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Abstract

In this paper we combine the ideas of regression function estimation on one hand and
regularization by discretization on the other hand to a regularization method for linear ill-
posed problems with additive stochastic noise. A general convergence result is provided and
its assumptions are verified for the partitioning estimators and to some extent for kernel
estimators. As an example of an inverse problem we consider Volterra integral equations of
the first kind.

1 Introduction
Consider the inverse problem
Find fT such that Y; = (K f1)(X;) + € (1)

with (X, Y), (X1,Y1),...,(X,,Y,) independent identically distributed (d+1)-dimensional random
vectors, the real random variables Y; and €; being square integrable, E{¢; | X;) = 0, and

K:Hl*)HQ

a linear bounded operator on appropriate function spaces, which is not boundedly invertible, so
that the inverse problem is ill-posed. This is equivalent to

Find f1 such that K fT =y, where y(z) = E{Y | X = z)

Local averaging nonparametric regression function estimates for y such as partitioning, nearest
neighbour or kernel estimates have the form

yn(z) =Y Whi(w; X1,..., X,)Yi, 2)
=1

with appropriate weights Wf}l(x, X1,...,Xn). On the other hand, regularization by discretization
in image space (or self-regularization) of the deterministic inverse problem

Find fT such that Kff =y
is based on solving the discretized operator equation
Q"Kf=Q"y (3)
in a best approximate sense, i.e.,
= (@Q"K)'Q"y

where a superscript 1 denotes the generalized inverse. The idea of this paper is to use the operator
Q" = Q" (Xy,...,X,) defined by local averaging regression (2)

(Qnro)(z) = Z W i(@; X1, Xn)g(Xa) (4)

as a discretization operator in (3), i.e., to apply regularization by discretization in a stochastic
setting. Note that as opposed to, e.g., [4], the discretization operator itself is of stochastic nature,
due to its dependence on the random variables Xi,..., X, appearing in the weights. Using a
regression estimate 9 € Y, e.g., 4 = y,, according to (2), we arrive at an inversion method of
the form .

fi = (@QrE) g



The aim of this paper is to show that under certain assumptions and with an appropriate choice
h = h(n), this is indeed a regularization method in the sense that

. 2
E{‘f,’f(")—fTHH}ﬁOasnﬁoo.
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Here h is an abstract discretization parameter, which, e.g., can be interpreted as the bandwidth
of a kernel estimator or is used to parametrize the number [}, of partition elements for a partitioning
estimator. In analogy to the deterministic case, where the regularization parameter has to be
chosen in dependence of the noise level, we will here select h as a function of n, where, sloppily
speaking, large n corresponds to small noise level. Note however, that even without an ill-posed
inverse problem in the background, a dependence h = h(n) is always required in regression function
estimation, as opposed to the deterministic setting. We will here see that for regression estimation
in inverse problem, this choice additionally has to take into account the degree of ill-posedness.

For a convergence analysis of classical methods such as Tikhonov regularization, spectral cutoff
and more general spectral theory based regularization methods for linear inverse problems with
random noise, we refer to the existing literature (see, e.g. [?, 7, 7, 4, 7, ?] and the references
therein). The aim of this paper is to consider possible regularizing effects for a class of methods
for nonparametric regression estimation — so originally for well-posed problems — and to contribute
to the analysis of such methods when applied in an appropriate manner to linear ill-posed operator
equations.

2 Convergence analysis

2.1 A general convergence result

Theorem 1. Let K : Hi — Hs be a bounded linear operator between the Hilbert spaces Hy and
Hy, let f1 solve Kf =y and let for alln € IN,h >0

. z)f{ IS Y,i’ C Hs be a regression estimate;

° QZ : Hy — Hs be a bounded linear operator;

o Hy, Hy be possibly stochastically defined, (i.e., H, = PNIf{l Hy = HQQ) Hilbert spaces;

and let the following assumptions hold:

¥n € IN,h> 0368 >0 E{[[gh - Qkyl;,.} < At (5)
YneN,h>03C">0: P{H(QZK)T\W LSO =1 (6)
" 3—H;
V(W) newnso, fr € (QREK)TY!
. h 2 h—0 . h 9 h—0
hr,?S;lpE{Hf"Hﬁl} =30 = hr}nsypE{anHHl} =% 0 (7
where Y = Y + R(Q"). Moreover, define
= (QhE)'a
and let h(n) be chosen such that
Chm g o, ®)
and )
. H n—oo
B = Progis e | 0. 9)
Then

R 2
E{Hfﬁ(")—fTHH}HO asn — oo.
1



Proof. The assertion follows immediately from the error decomposition

fg(n) _ fT - (QZ(n)K)TQZ(n)KfT _ fT + (QZ(“)K)T(Z)Z(TL) . Qz(n)y)
= —(id — PTOJJI\{[I(QZ(MK)L)JCT + ( Z(”)K)T(gﬁ(n) _ QZ(n)y)

by applying (9) to the first term on the right hand side and (5), (6), (8) as well as (7) to the
second term on the right hand side. O

2.2 The approximation error
We first of all derive a sufficient condition for
}L—>0,7L—>OO

2
B [(id = Projff gy 01| 1750 (10)
n 1

via pointwise convergence of the adjoint of Q" without any assumption on the distribution of X.
If Hy C Hs, then for arbitrary ¢ > 0 we have by fI € N(K)! = R(K*) existence of a
v® € Hy = Hy N Hj3 such that

Iff = K", <e. (11)

Therewith, due to |1 — Proji o s | —r, = 1 we get

I(Z = Projifion oy ) I,
< e F I = Projyfign gy )0,

e+ inf{|K*v° — 2|, | 2 € N(Q'K)* = R(K*Q!™)}

< e+ inf{|K*v° — 2|, | 2z € RIK*Q"")}

= e+inf{||K*v° — K*w||lg, |weRQ")

< e+ |K | gyn, inf{ 0" — wllm, | weRQL)}
< et K| m—m v — QL v,

which by the presumed boundedness of K as an operator from H; to Hs, yields convergence of
the approximation error (10) provided that

Vv € Hy N Hy : E{||U—QZ*U||%[2} —0ash—0n— 0. (12)

More generally, if there exists a Banach space B C Hy N H3 with B dense in Hs, then a similar
argument shows that (12) is sufficient for (10). Namely, then for arbitrary & > 0 we have by
fT € N(K)*+ = R(K*) and boundedness of K* : Hy — H; existence of 9° € Hy v € B C HoN Hj,

such that [|fT — K*0°|| g, < § and ||0° — v°||g, < m, hence (11).

We therefore state an auxiliary result for the adjoint of Q"

Lemma 1. Let the spaces Ha, Hs be defined by
Hy=1L},, H3=L (13)

with p the distribution of X; and u” the empirical measure corresponding to X1, ..., X, namely
such that

SO p) = [ fsnas).

Moreover, let Q" be given by (4) with the weights satisfying

—

W:;i(z; XlyenyTy) = F,}L‘(x, i, N,’f(x, X1y..-Tp)) (14)



with
F' R RYxR™ R, N':(RH)" SR,

Then
Q) : Hs — Hy,
Q" 2)(s) =n / FMa, s, N"(z, X1,... X,))2(2) p(dx) . (15)

Proof. For any w € Hy, z € Hs, we have

(QMw, 2, = /Z W (2 X, . X )w(Xs) () pu(de)

/ Z i X, N2 X, X)) 2(a) ()

/ /Fh (2,8, N"(z, X1, ..., Xn))w(s)z(z) p” (ds) p(de)
w, Q" 2)

O

Remark 1. It is readily checked that the assumptions of Lemma 1 hold for the following local
averaging regression function estimators:

o partitioning estimator:

" I
{X;eAl}
Wh (X X1, Xp) = Z I (xean (16)

j=1 &~l=1 I{XIEASL}

where % =0 and (P")>0 is a family of partitions of R®, P = {A} Al .. };

n
rh=1" < 0, Ngyj(x,xl,...,xn): ZI{xmeA;L}, j=1,...1",

m=1
h

oI
5 {seAl}
Fh(z,s,7) = E P I{xeAh},
J

j=1

with 1" the number of partitioning elements Af In the special case of a cubic partition (i.e.,
of the A;L being d-dimensional hypercubes) the quantity h = h(n) is just the side length of a
cube.

o kernel estimator Xox,
K(=%7)
i K (%5 Xl)
where K : R — IR is a kernel function, and h = h(n) is the bandwidth;

Wi (X5 X1, X,) =

oo



o k"-nearest-neighbor estimator:

1
h _
Wai(X, Xy, X)) = kTI{XiGBNQ<x,x1 ..... o) (X0}
where Br(x) denotes the ball of radius R around the point x, and h = h(n) = %;
=1, NMz,z.,...,z,) = min max [T, — x|,

C {maemon }C{1,en} GE{L,. kh}
1
Fl(z,s,2) = kth{SGBZW ,

usually under the assumption that equal distances, so-called ties, appear with probability zero
(cf. [2], pp 86.87).

Note that in each of these cases the value of ]\77’1‘ s invariant under permutations of the last n
arguments:

V(x,21,...,Tn) € (]Rd)"'*'1 Vi {l,...,n} = {1,...,n} bijective
N:;(x,mﬂ(l),...,mﬂ(n)):Nﬁ(m,xl,...7xn). (17)
To obtain (12), we proceed similary to the proof of Stone’s theorem, see Theorem 4.1 of [2].

Lemma 2. Let Hy, H3 be defined as in (13). Then for any v € Ho

E{llv - Q vll3,} < 2J; +2L;, (18)
with
si= B (0 [ WX X X0 o] ) )
= 2
= n?E{ </ Wé‘yl(x; X1,..., X)) [v(X1) —v(z)] ,u(dx)) +, (19)
b= B3 ([ron [ Wl )] 1)) )
= E{v(X;)? [1 —n/W,?’l(x;Xl,...,Xn)u(d:c)r}. (20)
Proof.

E{llo— Q" ul3,)
- E{/@@%%wa@»%wwa}

= B> 000) - @0
1 n . 2
= E{- v(X;) —n | F'(z, X;, N (2, X1,... X,))v(z) p(dz
G20 (0000 = [ P2 Dol utaa)) )

= E{iil <U(X¢) n/ng(z;Xl,...,Xn)v(x)u(dx)>2}.



O

We now prove convergence to zero of the terms J¥, LY for the partitioning estimator (16)
without any assumption on the distribution of X. For this purpose, we denote by A”(z) the

partition element containing the point x and make use of the notation

Iix.can
WT}LL,i(X;Xl, Ce ’Xn) — {XLEA}’(X)}

Lemma 3. Let (P"™),cw be a sequence of partitions of RY, ie., Ph) = {A,f(n),A

such that for each sphere S centered at the origin

max  diam(A; (n)) —0asn— o0

J

j:A;L<n)I'TS;ﬁ@
and hn)
G AMY s £ 0y
—0asn— 0.
n
Then

Jr—0and L), — 0 asn— 0.

For the proof we need two auxiliary results.

1+ Z%; Iix,ean(x))

(21)

h(n
2( )a }

(22)

(23)

Lemma 4. Let the random variable Z be binomially distributed with parameters n and p. Then

1 2 1 3
EF{——— % <mi .
{u+zv}—mm{m+n%f<n+n%f+m+n%$
Proof.
1 - 1 n\ & k
- — 1—p)"
E{(1+Z)2} k:0(1+k) (k)p( P)
- n
< 2 n—k
S S L
i n -+
b
(n+1 Y(n+2) k:O k+
~ (n+2 n nt2-1
= 2
(n+1)n+2p2§< ) —P)
< 2
R
and by the decomposition
1 L
(k+1)2  (k+1)(k+2)  (k+1)2(k+2)
1 3
<

similarly
Haszr) < X asnory (a0

10
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° 3 n e
+/§J(kz+1)(k+2)(k+3) ()=

1 " n+2 e

- (n+1)(n+2)’;)<k+2)pk(1p) '

3 " (n+3 n—
T Dmr2n+3) ;<k+3>pk(l‘p) '

1 3
%2 (et )

IN

O

Lemma 5. Let (P")~0 be a family of partitions of RY, denote by A™(x) the partition element
containing the point x and let Wf;ﬂ»(X; X1,...,X,) according to (21) be the weight of the corre-
sponding partitioning estimate.

Then for any measurable w : R? x R — R4

E { (/ Wy (2 X1, .., Xn)w(x,Xl)u(da:)>2}

(2 1 3 Jann w(z, t)p(da)\ 2
< /mln{nz, 3 + n?’u(A;})} ( A (L(Ah(t)) ) w(dt) .

Proof.

E { (/ Wl (2 Xy, .. ,Xn)w(x,Xl),u(dx))z}

It x, car()y
= E{/ SRS w(w, X1)p(dz)
L+ o L x, can(a))

Iix,ean(z)y
| w(, Xl)u(dZ)}
/ L4+ o l(xean(z))

/<//I{teAh(m)}I{teAh(z)}w(x7t)w(zat)

1 1
E n n
{ L4+ o [xmear@y L+ 2 0—o I{x,.ean(2)} }
p(dx)p(dz)) p(dt)
/(//I{teAh(m)}I{teAh(Z)}w(:v,t)w(z,t)
1
E n
\/ { (14 2 [ixnean@)y)? }
1
E 5 pldz)p(dz) | p(dt)
\/ {(1+Zm—2 I{XmeAh(Z)})Q} ) )

/ ( [ teearyute \/E i }mda:)) '
< /(/I{teAh(x)}w(%t)

IN

11



2
. 2 1 3
\/mm{nw(Ah(x))?’ WA @7 nSu(Ah(x))S}“(dx)> e

= min 2z 1 3 fAh(t)w( Ju(dz)
= [mn{ n2+n3u(Ah(t))}< WA D) i,

where we have used independence in the third line, the Cauchy-Schwarz inequality in the fourth
line, and Lemma 4 together with the fact that >0, Iy x, can()y is b(n—1, u(A"(z))) distributed,
in the sixth line. O

(24)

Proof. (Lemma 3) Lete > 0be arbitrary. According to Theorem A.1 in [2] we choose a uniformly
continuous compactly supported function @ such that [ |v(z) — 9(z)|*p(dz) < e. Therewith,

I < SnQE{</W,’}71(x;X1,...,Xn) [v(X1) — 5(X1)) u(dx)>2}
+3n2E{</ Wiy (2 X1, .., Xn) [0(X1) — ()] u(dx)>2}

2
302 B ( / W (2 Xn, .., Xo) [3(2) — v(a)] u(daz)) )
= 3Jp1+3Jp2+3n3,

with h = h(n), where due to Lemma 5

n1<2/|v —o(t (W)QS%,

(A" () {0 if p(AR(t)) =

H(AT(D) and

since

1 else

s < 2/* (fAh(t) [0(z) — 5(t)|ﬂ(d@")> (),

with suitable compact set S*, where the integrand is bounded by 4(max,cr« |0(t)|) and goes
to zero as n — o0, since ¢ is uniformly continuous and (22) is assumed. Hence by Lebesgue’s
Dominated Convergence Theorem, J,, 2 — 0 as n — oco. By Lemma 5 and the Cauchy-Schwarz
inequality we get

nepy [0(2) — v(@)|p(dz ?
s < 2/<f,4 0 ;(Lh(t)( )m( )) w(dt)
WA E)) [an 4y 18(2) — v(@)*p(de)
< z2f AP #a
2)|o(z) — v(z)|?u(de
- 3 [ L@ ),
= 2 [ o) - ot [ [ e an)] uiae)
_ il fIA’L(z t)ﬂ“( ) "
= 2 [ lo(o) — o) P
< 2/|17 —v(z)|*u(dx)
< 2

12



With v as above we obtain

2
L= 2B(000) - 6002 |10 W (X X X)) )

= 2L, +2L}
with h = h(n), where by Lemma 5
L, < 2B{(v(X1) - 9(X1))*} + 20" E{(v(X1) — 0(X1))?

A
[\~
%)
+
=
2
=
e
A/~
—
=%
=
QU
&
~__—
=
N

Further,

B Lan(y ()
- nE{/1+Z Lo () p(dz)}
Lyn () -

> o f [T By Ly (X)) M%)
. Lan(y () .
= [ )
., IAh(t)(x) .
= | Sy ) (25)
A )
= Th np(AR(D)

1

- i)

and, by Lemma 5,

nz/@(t)zE{ U W,ﬁl(x;t,XQ,...,Xn)u(dx)r}u(dt)

3 Jan ey 1(dz) . )
/<1+ nu(Ah(t))> ( (AP () o(t)" p(dt)

/a<t)2u(dt>+ i/%u(dt).

IA

IN

13



Thus, the terms of the form [ (¢)?u(dt) in L cancel out and with suitable compact set S*,

) 1 1,
1< 2 ““)*3/5* )"

< 5maxs€5* 0(s)? / L ()
S 'U A
h(n)
< 5max,e g+ 0(s)> Z M(Aj )
- n (A7)
j: Ah(")ﬂS*;ﬁ(ﬂ H
i AP g
< E)Inauxﬁ(s)QH‘7 J # 03 —0asn— o0. (26)
s€S* n
by (23).
Therefore Ly — 0 as n — 0. O

Remark 2. An analogous result to Lemma 3 can be proven for the kernel estimator with K = Ig, .,
replacing A™(z) by x + hSo1 as follows: Note that the analoga of (24), (25) need not be valid any
more, however, the limit (26) can be carried over according to (5.1) on page 76 of [2] under the
assumption nh(n)? — oo as n — oo. In the special case p = const.\ (A Lebesque-Borel measure
on [0,T]?, see also Corollary 1 below) equations (24), (25) hold due to the translation invariance
of \.

2.3 Convergence rates for QZ

Lemma 6. Assume that
Ve e R? : Var{Y|X =z} < o?.

Then for 9 = y,, according to (2) with (16) and I" <

YneNh> 0368 >0 B{|gh - Qhyllh )} <a! (27)
holds with
lh
ﬂ = 20—
n

Proof. The proof follows along the lines of part of the proof of Theorem 4.3 in [2], see the estimate
of the term E{ [(my,(x) — 1, (z))?u(dz)} on pages 65, 66. O

Note that similar results can also be obtained for the kernel and the nearest neighbour estimate,
see, Theorems 5.2, 6.2 in [2].

2.4 Stability estimates

Estimates of the form

h —
o SCMY =1 (28)

VneIN,h>03C>0: P{(QLE) |ynirgn
heavily depend on the degree of illposedness of the operator equation K f = y and its interplay

with the discretization operator Q" and are therefore problem-dependent. We here consider first
kind Volterra integral equations

/o k(t,7)f(r)dr =y(t), te(0,T).

since on one hand they appear in a wide range of applications, on the other hand their degree of ill-
posedness can be specified in a precise and clear manner via the concept of k-smoothing Volterra

14



operators. Namely, k-fold differentiation of a first kind integral equation with a k-smoothing
Volterra operator leads to a well posed second kind Volterra equation, hence an integral equation
with a k-smoothing Volterra operator is k times as ill-posed as numerical differentiation. We will
here only describe the case k = 1 in detail, since the generalization to k > 1 is quite obvious. More
precisely, let K be defined by

(Kf)(t) = / K(t,7)f(r) dr (20)

with
k(t,t)| >~y >0 Vvte(0,T), (30)
and a sufficiently smooth kernel
k € L>(0,T; L*(0,T)). (31)
Also, let
H, = L*(0,7) (32)

and let the spaces Ha, H3 be defined as in (13). The norm ||-[| 7, to be defined in Proposition 1
below will be an approximation of [-||; in the sense of (7), see Lemma 8.
Moroever, consider again the partitioning estimator for defining Q" i.e., we use (4) with

lh

I ny

{X;eAl
Wh (X: Xq,... E I "
n)z( 9 1, 7 Z 1[{ e h} {XeAJh}

Boundedness of K : H; — Hy can be seen as follows:

%Z </ ik(XZ,T)f(T) dT)

1K £l

X5
< fz / k(i) dr [ (7)) ar
0
2
< ||k||L°°(0,T;L2(o7T)) 1AWz 0, -
Due to the estimate
(@1 E) ]| 5
(T R (ool
H3_)H1 qe}ai’*’ q#0 ||QHH3
[(@uE)Td|l
= sup = =
EYJL, 750 sH.
q q \/’ H3+ HPTOJR?QQK)J-(]‘H
o 171z,

FEQRK)TY | f#0 HQ’I}’LLKfHH'; 7
where we have used ProjH3 e = (QPEK)(QP KT, we can derive
R(QLK) n n

Vn e IN,h>03C" >0Vf e (QMK)IY! .
PCYQRK f|l = Ifll g} = 1 (33)

as a sufficient condition for (28).

15



Proposition 1. Define

lh
£, = Z(Ah Zw/ k(X;,7)f(r)dr

5.721

X, 2
Z wn v,j—1 / k(Xllv T)f(T) dT) (34)

7] 1y=1
with the abbreviation

h Tixieary sh

Cnj = ,U,(A?) (1 - (1 - :U‘(A?))n) , JE€ {17 . ‘vlh}

w

n,t,5

Z’I’L I )
m=1"{Xm€Al}

(note that Y27 wl, =1 and 22:1 w,}{’i,jI{XeA?} =Whi(X;Xy,...,Xn))
Then (33) and therewith (28) holds with

1 .
ch = ch, (35)
minge (i, gny G/ (AR
where
i i 2
ch = I a+ve-1)) . (36)
j=1 \k=j+1
Here, cn R ehi=(1—-e")/u(A) and
h— b 1 Sih
C, <C":= C

(1 —e*)mingegy,. gny .U(AZ)

if h = h(n) is chosen such that minge
under condition

lh}u(A ) > & for some o > 0, which is, e.g., the case

.....

Ve e R . nu(AM™) (2) — 00 asn — oo.

Proof. We get

2

X
QLK f|s, = / ZZ I{x,eary ]{IGA;}/O K(X:, ) f(r) dr | p(de)

i=1 j= 1Zm 1I{Xm€Ah}

2
h n "

Z/Ah Zzwm,gl{xem}/ K(Xi, 1) f(r)dr | u(de)

=1 j=1

lh

2
ZM(AIC <anzk/ Xz,T)f( )dT) .
k=1

Denoting
Xv
& = o Zwm’]/ k(X;,7)f(T)dr — - anm 1/ k(X,,7)f(7)dr
“nj =1 nJ 1y=1
je{2,...,1"} (37)
fl = e 1 nzl/ X“T)f( )dT

16



we obviously have

n,J i=1

j—1 1 n X;
G- 6t o>k, [ kXSG
1 C 0

Applying the simple estimate (that can be shown by induction)

j—1
(w’e{l,...,lh}: gschBk) = (Vi el 1"} [0k < (C2BR)
k=1

to ¢ = |§;], Bj = éfil,j Dy wﬁ,m- fOXi k(X;, 7)f(7)dr]|, we get
171, = €3 < ()2 [|QLKf 3, -
Lemma 7.
E{wy, ; ;,9(X;)}
= s (=) [ gtontan
(AT (Al i O

Proof. By the identity

Iix,eaty 1

n = n IXi APy
Zm:l I{XmeA?} 1+Zm=1,m;«éz‘I{XmeA?} (Xiedy

that can be obtained by distinction between the cases X; € A;‘ and X; & A;L, we get that

1
h
wy, ;9(Xi) = Iix,eamyg(Xi),
o 1+ Z:;:Lmysi I{XmeA;?} &};/
—b(X,)

=a(Xy : m#i)
hence by independence
E{wy; 19(Xi)} = B{a(Xn © m #0)}E{b(X;)}

where
1

nu(A%)
(see the proof of Lemma 4.1 in [2] with p = u(A%)).

E{a(X,, : m#£i)} =

(1= (1= p(A})")

O

Lemma 8. Let u = X be the restricted Lebesgue measure times %, with (P™")n>o a family of
equidistant partitions of [0,T], P" = {A}, Ab ...}, and let in addition to the assumptions made

above,

ok € L?((0,T)?)

hold.
Then there exists a ¢ > 0 such that

¥f e LX(0,T) : liminf B{||f[%,} > cllfIF, -

n— oo

Consequently (7) holds.

17
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Proof. Let f € L?(0,T). Taking into account the fact that by the Cauchy-Schwarz inequality

lh lh’
E{IfIG, Y =D B} = > (B{g))? (40)
j=1 j=1

with & according to (37), we first of all show that
lh

limint S (E{E})? > ¢ |1 £1%, . (41)

n—oco j=1

Due to Lemma 7, we have

E{§) = 7) drp(dt)

e
m/Ah/ oo

Since we are in the 1-d case with p being the restricted Lebesgue measure up to a constant factor,
we can write A = [th, t}, ), u(A;) = h, for t} = (j —1)h, h = - Therewith,

7) drp(de) .

lh

Z(E{é} = h32</th / (t,7)f det—/th/ (t,7)f det>2.

7=1

Integration by parts yields

/th / (t,7)f(r)drdt
_ _/tt (t—t_,) (k(t,t)f(t)-i—/ot ok (t,7) f(7) m) dt—i—h/oty K(t,7)f(r) dr

—1

/th / (t,7)f(r)drdt
- /t;m(t 1) <k(t,t)f(t)+/0t Oik(t, ) f(7) dT) dt+h/f K(t,7)f(r) dr,

lh'

" .
SEEY = § ke + [ ok dn)?,
j=1

i=1

SO

where (-,-) denotes the L? inner product and o, 7 € {1,.. .,I"} are the L? normalized hat
functions on (0,7):

t th € [th |t
. 3 SR
o7 (t) = BYEl g+1 —t t el ]7t?+1]
0 else.
Since the union of the spaces H" := span(¢} @ j€{l,..., I"}) is dense in L2(0,T), we get
" 9 . 2
lim > (B{g})? = 3 Hk(-, )f + / k(-7
n—oo j=1 0 Lz(O,T)

2 2
Z 302 1122 00,1)
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for some constant C' > 0 depending only on T, 5 and |[01k||2((g 72y, by bounded invertibility of
the second kind Volterra integral operator L*(0,T) — L*(0,T), f — k(-,-)f + [, O1k(-,7) f(7) d,
see, e.g., [1], [3].

The conclusion of (7) from (39) can be done by the following argument: Assume that for some
family (f)new.nso of elements of (Q" K)'Y,» C L2(0,T) there exists an € > 0 and a subsequence
(hk, k) ke with by — 0, ngy — 0o as k — oo, such that for f; := ff;’:’ f{k,l = f[ﬁ:l

. k—oo
(a) lim E{||fullF, ,} =0 but (b) vk e N : E{|Ifily,} > e.
Then due to (a), for k > ko with kg sufficiently large we have
2 9
Bl ,} <5

On the other hand, due to (b) we can divide by E{|| fk||i11} and consider the normalized sequence
2

% whose expectation is constant 1 and which is therewith convergent to 1 in expectation.
Hy

”fkm ||§{1 l—o0 1
B Fim 31,3

kar,,;,”?{l
E{ e %7,

Hence there exists an almost surely convergent subsequence, i.e., k,, such that

almost surely, so there exists an mg such that for all m > mg there holds > % almost

surely and therewith by (b)

Il fx,. ||i¢1 > % almost surely

which implies
2 2 >
E{l frn Nzt i 2 B il } 2 €5

This gives a contradiction. O
Summarizing, we get the following convergence result:

Corollary 1. Let K in (1) be defined by (29) with (30), (51), (38). Moreover, let i = T\
(A Lebesgue-Borel measure on [0,T)), with (P")nso a family of equidistant partitions of [0,T).
Define f' = (QMK)gl with §" =y, according to (2) and Q" according to (4) with (16). and let
h=h(n)= % be chosen such that

In
(ln—>oo and E—>O and —>0> as n — 0o (42)

with C" according to (36).

Then
2

EB{||fre - 11|

LQ(OT)}_)O asn — oo.

Proof. The result is a consequence of Theorem 1 together with inequality (18), Lemmas 2, 3, 6,
8, and the fact that B = C(0,T) is contained in Hs N Hs according to (13) and dense in Hy. O

Remark 3. An example for a choice of l,, such that (42) is satisfied is
I, = [(logn)*=°]  for some & € (0,1),

(with the notation [«] for the largest integer < o € R)
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IN

IN

const. exp(—logn + 31, log(l,,) + 4 log(l,))

IN

const. exp(—logn + 1 (logn)' ~°(1 — §) loglog n + (1 — §) loglog n)
— 0asn— o0,

where we have used Stirling’s formula in the form ! < const.\ﬂ(é)l. On the other hand, note that
I, = [logn] would not be a feasible choice since

2
. llogn] ( [logn]
[log n]2C" 1
a2 oy 2 | LR
j=1 \k=j+1
llog n]
_ 1[5 oz -y
T on s (j—1)!

1
—+/[logn]! = 00 asn — o

Y
S

3 Conclusions and Remarks

Investigating the question of how regression function estimation can be used as regularization
methods for linear ill-posed problems with additional measurement errors, we have shown conver-
gence mainly for the partitioning estimators and to some extent also for kernel estimator.

Future research will be devoted to a posteriori regularization parameter choice (e.g. by cross-
validation or splitting the sample) and to a generalization to nonlinear problems. Also use of least
squares methods for nonparametric regression estimation instead of local averaging methods is of
interest, further establishing almost sure convergence under sharpened integrability assumptions
instead of convergence in squared mean, and rate of convergence under smoothness assumptions

(on fTin (1)).
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