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Abstract: In Differential Geometry an immersed smooth surface in 3-space is called tight if it has the

minimum total absolute curvature among all immersed surfaces with the same topology. Tight surfaces

without boundary were extensively studied, and tight surfaces with at least two boundary components

are known to exist. An announcement of J.H.White in 1974 [19] stated that there are no smooth tight

orientable surfaces of genus at least one with exactly one boundary component. Here we disprove this

statement by a family of counterexamples, starting with a smooth tight torus with one hole. The non-

orientable case is also studied. We show that there is no smooth tight Möbius band in 3-space and that

there are smooth tight non-orientable surfaces of higher genus with exactly one boundary component.

Three non-orientable cases of low genus remain open.

Introduction and Result

A smooth immersion M → E
3 of a compact and connected surface with or without boundary is

called tight if the total absolute curvature attains its minimum. More precisely this means that it
satisfies equality in the inequality

∫

M\∂M

|K|do +

∫

∂M

|κ|ds ≥ 2π
∑

i

βi(M) (1)

where K denotes the Gaussian curvature, |κ| denotes the curvature of the boundary curve regarded
as a space curve, and βi(M) denotes the rank of the homology Hi(M ; F) with coefficients in a field
F (for nonorientable surfaces we take F = Z2). The boundary ∂M is assumed to be smooth. The
left hand side of the inequality is called the total absolute curvature of M . Inequality 1 holds for
any compact C2-surface in 3-space. This follows from the Morse inequalities for the linear height
functions restricted to M [3], [21]. If ∂M = ∅ then tightness is equivalent to the equality

∫

M

|K|do = 2π
(

4 − χ(M)
)

. (2)

Compare the elementary discussion in the textbook [9, 4G]. If ∂M 6= ∅ then tightness is equivalent
to the equality

∫

M\∂M

|K|do +

∫

∂M

|κ|ds = 2π
(

2 − χ(M)
)

. (3)

In more generality a topological embedding M → E
N of a compact manifold into euclidean space

is called tight, if for any open half space E+ ⊂ E
N the induced homomorphism

H∗(M ∩ E+; F) −→ H∗(M ; F)

is injective for some field F.

For compact 2-manifolds without boundary (smooth or not, but always connected) tightness
is equivalent to the two-piece property (TPP) which states that the intersection of M with any
(open or closed) halfspace is connected. This is different in the case of ∂M 6= ∅. Smooth tight
surfaces were investigated by N.H.Kuiper [11], [12] and others, compare [20], [21] [3], [18] for a
survey. The study of tight polyhedral surfaces was initiated by T.F.Banchoff, for a survey see [1].
One of the results states that any given compact surface (with or without boundary) admits a
tight polyhedral embedding into some euclidean space [8, 2C]. In particular any compact surface
with boundary admits a tight polyhedral embedding into 3-space [8, 2.24]: One can start with
polyhedral examples of a tight Möbius band, a tight torus with a hole, and a tight Klein bottle
with a hole. By attaching polyhedral handles tightly and by cutting out convex holes one can
obtain any compact surface with boundary.

For compact surfaces with r boundary components it is easy to construct smooth tight em-
beddings for genus zero and any r and for an orientable surface of genus g ≥ 1 and any r ≥ 2.
Compare Proposition 2 below. The case of smooth tight surfaces with g ≥ 1 and r = 1 still
seems to be open. There are some related results in [6] but not on this case of a single boundary
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component. It was announced by J.H.White [19] that no such smooth immersion exists but the
proof was not completely given: The proof of Lemma 3 in White’s paper was missing. In fact,
our key example below, depicted in Figure 2, shows that this lemma does not hold. It seems that
within the 35 subsequent years neither another proof nor any further discussion of the problem
appeared in the literature. Therefore, it was called White’s conjecture in [1, 1.5.6].

What makes the situation more delicate is that there are well known polyhedral examples of
this kind. A tight polyhedral torus with one hole is depicted in [1, Fig.7] and in [8, Fig.5]. The
boundary is a non-convex polygon with 8 vertices which is affinely equivalent with a Hamiltonian
cycle in the edge graph of an ordinary cube. Another tight polyhedral torus with one hole is
obtained from Császár’s torus [1, Fig.1] by cutting out the open star of one of the vertices in
the interior of the convex hull. In this case the boundary is a non-convex hexagon. One can
ask whether any of these examples (possibly with modifications) can be smoothed out tightly.
No smooth tight Möbius band exists [13]. For nonorientable surfaces of higher genus with one
boundary component existence or non-existence still seems to be open in the smooth case. Most of
the cases will be decided by our main theorem below. In particular we disprove White’s conjecture
for smooth surfaces of class C∞, in contradiction with the announcement in [19]. However, the
conjecture holds for surfaces with an analytic boundary curve by Corollary 5.

Main Theorem

1. There is a smooth tight immersion of any compact orientable surface with exactly one bound-
ary component into 3-space (not contained in a plane) except for the disc. The boundary can
be chosen as a closed geodesic.

2. (folklore [1, 1.5.4]) Any tightly immersed 2-disc is planar and convex, and the immersion is
an embedding in this case.

3. (N.H.Kuiper [13]) There is no smooth tight Möbius band in any euclidean space.

4. There is a smooth tight immersion of any compact non-orientable surface M with exactly
one boundary component into 3-space provided that χ(M) = −3 or χ(M) ≤ −5.

The key example for the proof of Part 1 of the theorem is the construction of a smooth tight torus
with one disc removed, see Figure 2. In Part 4 the non-orientable cases of χ(M) = −1 (Klein
bottle with one hole), χ(M) = −2 (Möbius band with one handle) and χ(M) = −4 (Möbius
band with two handles) remain open. A polyhedral tight Klein bottle with one hole exists [16],
[8, Fig.5]. It is quite possible that the case χ = −2 is as subtle as the case χ = −1 for closed
surfaces, possibly with a similar non-smoothability result. Here a tight polyhedral closed surface
was obtained in [4] which cannot be smoothed tightly by the results in [7]. Furthermore, there is
no smooth tight immersion of any surface with boundary which is substantial in d-space for d ≥ 4
by [17, Thm.3].

Basic Results and Examples

As a prerequisite for the proof of the main theorem we first discuss the following lemma which is
- more or less - well known. Certain parts of Lemma 1 can be found in [17] and [19]. Other parts
are folklore results.

Lemma 1 Let M → E
3 be a smooth tight immersion of a compact surface with nonempty

boundary such that the image is not contained in any plane. Then the following hold:

1. K ≤ 0 everywhere

2. H(M) = H(∂M) where H denotes the convex hull. It follows that if there is exactly one
boundary component then the boundary curve is not planar.

3. K(p) = 0 for any point p ∈ (M \ ∂M) ∩ ∂HM
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4.
∫

∂M
(|κ|+κg)ds = 4π where κg denotes the geodesic curvature of the boundary for an appro-

priate orientation (a neighbourhood of ∂M is always orientable).

5. The ε-tube Mε of M is a tight immersion of a closed orientable surface M with Euler
characteristic χ(M) = 2χ(M) which is of class C1 and which is smooth on an open and
dense subset.

6. There is a unique smooth Darboux frame c′, ν, N = c′ × ν along the boundary curve c(s),
parametrised by arc length, where ν denotes the inner normal of the curve (tangent to M).
Moreover, c′′ is a nonpositive multiple of ν at every boundary point which lies in the interior
of HM . In particular, if c′′ 6= 0 at such a point then the osculating plane of the boundary
curve coincides with the tangent plane of the surface. This holds also for nonorientable sur-
faces even though N does not extend to a global normal vector field on the surface. However,
ν and N always exist as vector fields along the boundary.

Proof. 1. Let p ∈ M \ ∂M be a point with K(p) > 0. Then we can cut out a small disc
around p with total curvature δ > 0 and a convex planar boundary and obtain a surface M∗ of
the same genus with one more boundary component. For the total absolute curvature we have

∫

M∗\∂M∗

|K|do +

∫

∂M∗

|κ|ds =

∫

M\∂M

|K|do − δ +

∫

∂M

|κ|ds + 2π = 2π − δ + 2π(1 + β1(M)).

This contradicts Inequality 1 for the total absolute curvature of M∗ since β1(M∗) = β1(M) + 1.

2. If the two sides do not coincide then the convex hull of M is larger than the convex hull of
its boundary. This is only possible by a point in (M \ ∂M) ∩ ∂HM with positive curvature. This
contradicts Part 1. It is well known that (1) ⇒ (2) holds for any compact surface with boundary.

3. Such a point p ∈ M \ ∂M lies in the boundary of a convex body. Therefore we have K ≥ 0.
Together with Part 1 we obtain K = 0.

4. For one of the two orientations of the boundary we have the Gauss-Bonnet equation
∫

M\∂M Kdo +
∫

∂M κgds = 2π(1 − β1(M)). Together with Equation 3 which by Part 1 takes

the form

−

∫

M\∂M

Kdo +

∫

∂M

|κ|ds = 2π(1 + β1(M))

this implies
∫

∂M
(|κ| + κg)ds = 4π.

5. For sufficiently small ε the ε-tube Mε around a compact smooth immersed manifold M
without boundary is an immersion of the unit normal bundle ⊥(f) by fε(p, e) = f(p) + εe if f
denotes the immersion of M . In the case of a non-empty boundary we have the same formula for
the modified unit normal bundle ⊥+(f) where on the boundary only those normals are considered
which point away from the surface, that is, which have a nonpositive inner product with the inner
normal ν which is tangent to M and normal to ∂M . By construction fε is of class C1 everywhere
and smooth for p ∈ M \ ∂M and for all (p, e) with p ∈ ∂M such that e has a negative inner
product with ν. By construction the total absolute curvature of Mε is the sum of 2

∫

M\∂M |K|do

and half of the total absolute curvature of the boundary ∂M defined on the unit normal bundle.
So we have

∫

Mε

|K|do = 2
∫

M\∂M
|K|do + 2

∫

∂M
|κ|ds which is twice the total absolute curvature

of M . On the other hand it is well known that χ(Mε) = 2χ(M). By the tightness of M we have

∫

Mε

|K|do = 4π(1 + β1(M)) = 2π(4 − 2χ(M)) = 2π(4 − χ(Mε)).

Therefore Mε is tight.

6. By the tightness of Mε the positive curvature of Mε is concentrated on the boundary of its
convex hull. Let p ∈ ∂M be a point in the interior of the convex hull of M . Then for sufficiently
small ε the resulting points of Mε are also in the interior of the convex hull of Mε. Therefore there
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is no positive curvature in the part of Mε resulting from p. On the other hand the curvature is
positive at (p, e) if and only if 〈e, c′′〉 < 0 because the Gaussian curvature of the ε-tube at p + εe
is given [2, p.400] by the equation

K
(

p + εe
)

= −
〈e, c′′〉

ε
(

1 − ε〈e, c′′〉
) . (4)

Since any unit normal at p can be written as e = sin θ ·N +cos θ ·(−ν) for some θ ∈ [−π/2, π/2], the
curvature is nonpositive for every such e if and only if 〈c′′, N〉 = 0 and 〈c′′, ν〉 ≤ 0. The assertion
follows. In other words: At such a point we either have c′′ = 0, or the osculating plane of the
boundary coincides with the tangent plane of the surface. �

Corollary 1 For any smooth immersion of a compact surface M with nonempty boundary
the inequality 2

∫

K>0 Kdo+
∫

∂M (|κ|+κg)ds ≥ 4π holds with equality if and only if the immersion
is tight (which by Lemma 1 implies that the first integral vanishes).

In particular, the two conditions K ≤ 0 and
∫

∂M
(|κ|+ κg)ds = 4π together imply the tightness

of the immersed M .

This follows from Inequality 1 and the Gauss-Bonnet equation by the same argument as used
in the proof of Part 4 of Lemma 1.

Lemma 2 (L.Rodŕıguez [17])
If M has the TPP then the following equality holds:

∫

K>0 Kdo +
∫

∂M (|κ| + κg)ds = 4π
Conversely, this equation implies the TPP provided that the boundary curves consist of pieces
which are either planar or asymptotic.

Corollary 2 For a compact surface M with non-empty boundary the following are equivalent:

1. M is tight.

2. M has the TPP and K ≤ 0 everywhere.

3. M has the TPP and H(M) = H(∂M).

4. Mε is tight.

5. Mε has the TPP.

Proof. (1) implies any of the other conditions by Lemma 1.
(2) ⇒ (3) holds by the proof of Part 2 in Lemma 1.
(3) ⇒ (1) follows by Morse theory: Every nondegenerate height function has exactly one

minimum and no critical point of index 2. This implies equality in the Morse inequality, hence
equality in Inequality 1.

(4) ⇒ (1) is well known by the same calculation as in Part 5 of Lemma 1.
(4) ⇔ (5) holds for closed surfaces in general. �

Corollary 3

Let M be a tight compact surface with non-empty boundary.

1. If each boundary component is a closed geodesic in M then the number of components is
either one or two. If there are two components then both are planar and convex. If there is
exactly one component then

∫

∂M
|κ|ds = 4π (and ∂M is not planar by Lemma 1).

2. If there are exactly two geodesic boundary components then each of the other components
satisfies κg = −|κ|. Hence each of them consists of pieces which are either planar and
convex (but concave in the surface) or asymptotic.

8



3. If one cuts an additional hole into M then the resulting surface is tight if and only if the
additional boundary component satisfies κg = −|κ|, which means that it consists of pieces
which are either planar and concave or asymptotic.

This follows from Part 4 of Lemma 1 in connection with |κ| + κg ≥ 0 and with Fenchel’s
inequality

∫

c

|κ|ds ≥ 2π (5)

which holds for any closed space curve c, with equality precisely for planar and convex curves.

Example (L.Rodŕıguez [16])
There is a smooth TPP torus with one hole satisfying

∫

K>0 Kdo = 4π. It can be constructed
from a smooth tight torus of revolution by cutting out a hole from the “inner” part with K ≤ 0
such that the boundary consists only of one closed asymptotic curve, see Figure 1. In this case
we have κg = −|κ| along the boundary curve, in accordance with Lemma 2. This example cannot
be tight by Lemma 1. The meridian curve of the particular example depicted in Figure 1 is the
so-called bean curve, a quartic plane curve defined by the equation x4 + x2y2 + y4 = x(x2 + y2).

Figure 1: L.Rodŕıguez’s TPP torus with one non-planar disc removed

Proposition 1 (following L.Rodŕıguez [17, Thm.1])
Any tight immersion of a sphere with r ≥ 1 discs removed is an embedding. The image is either

planar or it is contained in the boundary of a convex body such that each boundary component is
planar and convex. Moreover the surface is locally a developable ruled surface (but not necessarily
with a C2-ruling). For r ≥ 3 there is no such real analytic surface which is not contained in a
plane.

Proof. Theorem 1 of [17] is the same statement for TPP immersions except that in this
case the surface may contain parts with positive Gaussian curvature and except that it may
be analytic. In our case we have K = 0 by Lemma 1. Moreover the surface is contained in
the boundary of the convex hull of the convex boundary curves. A ruling is given by straight
line intervals from a point of a boundary component to a point of another boundary component,
defined by 1-dimensional intersections with supporting planes. If there are at least three boundary
components then there is a supporting plane osculating the boundary at three or more points in
distinct boundary components. Therefore the surface contains a planar part with inner points.
Since it is not entirely planar it cannot be analytic. It seems that a generalised cylinder is the
only analytic example with r = 2. �

Example From Proposition 1 we can derive a construction principle for such tight surfaces
as follows: Start with a number r ≥ 2 of planar convex curves in 3-space such that each one is
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contained in the boundary of the convex hull of the union of all of them. Then the boundary
of this convex hull minus the interiors of all these curves is a tight C1 surface. One can obtain
examples which are C2 or C∞ by choosing the convex curves appropriately. If one wishes to
prescribe a combinatorial structure on the surface then one can start with a convex 3-polytope (a
compact set which is the convex hull of finitely many points in 3-space), at least for r ≥ 4. Then
one truncates each of the vertices by introducing a planar polygon nearby (representing the vertex
figure). Furthermore in each of these polygons one constructs a smooth inscribed convex curve
touching each of the edges of infinite order. Finally one defines the surface as the convex hull of
their union (minus the interiors of the smooth curves). In this way one can construct surfaces with
tetrahedral, octahedral or icosahedral symmetry (with at least 4, 6 or 12 boundary components,
respectively). In addition one may add handles with nonpositive curvature between planar parts
of the surface through the interior of the convex hull.

One can simplify this construction for higher genus as follows:

Proposition 2 (Tight surfaces with two or more boundary components)

1. For any given genus g ≥ 1 and any number r ≥ 2 there is a smooth tight orientable surface
of genus g with r boundary components in 3-space.

2. For any given g ≥ 2 and any number r ≥ 2 there is a smooth tight non-orientable surface
with r boundary components and χ = 2 − 2g − r in 3-space.

Proof. There is a fairly simple construction as follows: We start with an orthogonal cylinder
over a planar convex curve such that the curve contains certain straight line intervals. This
provides a tightly embedded cylinder in 3-space. It corresponds to the case g = 0 and r = 2. Note
that each of the two boundary components is a closed geodesic. In the planar parts one can easily
attach handles with nonpositive curvature and, independently, cut out additional holes. These
holes can be chosen as planar and convex (but concave in the oriented surface) in a planar region
or they can consist of asymptotic curves according to Rodŕıguez’s example above. This requires
that the handles are modelled after the one in Rodŕıguez’s example, up to affine transformations.
The tightness of the resulting surface follows from Corollary 2 and Corollary 3 (or directly from the
definition). This covers the orientable case. In the non-orientable case we start with an orientable
tight surface of genus g−1, as described above. Then we add one non-orientable handle (producing
a self-intersection) as in the standard example of a tight Klein bottle with one handle [14, Fig.12].
�

The case of a closed surface with an odd Euler characeristic minus a certain number of discs
removed is not covered by the proposition. Here it seems to be easier to start with Part 4 of our
main theorem and to cut out additional holes in planar regions. Tight immersions (smooth or
polyhedral) into R

2 with r ≥ 2 exist also, see [14, Thm.1.6].

Corollary 4

For any given genus g ≥ 1 and any number r ≥ 2 and any s with 2 ≤ s ≤ r ≤ 2g + s there
is a smooth tight orientable surface of genus g with r boundary components in 3-space such that
precisely s boundary components are planar and convex (or concave).

Proof. We use the same construction as in Proposition 2 with the following modification for
obtaining r−s ≤ 2g non-planar boundary curves: From each handle we cut out one or two discs in
the region K ≤ 0 bounded by a closed asymptotic curve, as in Rodŕıguez’s example above. Note
that the example in Figure 1 admits two disjoint and congruent holes simultaneously. The original
cylinder has two planar and convex boundary components. In addition we can cut out s−2 planar
and convex holes from some planar region. We do not claim that this bound r−s ≤ 2g is optimal.
For the same statement in the case 0 ≤ s ≤ 1 see Remark 1 at the end of the paper. �

Definition (introduced by N.H.Kuiper [11, p.11])
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A topset is the intersection of M ∩ ∂HM with a supporting plane of the convex hull of M . We
talk about a k-topset if the affine span of the intersection of ∂HM with this supporting plane is
k-dimensional.

The theory of tight surfaces in 3-space (smooth or not) depends very much on a discussion of
the possible topsets. We repeat some some well known facts: Every topset of a tight surface in
3-space is also tight. It is either a point or a straight line segment or a 2-dimensional convex set,
possibly with a finite number of convex holes [3, 7.17,7.18]. In the latter case we call it essential,
and a 1-cycle in it is called a top-cycle if it is not homologous to zero. If a 2-topset T of a tight
surface with boundary contains no points of M \ ∂M then the entire boundary of T must be
contained in ∂M . In particular in this case there is one planar boundary component. For a tight
surface with one boundary component this is impossible unless it is a disc itself. Any 0-topset of
a tight surface with boundary is just one point of ∂M by Part 1 of Lemma 1: Otherwise there
would be points of positive Gaussian curvature nearby. Furthermore the boundary of the convex
hull of any 2-topset T must be entirely contained in M , and the convex hull is spanned by points
in the boundary, i.e., HT = H(T ∩ ∂M). This implies that ∂HT \ ∂M consists of straight line
segments (or it is empty).

Examples: From the example after Proposition 1 we see that a 2-topset of a smooth tight
surface with at least three boundary components can be a planar polygon together with its relative
interior. Each of the four essential 2-topsets of our key example in Figure 2 is a square with two
corners rounded off.

Lemma 3 (compare [17, Cor.7])
Let M be a tight surface with boundary in 3-space. Then any arc of ∂M which is contained in

∂HM is a union of subarcs which are planar.

Proof. Let c(t) be such an arc in ∂M , parametrised by arc length. Then it can be decomposed
into subarcs where either c′′(t) ≡ 0 or c′′(t) 6= 0 along any entire subarc. An arc with c′′(t) = 0
is a straight line segment and thus planar. Now we consider an arc with c′′(t) 6= 0. Let B(t) =
c′(t)×c′′(t)
‖c′′(t)‖ be the binormal vector. Assume first that c′′(t) is transverse to M along some subarc

I, and consider the orthogonal projections B̃(t) 6= 0 of B(t) to Tc(t)M . We can orient ∂M so

that B̃(t) is everywhere exterior to M at c(t). Then, p(t) = c(t) + εB(t) ∈ Mε. In fact, it is
interior to the surface U = Mε ∩ (∂M)ε = {x ∈ Mε

∣

∣ d(x, ∂M) = ε}. By Equation 4 the Gaussian

curvature of the ε-tube at a point c(t) + εe is given by K
(

c(t) + εe
)

= − 〈e,c′′(t)〉

ε
(

1−ε〈e,c′′(t)〉
) . Hence

p(t) = c(t) + εB(t) lies in the boundaries (relative to U) of both regions U− = {x ∈ U | K(x) < 0}
and U+ = {x ∈ U | K(x) > 0}. Let H = ∂H(Mε) denote the boundary of the convex hull of Mε,
and let us consider the splitting H = (H∩Mǫ)∪(H \Mε). By the previous remarks, p(t) ∈ H∩Mε,
and p(t) is not in the interior of H ∩Mε relative to Mε. Then, p(t) is not in the interior of H ∩Mε

relative to H . Therefore p(t) is in the closure (relative to H) of the region H \ Mε. Since Mε is
tight and H is convex, H \Mε is a finite union of planar convex sets (cf. [3, 7.18]). By continuity,
the curve c(t) + εB(t) with t ∈ I lies in some fixed plane which supports Mε. Hence, c(I) is at
constant distance ε from this plane, and is thus planar. Assume now that c′′(t) is tangent to M
along some arc I (i.e., c(t) is an asymptotic curve). Assume c′′(t) is interior to M at some point
c(t), i.e., c′′(t) = |κ|ν. By Equation 4 the Gaussian curvature is positive for all c(t) + εe with
〈e, c′′〉 < 0. By the tightness of Mε this part is contained in ∂HMε. In particular it follows that
c(t)+ ǫB(t), c(t)− ǫB(t) ∈ Mǫ∩∂H(Mǫ). Hence, there are two parallel planes at distance 2ǫ which
support ∂H(Mǫ). Therefore M is planar. We are left with the case of an asymptotic curve c(t),
t ∈ I, such that c′′(t) is everywhere exterior to M . For each t ∈ I, let P be a supporting plane of
H(M) at c(t). Since P supports ∂M , the tangent vector c′(t) must be included in P . Since c′′(t)
is a negative multiple of ν(t), the supporting plane P must contain c′′(t) (otherwise it would split
M in two components). Hence, P coincides with the osculating plane of ∂M at c(t). In particular,
∂M is locally on one side of its osculating plane. Therefore, c(t) has vanishing torsion for all t ∈ I.
�
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Corollary 5 Let M be a smooth tight surface which is not contained in any plane. Assume
further that the boundary of M consists of exactly one component, then the boundary curve is not
analytic.

Proof. Since M and its boundary ∂M both are smooth, the convex hull HM cannot have a
vertex, that is, a point p whose neighbourhood looks like a proper cone with an isolated apex at
p. We know that HM is the convex hull of points in ∂M . This implies that ∂HM must contain
an arc of ∂M . Then Lemma 3 implies that this boundary component is a planar curve. In the
case of exactly one analytic boundary component this contradicts Part 2 of Lemma 1. �

Corollary 6 Let M be a smooth tight surface which is not contained in any plane. Assume
further that ∂M consists of exactly one boundary component, and that this is contained in ∂HM .
Then the boundary curve ∂M is not a Frenet curve, i.e., it has inflection points.

Proof. This follows from Lemma 3 by the same argument as used in Corollary 5: The
boundary curve is locally planar but not globally planar. The torsion vanishes whenever the torsion
is defined. This is impossible unless there are points with vanishing curvature. An example is part
of the proof of our Main Theorem below. From Corollary 4 we see that in general the boundary
of a tight surface M does not have to be contained in ∂HM . However, it can be conjectured that
this is indeed the case if ∂M is connected. Then one of the assumptions in Corollary 6 would be
superfluous. �

Proof of the Main Theorem.

Part 1: Let M be orientable. The case of genus zero is discussed in Part 2. So we assume that
the genus is at least 1, hence the surface cannot be contained in a 2-dimensional plane by [14,
Thm.1.6]. Thus HM will have to be a 3-dimensional convex body with a nonempty interior. In
this case ∂M cannot be planar by Part 2 of Lemma 1. The key example is a surface of genus
one with a connected boundary. A polyhedral example is the following: Start with the polyhedral
cylinder obtained from the boundary of an ordinary cube by removing two opposite squares. Then
take two translational copies of it and define ∂M to be the union of these two, glued together
along a common square, but after rotating one copy against the other by a right angle. Then the
boundary is a connected polygon which appears as a Hamiltonian cycle in the edge graph of the
convex hull. For a picture see [1, Fig.7].

This polyhedral surface cannot be smoothed tightly by the procedure described in [10]. However,
there is a smooth analogue depicted in Figure 2. It is based on a building block of Scherk’s mini-
mal surface (x, y) 7→ (x, y, log cos x

cos y ) which is defined on the open square −π/2 < x, y < π/2. The
function z 7→ arctan z leads to a compactified version

F (x, y) = (x, y, arctan log cos x
cos y )

which is defined on the compact square −π/2 ≤ x, y ≤ π/2 minus the four corners. At the four
corners of the square we insert four vertical straight line segments. Therefore the surface appears
as the graph of a smooth function on the interior of the square with a continuous extension of the
surface to the boundary. The following calculation shows that the Gaussian curvature is strictly
negative over the interior of the square, and that at the boundary the Gaussian curvature tends
to zero in such a way that the tangent planes tend to vertical planes. A sufficient condition for
negative Gaussian curvature is that the tangent plane at each point p intersects the surface locally
around p. For the graph of a function it is sufficient that the Hessian of this function is indefinite.
If we define z = f(x, y) = log cosx − log cos y and h(z) = arctan z then F is the graph of the
function h ◦ f . The determinant of the Hessian of f is −(1 + tan2 x)(1 + tan2 y). Furthermore we
have d(h ◦ f) = (h′ ◦ f) · df and

hess(h ◦ f) = (h′′ ◦ f) · df ⊗ df + (h′ ◦ f) · hess(f).
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Figure 2: A tight torus with one disc removed (right), based on a compactified Scherk block (left)

It follows that the determinant of the Hessian of h ◦ f equals

−(1 + z2)−3
(

(1 + z)2 tan2 x + (1 − z)2 tan2 y + (1 + z2)(1 + tan2 x tan2 y)
)

which is strictly negative everywhere in the interior of the square. Therefore the Hessian is
indefinite there, and we have K ≤ 0 on the compactified Scherk block.

This block is inscribed inside a cube of side length π in 3-space, and the boundary forms
a Hamiltonian cycle in the edge graph of the cube, as in the case of the polyhedral example
mentioned above. It contains two horizontal straight line segments z = ±π/2 on top and two
others on bottom. We have to show that the surface is smooth even at the boundary and that
the tangent plane tends smoothly to a vertical position. It is smooth at any point (x, y, z) with
|z| < π/2 (including the vertical straight line segments) because it is the set of (x, y, z) satisfying
the equation

F (x, y, z) = cos y · etan z − cosx = 0.

The function F is smooth and regular with a non-vanishing gradient. The implicit function
theorem implies that the block is smooth outside the horizontal straight line segments.

Next we consider a point p of the surface with z = ±π/2. By symmetry we can assume
p = (π/2, y,−π/2) for some y ∈ [−π/2, π/2]. In a neighbourhood of p the surface is the graph
over the (y, z)-plane of the function

x(y, z) = arccos(cos y · etan z)

where arccos: [−1, 1] → [0, π]. When z tends to −π/2, all partial derivatives (of any order) of
x(y, z) converge to 0. Indeed, by the chain rule it is enough to check this for

f(y, z) = cos y · etan z.

Note that
∣

∣

∣

∂i+j

∂yi∂zj
f(y, z)

∣

∣

∣
≤

∂j

∂zj
etan z = etan zpj(tan z)

for a certain polynomial pj . Thus we have

lim
z→−π/2

∂i+j

∂yi∂zj
f(y, z) = 0.
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It follows that the block is smooth along the entire horizontal segments z = ±π/2, and can be
smoothly extended there by vertical halfplanes.

Therefore by attaching two cylindrical parts on top and bottom we obtain a smooth embedded
torus with one disc removed, see Figure 2. The boundary is a (non-planar but locally planar) closed
geodesic consisting of four vertical straight line segments and the four boundary components of the
cylindrical parts. By construction this surface is isotopic (via tight surfaces) to the polyhedral tight
torus with one hole mentioned above. Since Scherk’s surface (and its compactified companion)
admits an isometric symmetry by interchanging x, y and z,−z we can arrange that our surface is
invariant under the same symmetry. The equations

∫

∂M

|(κ| + κg)ds = 4π

∫

M\∂M

|K|do +

∫

∂M

|κ|ds = 2π(2 − χ(M)) = 6π

are obviously satisfied since K ≤ 0 everywhere (with the same total curvature as the Scherk block)
and κg ≡ 0 along ∂M . The tightness follows from the first equation in connection with Corollary
1. It is quite obvious how to attach handles tightly along the cylindrical parts on top and bottom
if these cylindrical parts are assumed to contain planar regions. This proves that any genus g ≥ 1
can be realised by a smooth tight surface with one boundary component. Since this example
contains relatively open parts with K = 0 but also parts with K < 0, it is clearly not analytic.
The boundary curve is not analytic either. In fact it cannot be analytic by Corollary 5.

Part 2: Let M be a smooth tight immersion of a 2-disc into 3-space. From Equation 3 we see
that K = 0 everywhere and

∫

∂M |κ| = 2π. Then Fenchel’s inequality 5 implies that the boundary
curve is planar and convex. From Part 2 of Lemma 1 we see that M lies in the same plane.
Moreover, it coincides with the convex hull of the boundary curve. In this case no selfintersection
can occur, so the surface is embedded. By a similar argument any tightly immersed 2-disc in
d-space for d ≥ 4 would have a tight boundary, that is, a planar and convex boundary, and again
the disc would have to be contained in the convex hull of the boundary.

Part 3: Let M be a smooth tight Möbius band in 3-space. This cannot be contained in a
2-plane, so HM is a 3-dimensional convex body. The boundary of HM cannot be contained in M ,
therefore there are essential 2-topsets. If there were exactly one essential 2-topset then it would
decompose M into two components on the same side of one plane. This contradicts the TPP.
Therefore there are at least two essential 2-topsets. Moreover it follows that there are exactly two
essential 2-topsets [13, Lemma 5]. We denote them by T1 and T2. Each of them is a homotopy
circle by the tightness and rkH1(M) = 1. Let C1 = ∂HT1 and C2 = ∂HT2 denote the outer
top-cycles in T1 and T2, respectively. It follows that the convex hull of M coincides with the
convex hull of C1∪C2 and that ∂HM \ (HC1∪HC2) is a developable surface which is contained in
M . Moreover Ci \ ∂M consists of straight line segments, i = 1, 2. By the intersection form of the
Möbius band the two essential 2-topsets must intersect. This intersection T1 ∩ T2 = C1 ∩C2 is an
interval I which possibly degenerates to just one point. It follows that the endpoints of I must be
contained in ∂M because this holds in general for 1-topsets and 0-topsets. If this interval contains
an inner point p ∈ M \ ∂M , then the position of the tangent plane at p leads to a contradiction
since M is contained in the convex sector defined by the two intersecting support planes. If this
interval I = T1 ∩ T2 = C1 ∩C2 is entirely contained in ∂M then beyond an endpoint of I at most
one of the curves C1, C2 can be contained in ∂M . The other one contains a straight line segment
with points q ∈ M \∂M in any neighbourhood of the endpoint of I. Considering the tangent plane
at q leads to a contradiction since it has to contain one of the straight line segments between a
point of C1 and a point of C2 in the developable surface ∂HM \ (HC1 ∪HC2). This straight line
segment cannot continue smoothly beyond q because it has a nontrivial angle with the support
plane spanned by the essential 2-topset containing q. It follows that there is no possibility left for a
smooth tight Möbius band. Therefore it cannot exist. Note that there are several distinct types of
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nonsmooth tight Möbius bands in 3-space, and that a tight Möbius band in 4-space is essentially
unique and polyhedral [13]. There is no polyhedral tight Möbius band which is substantial in
d-space for d ≥ 5 [8, 2.25], not even a topological tight embedding of the Möbius band [13, p.281].

Part 4: By attaching a cylindrical part to the smooth tight torus with one hole in Part
1 from top to bottom (with a selfintersection in between, where it meets the Scherk block) we
obtain a smooth tight surface with χ(M) = −3, which is a Klein bottle with one handle and
one hole. This is similar to the standard construction of a tight Klein bottle with one handle
from a tight torus [12], [14, Fig.12]. Similarly one can attach further handles. This covers the
case of an odd Euler characteristic. For the case of an even Euler characteristic we go back to
the construction described in [10]. We glue a block of type projective plane with three holes with
nonpositive curvature together with our smooth key example with three additional planar and
convex holes. The only requirement for this glueing procedure in [10] is that our starting surface
has three planar pieces in general position for cutting out three additional holes which can be
guaranteed by a slight modification of the example above. This leads to a surface with Euler
characteristic χ = −6. By attaching further handles we can cover all cases of χ ≤ −5 (even or
odd). �

Remarks: 1. From the construction in Part 1 of our main theorem it follows that Corollary
4 remains true under the weaker assumption r ≥ 1 and 0 ≤ s ≤ r ≤ 2g + s but not r = s = 1. In
the cases of s = 1 and s = 0 we start with our key example and then add handles and cut holes
as usual.

2. By a suitable projective transformation one can modify our key example in such a way,
that one can draw the cone from a certain point in space to the entire boundary without creating
self-intersections. By adding this cone one obtains a tight torus.

3. There are smooth tight immersions of compact surfaces with any number of boundary
components into a flat 3-torus or other euclidean space forms. Starting with the examples in [15]
one can cut convex holes into planar regions. In particular there is a flat and tight torus with any
number of holes in a flat 3-torus.

4. Moreover, there are smooth tight immersions of noncompact surfaces with one boundary
component. In this case one has to consider a proper immersion of a noncompact surface M of finite
topological type into 3-space. In particular the image must be complete, and the ends go to infinity.
Particular examples are a plane with a convex hole and a cylinder S1 × [0,∞), each with exactly
one boundary component and with K = 0 in the interior. The total absolute curvature is 2π in
these cases, thus realizing equality in the inequality

∫

M\∂M |K|do+
∫

∂M |κ|ds ≥ 2π
(
∑

i βi(M)−1
)

which replaces Inequality 1 in the case of one end [5, Thm.3.3]. Similarly, one can obtain orientable
examples of higher genus by attaching standard handles to the cylinder in a version with planar
pieces.
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singularities

2008/003 Effenberger, F.; Kühnel, W.: Hamiltonian submanifolds of regular polytope
2008/002 Hertweck, M.; Hofert, C.R.; Kimmerle, W.: Finite groups of units and their composi-

tion factors in the integral group rings of the groups PSL(2, q)

2008/001 Kovarik, H.; Vugalter, S.; Weidl, T.: Two dimensional Berezin-Li-Yau inequalities with
a correction term

2007/006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term
2007/005 Frank, R.L.; Loss, M.; Weidl, T.: Polya’s conjecture in the presence of a constant

magnetic field
2007/004 Ekholm, T.; Frank, R.L.; Kovarik, H.: Eigenvalue estimates for Schrödinger operators

on metric trees
2007/003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides
2007/002 Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry
2007/001 Meister, A.: Deconvolution from Fourier-oscillating error densities under decay and

smoothness restrictions


