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Polarities of Schellhammer Planes

Steffen Poppitz, Markus Stroppel

Abstract

We construct polarities for projective planes admitting a group of automorphisms that acts
regularly on the complements of an anti-flag in the point and line set. In particular, we
determine all polarities of the compact connected planes studied by I. Schellhammer and
by P. Sperner. For both classes of planes we solve the conjugacy problem, and determine
the set of absolute points for each one of the polarities. Among these polarities we find
the first examples of elliptic polarities in non-Moufang compact projective planes.

1 Schellhammer planes

Let P = (P,L) be a projective plane. For each point p ∈ P and each line L ∈ L let Lp and

PL denote the set of lines through p and the set of points on L, respectively. Incidence will

be denoted by “∈”. In the explicit examples, the incidence relation between affine points and

lines will really be the element relation.

1.1 Definition. The plane P is called a Schellhammer plane if there exists a group S ≤ Aut(P)
such that S fixes an anti-flag (o,∞) and acts regularly (i.e., sharply transitively) both on

P r ({o} ∪ P∞) and on L r (Lo ∪ {∞}). Then S is called a Schellhammer group on P.

The present study was initiated by the observation that (similar as in the case of shift

planes, cf. [13], [14]) the existence of a commutative Schellhammer group secures the exis-

tence of polarities (cf. [4, 1.2.13, 1.2.14]). Our aim is to classify the latter. A more general

approach (using non-commutative groups) is needed for the treatment of an interesting class

of compact connected planes (see 3.6 below).

We will adopt an affine point of view, taking ∞ as the line at infinity and identifying affine

lines with their affine point rows. Choosing a ∈ P r ({o} ∪ P∞) and A ∈ La r Lo we obtain

a labelling of the lines in the regular orbit by L(s) := s(A) for s ∈ S. We will identify

s ∈ S with s(a), the affine point row of A then becomes L(1) = {t ∈ S | t(a) ∈ A}. After this

identification, the action of S on the affine point set appears as multiplication from the left.

1.2 Lemma. Let P = (P,L) and P ′ = (P ′,L′) be projective planes with non-incident point-

line pairs (o,∞) and (o′,∞′), respectively. Then every isomorphism between the incidence

structures (P r ({o} ∪ P∞),L r (Lo ∪ {∞})) and
(
P ′ r ({o′} ∪ P ′

∞′),L′ r (L′
o′ ∪ {∞′})

)
ex-

tends uniquely to an isomorphism from P onto P ′.

Proof. The affine plane (P r P∞,L r {∞}) can be reconstructed uniquely from the structure

(P r ({o} ∪ P∞),L r (Lo ∪ {∞})) because the lines through o are the classes of the equiva-

lence relation “not joined”, and extension to the projective plane is standard.
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2 Schellhammer groups on compact connected planes

In this section let P = (P,L) be a compact connected projective plane. The study of such

planes was initiated by Salzmann. An overview of results and techniques is given in [20].

The class of compact connected Schellhammer planes is of particular interest: on the one

hand, there are huge classes of (non-classical) examples in this realm while, on the other

hand, the fact that only two isomorphism types of locally compact connected Schellhammer

groups are possible leads to a coherent theory.

Before we give examples of Schellhammer planes in Section 3 we reduce the list of candi-

dates for the groups. It appears reasonable to impose topological assumptions on the Schell-

hammer group S, as well: we stipulate that S is a locally compact, σ-compact topological

group and that the action ω : S × P → P : (s, p) → s(p) on the point space is continuous. The

compact–open topology (with respect to its action on P ) turns Aut(P) into a locally compact

topological group, cf. [20, 44.3]. The action ω of S induces an injective continuous group

homomorphism δ : S → Aut(P), see [26, 10.4 (a), 9.14].

We pick a point o ∈ P and a line ∞ ∈ L r Lo.

2.1 Lemma. Let S be a locally compact, σ-compact topological group and assume that there

exists an injective continuous group homomorphism δ : S → Aut(P) such that δ(S) acts regularly

on Pr({o}∪P∞). Then δ is a homeomorphism from S onto its image. In particular, the subgroup

δ(S) is closed in Aut(P) and S is connected and homeomorphic to R
2d

r {0} where 2d = dimP .

Proof. The orbit of a under Aut(P) is open in P because it contains P r ({o} ∪ P∞). This

implies that Aut(P) is a Lie group, see [20, 53.1]. Thus Aut(P) has no small subgroups. Now

injectivity and continuity of δ yield that S has no small subgroups. This means that S is a

Lie group, see [12]. The stabilizer of ∞ in Aut(P) acts transitively on the line ∞ because it

contains δ(S). From [20, 52.3] it now follows that P∞ ≈ Sd and P r P∞ ≈ R2d.

We pick a ∈ P r ({o}∪P∞), then ωa : S → P : s 7→ s(a) is a continuous injection. Our next

aim is to show that dimS = dimP . For every neighborhood W in S we have dimW = dimS.

If W is compact then ωa induces a homeomorphism from W onto ωa(W ), and dimS =
dimW = dimωa(W ) ≤ dimP follows. Since S is σ-compact and locally compact, there exists

a sequence (Wn)n∈N of compact neighborhoods in S with S =
⋃
n∈N

Wn. The Sum Theorem

of topological dimension (cf. [20, 92.9]) says dimP ≤ dimS, and we obtain dimS = dimP .

Thus S and P are manifolds of the same dimension. Domain invariance (cf. [20, 51.19])

yields that δ induces a homeomorphism from S onto δ(S), as claimed. In particular, the

group δ(S) is locally compact and thus closed in Aut(P) (cf. [26, 4.7]). The corestriction

ωa : S → P r ({o} ∪ P∞) ≈ R2d r {0} of the evaluation map is open by a Baire category

argument; see [26, 10.10(c)] or [20, 96.8].

2.2 Proposition. If S is a topological group homeomorphic to R
n

r {0} with n > 1 then S is a

Lie group isomorphic either to C
× or to H

×.

Proof. Assume that S is homeomorphic to Rn r {0} for some n > 1. Then S has two ends

(in the sense of Freudenthal [5]) and is thus isomorphic to the direct product R ×K with a

compact connected group K by [11, Thm. 5], [6]. We note that K is a quotient of the locally

euclidean group S, and thus a Lie group. Moreover, the group K is homotopy equivalent to S
and thus to the sphere of dimension n− 1.
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The Hopf–Samelson Theorem for connected compact Lie groups (see [8, 6.88]) is used

in [8, 6.95] to show that a topological (Lie) group homeomorphic to a sphere is isomor-

phic either to SC or to SH. Since the proof uses only cohomological invariants, it remains

valid under the weaker hypothesis that the group in question is a compact connected group

homotopic to a sphere.

A much more elementary proof for the case n = 2 can be found in [21, 14.4] .

2.3 Lemma. Assume that a locally compact, σ-compact topological group S acts continuously

on P, fixing o and ∞ such that the induced action on P r ({o} ∪ P∞) is regular. Then S also

acts regularly on L r (Lo ∪ {∞}).

Proof. Let L ∈ Lr (Lo∪{∞}). The groups in question are known from 2.1 and 2.2. We study

S = C× first. The stabilizer SL fixes L ∧∞ and thus a line through o. Since SL is centralized

by the transitive group S on Lo we infer that SL fixes each line through o. Now SL is trivial

because the two lines L and ∞ outside Lo are also fixed. The orbit of L has full dimension in P
and is thus open, see [20, 53.1]. Since this applies to any L we infer that S acts transitively

on the connected set L r (Lo ∪ {∞}).
It only remains to consider S = H

×. As before, we infer that the center Z of S has trivial

intersection with SL. Therefore, the quotient map q from S onto S/Z ∼= SO(3,R) induces an

embedding of the Lie algebra of SL into the Lie algebra of SO(3,R). The proper subalgebras

of the latter have dimension at most one. This implies that the connected component of q(SL)
is closed, and SL contains elements of prime order if dimSL > 0. Any such element would fix

more than one line through o (cf. [20, 55.25]) and then also a point in P r ({o} ∪ P∞). This

contradiction shows that the stabilizer of any L is discrete. Again, every orbit in Lr(Lo∪{∞})
is open, and transitivity of S follows.

Both the group S = H
× and its orbit L r (Lo ∪ {∞}) are simply connected. The discrete

stabilizer is trivial because it coincides with the fundamental group of the orbit.

2.4 Lemma. Let P be a 2-dimensional compact Schellhammer plane.

1. If dim Aut(P) > 2 then P is a Moulton plane (possibly the classical real plane).

2. If dim Aut(P) ≤ 2 then the connected component of Aut(P) is the (unique) Schellhammer

group.

Proof. If dim Aut(P) ≥ 4 then the assertion follows from Salzmann’s characterization of the

Moulton planes [19, 4.8], see [20, 38.1]. Thus it remains to investigate planes P with

dim Aut(P) = 3. These planes and their automorphism groups have been determined,

see [20, Sect. 34–37]; it turns out that none of these contains a Schellhammer group.

The assertion for dim Aut(P) ≤ 2 follows from the fact that every closed subgroup of full

dimension contains the connected component.

2.5 Theorem. Every polarity of a non-desarguesian Moulton plane normalizes a Schellhammer

group. The Schellhammer groups form a single conjugacy class.

Proof. One knows that the automorphism group A of any non-desarguesian Moulton plane

is a Lie group with Lie algebra (isomorphic to) gl(2,R), cf. [20, 34.8]. Moreover, the com-

mutator group A′ is closed [20, 34.4 6)] and isomorphic to the simply connected covering

of SL(2,R). In particular, the (infinite cyclic) center Z of A′ is closed in A, and A/Z ∼=
R/Z × PSL(2,R).
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Each polarity of the plane induces an involutory automorphism of the group A and thus

also an involution on the Lie algebra sl(2,R) = {X ∈ R
2×2

∣∣ trX = 0} of traceless matrices.

Like every automorphism of sl(2,R) the polarity preserves Killing’s quadratic form κ(X) :=
−detX for X ∈ sl(2,R). This form is extended to gl(2,R) = R id⊕ sl(2,R) by κ(s id +X) :=
κ(X) for s ∈ R and X ∈ sl(2,R).

By 2.1 every Schellhammer group S ≤ A is closed in A and isomorphic to C×; its Lie

algebra s is 2-dimensional and commutative. As sl(2,R) has no two-dimensional abelian

subalgebras we find s = R id ⊕ RX for some X ∈ sl(2,R). The restriction κs of the Killing

form κ to s is degenerate because s contains the radical R id of κ. The value κ(X) decides

whether κs is positive semidefinite, negative semidefinite, or zero.

The maximal compact subgroup U ∼= R/Z of S is not central in A because the center of A is

isomorphic to R×Z. Thus S/Z is compact, and we infer that κs is negative semidefinite. This

means that the Schellhammer groups in A form a single conjugacy class, see [7, Prop. 1.2].

The automorphism ψ induced by a polarity on the Lie algebra gl(2,R) leaves the derived

algebra sl(2,R) invariant and satisfies ψ2 = id. We claim that ψ fixes RX for some X ∈
sl(2,R) with κ(X) < 0 and thus the Lie algebra R id ⊕ RX of some Schellhammer group.

Since ψ2 = id we have sl(2,R) = E+ ⊕ E− where Eσ := {Y ∈ sl(2,R) | ψ(Y ) = σY } and

E+ ⊥ E− with respect to κ. Note that E+ 6= {0} because −id is not an automorphism

of sl(2,R). If E+ does not contain X as required then the restriction of κ to E+ is positive

definite. Then the restriction of κ to the orthogonal complement E− is negative definite, and

we find the required subalgebra there.

2.6 Remark. An alternative, less direct but more elegant argument uses deeper structure

theory of Lie groups in order to prove conjugacy of Schellhammer groups of Moulton planes

in the following way. Each Schellhammer group on a Moulton plane is isomorphic to C
× ∼=

R/Z × R and thus (contained in) the centralizer of some maximal compact subgroup. The

latter are in a single conjugacy class by the Mal′tsev–Iwasawa Theorem (see [10, Thm. 13]).

3 Compact connected Schellhammer planes

3.1 Construction. Schellhammer ([22, § 7], cf. [20, 34.1]) has shown that many examples

of Schellhammer planes can be obtained from the action of the multiplicative group C
× of

complex numbers on C ∼= R
2, as follows. The lines through 0 remain the usual ones (these

are of the form cR with c ∈ C×). In order to describe the representative L(1) for the regular

orbit of lines, we use a continuous function g :
(
−π

2 ,
π
2

)
→ (0,∞) with lim

ϕ→±π/2
g(ϕ) = 0

such that log(g) is a strictly concave function. Now we set Lg(1) := {eiϕ/g(ϕ)
∣∣ −π

2 < ϕ < π
2 }

and Lg(c) := cLg(1). Then Ag := (C, {Lg(c) | c ∈ C×} ∪ {cR | c ∈ C×}) is an affine plane,

and C
× is a Schellhammer group on Ag. In the sequel we will assume 1 ∈ L(1); this just

means g(0) = 1. Multiplying with a suitable real number (i.e., applying an element of the

Schellhammer group) we may always achieve this.

It has been shown in [22] that every two-dimensional compact projective plane admitting

a group isomorphic to C
× is obtained by the construction in 3.1. This is of importance in

view of the fact that R
2 and C

× ∼= R × R/Z are the only two-dimensional commutative

locally compact connected groups acting faithfully on two-dimensional compact projective

planes, cf. [20, 32.18]. The third candidate from the list of two-dimensional commutative
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connected Lie groups, namely the compact group (R/Z)2 has been excluded by Salzmann

in [16, Hauptsatz 4.3].

3.2 Remarks. If g :
(
−π

2 ,
π
2

)
→ (0,+∞) is differentiable then log(g) is strictly concave if,

and only if, the derivative (log(g))′ = g′/g is a decreasing homeomorphism from
(
−π

2 ,
π
2

)

onto R. Thus a differentiable function g :
(
−π

2 ,
π
2

)
→ (0,+∞) satisfies the conditions in 3.1

if, and only if, its reciprocal f := 1/g satisfies lim
ϕ→±π/2

f(ϕ) = +∞ and the logarithmic deriva-

tive f ′/f = (log(f))′ = −(log(g))′ = −g′/g is an increasing homeomorphism from
(
−π

2 ,
π
2

)

onto R. The treatment in [20, 34.1] takes this point of view.

3.3 Moulton planes. Fix a real number s > 0 and define gMs :
(
−π

2 ,
π
2

)
→ (0,+∞) by

gMs (ϕ) := cos(ϕ)/esϕ. Then gMs satisfies the assumptions of 3.1. The projective hull of the

resulting plane AgM
s

is isomorphic to the projective hull of a Moulton plane. This model of

the Moulton plane is due to Betten [2], see [20, 34.2] (where the reciprocal fs = 1/gMs is

used, cf. 3.2). For some values of s, the standard lines defined by these functions are shown

in Fig. 1. For s = 0 the construction also works, yielding L(1) = 1+ iR: thus Acos is the affine

plane over R, described as the classical Schellhammer plane for C/R.

Figure 1: The lines LgM
s

(1) for s ∈ {0.5, 1}, and the line Lhm
for m = 1.1 (from left to right)

Note that the Schellhammer group on the Moulton plane is not uniquely determined. How-

ever, all the Schellhammer groups on a given Moulton plane (i.e., for given s > 0) fix the same

anti-flag, and they form a single conjugacy class in the group of all automorphisms, cf. 2.5.

3.4 Examples. As another explicit family of examples of functions with the required prop-

erties, we mention gm : x 7→ cos(x)
m+(1−m) cos(x) , for m ∈ (0, 2]. These functions are obtained by

translating Sperner’s examples fm from [23] to our present setting. For some values of m,

the standard lines defined by these functions are shown in Fig. 2.

The function g used to define the standard line Lg(1) need not be differentiable. For in-

stance, the map (see Fig. 1) hm :
(
−π

2 ,
π
2

)
→ (0,+∞) : ϕ 7→ cos

(
π−2m
π |ϕ| +m

)
/ cos(m) is

admissible for any m ∈ [0, π2 − 1) but not differentiable at ϕ = 0.

3.5 Notation. We are going to use Hamilton’s quaternions H = C + jC: the multiplication

rule is (u+jv)(x+jy) = (ux− v̄y)+j(vx+ ūy). Identifying H with the space C
2×1 of columns

(i.e., using coordinates with respect to the basis 1, j for the right vector space H over C), we

5
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Figure 2: The lines Lgm(1) for m ∈ {0.1, 0.4, 1, 2} (from left to right)

describe multiplication with u+ jv from the left by the matrix ( u −v̄
v ū ) ∈ SU(2,C) · R>, where

R> := (0,+∞) is the multiplicative group of positive real numbers.

Recall that the map κ : H → H : u+ jv 7→ u+ jv := ū− jv is an anti-automorphism of the

field H that extends complex conjugation. For any subset U ⊆ H, let SU := {x ∈ U | xx̄ = 1}.

3.6 Construction. The following class of planes was introduced by Sperner [23] (who used

the function f(r) := π
2 − g−1(1

r ) in his description1 — we modify the description to show the

similitude to Schellhammer’s examples 3.1, and to adapt to our general naming conventions):

Let g : [0, π2 ) → (0, 1] be a differentiable bijection such that log(g) is strictly concave, and

choose a real constant c.
In our notation Kg,c :=

{(
g(ϕ)−1t sin(ϕ), g(ϕ)−1−ic cos(ϕ)

) ∣∣ ϕ ∈ [0, π2 ), t ∈ SC

}
replaces

Sperner’s set Lf,c. The group G := SU(2,C) × C
× acts by linear transformations on C

2×1

via (x, y)′ 7→ X(x, y)′z; here (X, z) ∈ G and (x, y)′ is the transpose of (x, y). Let L0 :=
{vC

∣∣ v ∈ C2×1 r {(0, 0)′}} be the set of complex lines through o := (0, 0)′, and let L1 be the

orbit of Kg,c under G. Sperner shows that the group S := SU(2,C) × R> acts transitively

on L1, and that Eg,c := (C2,L0 ∪ L1) is an affine plane (in fact, the projective hull Eg,c is

a four-dimensional compact projective plane). Moreover, he notes that every plane Eg,c is

isomorphic to Eg̃,0 for some admissible function g̃. Therefore, we will only consider the case

c = 0 in the sequel.

Note that the group S is nothing but the group of left multiplications by elements from H×.

The function g1 = cos yields L(1) = 1 + jC; the plane Ecos,0 is the affine plane over C.

3.7 Proposition. The group S = H
× is a Schellhammer group on Eg,0. The point a := 1 lies on

L(1) := j−1Kg,0 =
{(

cos(ϕ) + sin(ϕ)jt
)
g(ϕ)−1

∣∣ ϕ ∈ [0, π2 ), t ∈ SC

}
.

The composition α := κι with the inversion map ι : u + jv 7→ (ūu + v̄v)−1(ū − jv) is an

automorphism of S and αι = κ leaves the set L(1) invariant.

For z ∈ C
× ∪ jC× the inner automorphism ζz : h 7→ zhz−1 of H extends to an automorphism

of Eg,0: the line map is given by zL(x)z−1 = L(zxz−1). The following special cases will be of

particular importance.

• β : H → H : h = u + jv 7→ −jhj = ū + jv̄ is a Baer involution, the set R + jR of affine

fixed points of β carries the Schellhammer plane Ag.

1 Our concavity condition on log(g) is Sperner’s convexity condition on log(f−1(arcsin)).
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• ρ : H → H : h = u + jv 7→ −ihi = u − jv is a reflection (i.e., an involutory perspectivity)

with axis C, the center is the point at infinity for L(1) and jC.

• βρ = ρβ : H → H : h = u + jv 7→ −ijhij = ū − jv̄ is another Baer involution: it is the

conjugate of β under the automorphism λ : h = u+ jv 7→ 1
2(1 + i)h(1 − i) = u− jiv.

The group generated by {α, β, ρ} in Aut(H×) ∼= R××SO(3,R) is elementary abelian of order 23.

Proof. It is clear that S is a group of automorphisms of Eg,0 acting regularly on H r {0}.

Regularity of the action on L r L0 follows from 2.3.

For z ∈ C× ∪ jC× it is easy to see that the inner automorphism h 7→ zhz−1 fixes 1 and

leaves L(1) invariant. Thus zL(x)z−1 = zxL(1)z−1 = zxz−1L(1) = L(zxz−1), as claimed.

Invariance of Lo is clear if z ∈ C×, and easy to check for z ∈ jC×. Thus we have an

automorphism of the affine plane Eg,0 which extends to the projective hull.

The fixed points for β, ρ and ρβ are easy to see. It remains to note that the intersection

of L(1) with R + jR equals the standard line in Ag if we use the model R + jR for C.

4 The normalizer of the Schellhammer group

We consider a Schellhammer plane P with Schellhammer group S. The normalizer of S in

Aut(P) will be denoted by N . The unique fixed elements o and ∞ of S are also fixed by N ;

thus N acts on P r ({o} ∪ P∞). Since S acts transitively on that set the normalizer is the

product of S and the stabilizer Na, for any a ∈ P r ({o} ∪ P∞).

4.1 Lemma. Via conjugation, the stabilizer Na acts faithfully on the group S.

Proof. The kernel of the action of N on S is the centralizer C := CN (S). For c ∈ Ca and s ∈ S
we have cs(a) = sc(a) = s(a). Thus c fixes each point in the orbit S(a), and is trivial.

We return to our identification of S with its regular orbit S(a); then a = 1 and Na = N1.

4.2 Lemma. An automorphism µ of S extends to an element of N1 if, and only if, there exists

m ∈ S such that µ(L(1)) = L(m).
If this is the case, the action of µ on the lines is given by µ(L(s)) = L(µ(s)m).

Proof. In order to show that µ extends to an automorphism of P it suffices by 1.2 to show

that the set Lr(Lo∪{∞}) is invariant under µ. We compute µ(L(s)) = µ ({sx | x ∈ L(1)}) =
{µ(sx) | x ∈ L(1)} = µ(s)µ(L(1)) = µ(s)L(m), and the assertion follows.

4.3 Proposition. Consider Ag for a function g as in 3.1, with g(0) = 1. Then either the group

N1 is trivial, or it has order 2. In the latter case, the involution κ : C → C : x 7→ x̄ generates N1.

The corresponding automorphism of Ag is a reflection with axis R. The center is the point at

infinity for iR and L(1).

The involution κ belongs to N1 if, and only if, the function g is even, i.e., if g(−ϕ) = g(ϕ) holds

for all ϕ ∈
(
−π

2 ,
π
2

)
.

Proof. This is shown in [22, 7.8], we give a proof for the reader’s convenience. The plane Ag

is an affine R
2-plane, its projective hull is a two-dimensional compact projective plane, and all

its collineations are continuous (cf. [20, 32.9]). Thus any element of N1 induces a continuous

automorphism of C× ∼= R × R/Z. The automorphisms of the additive group R × R/Z are the

7
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maps of the form (x, y+ Z) 7→ (rx,±y+ xt+ Z) with r ∈ R× and t ∈ R (e.g., see [26, 25.8]).

The corresponding map ex+2πiy 7→ erx+2πi(xt±y) will be denoted by α±
r,t.

The square of any such automorphism fixes each element of {0} × R/Z: this subgroup

corresponds to SC and contains two points from each line through o. Therefore, the squares

of elements ofN1 lie in the stabilizer of a quadrangle in a two-dimensional compact projective

plane. This stabilizer is trivial, cf. [20, 32.10], and ρ2 = id follows for each ρ ∈ N1.

The elements α+
r,t fix SC point-wise, and do never belong to N1 r {id}. If ρ := α−

r,t belongs

to N1 then ρ fixes at least two affine points on the line o∨1 = R. Thus ρ2 = id implies that ρ is

a reflection at that line (cf. [20, 32.12]), and fixes each point in R. This means ρ = α−
1,0 = κ.

Since α−
1,0 fixes the line iR it also fixes the parallel Lg(1) through 1. Thus g is even.

5 Polarities

Polarities of compact connected planes have been investigated by Salzmann [17, p. 260],

[18], Bedürftig [1], Polster [15], Immervoll [9] and the second author, see [25], [24]. If the

plane is topological, we will tacitly assume that the polarity is continuous.

Let ι : S → S : s 7→ s−1 denote the inversion map on a Schellhammer group S.

5.1 Theorem. Let γ be an automorphism of S such that γ2 = id and such that γι (L(1)) = L(1).
Then mapping s to L(γ(s)) extends to a polarity Jγ of P. This polarity swaps o with ∞, and the

line o ∨ s ∈ Lo with the point at infinity for L(γ(s)).

Proof. By 1.2 it suffices to show that interchanging s with L(γ(s)) gives an isomorphism of

incidence structures from (P r ({o} ∪ P∞),L r (Lo ∪ {∞})) onto the dual incidence struc-

ture, namely (L r (Lo ∪ {∞}), P r ({o} ∪ P∞)). To this end, we note s ∈ L(t) ⇐⇒ t−1s ∈
L(1) ⇐⇒ γι(t−1s) ∈ L(1) ⇐⇒ γ(t) ∈ L(γ(s)).

If we discuss Jγ in the sequel, we will always tacitly assume that γ is an automorphism of S
such that γ2 = id and such that L(1) is left invariant by γι. Note that γ will in general not be

an automorphism of P.

5.2 Example. If the Schellhammer group S is commutative then we may use the inversion

map ι for γ. The map γι is then just the identity, and imposes no restriction on the shape

of L(1). We call Jι the standard polarity of the Schellhammer plane.

Once we have found one polarity Jγ of P, we know that each other polarity of P belongs

to the coset Aut(P)Jγ . In each one of the known cases every polarity of P normalizes some

Schellhammer group S in Aut(P). It is worth the effort to study the polarities in the coset

NJγ = SN1Jγ in detail.

5.3 Theorem. Let γ be an automorphism of S such that Jγ is a polarity. Consider µ ∈ N1 as

in 4.2 and let m denote the unique element m ∈ S with µ(L(1)) = L(m).
1. For s ∈ S the composition sµJγ is a polarity precisely if (µγ)2 is the inner automorphism

x 7→ mxm−1 of S and s µγ(s) = m−1. We also have µγ(m) = m in that case.

If µ fixes L(1) these conditions simplify to (µγ)2 = id and µγ(s) = s−1.

2. In particular, the composition µJγ is a polarity exactly if (µγ)2 = id and m = 1. In other

words: µγ satisfies the requirements in 6.1 such that Jµγ is a polarity, and µJγ = Jµγ .

3. If S is commutative, we may further specialize these assertions: for µ ∈ N1 and s ∈ S the

composition sµJι is a polarity exactly if µ2 = id and µ fixes L(s−1).
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In particular, the coset {sJι | s ∈ S} consists of polarities if S is commutative.

Proof. Using µ(L(y)) = L(µ(y)m) we compute the image of L(x) under the square of sµJγ
as L

(
s µγ(s) (µγ)2(x)m

)
. Thus sµJγ is a polarity precisely if x = s µγ(s) (µγ)2(x)m holds

for all x ∈ S. Specializing this for x = 1 we find s µγ(s) = m−1, and (µγ)2(x) = mxm−1

follows. Evaluating the square of sµJγ at the point 1 we also obtain s µγ(s) = µγ(m−1), and

thus µγ(m) = m.

For s = 1, we find 1 = s µγ(s) = m−1 and (µγ)2 = id follows. Finally, if S is commutative

and γ = ι, the condition s µι(s) = m−1 means µ(L(s−1)) = L(s−1).

Together with 2.4, 2.5 and 4.3 our discussion so far yields:

5.4 Theorem. Let g be a function as in 3.1 with g(0) = 1.

1. Every polarity of Ag normalizes a Schellhammer group.

2. In any case we have the standard polarity Jι.
3. Apart from the conjugates of Jι further polarities exist precisely if the plane admits a reflec-

tion at an axis through o. In that case we may assume that g is even. Then κ ∈ N1 leads to

polarities sJκι with s ∈ R
×. Every polarity of Ag is conjugate to Jι or to one of these.

See 6.3 for conjugacy of these polarities, and 7.4 for centralizers and sets of absolute points.

5.5 Examples. Consider one of Sperner’s planes Eg,0, cf. 3.6 and 3.7. If such a plane is

not isomorphic to P2C then we know from [23] that the Schellhammer group H× is nor-

mal in Aut(Eg,0), and the stabilizer N1 is the semidirect product of 〈β〉 and the group Z :=
{ζz | z ∈ SC} of inner automorphisms ζz : h 7→ zhz̄. Consider α = κι as in 3.7, and recall that

each element of 〈β〉Z fixes the line L(1).

According to 5.3, we thus know that the duality sµJα with s ∈ S and µ ∈ 〈β〉Z is a polarity

precisely if µα is an involution and µα(s) = s−1. We determine the involutions in 〈β〉Zα first.

As α acts trivially on SH, it centralizes 〈β〉Zα. This means that, apart from the identity, we

have to find the involutions in 〈β〉Z. On one hand, the inner automorphism βζz is induced by

jz ∈ jC, and (jz)2 ∈ R implies that βZ consists of involutions. On the other hand, the only

involution in Z is ζi = ρ.

Thus we have determined the set {µ ∈ N1

∣∣ (µα)2 = id} = βZ ∪ {id, ρ}. For each one

of these automorphisms, the set Fµκ of fixed points of µαι = µκ in H describes the set

{s ∈ S | sJµα is a polarity} = {s ∈ S
∣∣ µα(s) = s−1} = {s ∈ Fµκ | s 6= 0}.

While it is easy to see that Fκ = R and Fρκ = R+Cj, the case µ ∈ βZ requires a little more

effort: for u, v ∈ C and z ∈ SC we compute βζzκ(u + jv) = −jz(ū − jv)z̄j = u − jz2v̄, and

obtain the condition −zv̄ = z̄v. This means z̄v ∈ iR, and Fβζzκ = C + jziR.

We have thus found all polarities for Sperner’s planes (conjugacy of these polarities will be

discussed in 6.5 below, the centralizers and the sets of absolute points in 7.6):

5.6 Theorem. Let Eg,0 be one of Sperner’s planes, with Eg,0 6∼= P2C, and let α = κι, β, and ρ be

as in 3.7. Then the polarities of Eg,0 are the following:

1. sJα with s ∈ R r {0},

2. sJρα with s ∈ (R + jC) r {0},

3. sJβζzα with s ∈ (C + jziR) r {0} and ζz(h) = zhz̄ for z ∈ SC.

9
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6 Conjugacy Classes of Polarities

6.1 Theorem. For s, t ∈ S, the conjugate of sJγ under t is ts γι(t)Jγ . Thus polarities sJγ and

uJγ′ are conjugates under S exactly if γ = γ′ and there exists t ∈ S with ts γι(t) = u.

Proof. Computing the image of L(x) under tsJγt
−1 as ts γ(t−1) γ(x) we obtain the first asser-

tion. Now tsJγt
−1 = uJγ′ means ts γ(t−1) γ(x) = u γ′(x) for all x ∈ S. Specializing x = 1 we

find ts γ(t−1) = u, and γ = γ′ follows.

6.2 Corollary. If S is commutative then the conjugacy classes under S in the set {sJι | s ∈ S} of

polarities (cf. 5.3) are the orbits under the group S� := {t2
∣∣ t ∈ S} of squares.

6.3 Examples. Let g be a function as in 3.1. We have C
× = S = S�, and the polarities sJι

and uJι are conjugates for any choice of s, u ∈ S.

If g is even and s, u ∈ R× then sJκι and uJκι are polarities. They are conjugates under S
precisely if there exists t ∈ S with tt̄s = u: this means that s and u have the same sign.

The Moulton planes do not admit a reflection in N1. It has been proved by Salzmann [18]

that the polarities of a non-desarguesian Moulton plane form a single conjugacy class; cf.

also 2.5. Thus every polarity of such a plane is found by our present methods.

The full group Aut(Ag) coincides with the normalizer N of S unless Ag is isomorphic to a

Moulton plane AgM
s

(including Ag0 = A2R), cf. 3.3. If Ag 6∼= A2R admits the reflection κ, we

thus obtain Aut(Ag) = 〈κ〉S, and there are three conjugacy classes of polarities, represented

by Jι, Jκι, and −Jκι.

6.4 Examples. We determine the conjugacy classes of polarities for a plane Eg,0, cf. 3.6

and 5.6. First of all, for any s ∈ (C + jiR) r {0} the conjugate of sJβα under an inner auto-

morphism ζz with z ∈ SC equals ζz(s)Jβζ2z̄α = ζz(s)Jβζ−2
z α. As each element of SC possesses

a square root in SC, this yields that we have to search for representatives for the conjugacy

classes among the elements sJµ with µ ∈ {α, ρα, βα} and suitable s.

For µ = α, we have s ∈ R
×, and tJαt

−1 = tt̄Jα shows that {sJα | s ∈ R
×} is the union of

two conjugacy classes, represented by Jα and −Jα, respectively.

If µ ∈ {ρα, βα} then our task is to understand the actions of H
× on the real vector space Fµι

via (x, t) 7→ tx µι(t). These actions are linear representations2 of H× on real vector spaces of

dimension 3. The compact group SH does not act trivially, and thus induces a conjugate of the

group of rotations. This group acts transitively on the set of rays in the space Fµι. It remains

to understand the action for t ∈ R
×: since µικ = µα ∈ {ρ, β} fixes each element of R, the

real factor acts via multiplication by t2 on Fµι. We have shown that the given action of H
× is

transitive on Fµι. This means that each one of the sets {sJρα | s ∈ Fρκ} and {sJβα | s ∈ Fβκ}
forms a conjugacy class under S, represented by Jρα and Jβα, respectively.

6.5 Theorem. Assume that Eg,o is not isomorphic to P2C. Then every polarity of Eg,o is conjugate

to one of Jα, −Jα, Jρα, and Jβα.

2 The linear map λ : Fρκ → Fβκ : x 7→ jxi and the group automorphism ρ form a quasi-equivalence (λ, ρ)
between these representations.
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7 Centralizers of Polarities, and Absolute Points

In this section we will determine the absolute points (i.e., the points incident with their im-

age) for representatives of conjugacy classes of polarities of the known Schellhammer planes.

We concentrate on the non-classical examples from 3.1, 3.3 and 3.6. In these cases, the full

group of automorphisms fixes the line ∞, and an affine point of view is reasonable.

7.1 Definitions. Let γ be an automorphism of S with γ2 = id and such that L(1) is left

invariant by γι (i.e., such that Jγ is a polarity, cf. 5.1). We write Cγ := {s ∈ S | sJγ = Jγs}
for the centralizer of the polarity in S. The set Aγ := {s ∈ S | s ∈ L(γ(s))} consists of all

affine absolute points of Jγ .

7.2 Remarks. A straightforward computation yields thatCγ = {s ∈ S | γ(s) = s} is contained

in Aγ = {s ∈ S | γι(s) s ∈ L(1)} . The subgroup Cγ of S acts on Aγ via multiplication from

the left. Thus Aγ is the union of a collection of right cosets Cγb.
The absolute points at infinity (if any) are the parallel classes of lines o ∨ s such that

o ∨ γι(s) s ‖ L(1).
We did not introduce names for the set of affine points of polarities of the form tJγ . This

is justified by the fact (cf. 6.3, 6.5) that −Jκι (on Ag) and −Jα (on Eg,0) represent all the

polarities that we leave out: these polarities have no absolute points at all (and appear to be

quite interesting exactly for that reason).

The centralizer of the standard polarity is almost trivial, and does not help much if we

study the set of absolute points:

7.3 Proposition. If S is commutative then the centralizer of the standard polarity in S is Cι =
{s ∈ S

∣∣ s2 = 1}, while Aι = {s ∈ S
∣∣ s2 ∈ L(1)}.

7.4 Examples. For the Schellhammer planes Ag we find Cι = {1,−1}, while the defin-

ing equation for Aι can be solved using polar coordinates: for ϕ ∈ (−π
2 ,

π
2 ), put s±ϕ :=

±eiϕ/2/
√
g(ϕ). Then Aι = {s+ϕ

∣∣ ϕ ∈ (−π
2 ,

π
2 )} ∪ {s−ϕ

∣∣ ϕ ∈ (−π
2 ,

π
2 )}. The two components

of Aι correspond to the two branches of the hyperbola formed by the affine absolute points

in the classical case (where the defining condition reduces to s2 ∈ 1 + iR). We find that the

absolute points at infinity belong to the two lines (1 ± i)R.

The situation is quite different if N1 contains an involution fixing L(1): according to 4.3,

we may assume that g is an even function, and that the involution is κ. Then Jκι is a polarity.

We find Cκι = {s ∈ C | ss̄ = 1} = SC and Aκι = {s ∈ C
× | ss̄ ∈ L(1)}. Now ss̄ ∈ R yields

that ss̄ ∈ L(1) is equivalent to ss̄ ∈ R ∩ L(1) = {(o ∨ 1) ∧ L(1)} = {1}, and Aκι = SC follows.

There are no absolute points at infinity.

It remains to discuss the polarities rJκι with r ∈ R×, cf. 5.4. In fact, it suffices to consider

r ∈ {1,−1} by 6.2. The affine absolute points satisfy the condition ss̄/r ∈ L(1): this means

ss̄/r ∈ (o ∨ 1) ∩ L(1) = {1}. This equation means s ∈ rSC if r > 0, and has no solution

if r < 0. In any case, there are no absolute points at infinity.

Thus Cκι acts regularly on the set Aκι of absolute points of Jκι. As a marked contrast, the

centralizer Cι cannot act transitively on Aι.
We note that the absolute points (if they exist) of a polarity of any two-dimensional compact

plane form an oval (homeomorphic to SC), cf. [16, Hilfssatz 5.8] and [1]. These ovals have

very good topological intersection properties, see [3, 2.5]. Apart from secants and tangents,

there also exist passing lines for each one of these ovals, see [3, 3.1, 3.7].
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7.5 Examples. The sets {rJκι | r > 0} and {sJι | s ∈ S} from 6.3 are fused into a single

conjugacy class if Ag is the classical plane. However, these sets form two different conjugacy

classes under the automorphism group of any plane Ag 6∼= A2R with an even function g. For

instance, we may choose g as gm : x 7→ cos(x)
m+(1−m) cos(x) , for 1 6= m ∈ (0, 2], cf. 3.4.

In any case, the members of {tJκι | t < 0} are not conjugates of Jι because they are elliptic

polarities (i.e., they do not have any absolute points), see 7.4. The fact that Jι and Jκι are not

conjugates under the normalizer of the Schellhammer group (which fixes the line at infinity)

corresponds to the fact that Jι has absolute points at infinity while Jκι has none.

7.6 Examples. Sperner’s planes Eg,0 (see 3.6) are Schellhammer planes with Schellhammer

group S = H×. Since H× is not commutative there are no standard polarities. We concentrate

on the case where the plane is not isomorphic to P2C: then every continuous polarity is a

conjugate of Jα, −Jα, Jρα, or Jβα, see 6.5.

We compute Cγ for γ ∈ {α, ρα, βα} first. One has Cγ ⊆ SH because α inverts the absolute

value while ρ and β preserve it. Now α fixes each element of SH, and we find Cγ = SFγ .

Explicitly, this gives Cα = SH, Cρα = SC, and Cβα = SR+jR.

The affine absolute points of Jγ are those in Aγ = {s ∈ H× | γι(s) s ∈ L(1)}. For s ∈ Aα
the real number s̄s lies in C ∩ L(1). The only point in that intersection is the point 1 where

the lines C and L(1) meet. Thus Aα = SH.

For s = r(u + jv) ∈ Aρα with r > 0 and u + jv ∈ SH we compute ραι(s) s = (ūu − v̄v) +
j(uv − vu) = ūu − v̄v + 2juv. This quaternion belongs to L(1) only if there exist ϕ ∈ [0, π2 )
and t ∈ SC such that

r2 =
1

g(ϕ)
, ūu− v̄v = cos(ϕ) , and 2uv = t sin(ϕ) .

We write u = rusu and v = rvsv with ru, rv > 0 and su, sv ∈ SC. Then our conditions read

r2u−r2v = cos(ϕ), 2rurv = ε sin(ϕ), and t = εsusv, where the sign ε ∈ {1,−1} is chosen suitably.

For ψ := εϕ this becomes r2u−r2v = cos(ψ), 2rurv = sin(ψ), and there is ϑ ∈ (−π
4 ,

π
4 )∪ (3π

4 ,
5π
4 )

such that ru = cos(ϑ) and rv = sin(ϑ). Since we are free to replace su by −su or sv by −sv, it

suffices to use ϑ ∈ [0, π4 ). We thus have found

Aρα =

{
1√
g(2ϑ)

(
cos(ϑ)su + j sin(ϑ)sv

) ∣∣∣∣ ϑ ∈ [0, π4 ), su, sv ∈ SC

}
.

The case γ = βα involves the most complicated arguments. For r > 0 and w ∈ SH we

have rw ∈ Aβα precisely if there exist ϕ ∈ [0, π2 ) and t ∈ SC such that r2 = 1/g(ϕ) and

−jw̄jw = cos(ϕ) + j sin(ϕ)t. If we write w = u + jv with u, v ∈ C, the latter condition

becomes u2 + v2 = cos(ϕ) and (ūv − v̄u)i = ε sin(ϕ), with ε ∈ {1,−1}. We write ψ := εϕ
again, then our conditions are

u2 + v2 = cos(ψ) , (ūv − v̄u)i = sin(ψ) , ūu+ v̄v = 1 .

The first of these three conditions implies that there exists f(ψ) > 0 such that (u + vi)(u −
vi) = u2 + v2 = f(ψ)(u + vi)(u+ vi), and u − vi = f(ψ)(ū − v̄i) follows. Comparing

real and imaginary parts, we find u = x + F (ψ)yi and v = y − F (ψ)xi with x, y ∈ R and

F (ψ) := 1−f(ψ)
1+f(ψ) . Using 1 = ūu + v̄v = (1 + F (ψ)2)(x2 + y2) we obtain cos(ψ) = u2 + v2 =

(1−F (ψ)2)(x2+y2) = 1−F (ψ)2

1+F (ψ)2
and sin(ψ) = 2F (ψ)

1+F (ψ)2
. We find F (ψ)2 = 1−cos(ψ)

1+cos(ψ) , plug this into
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the second condition and obtain F (ψ) = sin(ψ)
1+cos(ψ) = tan(ψ2 ). From 1 = (1 + F (ψ)2)(x2 + y2)

we now infer x2 + y2 = (1 + tan(ψ2 )2)−1 = cos(ψ2 )2. These considerations show

Aβα =





1√
g(|ψ|)

((
x+ tan(ψ2 )yi

)
+ j

(
y − tan(ψ2 )xi

))
∣∣∣∣∣∣

ψ ∈ (−π
2 ,

π
2 )

x, y ∈ R

x2 + y2 = cos(ψ2 )2




 .

Note that F does not depend on the choice of g: the set Aβα is a distorted version of the

hyperbola {a+ jb ∈ H
∣∣ a2 + b2 = 1} that is obtained as Aβα if g(ψ) = cos(ψ).

Absolute points of Jγ at infinity correspond to lines sC ∈ Lo with s ∈ H
× such that

γι(s) sC ‖ L(1). This means γι(s) s ∈ jC. There are no solutions if γ = α. For γ = ρα
the condition ραι(s) s ∈ jC has the solutions s = u + jv with ūu − v̄v = 0. As u = 0 would

imply s = 0, the absolute lines through o are those of the form (1 + jt)C with t ∈ SC. The

absolute points at infinity form a set homeomorphic to a sphere of dimension 1. If γ = βα
then (u+jv)C is absolute precisely if u2+v2 = 0: this gives the two lines (i+j)C and (i−j)C.

It remains to discuss the polarity −Jα: the centralizer is SH as for Jα, but the condition for

an affine absolute point s becomes −ss̄ = 1. This equation has no solutions, and there are

also no solutions for −ss̄ ∈ jC. Thus the polarity −Jα has no absolute points at all.

7.7 Remark. It appears that the polarities −Jκι on Schellhammer’s planes Ag with even

functions g and the polarities −Jα on Sperner’s planes are the only known examples of el-

liptic polarities (i.e., polarities without absolute points) for non-Moufang compact projective

planes.

7.8 Remarks. The classical plane A2C is obtained as Ecos,0, we have L(1) = 1 + Cj there.

Using inhomogeneous coordinates we find that the polarities sJα, Jρα and Jβα and their sets

of absolute points are described in the usual way by the hermitian forms

hsα(u, v, w) := ūu+ v̄v − sw̄w ,
hαρ(u, v, w) := ūu− v̄v − w̄w ,
hαβ(u, v, w) := u2 + v2 − w2 .

This collection contains a set of representatives for the three conjugacy classes under the full

group of continuous automorphisms of P2C: the polarities Jα and Jρα become conjugates

here. In the non-desarguesian planes they cannot be conjugates because then the line ∞
is fixed by the full group of automorphisms but has different intersection with the sets of

absolute points. The complicated description for the elements of Aβα in 7.6 just reduces to

Aβα = {u+ jv ∈ H
∣∣ u2 + v2 = 1} in the classical case.

7.9 Theorem. For each continuous polarity of a Sperner plane Eg,0 the set of absolute points is

either empty or homeomorphic to a sphere. Explicitly, we have:

1. The polarity Jα has no absolute points at infinity; the affine absolute points form the set

Aα = SH ≈ S3. The centralizer Cα = SH acts regularly on Aα.

2. The polarity −Jα is elliptic, it has no absolute points at all.

3. The polarity Jρα has affine absolute points and absolute points at infinity; together these

points form a set homeomorphic to S3 while the set of absolute points at infinity is homeo-

morphic to SC ≈ S1. We have Cρα = SC.

4. The polarity Jβα has affine absolute points and two absolute points at infinity; together

these points form a set homeomorphic to SPu(H) ≈ S2 while the absolute points at infinity

form a sphere SR ≈ S0. We have Cβα = SR+jR.
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Proof. Every continuous polarity is a conjugate of Jα, −Jα, Jρα, or Jβα, see 6.5. Thus it

suffices to discuss these polarities. The sets of absolute points have been determined in 7.6.

For Jα and −Jα there is nothing left to be done but the remaining two cases present difficulties

because we have to glue in the absolute points at infinity.

For each Sperner plane the polarity Jρα has the same absolute points at infinity, namely

the parallel classes of the lines of the form (1 + jt)C with t ∈ SC. The set Aρα of affine

absolute points, however, depends on the function g used to construct Eg,0; we have Aρα =
{Φg(ϑ,w, z)

∣∣ w, z ∈ SC, ϑ ∈ [0, π4 )}, where Φg is the continuous surjection

Φg : [0, π4 ) × S
2
C
→ Aρα : (ϑ,w, z) 7→ 1√

g(2ϑ)

(
cos(ϑ)w + j sin(ϑ)z

)
.

Note that Φg induces a homeomorphism Φ̂g from ([0, π4 )× S
2
C
)/∼ onto Aρα, where (ϑ,w, z) ∼

(ϑ′, w′, z′) holds if the two triplets are equal or ϑ = 0 = ϑ′ and w = w′. It remains to describe

how the points at infinity are glued to Aρα. Convergence of a sequence Φg(ϑn, wn, zn) to the

parallel class of (1 + jt)C means that ϑn converges to π
4 (such that

√
g(2ϑn) → 0 and the

absolute value of Φg(ϑn, wn, zn) tends to ∞) and znw
−1
n → t. In other words: the homeo-

morphism type of the set of absolute points does not depend on g. For g(ϑ) = cos(ϑ) we

obtain the plane Eg,0 is isomorphic to the projective plane over C; in homogeneous coordi-

nates the set of absolute points Jρα is described by the equation ūu − v̄v − w̄w = 0: this is a

set homeomorphic to the sphere S3 of dimension 3.

It remains to discuss Jβα. In this case we have two absolute points at infinity, namely (i+j)C
and (i − j)C. The set of affine absolute points is Aβα =

{
Ψg(ψ, z)

∣∣ (ψ, z) ∈ (−π
2 ,

π
2 ) × SC

}

where Ψg(ψ, x + yi) :=
√

cos(ψ2 )/g(|ψ|)
((
x+ tan(ψ2 )yi

)
+ j

(
y − tan(ψ2 )xi

))
gives a contin-

uous surjection Ψg from (−π
2 ,

π
2 ) × SC onto Aβα. Convergence of Ψg(ψn, zn) to one of the

points at infinity means that ψn converges to π
2 or to −π

2 . In the first of these cases the se-

quence of lines Ψ(ψn, zn)C =
(
cos(ψ2 )x + sin(ψ2 )yi

)
+ j

(
cos(ψ2 )y − sin(ψ2 )xi

)
C converges to√

2(x+yi, j(y−xi))C = (i+j)C because cos(ψn) and sin(ψn) both converge to 1/
√

2. Thus our

points converge to the parallel class of (i+ j)C. In the second case, we find that the sequence

of points converges to the parallel class of (i− j)C. Again, we obtain that the topological type

of the set of absolute points does not depend on the function g, and we may recognize the

topology by looking at the classical complex plane. In homogeneous coordinates (u, v, w)C,

the absolute points are then described by the equation u2 + v2 − w2 = 0. Thus they form a

conic, homeomorphic to SC.

7.10 Remark. The traces of lines on the sphere U of absolute points of a polarity J of Eg,0
have the same homeomorphism type as in the classical counterparts, see [9, 2.3]:

1. If U ≈ S3 (i.e. if J is a conjugate of Jα or of Jρα) then the intersection of any secant

with U is homeomorphic to S1. Apart from secants and tangents, there are also lines

in Eg,0 that do not meet U at all (for instance, take the line at infinity if J = Jα, and

take the line jC if J = Jρα).

2. If U ≈ S2 (i.e., if the polarity is a conjugate of Jβα) then every secant meets U in

precisely two points and U is a topological oval in Eg,0. Every line in Eg,0 meets U in at

least one point, cf. [3, 3.1, 3.7]. Thus every line is either a secant or a tangent.

In any case, there is precisely one tangent line to U in any absolute point, cf. [9, 2.2].
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