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Theo Grundhöfer, Boris Krinn, Markus Stroppel

Preprint 2010/007





Universität
Stuttgart

Fachbereich
Mathematik

Non-Existence of Isomorphisms
Between Certain Unitals
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Non-Existence of Isomorphisms
Between Certain Unitals

Theo Grundhöfer, Boris Krinn, Markus Stroppel

Abstract

We show that the Ree-Tits unitals are neither classical nor isomorphic to the polar unitals
found in the Coulter-Matthews planes. To this end, we determine the full automorphism
groups of the (finite) Ree unitals.

Introduction

A finite incidence structure (P,L) is called a unital of order q if any two points are joined by
a unique block in L, each block in L has exactly q + 1 points, and |P | = q3 + 1; this implies
that each point is on exactly q2 blocks. Unitals of order q occur with P the set of absolute
points of a suitable polarity of a projective plane of order q2; the blocks are the traces of
secants. Classical examples are defined by a hermitian form of Witt index 1 on a three-
dimensional vector space over a commutative field. However, unitals are also studied in their
own right, without any embedding into a projective plane (and, a fortiori, no connection with
a polarity). Notably, no embedding of any of the finite Ree unitals RTU(q) into a projective
plane of order q2 is known. In fact, there are several results that exclude an embedding of
RTU(q) into a finite projective plane such that the action of the group R(q) extends; see [10],
[14], [15]. Note also that examples are known of unitals of order q that do not admit any
embeddings into projective planes of order q2, see [1, A.2].

Very recently, a new class of finite unitals has been discovered in [12]. These come from
polarities of the Coulter–Matthews planes, the order coincides with the order of a Ree uni-
tal. It has already been proved in [12, 6.8] that this new series contains many non-classical
unitals. In the present paper, we also show that they are not isomorphic to Ree unitals. To
this end, we determine the full group of automorphisms for each finite Ree unital, using the
classification of finite simple groups.

We also give new proofs of the fact that a (possibly infinite) Ree-Tits unital is never isomor-
phic to a classical unital defined by a hermitian form of Witt index 1 on a three-dimensional
vector space over a commutative field. This follows from the known fact that every auto-
morphism of a classical unital over a commutative field extends to an automorphism of the
ambient plane ([16], cf. [18]) together with a result by Lüneburg [14].

We present two different approaches because both of them allow generalizations. The first
one uses the classification of finite simple groups (via the classification of the two-transitive
actions) to determine the full group of automorphisms of RTU(q). This method allows to
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see that the class of Ree unitals is disjoint from the class of polar unitals found in Coulter–
Matthews planes (see Section 6 below). The second approach uses only partial knowledge
of the full group of automorphisms. It thus avoids the heavy machinery and at the same
time also includes the Ree-Tits unitals obtained by generalizing the construction of RTU(q)
to suitable infinite fields.

In both approaches, the crucial point is that we know the full group of automorphisms of
one of the unitals in question, and an interesting part of the automorphism group of the other
one.

1 Tits endomorphisms

In order to construct the Ree group R(θ,K) we need a field K of characteristic 3 and a Tits
endomorphism θ: i.e., an endomorphism θ of K with θ2 = φ, where φ : x 7→ x3 denotes the
Frobenius endomorphism.

1.1 Lemma. If K is any field of characteristic 3 admitting a Tits endomorphism θ then −1 is not
a square in K. For a finite field K of characteristic 3 a Tits endomorphism exists if, and only if,
there is no square root of −1 in K; i.e., precisely if the order of K is 3k with an odd integer k.

Proof. The existence of a square root i of −1 entails that K contains F3(i) ∼= F9. Every
endomorphism of K would leave F3(i) invariant, and θ would induce a Tits endomorphism
of F3(i). This contradicts the fact that the Frobenius endomorphism induces the generator of
Aut(F3(i)) ∼= Z/2Z.

If K is a finite field of order 3k then Aut(K) is a cyclic group of order k. Thus the generator φ
of Aut(K) possesses a square root precisely if k is odd.

1.2 Remarks. In the finite case, the Tits endomorphism is unique (if it exists at all) because
Aut(Fq) is cyclic. We write R(q) := R(θ,Fq).

If the field K is infinite, there may exist different Tits endomorphisms, or none at all (even
if there is no square root of −1 in K). Cf. Section 4 of [19], where Tits automorphisms of
fields of characteristic 2 are discussed.

1.3 Lemma. Let K be a field of characteristic 3 with Tits endomorphism θ.
a. The endomorphism θ + 2 := (x 7→ xθx2) of the multiplicative group K∗ is bijective.
b. The endomorphisms θ + 1 and θ − 1 of K∗ are neither injective nor surjective. However,

each one of the sets
{
xθ+1

∣∣ x ∈ K∗
}

and
{
xθ−1

∣∣ x ∈ K∗
}

additively generates K.

Proof. A straightforward computation in the endomorphism ring of K∗ shows that 2− θ is the
inverse of θ + 2.

Clearly −1 lies in the kernel of both θ + 1 and θ − 1. From xθ−1 = −1 we infer xθ = −x
and then xφ = xθ

2
= −xθ = x. Thus x ∈ {1,−1} and xθ = 1; a contradiction. The case θ + 1

is treated analogously.
In any field K the group S additively generated by the squares contains the subgroup
{(x+ 1)2 − (x− 1)2 | x ∈ K∗} = {4x | x ∈ K∗}. This shows S = K if char K 6= 2.

We compute (θ − 1)(θ + 1) = (θ + 1)(θ − 1) = θ2 − 1 = 2. Thus
{
xθ+1

∣∣ x ∈ K∗
}

and{
xθ+1

∣∣ x ∈ K∗
}

both contain all squares, and generate K.
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2 The point stabilizer and its regular normal subgroup

From now on, we consider a field K with a Tits endomorphisms θ. Note that θ = id occurs
precisely if |K| = 3.

We write (a, b, c)ᵀ for the column with entries a, b, c, and define a group operation ∗ on the
set U(θ,K) := {(x, y, z)ᵀ | x, y, z ∈ K} of columns by a

b
c

 ∗
 x

y
z

 :=

 a+ x
b+ y + axθ

c+ z + ay − bx− axθ+1

 .

The third power of (a, b, c)ᵀ is
(
0, 0,−aθ+2

)ᵀ; in particular, our group has exponent 32. The
inverse of (a, b, c)ᵀ is

(
−a, aθ+1 − b,−c

)ᵀ.

2.1 Lemma. The multiplicative group K∗ acts on U(θ,K) via the group homomorphism

h : K∗ → Aut(U(θ,K)) : f 7→ hf :=

 a
b
c

 7→
 fa

fθ+1b
fθ+2c

 .

This gives rise to a semidirect product G∞ := K∗nhU(θ,K). We still extend this product by
the centralizer CAut(K)(θ) of θ in Aut(K) stipulating that α ∈ CAut(K)(θ) acts as α̂ : (a, b, c)ᵀ 7→
(aα, bα, cα)ᵀ. Note that α̂−1hf α̂ = hfα . The corresponding semidirect product will be denoted
Γ∞ := CAut(K)(θ) nG∞.

2.2 Definition. In order to generate the full group R(θ,K) we need a single transformation
(taken from [20], with a correction in the definition of N , cf. [5]) that interchanges (0, 0, 0)
with∞:

ω :

 a
b
c

 7→ −1
N(a, b, c)


aθbθ − cθ + ab2 + bc− a2θ+3

a2b− ac+ bθ − aθ+3

c


where N(a, b, c) := −acθ + aθ+1bθ − aθ+3b− a2b2 + bθ+1 + c2 − a2θ+4. In order to make sure
that ω is well defined (and injective) for points different from (0, 0, 0) one has to check that
N(a, b, c) = 0 ⇐⇒ a = b = c = 0; this is done in [5]. (Both in [20, Sect. 5] and in [21,
7.7.15] one has to correct a misprint and replace the summand aθ+1b by aθ+1bθ.)

The group R(θ,K) of bijections of U(θ,K) generated by G∞ and ω is called the Ree-Tits
group.

2.3 Remark. The groups G∞ and Γ∞ are the stabilizers of a point ∞ in the Ree group
G = R(θ,K) and its holomorph ΓR(θ,K) := CAut(K)(θ) n R(θ,K), respectively.

For our present purposes, it suffices to know G∞ if one is willing to accept that G acts
(two-transitively) on U(θ,K) ∪ {∞} in such a way that the stabilizer of ∞ is G∞, and that
this stabilizer acts regularly on the complement of∞ (i.e. on itself, by multiplication from the
right). See [21, Sect. 7] for a discussion of G and its action as a subgroup of the centralizer
of a polarity of a Moufang hexagon.

2.4 Remarks. The Tits endomorphism of F3 is the identity. This case needs separate treat-
ment, and we will exclude it in 4.2 and 4.4 below. The group R(3) is isomorphic to PΓL(2, 8),
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and not simple. For fields with more than 3 elements, the group R(θ,K) is simple (cf. [5]).
Some authors (e.g., see [21, 7.7.19]) study a larger group which coincides with R(θ,K) only
if K∗ is generated by −1 together with the group of squares in K∗. This is satisfied for finite
fields admitting a Tits endomorphism because the existence of that endomorphism secures
that −1 is not a square, cf. 1.1.

2.5 Lemma. The first term in the descending central series (i.e., the commutator subgroup)
of U(θ,K) is ζ1(U(θ,K)) = {(0, y, z)ᵀ | y ∈ C, z ∈ K} where C :=

〈
axθ − xaθ)

∣∣ a, x ∈ K
〉
.

The second term in the descending central series is ζ2(U(θ,K)) = [U(θ,K), ζ1(U(θ,K))] =
{(0, 0, z)ᵀ | z ∈ K} = Z(U(θ,K)). The set C degenerates to {0} precisely if |K| = 3. In all
other cases we have C = K.

Proof. Computing commutators a
b
c

,
 x

y
z

 =

 a
b
c

−1

∗

 x
y
z

−1

∗

 a
b
c

 ∗
 x

y
z


=

 0
axθ − xaθ

bx− ay + x2aθ − a2xθ + axθ+1 − xaθ+1


we see that the center Z(U(θ,K)) of U(θ,K) is {(0, 0, z)ᵀ | z ∈ K}, the commutator subgroup
is {(0, y, z)ᵀ | (y, z) ∈ C ×K}, and ζ2(U(θ,K)) = Z(U(θ,K)).

If K has more than 3 elements then θ 6= id and C contains some element c 6= 0. From 2.1
we infer that C contains the additive closure of

{
fθ+1c

∣∣ f ∈ K∗
}

. Thus C = K by 1.3.

2.6 Corollary. The group U(θ,K) is nilpotent of class 3 unless |K| = 3. In the latter case, the
group is nilpotent of class 2.

3 The unital

We abbreviate P := U(θ,K) ∪ {∞}.

3.1 Lemma ([6], see [21, 7.7.18]). The stabilizer R(θ,K)a,b of any two points a, b ∈ P contains
a unique involution ρa,b. Every involution in R(θ,K) either is a conjugate of ρ0,∞ = h−1 or acts
without any fixed points.

The set of fixed points of ρ0,∞ is `0,∞ := {∞} ∪ {(0, y, 0)ᵀ | y ∈ K}. Let L denote the orbit
of `0,∞ under R(θ,K); this is also the orbit under ΓR(θ,K) because α̂ fixes `0,∞ for each
α ∈ CAut(K)(θ). Note that ω interchanges ∞ with 0, and also fixes `0,∞. We define the Ree-
Tits unital as the incidence structure RTU(θ,K) := (P,L); in the finite case, we abbreviate
RTU(q) := RTU(θ,K) with q := |K|.

In the finite case, one may describe P as the set of Sylow 3-subgroups of R(θ,K) and L as
the set of involutions with fixed points, such an involution being incident with each Sylow
3-subgroup that is normalized by the involution. See [14].

The following is an immediate consequence of 3.1.

3.2 Proposition. The incidence structure RTU(θ,K) is a linear space.
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3.3 Examples. The blocks through∞ form an orbit under U(θ,K); we have

`∞,0 ∗ (a, b, c)ᵀ =
{

(a, y, c− ya)ᵀ | y ∈ K
}

= `∞,(a,0,c)ᵀ .

The stabilizer of `∞,0 in U(θ,K) is B :=
{

(0, b, 0)ᵀ | b ∈ K
}

; this is not a normal subgroup of
U(θ,K). Each coset (a, b, c)ᵀ ζ1(U(θ,K)) is the union of the orbit of `∞,(a,0,c)ᵀ under the center
Z(U(θ,K)).

4 The finite case

In this section we collect some information about the action of a Ree group over a finite field
on the corresponding Ree unital. We are going to use that information to determine the full
group of automorphisms of the Ree unital, see 4.4. The proof will use the classification of
finite simple groups (via the classification of two-transitive groups).

Before we know the full group Aut(RTU(q)) we will prove that RTU(q) is not classical.
The proof is a simplified version of the proof of 5.3. Note, however, that our treatment of the
general case also covers the finite case, including the case q = 3 which plays a special role
and has to be excluded in 4.2 below. We present this separate argument explicitly because
the finite situation allows a more direct approach. This is mainly due to the fact that the
automorphism group of a finite field is cyclic.

4.1 Lemma. No Sylow 3-subgroup of R(q) is isomorphic to any subgroup of PU(3, q).

Proof. If the Sylow 3-subgroup U(q) of R(q) were isomorphic to some subgroup PU(3, q) that
subgroup would lie in a conjugate of the subgroup H of PΓU(3, q) induced by

 1 0 0
x 1 0
z −xκ 1

∣∣∣∣∣∣ x, z ∈ Fq
z + zκ = −xκx

 .

But H is a group of exponent 3 while U(q) has exponent 32.

4.2 Theorem. Let q = 32k+1 for some integer k ≥ 1. Then RTU(q) is not isomorphic to the
classical (hermitian) unital H(q) of order q.

Proof. The automorphism group of the classical unital is PΓU(3, q); see [16], cf. [18]. Thus
every isomorphism from RTU(q) onto the classical unital would induce an embedding of
ΓR(q) into PΓU(3, q). Since U(q) is a group of order q3 = 36k+3 contained in the commutator
group of ΓR(q), its image in PΓU(3, q) is contained in a Sylow 3-subgroup of the commutator
group of PΓU(3, q). This is impossible by 4.1.

4.3 Lemma. For any k ∈ N the number 33(2k+1) + 1 is divisible by 4 · 7 but not by 8.

Proof. We abbreviate q := 32n+1. Now −1 ≡ 33 ≡ q3 (mod 28) yields q3 + 1 ∈ (4 · 7)Z. On
the other hand, we have 1 ≡ 32 ≡ q/3 (mod 8) and thus 4 ≡ q + 1 (mod 8).

Note that 4 · 7 = 28 = 33 + 1 is the order of the smallest Ree unital RTU(3). This case plays
a special role because the corresponding Ree group is not simple.

We are now going to use the classification of finite simple groups in order to determine the
full group Aut(RTU(q)). Thus we re-prove a special case of Kantor’s results [11]; we include
the proof for the convenience of the reader.
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4.4 Theorem. Let q = 32k+1 for some integer k ≥ 1. Then the Ree group R(q) is normal in
Aut(RTU(q)) and Aut(RTU(q)) ∼= Aut(R(q)) ∼= Aut(Fq) n R(q).

Proof. The group A := Aut(RTU(q)) acts 2-transitively on RTU(q) because its subgroup R(q)
does. According to a theorem of Burnside’s ([2, §154, Thm. XIII, p. 202], cf. [3, 4.3] or [8,
Thm. 4.1B]), the group A contains a transitive normal subgroup S which is either simple or
elementary abelian. The latter case is ruled out by 4.3. Thus S occurs in the list of almost
simple two-transitive groups, cf. [3, 7.4] where R(q) is denoted by R1(q).

For most of the entries in the list it is easy to see that the degree n does not meet the
requirements of 4.3. After that observation, it remains to exclude the following candidates
for the action of S.
• Actions of alternating groups:

these are 3-transitive and will not respect the system of blocks.
• Actions of PSL(d, pe) of degree (pde − 1)/(pe − 1) =

∑d−1
j=0 p

je with d ≥ 2:
then pe

∑d−2
j=0 p

je = 36k+3 implies p = 3 and then d = 2. Thus R(q) would be contained
in PSL(2, q3), contradicting the fact that the latter group has abelian Sylow 3-subgroups.
• Actions of Sp(2d, 2) of degree n = 22d−1 ± 2d−1 = 2d−1(2d ± 1) with d ≥ 3:

here d = 3 by 4.3 and the remaining possibilities for n ∈ {22 · 7, 22 · 9} are smaller than
q3 + 1 = 36k+3 + 1 because k ≥ 1.
• Actions of PSU(3, q):

such an action would imply R(q) ≤ PSU(3, q), contradicting 4.1.
Thus we have verified thatA is contained in Aut(R(q)). The automorphisms of the Ree groups
have been determined in [17], cf. also [9, 2.5.12].

Conversely, every automorphism of R(q) preserves the unique conjugacy class of involutions
and the conjugacy class of normalizers of Sylow 3-subgroups. Thus Aut(R(q)) is contained
in A, and we have equality.

5 The general case

In the general case of a possibly infinite field K it is not obvious that the groups R(θ,K) and
U(θ,K) have to be mapped into the group of linearly induced automorphisms of the classical
unital. The commutator argument used in 4.2 only works if Aut(K) is abelian. Moreover, it is
not clear a priori which field should be used for the definition of the classical unital. We even
have to deal with the possibility that the characteristic of this field may be different from 3.

An infinite field may have more than one involutory automorphism (or none at all). We
consider a commutative field E with an involution κ ∈ Aut(E). Then we raise the question
whether or not the Ree-Tits unital RTU(θ,K) is isomorphic to the classical unital defined by
a κ-hermitian form fκ of Witt index 1 on E3. Without loss of generality, we may replace the
form fκ by a scalar multiple, and assume that it is given by fκ(x, y) = x1y

κ
3 + x2y

κ
2 + x3y

κ
1 .

According to [18], the group

ΓU(3,E, κ) =
{
µ ∈ ΓL(3,E)

∣∣∣∣ ∃σ ∈ Aut(E) ∃ s ∈ E∗ ∀x, y ∈ E3 :
fκ(xµ, yµ) = sfκ(x, y)σ

}
of semi-similitudes (cf. [7, §10]) induces the full automorphism group PΓU(3,E, κ) of the
classical unital H(κ,E) whose point set consists of the isotropic one-dimensional subspaces
with respect to fκ.
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5.1 Lemma. An automorphism α ∈ Aut(E) occurs as the companion automorphism of an
element of ΓU(3,E, κ) if, and only if, it centralizes κ.

Proof. Consider µ ∈ ΓU(3,E, κ) with companion automorphism α; i.e., (au)µ = aαuµ for all
a ∈ E and u ∈ E3. Evaluating fκ (xµ, yµ) = sfκ(x, y)σ at x = au and y = bv with a, b ∈ E
and u, v ∈ E3 and using commutativity of E we find α = σ = κακ. Thus α centralizes κ.
Conversely, assume that α centralizes κ. Then (x1, x2, x3) 7→ (xα1 , x

α
2 , x

α
3 ) is a semi-similitude

with companion α.

5.2 Remark. Our proof of 5.1 makes essential use of the commutativity of the multiplication.
If one drops this assumption, not much can be said about the subgroup of Aut(E) consisting
of those automorphisms that occur as companions of semi-similitudes, cf. [7, §10].

5.3 Theorem. Let K be any field of characteristic 3 with a Tits endomorphism θ. Then the
incidence structure RTU(θ,K) is not isomorphic to any classical (hermitian) unital over a com-
mutative field.

Proof. Assume, to the contrary, that there exists a commutative field E with involution κ such
that RTU(θ,K) is isomorphic to H(κ,E). According to [18] any isomorphism from RTU(θ,K)
onto H(κ,E) induces an embedding of the action of R(θ,K) into the action of PΓU(3,E, κ).
In particular, we obtain an embedding of the group U(θ,K) as a subgroup of a point stabilizer
in PΓU(3,E, κ). We may (and will) assume that the fixed point is∞c := E(1, 0, 0).

The group ζ1(U(θ,K)) centralizes the stabilizer Λ := U(θ,K)`∞,0 . Thus Λ fixes each of the
blocks `∞,(0,b,c)ᵀ = `∞,(0,0,c)ᵀ . However, it does not fix all the blocks through ∞ because it is
not a normal subgroup of U(θ,K).

Straightforward computations show that PU(3,E, κ)∞c acts two-transitively on the set of
blocks through∞c. Thus we may assume that Λ is mapped into the stabilizer of the two lines
joining∞c with E(0, 0, 1) and with E(0, 1, 1), respectively. This stabilizer is the product of the
centralizer CAut(E)(κ) of κ in the group of field automorphisms and the group T consisting of
all those elements of PΓU(3,E, κ) that fix all the lines through∞. The group T is induced by
the subgroup 

 1 0 0
0 1 0
c 0 1

∣∣∣∣∣∣ c ∈ E, cκ = −c

 .

For α ∈ CAut(E)(κ) and c ∈
{
x ∈ E | xκ = −x

}
we assume that the semilinearly induced map

λ : E(x, y, z) 7→ E(xα + c, yα, zα) belongs to the image of Λ. Since Λ has exponent 3, we know
α3 = id, and cα

2
+ cα + c = 0.

If α 6= id we know by the additive version of Hilbert’s Theorem 90 (cf. [13, VI, 6.3]) that
there exists d ∈ E with d− dα = c. If char E 6= 2 we put x := 1

2(d− dκ) and find xκ = −x and
x − xα = c (here we use that α commutes with κ, cf. 5.1). If char E = 2 we apply Hilbert’s
Theorem 90 again to the restriction of α to Fix(κ) in order to find x with these properties.

In any case, the point E(x, 0, 1) 6=∞c on H(κ,E) is fixed by λ. This contradiction shows that
α = id, and λ ∈ T fixes each block through ∞c. Again, we reach a contradiction. Therefore
we have no embedding of Λ as required, and thus there cannot be any isomorphism from
RTU(θ,K) onto H(κ,E).
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6 Polar unitals in Coulter–Matthews planes

The Coulter–Matthews planes introduced in [4] are finite projective planes of order 3e, con-
structed from suitable “planar” functions of the form x 7→ xn. The number of isomorphism
classes of Coulter-Matthews planes (including the desarguesian one which is obtained if
n = 2) of order 3e equals φ(e) if e is even and 1

2φ(e) if e is odd, see [12, 3.5].
The polarities of these planes have been determined completely, see [12, 5.2]. It turns out

that unitary polarities (where the absolute points form a unital) exist precisely if e is even.
In that case there is just one conjugacy class of such polarities. Deviating from the notation
in [12] we denote the square root of 3e by q. The corresponding unital will be denoted by
KSU(n, q). Some of these unitals will be classical ones but there are infinite series of non-
classical examples, see [12, 6.8].

Each unital KSU(n, q) has order q = 3e and thus q3 + 1 points. Thus the question arises
naturally whether KSU(n, q) and RTU(q) might be isomorphic for some values of q and n.
We are going to show that this is not the case. Since KSU(2, q) is the classical unital of order q
our results in this section include another alternative proof of the fact that the Ree unitals are
not classical. However, this variant uses the classification of finite simple groups (via 4.4).

6.1 Proposition ([12, 5.6]). The commutator group of Aut(KSU(q)) contains an elementary
abelian group Ξ of order q2 such that Ξ fixes precisely one point ∞ of KSU(q) and contains a
subgroup T of order q that fixes each block through∞.

6.2 Theorem. Choose q = 32k+1 and n ∈ N such that x 7→ xn yields a Coulter–Matthews plane
of order q2. Then the unitals KSU(n, q) and RTU(q) are not isomorphic.

Proof. If η : KSU(n, q)→ RTU(q) were an isomorphism then η ◦ Ξ ◦ η−1 would be contained
in the commutator group of Aut(RTU(q)) and thus in a Sylow 3-subgroup of R(q). Without
loss, we may then assume η ◦Ξ◦η−1 ≤ U(q), and η ◦T◦η−1 would induce a subgroup of U(q)
fixing each block through ∞. This is impossible because U(q) acts faithfully on the pencil of
blocks, see 3.3.

6.3 Remark. Our result 6.2 cannot be reduced to Lüneburg’s non-embeddability theorem [14]
because we do not know whether each automorphism of KSU(n, q) extends to an automor-
phism of an ambient projective plane.
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