

and their normalized values
(4)

n,k,r
00 G -
Zs,tzl wn,s,t
is defined on (0,00)7*"*! as the convex combination of the estimates

fLJ;LT, ie., Lj](-n) is defined by

j w
nk,r ST Uﬁlj,zc,r(x—ny LX) =

The estimate (j(-n)

J
qu& he) using the weights v

qj(_n) (T, xy) = Z Ur(z]}f,r’ . q§z3€7hr)($_n7 cey ).
k,r=1

For the computation of our estimated stopping rule we use the arithmetic mean of the

first n estimates, i.e., we use

. 10
Gin(T_p,...,xj) = E2q§)(x_l,...,xj) (7)
=1

for j € {0,1,...,L — 1} and §¢r,,, == q1, = 0.

With this estimate of ¢; we estimate the optimal stopping rule

T = lnf{] S {0,1,...,L} ce T f(XJ) qu("'yX—lyX(]a"'an)}

#pi=inf {j € {0,1,...,L} : e f(X;) > @jn(Xen, .o, X1, Xoy oo, X))

3 Main theoretical result

Given (Xj);ez with X; > 0 (j € Z) we define returns

X.
Z: = —1 i€ 7).

Zj describes the money we get at time j if we invest one Euro in the asset at time j — 1.
In Theorem 1 below we assume that the returns (Z;);ez are stationary and ergodic.
Let the estimate 7,, of the optimal stopping rule 7* be defined as in the previous section.

Then the following result is valid:

11



Theorem 1 Let (X;);cz be an arbitrary sequence of positive random variables such that
the corresponding returns are stationary and ergodic. Assume that the payoff function is
measurable, nonnegative and bounded by B > 0. Let the estimate be defined as in Section

2, where the kernel K is given by
K(v) = H (loll5™).
for some H : Ry — R4 which is a nonincreasing and continuous function satisfying
H0)>0 and t-H()—0 (t— o0).

Then
Von:=B{e ™ f(Xe)} = Vi = B{e - £ (X0}

for n — oo.

4 Application to simulated data

In this section we evaluate the behaviour of our newly proposed estimate for finite sample
size by applying it to simulated data. In order to simplify the computation of the algo-
rithm, we modify it such that we do not use the final averaging step (7) believing that the
averaging should not destroy a convergence property of the estimate, so if we show that the
algorithm works even without averaging, it should work with averaging, too. Furthermore
we do not use returns relative to the previous day as x-values for our regression estimates,
instead we use returns relative to the beginning of the time interval of an option. With
the later modification it can be shown that the theoretical result above is still valid, be-
cause a consecutive sequence of these modified returns generates the same o-algebra as
the corresponding original returns. Furthermore, we ignore the first ng; = (L —1—1)-200
data points during the computation of (j](-t) since we think that the first ng; values of (j(-tH)
are not reliable because they are based on too few data points.

We consider options on a single stock starting at x¢p = 100 which can be exercised
on five equidistant time points tg = 0, t;1 = 0.25, to = 0.5, t3 = 0.75 and ¢4 = 1. For
the payoff function we use a strangle spread payoff function depending on four exercise

points K;, Ko, K3 and K4 where Ky — K1 = K4 — K3 (cf. Figure 1). We consider three

12



K2 -K1

NS

K1 K2 100 K3 K4

Figure 1: Strangle spread payoff with strike prices K7, Ko, K3 and Kj.

different models for generating the stock values, namely a geometric Brownian motion
with a fixed volatility according to Black and Scholes (1973), a jump diffusion model
according to Merton (1975), and a GARCH(1,1) in the form of Duan (1995). For each of
these models we choose strike prices of the strangle spread payoff function, and determine
the price of the corresponding option in three ways: Firstly we use a regression-based
Monte Carlo estimate of the price based on the true price process, where we extend the
state space in case of the GARCH(1,1)-model in order to get a 3-dimensional Markovian
process (i.e., we use (X;,0;,€;), see below). As regression-based Monte Carlo procedure
we use the smoothing spline algorithm described in Kohler (2008), which gives results
which are usually at least comparable but often better than the algorithms of Tsitsiklis
and Van Roy (1999) and Longstaff and Schwarz (2001) based on parametric regression (cf.
Kohler (2010)). Here the estimate is based on 1000 paths of length 5 of the price process.
Secondly, we use the same procedure based on a Black-Scholes model adapted to a path
of length 2000 generated from the original model via estimation of the volatility from this
historical data in the usual way. And thirdly, we apply our newly proposed estimate to a
path of length n = 1500, where we consider as bandwidths A € {0.001,0.01,0.1} and use
the k& € {0, 1,2} last values of the returns for prediction of the value at the next time step.
Each of these 3 -3 = 9 models gets the same probability py, = %, and for the constant

used for computing the weights of the estimate from the cumulative empirical losses we use

13



¢ = 8B? where B is the maximal value of the payoff function. From our newly proposed
estimate we construct an estimate of the option price which - in contrast to the estimates

above - does not rely on future values of the pricing process via

Vo = max{fo(Xo), i (X_p, ..., Xo0)}-

Here the estimate is motivated by the formula

V() =K {max{fo(Xo), QQ(. .. ,X_l, X())}} s

which can be proven analogously to Lemma 2. For each of these three estimates we
replicate the estimation of the price 100 times and present boxplots of the corresponding
values.

In case of the geometric Brownian motion we simulate the price process according to

+ -Wi> (1 € Np),

RS
ol Q

1
X; = xo - exp <(7‘ — 50’2) .

where 2o = 100, r = 0.05, 02 = 0.25 and where (W;);cn, is a Wiener process starting
with Wy = 0. As payoff function we use in this case a strangle spread payoff function with
strikes K1 = 75, Ko = 90, K3 = 110 and K4 = 125. Figure 2 describes the results of the
three estimates.

In case of the jump diffusion model we simulate the price process according to

N.
_ Loy | A (B2 1) P Ny
X; = xo - exp <(7’ 50 )-i+o WZ> exp (( w—A- (e 1)) 1 + 5 ZK) ,

i=1
where 29 = 100, r = = 0.05, 02 = 0.4, a% = 0.1, A = 4, and where (W;);en, is a Wiener
process starting with Wy = 0, (V;)ien, is a Poisson process with parameter A starting
with Ng = 0, and Y7, Y5, ... are independent normally distributed random variables with
expectation 0 and variance O’%. As payoff function we use in this case a strangle spread
payoff function with strikes K1 = 50, Ko = 90, K3 = 120 and K4 = 160. Figure 3
describes the results of the three estimates.

In case of the GARCH(1,1) model we simulate the price process according to

r o1
Xi+1 = XZ - exXp <Z — 5 : 0i2+1 + 041 - 6i-l-l> ’
0 = So+6 (06— X0)*+& of,

14
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8.0

Figure 2: Results of the three different estimates in case of a standard Black-Scholes model.
Estimate 1 is the regression-based Monte Carlo estimate from Kohler (2008) based on the
true Black-Scholes model, for estimate 2 a Black-Scholes model is adapted to this true

model, and estimate 3 is the new estimate proposed in this paper.
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Figure 3: Results of the three different estimates in case of a jump diffusion model. Es-
timate 1 is the regression-based Monte Carlo estimate from Kohler (2008) based on the
true jump diffusion model, for estimate 2 a Black-Scholes model is adapted to this true

model, and estimate 3 is the new estimate proposed in this paper.
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Figure 4: Results of the three different estimates in case of a GARCH(1,1) model. Estimate
1 is the regression-based Monte Carlo estimate from Kohler (2008) based on the true
GARCH(1,1) model, for estimate 2 a Black-Scholes model is adapted to this true model,

and estimate 3 is the new estimate proposed in this paper.

where r = 0.05, A = 0.7136, dp = 0.0000664, 6; = 0.144, & = 0.776 and where (¢ )z are
independent normally distributed random variables with expectation zero and variance
one. Here we start our simulation with Xy = xg = 100. For o¢ we use the random value
we get if we start the second recursion with 02,5, = 0. As payoff function we use in this
case a strangle spread payoff function with strikes K7 = 70, K5 = 100, K3 = 100 and
K, = 130 (which is in fact a capped straddle payoff function). Figure 4 describes the
results of the three estimates.

Comparing the results in the three figures above we see that our estimate always
produces values which are somehow close to the values of the regression-based Monte
Carlo procedure based on the true model. In contrast, by just assuming a Black-Scholes
model, fitting this to the data and using a corresponding regression-based Monte Carlo
method, this might lead (as is the case for the GARCH(1,1) model) to estimates which

are far away from the value to be estimated.
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5 Proofs

5.1 Preliminaries to the proof of Theorem 1

Once we have constructed approximations

gi(...,x—1,20,...,5)

of the continuation values ¢;(...,z—_1,%o,...,x;) we can use them to construct an approx-

imation
#=inf{j€{0,1,...,L} : "7 f(X;) > ¢;(..., X1, X0, X1,..., X;)}

of the optimal stopping time 7*.
As our next lemma shows the errors of the estimates ¢; determine the quality of the

constructed stopping time.

Lemma 3 Assume g;, = 0. Then

E{e‘T'T* F(X) ...,X_2,X_1} —E{e—” : f(X%)|...,X_2,X_1}

L-1
< ZE{|qu("'7X—17X07-">Xj)_qj("'vX—17X07-"7Xj)|""7X—27X—1}-
=0

The assertion follows from a modification of the proof of Proposition 21 in Belomestny

(2010). For the sake of completeness a complete proof is given in the appendix.

5.2 Proof of Theorem 1

Before we start the proof of Theorem 1 we introduce some notation. Observe that from

the returns we can reconstruct the values of the asset via
Xj=Xo0-Z1-Zy-...-Z;=100-21-Zy - ... - Z;

for j > 0. We describe the price of the asset normalized such that at time ¢ it is equal to
100 by
X =100+ Zisy - Ziga ... Ziy; forj>0

and
XV =100-271 Z74 -z, forj <o,

i+j+1

18



Clearly,
X9 =X, foriez. (8)

Furthermore, since we assume that the returns are stationary, we have also that
(... ,Xéj), . ,X,gj)) and (... ,Xéj+l), . ,X,ng)) have the same distribution. (9)
In the sequel we want to bound
Vo Ton = E{e7 - f(Xe) = e f(X,)]
- E {E {e_T'T* CF(Xpe) — e F(X )] X, X_l}} .

By Lemma 3 we have

L-1
Vo= Vo <D EB{|@m(X ., X1, X0, Xj) — ¢5(-.., X1, Xo, .., X))}
§=0

so it suffices to show

E{’qu,n(X—na e ,X_l,X(),. .. ,Xj) — Qj(. .. ,X_l,XQ, e ,Xj)’} — 0 (Tl — OO) (10)

for j€{0,1,...,L —1}.

Using the definition of ¢;, as arithmetic mean and the triangle inequality we get

}

(1
q]()(X Iy X—17X07 7X]) _qj("'7X—17X07"'>Xj)‘}

E{|qun(X_n, . X_l,X(), e ,Xj) — Qj(. .. ,X_l,Xo,. . ,Xj)|}

=)

n

Z (X X, Xo e X)) — (e X, Xo,y -, X)

B

Al 0 0 0 0 0 0
B {[a Q.. XX, x0) g X0 X0, x 0}

IA

1
n

l

AA

) Il
S
gLy

I
S|
(]

~(1 l l l l l l l
E{ q](.)(X(_g,...,XQ,XS’,...,X](.))—qj(...,X()l,X(),...,X](.))‘

Il
A

S|

l

- ~(1 l 1 1 1 1 1 l

:E{ <><X<_;,...,Xg>1,xg>,...,Xy)_qj<...,xg>1,xg>...,X<>>\}.
=1

Because of the Cauchy-Schwarz inequality it suffices to show

) ! ! l l l NE:
{ Z( X<l,...,x<_g,xg>,...,x§>>_qj<...,xg>1,xg>,...,XM}Ho )

19



(n — o0) for all j € {0,...,L —1}. And because of boundedness of the estimates and of

gj this in turn follows from

1

2
- d"x XXX g x Y x LX) =0 12)

45 /N J

1=1
in probability for all j € {0,...,L —1}.
The idea is now to use techniques from Section 27.5 (in particular Corollary 27.1) in
Gyorfi et al. (2002). To simplify the notation, we reformulate the whole problem using
returns. Set

my, = 0.
Given mj4q for j € {0,1,...,L — 1} we define m; by
mj(...,z_l,zo,...,zj) (13)
= E{ max {e_’"'(j"’l) - f(100 - 21 - i Zig),mjg (.., 221, 20, - -, Zj+1)}
.,Z_l = Z—I,ZO = Z(],...,Zj = Zj}-
m; can be considered as continuation value defined using returns (cf. Lemma 2, which is
valid also if the payoff function depends on all previous state variables). Since Z;, Z;_1,. ..

generate the same o-algebra as X;, X;_1,... (which follows from Z; = X;/X;_; and
Xo = 100) this implies

mj(. .oy Z_l, Z(), ‘e ,Zj) = q]'(. ‘e ,X_l,X(), “e ,Xj) a.s. (14)
Next we define estimates of m; using realizations z1,...,2, of the returns Zy, ..., Z,,
with arguments u1, ..., u,4;. We start with
L (n)
my =0

Given ™. for j€{0,1,...,L -1} we define m§n)

j+1 as follows:

We start with defining 1 ,, () for parameters k € N and h > 0 using local averaging

by

0, (k) (215 - -+ 5 Zn5 ULy - oo Ungj)
n—j—1 i+j+1
(5+1) .
E max{e U £(100 - H Zr), J+1 Zl,...7Z7;,’U/1,...7U7;+j+1)}
i=k+1 r=i+1

20



K ((zi7k7~~~7zi+j)_h(unfk7---7un+j))

Z e (Zimkr o Zidg) = (Un—kyeotngj) \
i= k—l—l h

Here we set
M, (k,h) = 0
fork>n—j—1
For (k,h) € P (where P is the parameter set in the definition of the estimate) define

the cumulative loss of the estimate with parameter (k,h) by

Ly, (k: h):f/ j(kyhy 21, Zpm 1 UL, Upgg) =

_ i+j+1 ' 2
— max {e—r-(Hl) - £(100 - H ur),mg-:)_l(zl, 25U, ,ui+j+1)}> .

r=i+1
Put ¢ := 8B?% (where B is the bound on the payoff function), let (py, ), be the
probability distribution used in the definition of the estimate (which satisfies py , > 0 for

all k,r € N) and define weights, which depend on these cumulative losses, by

() ()

- . _ —nly ; k,hy)/c
= wmk’r('zlv"'7zn—17u17"'>un+j) = Pk € ng (Bhr)/

) () (]39

J J . ) n by

Uy o o= vmk’r(zl, e 213 ULy e Upgg) = 0
ZS,t:l wn75,t

The estimate "™ is defined as the convex combination of all estimates M 0, (k,hy) USING

weights vi L - e mg.”) is defined by

(n)

m; (Zl,...,Zn;U1, . un-l—] E U k,r ]n khr)(zlw"7zn;u17"'>un+]‘)‘
k,r=1

By using a backwards induction with respect to j starting with L it is easy to see that

we have
~(n) ~(n) [ L—n+1 Lo  T—n+1 €L
Ty xg) =my | ——— L, —; ey .
R G )
Using
O]
X, _
0 I+1
Xit



we get

qA_gl)(X(_ll)v s 7X(_l%7X(gl)7 s aX](l)) = mgl)(zh R Zla Zh EERE) ZH—j) (15)
for all I € {1,...,n}. This together with (14), from which we get
Gl X XY XY = m( 200, 20, Zy) s,
(since ...,X(_l%,Xél),...,XJ(l) has corresponding returns ...,Z_q,Zy,...,Z;) for all
l€{1,...,n}, implies that we have with probability one
L[, 0 ! ! ! ! HNE
LS|, 2
= ;Z‘mﬁ (Zlv"'aZl;Zla-'wZH-j)_mj("'>Z—17Z()7'-->Zl+j)‘
=1

So (12) in turn is implied by

7Zl+t) — mt(. .. ,Z_l,ZQ, .

Nzi,.... 22, ..

in probability for all t € {0,1,...,
to t.

We start with ¢ = L in which the assertion is trivial since

mg):o and mp =0

for all [ € N.

Assume now that (16) holds for t = j + 1 for some j € {0,1,...,

show that in this case it is also valid for ¢t = j.

Set
Lo
_Ez Zlu"'azl;Zla"'azl-l-j)
— max {C_T.(j+1) . f(lOO . Zl+1 . . Zl+j+1), mj+1(. i
1 n—1
L (1, (k) = — S A\ maony(Ze- s Zi 20, Zigg)

=1

— max {e_r'(j"'l) - f(100 - Zj4q -

22

7ZO7 o 7Zl+j+1)}

o Zigjrr),myia(. ., Zo, - ,Zl+j+1)}

2
,Zl+t)‘ ~0 (16

L}, which we show by backwards induction with respect

L —1}. We have to

2

)

2

)




w2y, 252, Zy)

2

)

—max{e_r'(jﬂ) ~fA00- Ziy - Zygjga), g-?-l(Zly s L5 Ly Zl—l—j—l—l)}

and

L (1. ,(kh)) = L (kb 21y Tt 20,y Zngs)

15|

1050 k) (L1 - oo s 205 205 w5 Z1gg)

2
—max {e O F(100 - Ziga - Ziggin) iy (o 26 2 D) |
By Lemma 27.3 in Gyorfi et al. (2002) we get
N . A~ lnpk,r
Euliy) < inf (Ln<mj,7(k7hr>> e BPhr) (17)
Set
L;k = E{ ‘m]( cey Zj—l, Z])
' Jtl 2
— nax {e_r'(]ﬂ) : f(lOO : H ZT), mj+1(. .. ,Zj, Zj+1)} }
r=1
In order to show (16) we show first
Ly(r;) — L in probability. (18)
By |max{a, b} — max{a,c}| <|b—¢| (a,b,c € R) and (16) for t = j + 1 we get
1 n—1 .
n max {E_T'(JH) < f00- Ziyy - Zigjga),myga(e - Zos - Zl+j+1)}
=1
‘ 2
—max { e £(100+ Zigy - Ziggan) L (2 25 D Ziga) |

2
m(l) (Zla .. '7Zl;Z17 .. '7Zl+j+1) - mj+1(‘ . 7ZO7‘ . '7Zl+j+1)

Using
1 n—1 1 n—1 1 n—1
EZ’al—bllz— Ez‘al —01‘2 = EZ(CLl —bl+al—cl). (Cl_bl)
=1 =1 =1
1 n—1 1/2 1 n—1 1/2
<EZ a = b +a —c) ) : <; > e —bl)2>
=1 =1
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and the boundedness of the payoff function we see that this implies
Ln(1j) — Ly(;) — 0 and Ly (1. (4.p)) — L (1t o)) — 0 (19)

in probability. Hence for an arbitrary subsequence (n;); of (n), we find a subsubsequence

(ng,)s of (ng); such that we have with probability one

limsup Ly, (;) = limsup ims (M)
S§—0OQ S§—00

17) . 1 .
< limsup inf (Lms (10, (khy)) — C %)

s—oo k,re ny

s

In g r
< inf limsup (L (M) — %)

k T’EN S$—00 nl

S

= inf limsup Ln, (M. (kh,))- (20)

kTEN §—00
Of course, this relation also holds if we replace (n;,)s by any of its subsequences (which
we will do later in the proof).
Next we analyze Ly, (1. (x5,)).- We have
mj,n,(k,h)(Zb e ,Zn; Vn+41y--- ,Uj)

J

—j-1 1 ' 1 zZH !
S mae {emr OR0 - (100 -T2 20 2 20 |k ()

Zn—j—lK Z;ji_vik
i=k+1 h

— & + Bn - An
Cy Cy
where
Z2 = (Zp, Zyy1,...,2Zs) and v := (Vp,Upt1,...,0s) forr <s,
n—j—1 i+j+1
An = n—j— k;_ Z max{e UL f(100 - H Zr)amj—i-l(---aZi—l—jaZi—l—j—l—l)}
J i=k+1 r=i+1
K Zi4 =,
h )
n—j—1 i+j+1 (
= 1) 5 +j+1
Bn = W Z max{e (G+1) 100 H Z JZ+1 Z17ZZ J )}
i=k+1 r=i+1

(B
h
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and

n—j—1 2+] i
Z; 5 — v
c,=— K|Z=k =k

i=k+1

By the ergodic theorem we get

. ij — vjk
An — E {max{e_r'(]'”) . f(lOO . Zl el Zj+1),m]'+1(. . ,Zj, Zj+1)} - K (%) }

gi

If we use the continuity of the kernel function we can even apply an ergodic theorem in

a.s. and

the separable Banach space of continuous functions vanishing at infinity (with supremum
norm) and get that the almost sure convergence of A4,, and C,, is uniformly with respect
to v{k (cf., e.g., Krengel (1985), Chapter 4, Theorem 2.1).

Furthermore, using the the triangle inequality,
| max{a,b} — max{a,c}| < |b—¢| (a,b,ceR),

and the Cauchy-Schwarz inequality we can conclude

|Bn — Ap
1 " Z1 — v,
S ———7 3 S (28 27 = myal >Zi+j,Zi+j+1)‘ K <ZT
J =kt 1
1 n—j—1 9
SN P — > () (257 - mj+1(--->Zi+j72i+j+1)‘
J i=k+1
n—j—1 ZH‘J j 2
K .
n—j— k — Z ( )
i=k+1

By the ergodic theorem the second factor on the right-hand side above converges to

77—
B K<kﬁk> <

with probability one (where we have again uniform convergence with respect to vj; i), and

the first factor converges in probability to zero by (16) for ¢t = j+1. Because of K > c-Is,,
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for suitable ¢ > 0, 7 > 0, where Sy, is the ball in RI+E+L centered at 0 with radius r, we

have
Zi ,
EL{K % > C'Pzik <vj_k + Somh) >0 PZ{k —almost everywhere (21)

(cf., e.g., Gyorfi et al. (2002), pp. 499, 500). Therefore

B”C;n‘{% — 0 in probability P Z, = almost everywhere,
from which we get
Thj,n,(k,h)(Z1, oy D Vg, -, V) — mj7(k7h)(v_k, ...,v;) in probability
P, k—almost everywhere, where

mj,(k,h)(v_k, v ,’Uj)

, 73
E{max{e—WH)-f(loo-Zl oo Zig1)ymisa (e, Z5, Zis) ) K( - k)}

Z{ —vi
ol ()
Let € > 0 be arbitrary and set

. _ Z5, =
SE:{UJ_kERkﬂH : E{K(%u)}>e}

By (21) we know

Pij(Se) —1 (e—0).

Since the nominators and the denominators above converge uniformly with respect to v &

and since the limit of the denominators is greater than € on S, we know in addition

sup ‘ |mj,n7(k7h)(zl, oy LUy s -5 V) = My e )y (Vs - ,vj)| —0
U7n+17...,U,k71€R7’U'77k6S5
(22)
in probability. In the sequel we want to use this to show
L, (1. 1)
1 n—1
= ; (mj7i7(k7h)(zl,...,Zi;Zl,...,ZH_j) (23)
i=1

i+j+1 2
— max {B_T'(JH) - £(100 - H Zy)smjia(-- s Zigj, Zi—l—j—l—l)} )

r=i+1

J
—E { ‘mjﬁ(kﬁh)(zf_k) — max {e—"'UH) (100 T 20),mjsa(.-.. 25, Zj+1)}

2}
r=1
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in probability. To do this, we observe first that the ergodic theorem implies

Ly j(mj 1.n))

:_Z< M ek (Zibes - -+ > Zinj)

’ i+j+1 2
— max {e_r'(JH) f100- I Ze)imjsa(..., Ziy, Zz’+j+1)} >

r=i+1

J 2
—E { ‘mjﬁ(kﬁh)(zﬂ_k) — max {e—"'OH) (100 T o), mjsa (..., 25, Zj+1)} }
r=1

almost surely. Because of boundedness of the payoff function we have in addition

| L (11 Aj, ,(k 1) = L (mj o)

i+j

<c- i i ey (235 Z0) = my oy (Z277)

1 o
<ey =Y Ige(ZH
=~ C2 n Z: Se( z—k)

n—1

| ) |
+C1-Ez sup ‘ 10 ) (23507 40) — Mg oy (V)

=1 Vi 150 k1 ERWT | ESe
—cy - PZik(Sf)
in probability by (22) and by the ergodic theorem. By letting ¢ — 0 we get (23). And by
replacing (n;,) by a suitable subsequence of (n;,)s we can assume w.l.o.g. even that (23)
holds for almost sure convergence if we replace n by n;, in (23).

Next we use Lemma 24.8 in Gyorfi et al. (2002) which implies

M o) Bk -+ o5 25) = M (2o - -+ 5 25) P,; — almost everywhere

for h — 0, where

mj7k(z_k, e ,Zj)
_ Jj+1
= E{ max {e—f@“) (100 I Z0),mjsa(... . 21, Zo, .-, ZjH)}
r=1

‘Z_k = Z_ky.-- ,Zj = Zj}.
And by the martingale convergence theorem we have
ijf(Z_k, ey Zj) — mj(. .o 7Z(), ey Zj) a.s.
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for k — oo (since the almost sure limit X of the left-hand side satisfies

/XdP:/mj(...,Zo,...,Zj)dP
A A

forall Ae F(Z_j,...,Z;) and all k € N, cf., e.g., Chapter 32.4A in Loeve (1977) for more

general results in this respect). From this we conclude by dominated convergence

lim sup Ly, (1)
(20)
< inf limsup Ly, (7. (k. n,))

k T‘GN 5—00

J+1 2
(23) ; (i
= klyef E {‘mj,(k,m)(zj_k) — max {6 G0 ro0- I 20)s misale .. Z;, Zj—i—l)} }
r=1
<L as.
Because of

liminf Ly, (r;) > L} a.s.

n—oo
(cf., e.g., Section 27.5 in Gyorfi et al. (2002)) this completes the proof of (18).
Now we use (18) to show (16) for ¢ = j. To do this we proceed as in the proof of

Corollary 27.1 in Gyorfi et al. (2002). Consider the following decomposition:
2

I+j+1
(mﬁ-l’(Zi;Zi“) —max{e—"'<j+l>-f (100~ T 2 mJH(z’““)})

r=l+1

= (w02 27— my(2))

(
m;
‘ I+j+1
< lﬂ max{e_T'(ﬁl)'f (100 - H Zr) m]+1(Zl+]+1)}>

r=l+1

2

+2- (i (25 27) = my(Z1))
' ' I4j+1 _
.<mj(Zl_+O]O)—max{e—r~(J+1).f(lOO- I1 Zr),mj_,_l(le;—H)}).
r=Il+1

By (18) we know
2

I+j+1
—Z( (2l 217 - max{e—’“'U*”-f(lt)O- H Zr>,mj+1<zl_tf;“>}> — L
r=I+1
in probability. Furthermore, by the ergodic theorem we have
li( oy { (1) gk ' I+j+1 })2 «
- m;(Z°]) —max<e - f(100 - H Zp)ymjp1(Z2507) — L as.
=1 r=Il41
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Hence it suffices to show
ENNT I+j I+j
=3 (21 217) = my(2))
=1

l+j+1
' (mj(zlfoﬂ) — max {e—f"(ﬁrl) - £(100 - H Zr)vmj+1(Zl_+ogJ+1)}>
r=Il+1
—0 a.s.

But this is a consequence of Theorem A.6 in Gyorfi et al. (2002) (which we apply with

¢; = 1) since the martingale differences
~ (1 I+j I+j
(" (24 21%7) = mj (2))

J
. ‘ I4j+1 |
' (mj(leOé) T max {e_rh(ﬁl) - f(100 - H Zr),mjﬂ(Zlfof)ﬂ)})

r=Il+1

(cf. (13)) are bounded by 432 O

A Appendix: Proofs of auxiliary results

A.1 Proof of Lemma 1

Set
filw) = e f(a).

We prove (3) by induction. The assertion is trivial for ¢t = L because in this case we have
77_1=L and 7=1L

for any 7 € T(L).
Let t € {0,...,L — 1} and assume that

V;(...,a;_l,xo,...,a;s) :E{fT;,l(XTﬁ,l)""7X—1 :x_l,X() :J}Q,...,Xs :LES}

holds for s = ¢+ 1. In the sequel we prove (3). To do this, let 7 € 7(¢,..., L) be arbitrary.

On {7 >t} we have 7 = max{r,t + 1}, hence
fT(XT) = fT(XT) : 1{T:t} + fT(XT) : 1{T>t}
= ft(Xt) ’ 1{T:t} + fmax{ﬂ',t—i-l}(Xmax{T,t-l-l}) ’ 1{T>t}'
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Since 1y;—4 and 1~y =1 — 1y,<;) are measurable with respect to ..., X1, Xo,..., X}

we have

E{f,(X)]...,X_1,Xo,..., X;}

= ft(Xt) : 1{T:t} + 1{7’>t} ’ E{fmax{r,t-‘rl} (Xmax{'r,t—i-l})’ oy X1, Xoy e 7Xt}'
Using the definition of Vi;1 together with max{r,t +1} € T(t+1,...,L) we get
E{fmax{'r,t—i-l}(Xmax{r,t+l})| s X1, Xo, - >Xt}

= E{E{fmax{'r,t—i-l}(Xmax{r,t+l})| s X1, Xo, - >Xt+1}| s X1, Xo, - 7Xt}

<E{Vig1(.., X1, Xoy oo, Xe1)| oo, X1, Xoy -0, Xo )
from which we can conclude

E{fT(XT)| cee 7X—17X07' . aXt}
< ft(Xt) : 1{7’:t} + 1{7’>t} : E{V;‘/—l-l( oy X1, Xo, e aXt+1)| ey, X1, Xoy e 7Xt}

< max{fi(Xy), E{Vig1 (..., X1, X0, ..., Xep1)| ..., X1, Xo, ..., Xt } ) (24)
Now we make the same calculations using 7 = 7,7 ;. We get
E{fr (Xor )., X1, Xo, oo, Xo )
= f[i(Xe) Lz =ty + 1 ooy B fmaxtry o1y Kmaxry o) - X1, Xo, - X
By definition of 7;* we have on {7 ; >t}
max{r,_;,t+1} =71/
Using this and the induction hypothesis we can conclude

E{fre  (Xre )]s X1, X0y, X2}
= fulXe) 1y =1

sty BB (X))
= flXe) 1y =1

+1{7‘£‘;1>t} ’ E{V;‘/—l-l( ooy X1, Xoy 7Xt+1)| vy X1, Xoy e aXt}' (25)

o X Xy X M X1, Xy, X
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Next we show

E{V;H_l(...,X_l,Xo,...,Xt+1)|...,X_l,Xo,...,Xt} :qt(...,X_l,X(],...

, Xt).  (26)

To see this, we observe that by induction hypothesis and because of 7 € 7 (t+1,..., L)

we have

E{Vie1(..., X1, X0, ., Xew )| .o, X1, X0y, X}

= E{E{frs (Xo)| .-, X1, Xy o, Xera Yooy X1, X0y o, X

= E{th*(XTt*” sy X1, Xoy e 7Xt}

< sup E{fT(XT)|"'7X—17X07"'>Xt}
T€T (t+1,...,L)

= Qt(- .o ,X_l,X(], ce ,Xt).

Furthermore the definition of V41 implies

E{Vis1(..., X 1, X0, .., Xei1)| ..., X1, Xo, ..., X1}

:E{ sup E{fT(XT)|...,X_l,Xo,...,Xt+1}|...,X_1,X0,...

T€T (t+1,...,L)

> sup E{E{fT(XT)‘...,X_l,Xo,...,Xt+1}’...,X_l,XQ,.
T€T (t+1,...,L)

= qt( 7X—17X07"' aXt)7

which concludes the proof of (26). Using the definition of 7;° ; we get

}

aXt}

LX)

fe(Xe) Ve —iy + Lrr sy - E{Vi (0, Xog, Xoy ooy X[ Xog, Xoy oo, Xo}

= ft(Xt) : 1{7-:71:15} + 1{Tt*—1>t} : qt(. X1, Xo, .. ,Xt)
= max{ft(Xt), qt( .o ,X_l, X(), “e ,Xt)}.

Summarizing the above results we have

‘/lt("'7$—17$07"'axt)

= swp B{f(X)|.. X1 =21, Xo =0, Xs = 20}
7€T (t,t+1,...,L)

(24)
S max{ft(xt),E{V}H(. .. ,X_l,X(), e 7Xt+1)‘ v ,X_l = x_l,Xo = X,

26
(26) max{ fi(x),q(. .., x_1,20,...,2¢)}

25),(27
( ):( )E{th*fl(XT* )|"'7X—1:x—17X0:$07"'>Xt:$t}7

t—1
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from which we conclude

Vil oy, 20, .., 2¢)
= max{ fi(zs), q(...,x-1,20,...,2¢)}
= E{th*—l(XTttlﬂ e ,X_1 = $_1,X0 = Oy -- ,Xt = ﬂj‘t}, (28)

which completes the proof of (3). In order to prove (4) we observe that by arguing as

above we get

Vo :=  sup  E{f(X7)}
T€T(0,...,L)

= sup E {fO(XO) ’ 1{7’:0} + fmax{T,l}(Xmax{T,l}) ’ 1{7‘>0}}
T€T(0,...,L)

= E {fO(XO) ) 1{f0(X0)ZII0(~~~7X71,X0)} + fTS (XTS) ’ 1{f(J(Xo)<¢Jo(...JL1,Xo)}}

= E{fO(XO) L fo(X0)>q0( X 1,X0)}
+E{VA(..., X1, X0, X1)| ..., X1, X0} - 1{fo(Xo)<qo(...,X1,X0)}}

= E {fO(XO) Lo (X0)>q0(. X1, X0)} T qo(- -+, X1, Xo) - 1{f0(xo)<q0(...,x,1,xo)}}
=  E{max{fo(Xo0),q0(..., X1, X0)}}
= E {frjl(erl)} )

which implies (4).

A.2 Proof of Lemma 2

Set
fi(x) =77 f(2).
(5) is implied by (26) and (28). In order to prove (6) we observe that we have by (26) and
Lemma 1
(..., X1, X0, ..., Xt)
—E{Vie1 (oo X1, Xoy ooy Xes ) ooy X1, X0y ooy Xi )
— B{E{fo; (Xo)| .., X1, X0, oo, Xet oo, X1, Xo, oo, X}

=E{fr7 (X7)]..., X1, X0, ..., X4}
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A.3 Proof of Lemma 3.

Let
fil@) =e7- f(a).

Set
Fo=inf{s >t +1: ol Xot, Xos ooy Xs) < fo(Xs)),

and let F; be the o-algebra generated by ..., X _1, Xo,...,X;. In the sequel we prove
E {thtl(XTt*ﬂ) - ff't—l (Xﬁq)‘ﬁ—l}

L-1
< ZE{’qu( X1, X, ,Xk) — qk(. X1, X0, ,Xk)Hft—l} (29)
k=t

for t € {0,..., L}, from which we get the assertion of Lemma 3 by setting ¢ = 0.
We prove (29) by induction. The assertion is trivial for t = L (since 7/ _; = L = 77,_1).
Assume that (29) holds for t € {s+1,..., L} for some s € {0,1,...,L —1}. In the sequel

we prove that in this case it also holds for ¢ = s. To do this, we use

B {fofl(XT:fl) - f‘ftfl(Xﬁf1)|~7'—t—1}

L-1
= E {(th*71(XT§l1) - f‘f’t—l(Xf't—l)) : 1{%t,1:k,7't*71>k}|~7'—t—1}
k=t
L—-1
+) E {(fT;,I(XT;,l) = fa (X5_)) - 1{ﬁ,1>k,7;1=k}|7t_1}
k=t
L—1
= S B { (X)) = FlX0) Tz oy Fi
k=t
L—-1
+ Z E {(fk(Xk) - Qk( .- 7X—17 X07 . >Xk)) : 1{72t71>k,7't*71=k}|~7:%—1}
k=t
L—-1
+ E {(Qk( .. 7X—17 XOa v 7Xk) - ff'k (Xf'k)) : 1{72t,1>k,7't*71=k}’-¢.t—1}
k=t
=T+ 15+ 1Ts,

where we have used that 7,y = 7} on {74—1 > k} and that 7" ; = 7 on {7} ; > k}. The
random variables

Vg =y >k and Leg s —py
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are Fi-measurable, hence we get by Lemma 2

Ty
L-1
=Y E{ B (C))F} = (X)) - Ly mtrs o) Fin |
k=t
L-1
= Z E {(Qk(- X, X0, X)) — (X)) - 1{ft,1:k,rt11>k}|ft_1}
k=t
L-1
<Y Bl X Ko Xe) = G X, Ko X)) Lok sk Fir )
k=t

since 731 = k implies

Je(Xk) > G-, X1, Xo, ..., Xg).

=}

Similarly, 731 > k implies
fk(Xk) < Cjk( .. 7X—17X07 o 7Xk)7

from which we can conclude
L—1
T2 < ZE{(qu("WX—leO)"- 7Xk)
k=t

—qr(.- ., X1, Xo, ., Xp)) - 1{‘ft1>k,‘rz‘1:k}|ft—l}'

Finally we have by Lemma 2

T
)

T35 = E {E{Qk(- s X1, X0y, Xi) — [ (X)) | Fr ) 1{+t,1>k,7;1:k}’ﬂ—1}

&~
_

= Y BB - B G)IFD L sk 0l Fi )
k=t

and by using the induction hypothesis we get

L-1 L-1
Ty < E{ 3 E{\qj(...,X_l,XO,...,Xj)—qj(...,X_l,XO,...,Xj)ka}
k=t j=k+1

L sk =k} F—1 }

L—1 L—1
= ZE{ > GG X1, Xy X)) = g5 (- X1, Xo, L X))
j=k-+1
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L >hp =k} Ft—1 }

L—-1
= > E{yqj(...,X_l,Xo,...,Xj) — (.., X1, X0, X))
j=t+1

j—1
: Z 1{ﬁ1>k,r;1:k}!ﬂ—1}

k=t

L-1
= Z E{‘Qk( 7X_17X0,...7Xk) — qk( ,X_l,X(),... ,Xk)‘
k=t+1

k—1
' Z Lt a>jm =5} [Fi-1 }

j=t

Summarizing the above results, we get the assertion. O
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