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1. Introduction

Let Ω ⊂ Rd be an open set and let −∆ denote the Dirichlet Laplace operator on L2(Ω),
defined as a self-adjoint operator with form domain H1

0 (Ω). We assume that the volume of Ω,
denoted by |Ω|, is finite. Then the embedding H1

0 (Ω) ↪→ L2(Ω) is compact and the spectrum
of −∆ is discrete: It consists of positive eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .

accumulating at infinity only.
Here we are interested in upper bounds on the Riesz means∑

k

(Λ− λk)σ+ = Tr (−∆− Λ)σ− , σ ≥ 0 ,

where we use the notation x± = (|x| ± x)/2. In 1972 Berezin proved that, convex eigenvalue
means are bounded uniformly by the corresponding phase-space volume, see [Ber72]: For any
open set Ω ⊂ Rd, σ ≥ 1, and all Λ > 0

Tr (−∆− Λ)σ− ≤
1

(2π)d

∫∫
Ω×Rd

(
|p|2 − Λ

)σ
+
dp dx = Lclσ,d |Ω|Λσ+d/2 , (1.1)

see also [LY83], where the problem is treated from a different point of view. Here Lclσ,d denotes
the so-called Lieb-Thirring constant

Lclσ,d =
Γ(σ + 1)

(4π)d/2 Γ(σ + 1 + d/2)
.

The Berezin inequality (1.1) captures, in particular, the well-known asymptotic limit that
goes back to Hermann Weyl [Wey12]: For Ω ⊂ Rd and σ ≥ 0 the asymptotic identity

Tr(−∆− Λ)σ− = Lclσ,d |Ω|Λσ+d/2 + o
(

Λσ+d/2
)

(1.2)

holds true as Λ → ∞. From this follows, that the Berezin inequality is sharp, in the sense
that the constant in (1.1) cannot be improved. However, Hermann Weyl’s work stimulated
further analysis of the asymptotic formula and (1.2) was gradually improved by studying the
second term, see [CH24, Hör68, Ivr80, Mel80, SV97, Ivr98] and references within. The precise
second term was found by Ivrii [Ivr80]: Under appropriate conditions on the set Ω and its
boundary ∂Ω the relation

Tr(−∆− Λ)σ− = Lclσ,d |Ω|Λσ+d/2 − 1
4
Lclσ,d−1 |∂Ω|Λσ+(d−1)/2 + o

(
Λσ+(d−1)/2

)
(1.3)

holds as Λ→∞. To simplify notation we write |Ω| for the volume (the d-dimensional Lebesgue
measure) of Ω, as well as |∂Ω| for the d−1-dimensional surface area of its boundary. Since the
second term of this semi-classical limit is negative, the question arises, whether the Berezin
inequality (1.1) can be improved by a negative remainder term.

Recently, several such improvements have been found, initially for the discrete Laplace
operator, see [FLU02]. The first result for the continuous Laplace operator is due to Melas
[Mel03]. From his work follows that

Tr (−∆− Λ)σ− ≤ Lclσ,d |Ω|
(

Λ−Md
|Ω|
I(Ω)

)σ+d/2

+

, Λ > 0 , σ ≥ 1 , (1.4)

where Md is a constant depending only on the dimension and I(Ω) denotes the second moment
of Ω, see also [Ily09, Yol09] for further generalisations. One should mention, however, that
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these corrections do not capture the correct order in Λ from the second term of the asymptotics
(1.3). This was improved in the two-dimensional case in [KVW09], where it is shown that
one can choose the order of the correction term arbitrarily close to the correct one.

In this paper we are interested in the case σ ≥ 3/2. For these values of σ it is known,
[Wei08], that one can strengthen the Berezin inequality for any open set Ω ⊂ Rd with a
negative remainder term reflecting the correct order in Λ in comparison to the second term
of (1.3). However, since one can increase |∂Ω| without changing the individual eigenvalues
λk significantly, a direct analog of the first two terms of the asymptotics (1.3) cannot yield a
uniform bound on the eigenvalue means. Therefore - without further conditions on Ω - any
uniform improvement of (1.1) must invoke other geometric quantities.

In the result from [Wei08] the remainder term involves certain projections on d − 1-
dimensional hyperplanes. In [GW10] a universal improvement of (1.1) was found, that holds
for σ ≥ 3/2 with a correction term of correct order, depending only on the volume of Ω.

The proof of the aforementioned results relies on operator-valued Lieb-Thirring inequalities
[LW00] and an inductive argument, that allows to reduce the problem to estimating traces of
the one-dimensional Dirichlet Laplace operator on open intervals.

In this paper we use the same approach, but with new estimates in the one-dimensional
case, in order to make the dependence on the geometry more transparent. The new one-
dimensional bounds involve the distance to the boundary of the interval in question and are
related to Hardy-Lieb-Thirring inequalities for Schrödinger operators, see [EF06]. There it is
shown that for σ ≥ 1/2 and potentials V ∈ Lσ+1/2(R+), given on the half-line R+ = (0,∞),
the inequality

Tr
(
− d2

dt2
− V

)σ
−
≤ Lσ

∫ ∞
0

(
V (t)− 1

4t2

)σ+1/2

+

dt

holds true, with a constant Lσ independent of V . For further developments see [FLS08,Fra09].
We start this paper with analysing the special case of the Dirichlet Laplace operator given

on a finite interval I ⊂ R, with the constant potential V ≡ Λ. For σ ≥ 1 we establish that
the estimate

Tr
(
− d2

dt2
− Λ

)σ
−
≤ Lclσ,1

∫
I

(
Λ− 1

4δ(t)2

)σ+1/2

+

dt

is valid with the sharp constant Lclσ,1, where δ(t) denotes the distance to the boundary of I.
This is done in section 2.

Then we can use results from [LW00, Wei08] to deduce bounds in higher dimensions: In
section 3 we first derive improvements of (1.1), which are valid for any open set Ω ⊂ Rd,
d ≥ 2. These improvements depend on the geometry of Ω. In view of the asymptotic result
(1.3) one might expect, that this geometric dependence can be expressed in terms of the
boundary of Ω. To see this, we adapt methods, which were used in [Dav94, Dav99, HHL02]
to derive geometric versions of Hardy’s inequality. Here the result gives an improved Berezin
inequality with a correction term of correct order depending on geometric properties of the
boundary.

If Ω is convex and smooth this dependence can be expressed only in terms of |Ω|, |∂Ω| and
the curvature of the boundary. In particular the first remainder term of the estimate is very
similar to the second term of the semiclassical asymptotics (1.3): it shows the same order in
Λ and it depends only on the surface area of the boundary.

In section 4 we return to the general case, where Ω ⊂ Rd is not necessarily convex or
smooth, and obtain lower bounds on individual eigenvalues λk. Under certain conditions on
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the geometry of Ω these results improve the estimate

λk ≥ Cd
d

d+ 2

(
k

|Ω|

)2/d

, (1.5)

from [LY83], where Cd denotes the semi-classical constant 4π Γ(d/2 + 1)2/d.
Finally, in section 5, we specialise to the two-dimensional case, where we can use the

foregoing results and refined geometric considerations to further improve and generalise the
inequalities. In particular, we avoid dependence on curvature, thus we do not require smooth-
ness of the boundary.

The question whether such improved estimates can be generalised to 1 ≤ σ < 3/2 remains
open.

2. One-dimensional considerations

Let us consider an open interval I ⊂ R of length l > 0. For t ∈ I let

δ(t) = inf {|t− s| : s /∈ I}

be the distance to the boundary. The eigenvalues of −d2/dt2 subject to Dirichlet boundary
conditions at the endpoints of I are given by λk = k2π2/l2. Therefore the Riesz means equal

Tr
(
− d2

dt2
− Λ

)σ
−

=
∑
k

(
Λ− k2π2

l2

)σ
+

.

To find precise bounds on the Riesz means in the one-dimensional case, it suffices to analyse
this sum explicitly. Our main observation is

Lemma 1. Let I ⊂ R be an open interval and σ ≥ 1. Then the estimate

Tr
(
− d2

dt2
− Λ

)σ
−
≤ Lclσ,1

∫
I

(
Λ− 1

4δ(t)2

)σ+1/2

+

dt ,

holds true for all Λ > 0. The constant 1/4 cannot be improved.

The remainder of this section deals with the proof of this estimate. First we need two
rather technical results, whose proof is elementary but not trivial and therefore will be given
in the appendix.

Lemma 2. For all A ≥ 1/π

∑
k

(
1− k2

A2

)
+

≤ 2
3π

∫ πA

1

(
1− 1

s2

)3/2

ds . (2.1)

Lemma 3. Let I ⊂ R be an open interval of length l > 0. Then for σ ≥ 1 and c > 0

Lclσ,1

∫
I

(
Λ− c

δ(t)2

)σ+1/2

+

dt−
∑
k

(
Λ− π2k2

l2

)σ
+

=
(

1
2
−
√
c

)
Λσ + o (Λσ)

holds as Λ→∞.
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Proof of Lemma 1. Note that one can always assume I = (0, l), where l > 0 denotes the
length of the interval. First we deduce the estimate for σ = 1 from Lemma 2. Assume
Λ ≥ l−2 and apply Lemma 2 with A = l

√
Λ/π to get

Tr
(
− d2

dt2
− Λ

)
−

= Λ
∑
k

(
1− π2k2

l2Λ

)
+

≤ Λ
2

3π

∫ l
√

Λ

1

(
1− 1

s2

)3/2

ds .

Substituting s = 2t
√

Λ, we find that

Tr
(
− d2

dt2
− Λ

)
−
≤ 4

3π

∫ l/2

1/(2
√

Λ)

(
Λ− 1

4t2

)3/2

dt = 2Lcl1,1

∫ l/2

0

(
Λ− 1

4t2

)3/2

+

dt

holds for all Λ ≥ l−2. Note that this inequality is trivially true for 0 < Λ < l−2, since the left
hand side is zero. Finally, we use the identities∫ l/2

0

(
Λ− 1

4t2

)3/2

+

dt =
∫ l

l/2

(
Λ− 1

4(l − t)2

)3/2

+

dt =
1
2

∫ l

0

(
Λ− 1

4δ(t)2

)3/2

+

dt

to finish the proof for σ = 1.
To deduce the claim for σ > 1 we can apply a method from [AL78]. Writing∑

k

(Λ− λk)σ+ =
1

B(2, σ − 1)

∫ ∞
0

τσ−2
∑
k

(Λ− τ − λk)+ dτ ,

we estimate

Tr
(
− d2

dt2
− Λ

)σ
−
≤ 1

B(2, σ − 1)
Lcl1,1

∫
I

∫ ∞
0

τσ−2

(
Λ− 1

4δ(t)2
− τ
)3/2

+

dτ dt

= Lcl1,1
B(5/2, σ − 1)
B(2, σ − 1)

∫
I

(
Λ− 1

4δ(t)2

)σ+1/2

+

dt

and the result follows from the identity Lcl1,1B(5/2, σ − 1) = Lclσ,1B(2, σ − 1).
The claim, that the constant 1/4 cannot be improved, follows from Lemma 3: For c = 1/4

the leading term of the asymptotics in Lemma 3 vanishes. For any constant c > 1/4 the
leading term is negative, thus the estimate from Lemma 1 must fail in this case, for large
values of Λ. �

Figure 1 illustrates the results of Lemma 1 and Lemma 3 for l = π2 and σ = 1 with the
sharp constant c = 1/4: The function

f(Λ) = Lcl1,1

∫ π

0

(
Λ− 1

4 δ(t)2

)3/2

+

dt−
∑
k

(
Λ− k2

)
+

is plotted for 1 < Λ < 112, so that the first ten minima are shown.

3. Results in higher dimensions

In this section we use the one-dimensional result to prove uniform eigenvalue estimates for
the Dirichlet Laplace operator in bounded open sets in higher dimensions. These estimates -
refinements of the Berezin inequality (1.1) - depend on the geometry of the set, in particular
on properties of the boundary.
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Figure 1. The function f(Λ), illustrating the results from section 2.

3.1. Arbitrary open sets. First we provide general estimates, valid for any open subset
Ω ⊂ Rd, d ≥ 2. Let

Sd−1 =
{
x ∈ Rd : |x| = 1

}
denote the unit-sphere in Rd. For an arbitrary direction u ∈ Sd−1 and x ∈ Ω set

θ(x, u) = inf {t > 0 : x+ tu /∈ Ω} ,
d(x, u) = inf{θ(x, u), θ(x,−u)} and
l(x, u) = θ(x, u) + θ(x,−u) .

Theorem 4. Let Ω ⊂ Rd be an open set and let u ∈ Sd−1 and σ ≥ 3/2. Then for all Λ > 0
the estimate

Tr (−∆− Λ)σ− ≤ Lclσ,d

∫
Ω

(
Λ− 1

4 d(x, u)2

)σ+d/2

+

dx (3.1)

holds true.

Remark. Let us define
l0 = inf

u∈Sd−1
sup
x∈Ω

l(x, u) . (3.2)

Then Theorem 4 implies the following improvement of Melas-type: For σ ≥ 3/2 and all Λ > 0
the estimate

Tr (−∆− Λ)σ− ≤ Lclσ,d |Ω|
(

Λ− 1
l20

)σ+d/2

+

(3.3)

holds. In convex domains l0 is the minimal width of the domain, see [BF48]. In this case 1/l20
is bounded from below by a multiple of |Ω|−2/d, [YB61], while no such bound holds for the
improving term |Ω|/I(Ω) in Melas’ inequality (1.4).

The proof of Theorem 4 relies on a lifting technique, which was introduced in [Lap97], see
also [LW00,ELW04,Wei08,FL08] for further developments and applications.
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Proof of Theorem 4. We apply the argument used in [Wei08] to reduce the problem to one-
dimensional estimates. Fix a Cartesian coordinate system in Rd, such that the given direction
u corresponds to the vector (0, . . . , 0, 1).

For x ∈ Rd write x = (x′, t) ∈ Rd−1 × R and let ∇′ and −∆′ denote the gradient and the
Laplace operator in the first d − 1 dimensions. Each section Ω(x′) = {t ∈ R : (x′, t) ∈ Ω}
consists of at most countably many open intervals Jk(x′) ⊂ R, k = 1, . . . , N(x′) ≤ ∞.

We consider the quadratic form of −∆−Λ on functions ϕ from the form core C∞0 (Ω) and
write

‖∇ϕ‖2L2(Ω) − Λ ‖ϕ‖2L2(Ω) =
∥∥∇′ϕ∥∥2

L2(Ω)
+
∫

Rd−1

dx′
∫

Ω(x′)

(
|∂tϕ|2 − Λ|ϕ|2

)
dt .

The functions ϕ(x′, ·) satisfy Dirichlet boundary conditions at the endpoints of each interval
Jk(x′) forming Ω(x′), hence∫

Ω(x′)

(
|∂tϕ|2 − Λ|ϕ|2

)
dt =

N(x′)∑
k=1

∫
Jk(x′)

(
|∂tϕ|2 − Λ|ϕ|2

)
dt

≥ −
N(x′)∑
k=1

〈Vk(x′)ϕ(x′, ·), ϕ(x′, ·)〉L2(Jk(x′)) ,

where the bounded, non-negative operators Vk(x′,Λ) = (−∂2
t −Λ)− are the negative parts of

the Sturm-Liouville operators −∂2
t − Λ with Dirichlet boundary conditions on Jk(x′). Let

V (x′,Λ) =
N(x′)⊕
k=1

Vk(x′,Λ)

be the negative part of −∂2
t − Λ on Ω(x′) subject to Dirichlet boundary conditions on the

endpoints of each interval Jk(x′), k = 1, . . . , N(x′), that is on ∂Ω(x′). Then∫
Ω(x′)

(
|∂tϕ|2 − Λ|ϕ|2

)
dt ≥ −〈V (x′,Λ)ϕ(x′, ·), ϕ(x′, ·)〉L2(Ω(x′))

and consequently

‖∇ϕ‖2L2(Ω) − Λ ‖ϕ‖2L2(Ω) ≥
∥∥∇′ϕ∥∥2

L2(Ω)
−
∫

Rd−1

dx′ 〈V ϕ(x′, ·), ϕ(x′, ·)〉L2(Ω(x′)).

Now we can extend this quadratic form by zero to C∞0
(
Rd \ ∂Ω

)
, which is a form core for

(−∆Rd\Ω) ⊕ (−∆Ω − Λ). This operator corresponds to the left hand side of the equality
above, while the semi-bounded form on the right hand side is closed on the larger domain
H1
(
Rd−1, L2(R)

)
, where it corresponds to the operator

−∆′ ⊗ I− V (x′,Λ) on L2
(
Rd−1, L2(R)

)
. (3.4)

Due to the positivity of −∆Rd\Ω we can use the variational principle to deduce that for any
σ ≥ 0

Tr (−∆Ω − Λ)σ− = Tr
((
−∆Rd\Ω

)
⊕ (−∆Ω − Λ)

)σ
−

≤ Tr
(
−∆′ ⊗ I− V (x′,Λ)

)σ
− .
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Now we apply sharp Lieb-Thirring inequalities [LW00] to the Schrödinger operator (3.4) with
the operator-valued potential −V (x′,Λ) and obtain that for σ ≥ 3/2

Tr (−∆Ω − Λ)σ− ≤ Lclσ,d−1

∫
Rd−1

TrV (x′,Λ)σ+(d−1)/2 dx′ . (3.5)

To estimate the trace of the one-dimensional differential operator V (x′,Λ) we apply Lemma
1. Our choice of coordinate system implies that for x = (x′, t) ∈ Jk(x′) the distance of t to
the boundary of the interval Jk(x′) is given by d(x, u). Hence, Lemma 1 implies

TrV (x′,Λ)σ+(d−1)/2 =
N(x′)∑
k=1

Tr

(
− d2

dt2

∣∣∣∣
Jk(x′)

− Λ

)σ+(d−1)/2

−

≤ Lclσ+(d−1)/2,1

∫
Ω(x′)

(
Λ− 1

4 d((x′, t), u)

)σ+d/2

+

dt

and the result follows from (3.5) and the identity Lclσ,d−1 L
cl
σ+(d−1)/2,1 = Lclσ,d. �

We proceed to analysing the geometric properties of (3.1). Note that the left hand side of
(3.1) is independent of the choice of direction u ∈ Sd−1, while the right hand side depends on
u and therefore on the geometry of Ω. For a given set Ω one can minimise the right hand side
in u ∈ Sd−1. The result, however, depends on the geometry of Ω in a rather tricky way. In
order to make this geometric dependence more transparent, we average the right hand side of
(3.1) over u ∈ Sd−1. Even though the resulting bound is - in general - not as precise as (3.1),
it allows a more appropriate geometric interpretation.

To analyse the effect of the boundary, one would like to estimate d(x, u) in terms of the
distance to the boundary, see [Dav94, Dav99, HHL02], where this approach is used to derive
geometrical versions of Hardy’s inequality. To avoid complications that arise, for example, if
the complement of Ω contains isolated points, we use slightly different notions: For x ∈ Ω let

Ω(x) = {y ∈ Ω : x+ t(y − x) ∈ Ω , ∀ t ∈ [0, 1]}

be the part of Ω that ”can be seen” from x and let

δ(x) = inf
{
|y − x| : y /∈ Ω(x)

}
denote the distance to the exterior of Ω(x).

For fixed ε > 0 put

Aε(x) =
{
a ∈ Rd \ Ω(x) : |x− a| < δ(x) + ε

}
and for a ∈ Aε(x) set Bx(a) = {y ∈ Rd : |y − a| < |x− a|} and

ρa(x) =
|Bx(a) \ Ω(x)|
ωd|x− a|d

,

where ωd denotes the volume of the unit ball in Rd. To get a result, independent of a and ε,
set

ρ(x) = inf
ε>0

sup
a∈Aε(x)

ρa(x) .



8

Note that Rd \Ω(x) is open, hence ρa(x) > 0 and ρ(x) > 0 hold for x ∈ Ω. Finally, we define

MΩ(Λ) =
∫
RΩ(Λ)

ρ(x) dx ,

where RΩ(Λ) ⊂ Ω denotes the set {x ∈ Ω : δ(x) < 1/(4
√

Λ)}. The main result of this section
allows a geometric interpretation of the remainder term:

Theorem 5. Let Ω ⊂ Rd be an open set with finite volume and σ ≥ 3/2. Then for all Λ > 0
we have

Tr (−∆− Λ)σ− ≤ Lclσ,d |Ω|Λσ+d/2 − Lclσ,d 2−d+1 Λσ+d/2MΩ(Λ) . (3.6)

The function ρ(x) depends on the behaviour of the boundary close to x ∈ Ω. For example,
ρ(x) is small close to a cusp. On the other hand ρ(x) is larger than 1/2 in a convex domain.
By definition, the function MΩ(Λ) gives an average of this behaviour over RΩ(Λ), which is
like a tube of width 1/(4

√
Λ) around the boundary.

Note that MΩ(Λ) tends to zero as Λ tends to infinity. This decay in Λ is of the order
(δM − d)/2, where δM denotes the interior Minkowski dimension of the boundary, see e.g.
[Lap91, FV93, FLV95] for definition and examples. If d − 1 ≤ δM < d and if the upper
Minkowski content of the boundary is finite, then the second term of the asymptotic limit of
the Riesz means equals O

(
Λσ+δM/2

)
as Λ → ∞, see [Lap91]. Therefore the remainder term

in (3.6) reflects the correct order of growth in the asymptotic limit.
In particular, if the dimension of the boundary equals d− 1, we find

MΩ(Λ) = |∂Ω|Λ−1/2 + o(Λ−1/2)

as Λ→∞ and the second term in (3.6) is in close correspondence with the asymptotic formula
(1.3).

Proof of Theorem 5. We start from the result of Theorem 4 and average over all directions
to get

Tr (−∆− Λ)σ− ≤ Lclσ,d Λσ+d/2

∫
Ω

∫
Sd−1

(
1− 1

4 Λ d(x, u)2

)σ+d/2

+

dν(u) dx , (3.7)

where dν(u) denotes the normed measure on Sd−1.
For x ∈ Ω and a /∈ Ω(x) let Θ(x, a) ⊂ Sd−1 be the subset of all directions u ∈ Sd−1,

satisfying x+ su ∈ Bx(a) \ Ω(x) for some s > 0. For such s we have

s ≤ 2 |x− a| . (3.8)

By definition of ρa(x) and Θ(x, a) we find

ρa(x)ωd|x− a|d = |Bx(a) \ Ω(x)| ≤
∫

Θ(x,a)
dν(u)ωd(2|x− a|)d ,

hence ∫
Θ(x,a)

dν(u) ≥ 2−d ρa(x) . (3.9)

Using (3.8) we also see that for u ∈ Θ(x, a) the estimate d(x, u) ≤ s ≤ 2 |x− a| holds.
Now fix Λ > 0 and choose 0 < ε < 1/(4

√
Λ) and a ∈ Aε(x). By definition of Aε(x) it

follows that for all u ∈ Θ(x, a)

d(x, u) ≤ 2|x− a| < 2(δ(x) + ε) . (3.10)
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The set Θ(x, a) must be contained in one hemisphere of Sd−1 which we denote by Sd−1
+ . Using

that d(x, u) = d(x,−u) we estimate∫
Sd−1

(
1− 1

4Λd(x, u)2

)σ+d/2

+

dν(u) = 2
∫

Sd−1
+

(
1− 1

4Λd(x, u)2

)σ+d/2

+

dν(u)

≤ 1− 2
∫
{u∈Sd−1

+ : d(x,u)≤1/(2
√

Λ)}
dν(u) .

Assume that δ(x) ≤ 1/(4
√

Λ)− ε. From (3.10) it follows that

Θ(x, a) ⊂
{
u ∈ Sd−1

+ : d(x, u) ≤ 1/(2
√

Λ)
}
,

hence, using (3.9), we conclude∫
Sd−1

(
1− 1

4Λd(x, u)2

)σ+d/2

+

dν(u) ≤ 1− 2
∫

Θ(x,a)
dν(u) ≤ 1− 21−dρa(x) .

Since a ∈ Aε(x) was arbitrary we arrive at∫
Sd−1

(
1− 1

4Λd(x, u)2

)σ+d/2

+

dν(u) ≤ 1− 21−dρ(x) ,

for all x ∈ Ω with δ(x) ≤ 1/(4
√

Λ)− ε and we can take the limit ε→ 0.
It follows that∫

Ω

∫
Sd−1

(
1− 1

4Λd(x, u)2

)σ+d/2

+

dν(u) dx ≤ |Ω| − 21−d
∫
{x∈Ω : δ(x)<1/(4

√
Λ)}

ρ(x) dx

and inserting this into (3.7) yields the claimed result. �

3.2. Convex domains. If Ω ⊂ Rd is convex, we have Ω(x) = Ω and

ρ(x) > 1/2 (3.11)

for all x ∈ Ω. Thus we can simplify the remainder term, by estimating MΩ(Λ).

Corollary 6. Let Ω ⊂ Rd be a bounded, convex domain with smooth boundary and assume
that the curvature of ∂Ω is bounded from above by 1/R. Then for σ ≥ 3/2 and all Λ > 0 we
have

Tr (−∆− Λ)σ− ≤ Lclσ,d |Ω|Λσ+d/2 − Lclσ,d 2−d−2 |∂Ω|Λσ+(d−1)/2

∫ 1

0

(
1− d− 1

4R
√

Λ
s

)
+

ds .

Proof. Inserting (3.11) into the definition of MΩ(Λ) yields

MΩ(Λ) >
1
2

∫
RΩ(Λ)

dx .

Let Ωt = {x ∈ Ω : δ(x) > t} be the inner parallel set of Ω and write∫
RΩ(Λ)

dx =
∫
{x∈Ω : δ(x)<1/(4

√
Λ)}

dx =
∫ 1/(4

√
Λ)

0
|∂Ωt| dt .
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Now we can use Steiner’s Theorem, see [Gug77,vdB84], namely

|∂Ωt| ≥
(

1− d− 1
R

t

)
+

|∂Ω| . (3.12)

It follows that

MΩ(Λ) >
1
2
|∂Ω|

∫ 1/(4
√

Λ)

0

(
1− d− 1

R
t

)
+

dt =
|∂Ω|
8
√

Λ

∫ 1

0

(
1− d− 1

4R
√

Λ
s

)
+

ds .

Inserting this into (3.6) completes the proof. �

Let us single out the case where Ω = Br is a ball in Rd with radius r > 0. Note that the
first eigenvalue of the Dirichlet Laplace operator on Br is given by

λ1(Br) =
π j2

d/2−1,1

Γ (d/2 + 1)2/d |Br|2/d
,

where jd/2−1,1 denotes the first zero of the Bessel function Jd/2−1. Again, we have to estimate

MΩ(Λ) >
1
2

∫ 1/(4
√

Λ)

0
|∂(Br)t| dt .

Instead of (3.12) we can now use that

|∂ (Br)t| = |∂Br|
(

1− t

r

)d−1

+

and conclude that for σ ≥ 3/2 and Λ > 0

Tr (−∆− Λ)σ− ≤ Lclσ,d |Br| Λσ+d/2 − Lclσ,d 2−d−2 |∂Br|
∫ 1

0

(
1− s

4r
√

Λ

)d−1

+

dsΛσ+(d−1)/2 .

We note that Tr (−∆− Λ)σ− = 0 for Λ ≤ λ1(Br). For Λ > λ1(Br) we apply the foregoing
inequality with σ = 3/2. Then the method from [AL78] yields that for σ ≥ 3/2 the inequality

Tr (−∆− Λ)σ− ≤ Lclσ,d |Br| Λσ+d/2 − Cba Lclσ,d−1 |∂Br| Λσ+(d−1)/2 (3.13)

holds with a constant

Cba =
jd/2−1,1

2d+1 d π1/2

Γ ((d+ 4)/2)
Γ ((d+ 5)/2)

(
1−

(
1− 1

4jd/2−1,1

)d)
> 0 .

4. Lower bounds on individual eigenvalues

In order to further estimate the remainder terms, in particular to show that the remainder
is negative for all Λ ≥ λ1(Ω) - as in (3.13) for the ball - one needs suitable bounds on the
ground state λ1(Ω). We point out the following consequence of the proof of Theorem 4 which
might be of independent interest.

Corollary 7. For any open set Ω ⊂ Rd the estimate

λ1(Ω) ≥ π2

l20

holds, where l0 is given in (3.2).
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Proof. Fix ε > 0 and choose a direction u0 ∈ Sd−1, such that supx∈Ω l(x, u0) < l0 + ε. We
write x = (x′, t) ∈ Rd−1 × R, where the t-axes is chosen in the direction of u0. Let us recall
inequality (3.5) from the proof of Theorem 4: For any σ ≥ 3/2

Tr (−∆− Λ)σ− ≤ Lclσ,d−1

∫
Rd−1

TrV (x′,Λ)σ+(d−1)/2 dx′ ,

where V (x′,Λ) denotes the negative part of the operator −∂2
t − Λ on Ω(x′) =

⋃N(x′)
k=1 Jk(x′)

with Dirichlet boundary conditions at the endpoints of each interval Jk(x′). This inequality
can be rewritten as

Tr (−∆− Λ)σ− ≤ Lclσ,d−1

∫
Rd−1

N(x′)∑
k=1

∑
j∈N

(
Λ− π2 j2

|Jk(x′)|2

)σ+(d−1)/2

+

dx′ .

Our choice of coordinate system implies |Jk(x′)| ≤ supx∈Ω l(x, u0) < l0 + ε for all k =
1, . . . , N(x′) and all x′ ∈ Rd−1. It follows that the right hand side of the inequality above is
zero for all Λ ≤ π2/(l0 + ε)2. Thus by taking the limit ε→ 0 we find∑

n∈N
(Λ− λn)σ+ = Tr (−∆− Λ)σ− = 0 ,

for all Λ ≤ π2/l20 and λ1 ≥ π2/l20 follows. �

From (3.3) we obtain similar bounds on higher eigenvalues using a method introduced
in [Lap97].

Corollary 8. For any open set Ω ⊂ Rd with finite volume and any k ∈ N the estimate

λk(Ω) ≥ Cd

(
12
π

)1/d d

(d+ 3)1+1/d

(
Γ ((d+ 3)/2)
Γ(d/2 + 1)

)2/d k2/d

|Ω|2/d
+

1
l20

holds, with
Cd = 4π Γ (d/2 + 1)2/d .

Proof. Let N(Λ) = Tr (−∆− Λ)0
− denote the counting function of the eigenvalues below

Λ > 0. In [Lap97] it is shown that for σ > 0, and all Λ > 0, τ > 0

N(Λ) ≤ (τΛ)−σ Tr (−∆− (1 + τ)Λ)σ− . (4.1)

If we apply this inequality with σ = 3/2, we can use (3.3) to estimate

N(Λ) ≤ Lcl3/2,d |Ω|Λ
d/2 (1 + τ)(d+3)/2

τ3/2

(
1− 1

Λ(1 + τ)l20

)(d+3)/2

+

.

Minimising the right hand side in τ > 0 yields τmin = 3(Λl20 − 1)/(dΛl20) and inserting this we
find

N(Λ) ≤ Lcl3/2,d |Ω|
(d+ 3)(d+3)/2

33/2 dd/2

(
Λ− 1

l20

)d/2
+

.

This is equivalent to the claimed result. �

Remark. Applying the same method to (1.1) with σ = 1 we recover the Li-Yau inequality
(1.5). In the proof of Corollary 8 we have to start from σ = 3/2, therefore the result is not
strong enough to improve (1.5) in general, but one gets improvements for low eigenvalues
whenever l0 is small.
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5. Further improvements in dimension 2

In this section we further improve Corollary 6 and generalise it to a large class of bounded
convex domains Ω ⊂ R2. Here we do not require smoothness, therefore we cannot use (3.12)
to estimate inner parallels of the boundary. To find a suitable substitute let w denote the
minimal width of Ω and note that for l0 given in (3.2) the identity

w = l0

holds true, see e.g. [BF48]. In the remainder of this section we assume that for all t > 0

|∂Ωt| ≥
(

1− 3t
w

)
+

|∂Ω| . (5.1)

This is true for a large class of convex domains, including the circle, regular polygons and
arbitrary triangles. Actually we conjecture that (5.1) holds true for all bounded convex
domains in R2.

Furthermore we need a lower bound on the ground state. From Corollary 7 we obtain that
for all convex domains Ω ⊂ R2

λ1(Ω) ≥ π2

w2
(5.2)

holds. One should mention, that the same estimate can be obtained from the inequality
λ1(Ω) ≥ π2/(4r2

in), see [Oss77], where rin is the inradius of Ω.
Using similar but more precise methods as in the proof of Theorem 5 we get

Theorem 9. Let Ω ⊂ R2 be a bounded, convex domain, satisfying (5.1). Then for σ ≥ 3/2
we have

Tr (−∆− Λ)σ− = 0 if Λ ≤ π2/w2 and

Tr (−∆− Λ)σ− ≤ Lclσ,2 |Ω|Λσ+1 − Cco Lclσ,1 |∂Ω|Λσ+1/2 if Λ > π2/w2 ,

with a constant

Cco ≥
11
9π2
− 3

20π4
− 2

5π2
ln
(

4π
3

)
> 0.0642 .

Proof. The first claim follows directly from (5.2), thus we can assume Λ > π2/w2. First we
prove the result for σ = 3/2. Again we can start from (3.7) and we need to estimate d(x, u)
in terms of δ(x), which is just the distance to the boundary, since Ω is convex.

Fix x ∈ Ω. Since Ω is convex and smooth we can choose u0 ∈ Sd−1, such that d(x, u0) =
δ(x). We can assume u0 = (1, 0, . . . , 0) and put Sd−1

+ =
{
u ∈ Rd : u1 > 0

}
.

Let a be the intersection point of the semi-axes {x+ tu0, t > 0} with ∂Ω and for arbitrary
u ∈ Sd−1

+ let bu be the intersection point of {x+ tu, t > 0} with the plane through a, orthog-
onal to u0. We find d(x, u) ≤ |x − bu| and if θu denotes the angle between u0 and u, we
find

d(x, u) ≤ |x− bu| =
|x− a|
cos θu

=
δ(x)

cos θu
.

Using (3.7) and taking into account that d(x, u) = d(x,−u) we can estimate

Tr (−∆− Λ)3/2
− ≤ Lcl3/2,2 Λ5/2

∫
Ω

2
π

∫ π/2

θ0

(
1− cos2(θ)

4Λδ(x)2

)5/2

dθ dx

≤ Λ5/2

5π2

∫
Ω

∫ π/2

θ0

(
1− cos2(θ)

2Λδ(x)2
+

cos4(θ)
16Λ2δ(x)4

)
dθ dx, (5.3)



13

where θ0 = 0 if δ(x) ≥ 1/(2
√

Λ) and θ0 = arccos(2δ(x)
√

Λ) if δ(x) < 1/(2
√

Λ). We set
u0 = min(1, 2δ(x)

√
Λ) and calculate∫ π/2

θ0

(
1− cos2(θ)

2Λδ(x)2
+

cos4(θ)
16Λ2δ(x)4

)
dθ

=
π

2
− θ0 −

arcsin(u0)− u0

√
1− u2

0

4Λδ(x)2
+

3 arcsin(u0)− u0

(
2u2

0 + 3
)√

1− u2
0

128Λ2δ(x)4
.

Inserting this back into (5.3) yields

Tr (−∆− Λ)3/2
− ≤ 1

10π
|Ω|Λ5/2 − Λ5/2 (I1 + I2) , (5.4)

where

I1 =
∫
{δ(x)≥1/(2

√
Λ)}

1
10π

(
1

4Λδ(x)2
− 3

128Λ2δ(x)4

)
dx

and

I2 =
∫
{δ(x)<1/(2

√
Λ)}

1
5π2

(
arccos(2

√
Λδ(x)) +

arcsin(2
√

Λδ(x))
4Λδ(x)2

−
√

1− 4Λδ(x)2

2
√

Λδ(x)

−3 arcsin(2
√

Λδ(x))
128Λ2δ(x)4

+
(8Λδ(x)2 + 3)

√
1− 4Λδ(x)2

64Λ3/2δ(x)3

)
dx .

First we turn to

I1 =
1

10π

∫ ∞
1/(2
√

Λ)
|∂Ωt|

(
1

4Λt2
− 3

128Λ2t4

)
dt .

Note that the term in brackets is positive, thus after substituting s = 2
√

Λt we can use (5.1)
and Λ > π2/w2 to obtain

I1 ≥ 1
20π
|∂Ω|√

Λ

∫ ∞
1

(
1− 3s

2π

)
+

(
1
s2
− 3

8s4

)
ds

=
1

20π
|∂Ω|√

Λ

(
7
8
− 39

32π
− 27

128π3
− 3

2π
ln
(

2π
3

))
.

Similarly we can treat I2 and get

I2 ≥
1

10π2

|∂Ω|√
Λ

(
557
192
− 7π

16
− 3

2π

∫ 1

0

arcsin(s)
s

ds

)
.

In view of Lcl3/2,1 = 3/16 we can write

I1 + I2 ≥ Lcl3/2,1
|∂Ω|√

Λ

(
11
9π2
− 3

20π4
− 2

5π2
ln
(

2π
3

)
− 2

5π2
ln(2)

)
and inserting this into (5.4) yields the claim in the case σ = 3/2.

To prove the estimate for σ > 3/2 we again refer to [AL78] and use the identity

Tr (−∆− Λ)σ− =
1

B(σ − 3/2, 5/2)

∫ ∞
0

τσ−5/2 Tr (−∆− (Λ− τ))3/2
− dτ ,

from which the general result follows. �
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Now we can apply the same arguments that lead to Corollary 8 to derive lower bounds on
individual eigenvalues.

Corollary 10. Let Ω ⊂ R2 be a bounded, convex domain, satisfying (5.1). Then for k ∈ N
and any α ∈ (0, 1) the estimate

λk(Ω)
1− α

≥ 10πα3/2 k

|Ω|
+

15πCco
8

|∂Ω|
|Ω|

√
10πα3/2

k

|Ω|
+

225π2C2
co

256
|∂Ω|2
|Ω|2

+
225π2C2

co

128
|∂Ω|2

|Ω|2

holds, with the constant Cco given in Theorem 9.

Proof. Applying (4.1) and Theorem 9 with σ = 3/2 yields

N(Λ) ≤ Lcl3/2,2 |Ω|Λ
(1 + τ)5/2

τ3/2
− Cco Lcl3/2,1 |∂Ω|

√
Λ

(1 + τ)2

τ3/2

for any τ > 0 and Λ > π2/w2. With τ = α/(1 − α), α ∈ (0, 1), this is equivalent to the
claimed estimate. �

Remark. Given a fixed ratio |∂Ω|/|Ω| one can optimise the foregoing estimate in α ∈ (0, 1),
depending on k ∈ N. As mentioned in the remark after Corollary 8, the result cannot improve
the Li-Yau inequality (1.5) in general, since we have to apply (4.1) with σ = 3/2 instead of
σ = 1. However, the estimates obtained from Corollary 10 are stronger than (1.5) for low
eigenvalues and the improvements depend on the ratio |∂Ω|/|Ω|.

In particular, one can use the isoperimetric inequality, namely that |∂Ω| ≥ 2(π|Ω|)1/2 for
all Ω ⊂ R2, to derive general improvements of the Li-Yau inequality (1.5) for low eigenvalues.
Indeed, from (1.5) we get

λk(Ω) ≥ 2πk
|Ω|

,

while optimising the estimate of Corollary 10 with |∂Ω| = 2(π|Ω|)1/2, we find that for any
convex domain, satisfying (5.1),

λ2(Ω) >
15.03
|Ω|

>
4π
|Ω|

, λ3(Ω) >
21.52
|Ω|

>
6π
|Ω|

, . . . , λ23(Ω) >
144.58
|Ω|

>
46π
|Ω|

.

In this way we can improve (1.5) in convex domains for all eigenvalues λk(Ω) with k ≤ 23.

Finally let us make a remark about the square Ql = (0, l) × (0, l) ⊂ R2, l > 0. Using the
methods introduced in section 2 one can establish the following two-dimensional version of
Lemma 1: Choose a coordinate system (x1, x2) ∈ R2 with axes parallel to the sides of the
square and for x ∈ Ql put

δ(xi) = min(xi, l − xi) , i = 1, 2 .

Then for σ ≥ 1 and all Λ > 0 the estimate

Tr (−∆− Λ)σ− =
∑
m,n∈N

(
Λ− π2

l2
(
n2 +m2

))σ
+

≤ Lclσ,2

∫ l

0

∫ l

0

(
Λ− Csq

(
1

δ(x1)
+

1
δ(x2)

)2
)σ+1

+

dx1 dx2

holds with a constant Csq > 1/10.
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Appendix A. Proof of Lemma 2 and Lemma 3

A.1. Proof of Lemma 2. For A ∈ R let A and Ã denote the integer and fractional part of
A respectively. Then we can calculate

∑
k

(
1− k2

A2

)
+

=
A∑
k=1

(
1− k2

A2

)
= A− 1

A2

(
A

3

3
+
A

2

2
+
A

6

)

=
2A
3
− 1

2
− 1

6A
+ Ã(1− Ã)

1
A

+ Ã
(

1− 3Ã+ 2Ã2
) 1

6A2
.

From 0 ≤ Ã < 1 we conclude Ã(1− Ã) ≤ 1/4 and Ã
(

1− 3Ã+ 2Ã2
)
≤
√

3/18 and we get

∑
k

(
1− k2

A2

)
+

≤ 2A
3
− 1

2
+

1
12A

+
√

3
108A2

. (A.1)

To estimate the right hand side of (2.1) note that∫ (
1− 1

s2

)3/2

ds =
(

1 +
1

2s2

)√
s2 − 1 +

3
2

arctan
(

1√
s2 − 1

)
,

thus

2
3π

∫ πA

1

(
1− 1

s2

)3/2

ds =
2π2A2 + 1

3π2A

√
π2A2 − 1
πA

+
1
π

arctan
(

1√
π2A2 − 1

)
− 1

2
.

Now we can insert the elementary estimates

arctan
(

1√
π2A2 − 1

)
≥ 1

πA
and

√
π2A2 − 1
πA

≥ 1− 1
2π2A2

− a

A4

both valid for A ≥ 2, where we write a = 16− 2/π2 − 8
√

4π2 − 1/π for simplicity. We get

2
3π

∫ πA

1

(
1− 1

s2

)3/2

ds ≥ 2A
3
− 1

2
+

1
π2A

− 1
6π4A3

− a

3

(
2
A3

+
1

π2A5

)
(A.2)

for all A ≥ 2. From (A.1) and (A.2) we deduce that (2.1) holds true for all A ≥ 2, since(
1
π2
− 1

12

)
A4 −

√
3

108
A3 −

(
1

6π4
+

2a
3

)
A2 − a

3π2
≥ 0

for all A ≥ 2.
Note that (2.1) is trivial for 1/π ≤ A ≤ 1, since the left hand side equals zero. The

remaining case 1 ≤ A ≤ 2 can be checked by hand.

A.2. Proof of Lemma 3. We assume I = (0, l), substitute t = s
√
c/Λ and write∫ l

0

(
Λ− c

δ(t)2

)σ+1/2

+

dt = 2
√
cΛσ

∫ l
√

Λ/(2
√
c)

1

(
1− 1

s2

)σ+1/2

ds .

The claim of the Lemma follows, if we show that

2
√
cLclσ,1

∫ l
√

Λ/(2
√
c)

1

(
1− 1

s2

)σ+1/2

ds−
∑
k

(
1− π2k2

Λ l2

)σ
+

=
1
2
−
√
c+ o (1)
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as Λ→∞. With A = l
√

Λ/π this is equivalent to

2
√
cLclσ,1

∫ πA/(2
√
c)

1

(
1− 1

s2

)σ+1/2

ds−
∑
k

(
1− k2

A2

)σ
+

=
1
2
−
√
c+ o (1) (A.3)

as A→∞.
It is easy to see that∑

k

(
1− k2

A2

)σ
+

=
A

2
B

(
σ + 1,

1
2

)
− 1

2
+ o(1)

as A→∞. Moreover, we claim∫ πA/(2
√
c)

1

(
1− 1

s2

)σ+1/2

ds =
πA

2
√
c

+
1
2
B

(
−1

2
, σ +

3
2

)
+ o(1) (A.4)

as A → ∞ and (A.3) follows from Lclσ,1 = B(σ + 1, 1/2)/(2π), if we can establish (A.4). Let
us write (

1− 1
s2

)m
=
∑
k≥0

(−1)k
(
m

k

)
s−2k =

∑
k≥0

(
k −m− 1

k

)
s−2k

for m ≥ 1 and note that the sum is finite if m ∈ N, while the sum converges uniformly on
s ∈ [1,∞) if m /∈ N. Hence we have∫ y

1

(
1− 1

s2

)m
ds = y +

∑
k≥0

(
k −m− 1

k

)
1

2k − 1
+ o(1)

as y →∞. Using that ∑
k≥0

(
k −m− 1

k

)
1

2k − 1
=

1
2
B

(
−1

2
,m+ 1

)
we obtain ∫ y

1

(
1− 1

s2

)m
ds = y +

1
2
B

(
−1

2
,m+ 1

)
+ o(1)

as y →∞, which is equivalent to (A.4). This finishes the proof of Lemma 3.
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