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Universit ät Stuttgart
Fachbereich Mathematik

A minimal atlas for the rotation group SO(3)

Erik W. Grafarend, Wolfgang Kühnel

Preprint 2010/015



Fachbereich Mathematik
Fakultät Mathematik und Physik
Universität Stuttgart
Pfaffenwaldring 57
D-70 569 Stuttgart

E-Mail: preprints@mathematik.uni-stuttgart.de

WWW: http://www.mathematik/uni-stuttgart.de/preprints

ISSN 1613-8309

c© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.
LATEX-Style: Winfried Geis, Thomas Merkle



A minimal atlas for the rotation group SO(3)

Erik W. Grafarend & Wolfgang Kühnel

We describe explicitly an atlas for the rotation group SO(3) consisting of four charts where each chart is

defined by Euler angles or each chart is defined by Cardan angles. This is best possible since it is well

known that three charts do not suffice.

It is our daily experience that the Earth rotates, and it is our yearly experience that the Earth
revolves around the Sun. The rotation of the Earth is nowadays descibed by a rotation matrix,
an element of the three-dimensional rotation group SO(3). The rotation group is presented in
various monographs, for instance in [5] and [7]. The rotation matrix of the Earth is given by the
International Earth Rotation and Reference Service (IERS) in terms of daily, monthly and yearly
data, namely for precession/nutation versus polar motion/length of day variations (POM/LOD).

The problem we are discussing here originates in the various parameter systems of the rotation of
rigid or deformable bodies. The characteristic equations are the kinematic Euler equations and the
dynamic Euler equations parameterized in terms of Euler or Cardan angles. For a deformable body
the dynamic Euler equations are generalized into Euler-Liouville equations. As another parameter
system Hamilton’s unit quaternions are used. General references are [3], [4], [10], [18] and, in
particular, the previous article [8] by the first author on the same problem and the references
quoted there.

The Earth has to be considered as a gyroscope with exotic movements like precession and nutation
in an inertial frame of reference or polar motion and length of day variation in an Earth-fixed frame
of reference. These movements are described by elements of the rotation group SO(3) which is
defined as the set of all real (3 × 3)-matrices with detA = 1 and with three orthonormal rows
and columns. It is a compact three-dimensional subgroup of the 9-dimensional group GL(3, R).
Compare [22] for the reduction of 9 parameters to 3 parameters. In particular SO(3) is a connected
Lie group and an analytic 3-manifold. Its universal 2-sheeted covering is the group Spin(3) which
can be identified with the set of all unit quaternions H1 = Sp(1) = {q ∈ H

∣

∣ ||q|| = 1} which, as a
manifold, is diffeomorphic with the 3-dimensional standard sphere S3 ⊂ R

4. It is also isomorphic
with the group SU(2). See [2] for the details.

It is necessary to have a parameterization of the rotation group by three independent parameters.
In particular it is a very natural goal to define an atlas for the rotation group by charts. A chart is
an injective and differentiable map Φ:U → SO(3) of maximal rank where U is an open subset of
R

3 diffeomorphic with an open 3-dimensional ball. In other words: A chart Φ is a diffeomorphic
map from U ⊂ R

3 onto its image Φ(U) ⊂ SO(3). An atlas is a set of charts covering the entire
group SO(3) such that all coordinate changes are differentiable maps. For a Lie group one may
require that all coordinate changes are real analytic.

Our contribution deals with the problem how to find such an atlas explicitly, especially one with
a minimum number of maps. Here we can take advantage of the Lusternik-Schnirelmann category
cat [12], [13], [14], [6]. The category of a manifold is defined as the minimum number of subsets of
a covering such that each subset has a contractible neighborhood in the manifold. The number of
critical points of a real function on M cannot be smaller than cat(M), see [23]. In particular the
well known equation cat(SO(3)) = 4 indicates that at least four charts should be needed to cover
the group SO(3) completely. This holds for any type of charts, not only for Euler charts or Cardan
charts. From the practical point of view, the construction of a minimum atlas on SO(3) runs into
the same problem as the construction of a minimum atlas on the unit sphere S2. For the unit
sphere the equation CAT (S2) = 2 holds because the sphere is not contractible itself, and because
we can cover it by two overlapping 2-discs around north and south pole. So in any case we need
at least two distinct charts to cover the sphere completely. The standard spherical coordinates
(spherical longitude and spherical latitude as a parameter system) become singular at the two
poles. A well defined transverse coordinate system, also called meta-longitude and meta-latitude,
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as a parameter system has to be constructed. The union of the charts longitude/latitude and
meta-longitude/meta-latitude cover the unit sphere completely in the sense of a minimum atlas,
see [9, Sect.3-3].

For the three-dimensional rotation group the singularities of the parameter system Euler angles,
Cardan angles and Hamilton unit quaternions are well known. They have been already analysed
in the monographs [16], [24] and [19]. For spaceborne gyroscopes, deforming in time, we refer
to [20], [21]. For Euler angles and Cardan angles Rimrott [19] found six different charts which
constitute a complete atlas. Thus it remained an open question to find four charts of Euler or
Cardan type which constitute a minimum atlas for SO(3).

Definition (Euler angles, Cardan angles)
We say that two charts F1: U1 → SO(3), F2: U2 → SO(3) are of the same type if there is a
translation T in the parameter domain R

3 and a rotation R ∈ SO(3) such that F2 = R ◦ F1 ◦ T .

1. By the Cayley parameters we mean the Cayley map C: so(3) → SO(3) defined by

C(A) = (1 + A)(1 − A)−1.

The exceptional locus SO(3) \ C(so(3)) consists of all rotation matrices with an angle π. The
inverse map is explicitly given by C−1(B) = (B + 1)−1(B − 1).

2. The Geodesic polar coordinates are given by the exponential map

exp: {A ∈ so(3) | ||A|| < π} → SO(3)

with

exp(tA) =
∑

n≥0

1

n!
(tA)n = 1 + (sin t)A + (1 − cos t)A2

whenever ||A|| = 1. Here || || denotes the operator norm of a matrix. Again the exceptional locus
consists of all rotation matrices with an angle π. If B ∈ SO(3) is a matrix an angle distinct from
π then we have tr(B) 6= −1, and B is not symmetric unless it is the identity matrix 1 = exp(0).
Hence we can recover the corresponding A from the skew-symmetric part of B and its operator
norm, where the scalar factor sin t uniquely determines the parameter t in the interval 0 < t < π.

3. The standard Euler chart is the following map F : U → SO(3) for a suitable domain U ⊂ R
3

(for the precise choice of U see below)

F (γ, α, γ∗) = Rz(γ) ·Rx(α) ·Rz(γ
∗)

=





cos γ − sinγ 0
sin γ cos γ 0

0 0 1



 ·





1 0 0
0 cosα − sin α
0 sin α cosα



 ·





cos γ∗ − sinγ∗ 0
sin γ∗ cos γ∗ 0

0 0 1





=





cos γ cos γ∗ − sin γ cosα sinγ∗ − cos γ sin γ∗ − sin γ cosα cos γ∗ sin γ sin α
sin γ cos γ∗ + cos γ cosα sinγ∗ − sinγ sinγ∗ + cos γ cosα cos γ∗ − cos γ sin α

sin α sin γ∗ sin α cos γ∗ cosα





The angles γ, α, γ∗ are called the Euler angles1 associated with the matrix on the right hand
side. It is well known that the map F : R3 → SO(3) is surjective, compare [17] for a theoretical
foundation in terms of generators and relations of groups.

1named after Leonhard Euler (1707–1783)
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4. The standard Cardan chart G: V → SO(3) is the following map for a suitable domain V ⊂ R
3

(for the precise choice of V see below)

G(α, β, γ) = Rx(α) · Ry(β) ·Rz(γ)

=





1 0 0
0 cosα − sinα
0 sin α cosα



 ·





cosβ 0 − sin β
0 1 0

sinβ 0 cosβ



 ·





cos γ − sinγ 0
sin γ cos γ 0

0 0 1





=





cosβ cos γ − cosβ sin γ − sinβ
cosα sin γ − sin α sin β cos γ cosα cos γ + sin α sin β sinγ − sinα cosβ
sin α sin γ + cosα sin β cos γ sin α cos γ − cosα sin β sinγ cosα cosβ





Accordingly, the angles α, β, γ are called the Cardan angles2 associated with the matrix on the
right hand side, sometimes also called Tait-Bryan angles or yaw, pitch and roll. The map G is
surjective since the three standard rotations generated the entire rotation group. The exceptional
sets of matrices where the Euler angles or the Cardan angles fail to be unique will be determined
in the proof of our theorem below.

Theorem (four versions of a minimum atlas)

(i) Any atlas of the rotation group SO(3) consists of at least four charts.

(ii) For each of the following four types there is an atlas with four charts consisting only of charts
of this type:

1. Cayley parameters,

2. geodesic polar coordinates,

3. Euler angles,

4. Cardan angles.

Proof. Part (i) is direct application of the Lusternik-Schnirelmann category: The group SO(3)
is diffeomorphic with the real projective 3-space RP 3, and it is well known that the category of
RP 3 equals 4, compare [6], [8]. In general we have cat(RPn) = n + 1. Therefore SO(3) cannot be
covered by three embedded open 3-balls. Roughly this can be seen as follows: In RP 3 any 3-ball
leaves some projective plane RP 2 in its complement (up to homeomorphism). A second 3-ball
leaves a projective line RP 1 in its complement in this projective plane RP 2. Finally the remaining
projective line requires two more 3-balls since a closed curve in one 3-ball is always contractible
but a projective line is not a contractible curve.

For Part (ii) we explicitly define such an atlas as follows:

(1) For an atlas consisting of modified Cayley charts (all of the same type) we define

C1 = C, C2 = Rx(π) ◦ C, C3 = Ry(π) ◦ C, C4 = Rz(π) ◦ C.

For any given matrix B ∈ SO(3) it is impossible that all four matrices

A, Rx(π)B, Ry(π)B, Rz(π)B

2named after Girolamo Cardano (1501–1576)
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are rotations with an angle π. Therefore B lies in the image of at least one of the four Cayley
charts. Compare the exposition in the elementary textbook [11, Sect.5A], compare also [8].

(2) For the case of geodesic polar coordinates we proceed similarly and define

exp1 = exp, exp2 = Rx(π) ◦ exp, exp3 = Ry(π) ◦ exp, exp4 = Rz(π) ◦ exp .

Again it is impossible that for any given matrix B ∈ SO(3) all four matrices
B,Rx(π)B, Ry(π)B, Rz(π)B are rotations with an angle π. Therefore B lies in the image
of at least one of the four charts in geodesic polar coordinates.

In terms of the 2-sheeted covering R: H1 → SO(3) this atlas is induced by the eight open half-
spheres outside the four coordinate hyperplanes. The four exceptional loci are the intersections
with these four coordinate hyperplanes. In H1 the image of the original map exp corresponds to
the non-vanishing of the real part of a unit quaternion since precisely for those q ∈ H1 with a
vanishing real part the matrix R(q) is a rotation with an angle π (see below).

(3) Since we have F (0, 0, 0) = F (γ, 0,−γ) for any γ the map F is not injective in any neighborhood
of the origin. In particular this means that the identity matrix has no uniquely defined Euler angles.
We define the open set

U = (−π, π) × (0, π) × (−π, π)

in the domain of all triples (γ, α, γ∗) of possible Euler angles. The identity matrix is not contained
in F (U) since it would require an angle α with cosα = 1.

We claim that the restriction of F to U is injective. For a proof let

A =





a11 a12 a13

a21 a22 a23

a31 a32 a33





be a given element of SO(3). By the condition a33 = cosα the angle α is uniquely defined whenever
such an α ∈ (0, π) exists, i.e., if a33 6= ±1. By the condition sinα > 0 the angle γ is uniquely
defined by a13 and a23 together, and γ∗ is uniquely defined by a31 and a32 together. Therefore
the equation F (γ, α, γ∗) = A has at most one solution in U . The differential of F has maximal
rank in U since there exists a differentiable inverse map on F (U).

Moreover, this domain U is maximal with this property: One cannot go further in direction
of γ or γ∗ since sin und cos are 2π-periodic. One cannot go further in direction of α because
of F (γ + π, π + α, γ∗ + π) = F (γ, π − α, γ∗). In addition the differential of F degenerates for
cosα = ±1.

The exceptional locus: The set SO(3) \ F (U) consist of all matrices A with a33 = ±1 on the one
hand and of those matrices which are covered by F only using angles γ = ±π or γ∗ = ±π on
the other hand. The special case a33 = ±1 corresponds to α = 0 oder α = π, in der literature
known as the “gimbal lock”. Topologically the complement of the “gimbal lock” corresponds to
the cartesian product of the α-interval (0, π) and the (γ, γ∗)-torus S1 × S1.

Now we have to find three other charts of the Euler type covering the exceptional locus. Here we
use the well known description in terms of unit quaternions q = a + bi + cj + dk ∈ H1 (where
a2 + b2 + c2 + d2 = 1) with the 2-sheeted covering R: H1 → SO(3) defined by

R(q) =





1 − 2(c2 + d2) −2ad + 2bc 2ac + 2bd
2ad + 2bc 1 − 2(b2 + d2) −2ab + 2cd
−2ac + 2bd 2ab + 2cd 1 − 2(b2 + c2)



 .

Here we have R(q)(x) = qxq−1 and R(qr) = R(q) · R(r). The trace of the matrix R(q) equals
3−4(b2 + c2 +d2). On the other hand the trace of a rotation matrix equals 1+2 cosϕ if ϕ denotes
the angle of the rotation. Consequently ϕ = π if and only if a = 0. Furthermore this implies
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that the set of all R(q) with cosα = 1 is induced by the set of all q with b = c = 0, and that
the set of R(q) with cosα = −1 is induced by the set of all q with a = d = 0. Therefore in H1

the “gimbal lock” appears as the union of two opposite great circles. In terms of the standard
rotations Rx(π),Ry(π),Rz(π) above we can write

Rx(π) = R(i), Ry(π) = R(j), Rz(π) = R(k).

Now we define two charts (of the same type) F1, F2: U → SO(3) by

F1 = F, F2(γ, α, γ∗) = F (γ + π, α, γ∗ + π)

and calculate the remaining exceptional locus SO(3) \
(

F1(U) ∪ F2(U)
)

. Except for the “gimbal
lock” the exceptional locus consists of those matrices F (γ, α, γ∗) with (γ, α, γ∗) = (0, α, π) or
(γ, α, γ∗) = (π, α, 0). By the equation cos γ · cos γ∗ = −1 these matrices are of the form





−1 0 0
0 − cosα ± sinα
0 ± sinα cosα



 .

The fct that the trace equals −1 tells us that each such matrix represents a rotation by the
angle π, independently of α. In terms of unit quaternions these matrices are characterized by
a = b = 0. Therefore the remaining exceptional locus is the union of the three great circles
d = a = 0, a = b = 0, b = c = 0.

Now we are going to cover this exceptional locus by a third and a fourth chart. We define

F3(γ, α, γ∗) = Ω · F1(γ, α, γ∗), F4(γ, α, γ∗) = Ω · F2(γ, α, γ∗)

with the matrix

Ω =
1

3





−1 2 2
2 −1 2
2 2 −1





which also represents a rotation by an angle π. In terms of unit quaternions it corresponds to

ω =
1√
3

(

i + j + k
)

in the sense that Ω = R(ω). In some sense F3, F4 together can be called a transverse pair of
Euler charts compared to F1, F2, by analogy with [9, Sect.3-3]. The remaining exceptional set
SO(3) \

(

F3(U) ∪ F4(U)
)

is nothing but the other one SO(3) \
(

F1(U) ∪ F2(U)
)

after rotation by
the action of Ω. If these two exceptional sets are disjoint then we are done since the four charts
F1, F2, F3, F4 cover the entire rotation group SO(3). And in fact they are disjoint, as follows from
the calculation of the products

(i + j + k)(a + dk) = −d + (a + d)i + (a − d)j + ak, with a2 + d2 = 1
(i + j + k)(bi + cj) = −(b + c) − ci + bj + (c − b)k, with b2 + c2 = 1
(i + j + k)(cj + dk) = −(c + d) + (d − c)i − dj + ck, with c2 + d2 = 1.

An analogous construction is well known for the ordinary spherical coordinates where the excep-
tional locus of one standard chart is half of a great circle from north pole to south pole. The
“gimbal lock” corresponds to the two poles. By a transversal map we obtain an atlas consisting
of two standard charts. We just have to make sure that the two exceptional loci are disjoint.

(4) For the Cardan angles we simiarly define a set

V = (−π, π) × (−π/2, π/2)× (−π, π)

9



in the domain of all possible triples of angles (α, β, γ). In this case the unit matrix occurs as
G(0, 0, 0).

We claim that the restriction of G to V is injective. For a proof we proceed as in case (3) above.
A given rotation matrix

A =





a11 a12 a13

a21 a22 a23

a31 a32 a33





determines the angle β ∈ (−π/2, π/2) uniquely by the condition a13 = − sinβ whenever such a
β exists, i.e., if a13 6= ±1). Bebause of cosβ > 0 the angle α is then uniquely determined by a23

and a33, and γ is uniquely determined by a11 and a12. Therefore the equation G(α, β, γ) = A
has at most one solution in V . The differential of G has maximal rank in V since there exists a
differentiable inverse map on G(V ).

Again V is maximal with this property, by analogy with the case of the Euler angles above: In
α-direction or in γ-direction we cannot go further. In β-direction this is impossible because of
G(α, π/2 + β, γ) = G(α + π, π/2 − β, γ + π).

The exceptional locus: The set SO(3) \ G(V ) consists of all matrices A with a13 = ±1 and of
those matrices, which can only be represented by α = ±π or γ = ±π. The special case a13 = ±1
corresponds to β = ∓π/2. The rest ist nothing but the cartesian product of the β-interval
(−π/2, π/2) and the (α, γ)-torus S1 × S1.

In terms of unit quaternions q = a+ bi+ cj +dk ∈ H1 the set of all R(q) with sinβ = ±1 concides
with the set of all q with

ad = bc, ab = cd, b2 = d2, b2 + c2 = 1

2
, ac + bd = ± 1

2
.

These equations imply a2 = c2 with the sign restriction ad = bc. Therefore this part of the
exceptional locus lies in the union of the 2-dimensionalen linear subspaces c = a, d = b und
c = −a, d = −b.

Now we introduce two maps G1, G2: V → SO(3) by

G1 = G, G2(α, β, γ) = G(α + π, β, γ + π)

and consider the remaining exceptional locus SO(3)\
(

G1(V )∪G2(V )
)

. Besides the case sin β = ±1
described above the exceptional locus consists of the matrices G(α, β, γ) with (α, β, γ) = (0, β, π)
or with (α, β, γ) = (π, β, 0). Because of cosα · cos γ = −1 these have the form





∓ cosβ 0 − sin β
0 −1 0

− sin β 0 ± cosβ



 .

Again the trace tells us that each such matrix represents a rotation by π, independently of β. In
terms of quaternions these matrices are characterized by a = c = 0. It follows that the entire
exceptional locus can be described by linear equations between a, b, c, d.

Finally we have to cover the exceptional locus by a third and a fouth map. We choose

G3(α, β, γ) = Ω · G1(α, β, γ), G4(α, β, γ) = Ω · G2(α, β, γ)

with the same matrix Ω as above. The exceptional locus SO(3) \
(

G3(V )∪G4(V )
)

is the same as
the other one, just rotated by Ω. These two exceptional sets are disjoint. This follows by analogy
with the case of the Euler angles above. As an example we have

(i + j + k)(a + bi + aj + bk) = −(2b + a) + bi + aj + (2a − b)k.

�
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How to switch between the four charts. In the case of Cayley parameters or geodesic polar co-
ordinates the four charts are transformed into each other by the subgroup {1,Rx(π),Ry(π),Rz(π)}
acting on SO(3) from the left. This group is isomorphic with the additive group Z2 × Z2. From
the practical point of view we have the following procedure: For a given matrix B one has to check
which of the four matrices

B, Rx(π)B, Ry(π)B, Rz(π)B

has an angle distinct from π or, equivalently, a trace distinct from −1. The corresponding chart
can be used. It follows that all parameter transformations between the charts are real analytic.

In the case of Euler angles or Cardan angles it seems that such a group argument can not work
for any such atlas of four charts. Instead, switching between F1 and F2 [or G1 and G2] means
that each of the quantities sin γ, cosγ, sinγ∗, cos γ∗ [or sinα, cosα, sin γ, cos γ] is replaced by its
negative. This procedure is nothing but conjugation in O(3) by the reflection matrix

T =





1 0 0
0 1 0
0 0 −1



 .

By definition switching between F1 and F3 or F2 and F4 means multiplication by Ω from the
left, similarly for G1, G2, G3, G4. It follows that switching from F3 to F4 means multiplication by
Ω, followed by conjugation by T , and again followed by multiplication by Ω. In particular the
“gimbal lock” can never occur for A and ΩA simulaneously. So from the practical point of view
for a given matrix A ∈ SO(3) one has to check the four matrices

A, TAT, ΩA, ΩTAT.

By the proof above at least one of them lies in the image of the standard Euler chart or standard
Cardan chart, respectively, with the domain U or V as above. The inverse map leads to the
corresponding Euler angles in U or Cardan angles in V . For the practical calculation compare
[1]. Again all parameter transformations are real analytic. For numerical stability one can avoid
a certain “dangerous region” around the boundaries of the charts, due to a large overlap of the
four charts. In particular one can always stay away from the “gimbal lock”.

Remark. Higher dimensional analogues of the Euler angles are studied in [15].
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