A minimal atlas for the rotation group $SO(3)$

Erik W. Grafarend, Wolfgang Kühnel

Preprint 2010/015
A minimal atlas for the rotation group $SO(3)$

Erik W. Grafarend, Wolfgang Kühnel

Preprint 2010/015
A minimal atlas for the rotation group \(SO(3) \)

Erik W. Grafarend & Wolfgang Kühnel

We describe explicitly an atlas for the rotation group \(SO(3) \) consisting of four charts where each chart is defined by Euler angles or each chart is defined by Cardan angles. This is best possible since it is well known that three charts do not suffice.

It is our daily experience that the Earth rotates, and it is our yearly experience that the Earth revolves around the Sun. The rotation of the Earth is nowadays described by a rotation matrix, an element of the three-dimensional rotation group \(SO(3) \). The rotation group is presented in various monographs, for instance in [5] and [7]. The rotation matrix of the Earth is given by the International Earth Rotation and Reference Service (IERS) in terms of daily, monthly and yearly data, namely for precession/nutation versus polar motion/length of day variations (POM/LOD).

The problem we are discussing here originates in the various parameter systems of the rotation of rigid or deformable bodies. The characteristic equations are the kinematic Euler equations and the dynamic Euler equations parameterized in terms of Euler or Cardan angles. For a deformable body the dynamic Euler equations are generalized into Euler-Liouville equations. As another parameter system Hamilton’s unit quaternions are used. General references are [3], [4], [10], [18] and, in particular, the previous article [8] by the first author on the same problem and the references quoted there.

The Earth has to be considered as a gyroscope with exotic movements like precession and nutation in an inertial frame of reference or polar motion and length of day variation in an Earth-fixed frame of reference. These movements are described by elements of the rotation group \(SO(3) \) which is defined as the set of all real \((3 \times 3)\)-matrices with \(\det A = 1 \) and with three orthonormal rows and columns. It is a compact three-dimensional subgroup of the 9-dimensional group \(GL(3, \mathbb{R}) \). Compare [22] for the reduction of 9 parameters to 3 parameters. In particular \(SO(3) \) is a connected Lie group and an analytic 3-manifold. Its universal 2-sheeted covering is the group \(Spin(3) \) which can be identified with the set of all unit quaternions \(H_1 = Sp(1) = \{ q \in \mathbb{H} \mid ||q|| = 1 \} \) which, as a manifold, is diffeomorphic with the 3-dimensional standard sphere \(S^3 \subset \mathbb{R}^4 \). It is also isomorphic with the group \(SU(2) \). See [2] for the details.

It is necessary to have a parameterization of the rotation group by three independent parameters. In particular it is a very natural goal to define an atlas for the rotation group by charts. A chart is an injective and differentiable map \(\Phi : U \rightarrow SO(3) \) of maximal rank where \(U \) is an open subset of \(\mathbb{R}^3 \) diffeomorphic with an open 3-dimensional ball. In other words: A chart \(\Phi \) is a diffeomorphic map from \(U \subset \mathbb{R}^3 \) onto its image \(\Phi(U) \subset SO(3) \). An atlas is a set of charts covering the entire group \(SO(3) \) such that all coordinate changes are differentiable maps. For a Lie group one may require that all coordinate changes are real analytic.

Our contribution deals with the problem how to find such an atlas explicitly, especially one with a minimum number of maps. Here we can take advantage of the Lusternik-Schnirelmann category cat [12], [13], [14], [6]. The category of a manifold is defined as the minimum number of subsets of a covering such that each subset has a contractible neighborhood in the manifold. The number of critical points of a real function on \(M \) cannot be smaller than \(\text{cat}(M) \), see [23]. In particular the well known equation \(\text{cat}(SO(3)) = 4 \) indicates that at least four charts should be needed to cover the group \(SO(3) \) completely. This holds for any type of charts, not only for Euler charts or Cardan charts. From the practical point of view, the construction of a minimum atlas on \(SO(3) \) runs into the same problem as the construction of a minimum atlas on the unit sphere \(S^2 \). For the unit sphere the equation \(\text{CAT}(S^2) = 2 \) holds because the sphere is not contractible itself, and because we can cover it by two overlapping 2-discs around north and south pole. So in any case we need at least two distinct charts to cover the sphere completely. The standard spherical coordinates (spherical longitude and spherical latitude as a parameter system) become singular at the two poles. A well defined transverse coordinate system, also called meta-longitude and meta-latitude,
as a parameter system has to be constructed. The union of the charts longitude/latitude and meta-longitude/meta-latitude cover the unit sphere completely in the sense of a minimum atlas, see [9, Sect.3-3].

For the three-dimensional rotation group the singularities of the parameter system Euler angles, Cardan angles and Hamilton unit quaternions are well known. They have been already analysed in the monographs [16], [24] and [19]. For spaceborne gyroscopes, deforming in time, we refer to [20], [21]. For Euler angles and Cardan angles Rimrott [19] found six different charts which constitute a complete atlas. Thus it remained an open question to find four charts of Euler or Cardan type which constitute a minimum atlas for \(SO(3) \).

Definition (Euler angles, Cardan angles)

We say that two charts \(F_1: U_1 \to SO(3), F_2: U_2 \to SO(3) \) are of the same type if there is a translation \(T \) in the parameter domain \(\mathbb{R}^3 \) and a rotation \(R \in SO(3) \) such that \(F_2 = R \circ F_1 \circ T \).

1. By the Cayley parameters we mean the Cayley map \(C: \mathfrak{so}(3) \to SO(3) \) defined by
 \[C(A) = (1 + A)(1 - A)^{-1}. \]
 The exceptional locus \(SO(3) \setminus C(\mathfrak{so}(3)) \) consists of all rotation matrices with an angle \(\pi \). The inverse map is explicitly given by \(C^{-1}(B) = (B + 1)^{-1}(B - 1) \).

2. The Geodesic polar coordinates are given by the exponential map
 \[\exp: \{ A \in \mathfrak{so}(3) \mid ||A|| < \pi \} \to SO(3) \]
 with
 \[\exp(tA) = \sum_{n \geq 0} \frac{1}{n!}(tA)^n = 1 + (\sin t)A + (1 - \cos t)A^2 \]
 whenever \(||A|| = 1 \). Here \(|| \cdot || \) denotes the operator norm of a matrix. Again the exceptional locus consists of all rotation matrices with an angle \(\pi \). If \(B \in SO(3) \) is a matrix an angle distinct from \(\pi \) then we have \(\text{tr}(B) \neq -1 \), and \(B \) is not symmetric unless it is the identity matrix \(1 = \exp(0) \).
 Hence we can recover the corresponding \(A \) from the skew-symmetric part of \(B \) and its operator norm, where the scalar factor \(\sin t \) uniquely determines the parameter \(t \) in the interval \(0 < t < \pi \).

3. The standard Euler chart is the following map \(F: U \to SO(3) \) for a suitable domain \(U \subset \mathbb{R}^3 \) (for the precise choice of \(U \) see below)
 \[F(\gamma, \alpha, \gamma^*) = R_z(\gamma) \cdot R_x(\alpha) \cdot R_z(\gamma^*) \]
 \[= \begin{pmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} \cos \gamma^* & -\sin \gamma^* & 0 \\ \sin \gamma^* & \cos \gamma^* & 0 \\ 0 & 0 & 1 \end{pmatrix} \]
 \[= \begin{pmatrix} \cos \gamma \cos \gamma^* - \sin \gamma \cos \alpha \sin \gamma^* & -\cos \gamma \sin \gamma^* - \sin \gamma \cos \alpha \cos \gamma^* & \sin \gamma \sin \alpha \\ \sin \gamma \cos \gamma^* + \cos \gamma \cos \alpha \sin \gamma^* & -\sin \gamma \sin \gamma^* + \cos \gamma \cos \alpha \cos \gamma^* & -\cos \gamma \sin \alpha \\ \sin \alpha \sin \gamma^* & \sin \alpha \cos \gamma^* & \cos \alpha \end{pmatrix} \]

The angles \(\gamma, \alpha, \gamma^* \) are called the Euler angles\(^1\) associated with the matrix on the right hand side. It is well known that the map \(F: \mathbb{R}^3 \to SO(3) \) is surjective, compare [17] for a theoretical foundation in terms of generators and relations of groups.

\(^1\)named after **Leonhard Euler** (1707–1783)
4. The standard Cardan chart \(G: V \to SO(3) \) is the following map for a suitable domain \(V \subset \mathbb{R}^3 \) (for the precise choice of \(V \) see below)

\[
G(\alpha, \beta, \gamma) = R_x(\alpha) \cdot R_y(\beta) \cdot R_z(\gamma)
\]

\[
= \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{pmatrix} \cdot \begin{pmatrix}
\cos \beta & 0 & -\sin \beta \\
0 & 1 & 0 \\
\sin \beta & 0 & \cos \beta
\end{pmatrix} \cdot \begin{pmatrix}
\cos \gamma & \sin \gamma & 0 \\
-\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

\[
= \begin{pmatrix}
\cos \beta \cos \gamma - \cos \alpha \sin \beta \sin \gamma & \cos \alpha \cos \gamma + \sin \alpha \sin \beta \sin \gamma & -\sin \beta \\
\sin \alpha \sin \gamma + \cos \alpha \sin \beta \cos \gamma & \sin \alpha \cos \gamma - \cos \alpha \sin \beta \sin \gamma & \cos \alpha \cos \beta
\end{pmatrix}
\]

Accordingly, the angles \(\alpha, \beta, \gamma \) are called the Cardan angles\(^2\) associated with the matrix on the right hand side, sometimes also called Tait-Bryan angles or yaw, pitch and roll. The map \(G \) is surjective since the three standard rotations generated the entire rotation group. The exceptional sets of matrices where the Euler angles or the Cardan angles fail to be unique will be determined in the proof of our theorem below.

Theorem (four versions of a minimum atlas)

(i) Any atlas of the rotation group \(SO(3) \) consists of at least four charts.

(ii) For each of the following four types there is an atlas with four charts consisting only of charts of this type:

1. Cayley parameters,
2. geodesic polar coordinates,
3. Euler angles,

Proof. Part (i) is direct application of the Lusternik-Schnirelmann category: The group \(SO(3) \) is diffeomorphic with the real projective 3-space \(\mathbb{R}P^3 \), and it is well known that the category of \(\mathbb{R}P^3 \) equals 4, compare [6], [8]. In general we have \(\text{cat}(\mathbb{R}P^n) = n + 1 \). Therefore \(SO(3) \) cannot be covered by three embedded open 3-balls. Roughly this can be seen as follows: In \(\mathbb{R}P^3 \) any 3-ball leaves some projective plane \(\mathbb{R}P^2 \) in its complement (up to homeomorphism). A second 3-ball leaves a projective line \(\mathbb{R}P^1 \) in its complement in this projective plane \(\mathbb{R}P^2 \). Finally the remaining projective line requires two more 3-balls since a closed curve in one 3-ball is always contractible but a projective line is not a contractible curve.

For Part (ii) we explicitly define such an atlas as follows:

(1) For an atlas consisting of modified Cayley charts (all of the same type) we define

\[
C_1 = C, \quad C_2 = R_x(\pi) \circ C, \quad C_3 = R_y(\pi) \circ C, \quad C_4 = R_z(\pi) \circ C.
\]

For any given matrix \(B \in SO(3) \) it is impossible that all four matrices

\[
A, \ R_x(\pi)B, \ R_y(\pi)B, \ R_z(\pi)B
\]

\(^2\)named after Girolamo Cardano (1501–1576)

are rotations with an angle π. Therefore B lies in the image of at least one of the four Cayley charts. Compare the exposition in the elementary textbook [11, Sect.5A], compare also [8].

(2) For the case of geodesic polar coordinates we proceed similarly and define

$$
\exp_1 = \exp, \quad \exp_2 = R_x(\pi) \circ \exp, \quad \exp_3 = R_y(\pi) \circ \exp, \quad \exp_4 = R_z(\pi) \circ \exp.
$$

Again it is impossible that for any given matrix $B \in SO(3)$ all four matrices $B, R_x(\pi)B, R_y(\pi)B, R_z(\pi)B$ are rotations with an angle π. Therefore B lies in the image of at least one of the four charts in geodesic polar coordinates.

In terms of the 2-sheeted covering $\mathbf{R} : H_1 \to SO(3)$ this atlas is induced by the eight open half-spheres outside the four coordinate hyperplanes. The four exceptional loci are the intersections with these four coordinate hyperplanes. In H_1 the image of the original map \exp corresponds to the non-vanishing of the real part of a unit quaternion since precisely for those $q \in H_1$ with a vanishing real part the matrix $R(q)$ is a rotation with an angle π (see below).

(3) Since we have $F(0, 0, 0) = F(\gamma, 0, -\gamma)$ for any γ the map F is not injective in any neighborhood of the origin. In particular this means that the identity matrix has no uniquely defined Euler angles.

We define the open set

$$
U = (-\pi, \pi) \times (0, \pi) \times (-\pi, \pi)
$$

in the domain of all triples $(\gamma, \alpha, \gamma^*)$ of possible Euler angles. The identity matrix is not contained in $F(U)$ since it would require an angle α with $\cos \alpha = 1$.

We claim that the restriction of F to U is injective. For a proof let

$$
A = \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
$$

be a given element of $SO(3)$. By the condition $a_{33} = \cos \alpha$ the angle α is uniquely defined whenever such an $\alpha \in (0, \pi)$ exists, i.e., if $a_{33} \neq \pm 1$. By the condition $\sin \alpha > 0$ the angle γ is uniquely defined by a_{13} and a_{23} together, and γ^* is uniquely defined by a_{31} and a_{32} together. Therefore the equation $F(\gamma, \alpha, \gamma^*) = A$ has at most one solution in U. The differential of F has maximal rank in U since there exists a differentiable inverse map on $F(U)$.

Moreover, this domain U is maximal with this property: One cannot go further in direction of γ or γ^* since \sin und \cos are 2π-periodic. One cannot go further in direction of α because of $F(\gamma + \pi, \pi + \alpha, \gamma^* + \pi) = F(\gamma, \pi - \alpha, \gamma^*)$. In addition the differential of F degenerates for $\cos \alpha = \pm 1$.

The exceptional locus: The set $SO(3) \setminus F(U)$ consist of all matrices A with $a_{33} = \pm 1$ on the one hand and of those matrices which are covered by F only using angles $\gamma = \pm \pi$ or $\gamma^* = \pm \pi$ on the other hand. The special case $a_{33} = \pm 1$ corresponds to $\alpha = 0$ oder $\alpha = \pi$, in der literature known as the "gimbal lock". Topologically the complement of the "gimbal lock" corresponds to the cartesian product of the α-interval $(0, \pi)$ and the (γ, γ^*)-torus $S^1 \times S^1$.

Now we have to find three other charts of the Euler type covering the exceptional locus. Here we use the well known description in terms of unit quaternions $q = a + bi + cj + dk \in H_1$ (where $a^2 + b^2 + c^2 + d^2 = 1$) with the 2-sheeted covering $\mathbf{R} : H_1 \to SO(3)$ defined by

$$
\mathbf{R}(q) = \begin{pmatrix}
1 - 2(c^2 + d^2) & -2ad + 2bc & 2ac + 2bd \\
2ad + 2bc & 1 - 2(b^2 + d^2) & -2ab + 2cd \\
-2ac + 2bd & 2ab + 2cd & 1 - 2(b^2 + c^2)
\end{pmatrix}
$$

Here we have $\mathbf{R}(q)x = qxq^{-1}$ and $\mathbf{R}(qr) = \mathbf{R}(q) \cdot \mathbf{R}(r)$. The trace of the matrix $\mathbf{R}(q)$ equals $3 - 4(b^2 + c^2 + d^2)$. On the other hand the trace of a rotation matrix equals $1 + 2\cos \varphi$ if φ denotes the angle of the rotation. Consequently $\varphi = \pi$ if and only if $a = 0$. Furthermore this implies
that the set of all $\mathbf{R}(q)$ with $\cos \alpha = 1$ is induced by the set of all q with $b = c = 0$, and that
the set of $\mathbf{R}(q)$ with $\cos \alpha = -1$ is induced by the set of all q with $a = d = 0$. Therefore in H_1
the “gimbal lock” appears as the union of two opposite great circles. In terms of the standard
rotations $\mathbf{R}_x(\pi), \mathbf{R}_y(\pi), \mathbf{R}_z(\pi)$ above we can write

$$\mathbf{R}_x(\pi) = \mathbf{R}(i), \quad \mathbf{R}_y(\pi) = \mathbf{R}(j), \quad \mathbf{R}_z(\pi) = \mathbf{R}(k).$$

Now we define two charts (of the same type) $F_1, F_2 : U \rightarrow SO(3)$ by

$$F_1 = F, \quad F_2(\gamma, \alpha, \gamma^*) = F(\gamma + \pi, \alpha, \gamma^* + \pi)$$

and calculate the remaining exceptional locus $SO(3) \setminus (F_1(U) \cup F_2(U))$. Except for the “gimbal
lock” the exceptional locus consists of those matrices $F(\gamma, \alpha, \gamma^*)$ with $(\gamma, \alpha, \gamma^*) = (0, \alpha, \pi)$ or
$(\gamma, \alpha, \gamma^*) = (\pi, \alpha, 0)$. By the equation $\cos \gamma \cdot \cos \gamma^* = -1$ these matrices are of the form

$$
\begin{pmatrix}
-1 & 0 & 0 \\
0 & -\cos \alpha & \pm \sin \alpha \\
0 & \pm \sin \alpha & \cos \alpha
\end{pmatrix}.
$$

The fact that the trace equals -1 tells us that each such matrix represents a rotation by the
angle π, independently of α. In terms of unit quaternions these matrices are characterized by
$a = b = 0$. Therefore the remaining exceptional locus is the union of the three great circles
d $= a = 0$, $a = b = 0$, $b = c = 0$.

Now we are going to cover this exceptional locus by a third and a fourth chart. We define

$$F_3(\gamma, \alpha, \gamma^*) = \Omega \cdot F_1(\gamma, \alpha, \gamma^*), \quad F_4(\gamma, \alpha, \gamma^*) = \Omega \cdot F_2(\gamma, \alpha, \gamma^*)$$

with the matrix

$$\Omega = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1 \end{pmatrix}$$

which also represents a rotation by an angle π. In terms of unit quaternions it corresponds to

$$\omega = \frac{1}{\sqrt{3}}(i + j + k)$$

in the sense that $\Omega = \mathbf{R}(\omega)$. In some sense F_3, F_4 together can be called a *transverse pair of Euler charts* compared to F_1, F_2, by analogy with [9, Sect.3-3]. The remaining exceptional set
$SO(3) \setminus (F_1(U) \cup F_2(U))$ is nothing but the other one $SO(3) \setminus (F_1(U) \cup F_2(U))$ after rotation by
the action of Ω. If these two exceptional sets are disjoint then we are done since the four charts
F_1, F_2, F_3, F_4 cover the entire rotation group $SO(3)$. And in fact they are disjoint, as follows from
the calculation of the products

$$(i + j + k)(a + dk) = -d + (a + d)i + (a - d)j + ak, \quad \text{with} \quad a^2 + d^2 = 1$$

$$(i + j + k)(bi + cj) = -(b + c)i - cj + bj + (c - b)k, \quad \text{with} \quad b^2 + c^2 = 1$$

$$(i + j + k)(cj + dk) = -(c + d)i + (d - c)j - dj + ck, \quad \text{with} \quad c^2 + d^2 = 1.$$

An analogous construction is well known for the ordinary spherical coordinates where the exceptional
locus of one standard chart is half of a great circle from north pole to south pole. The
“gimbal lock” corresponds to the two poles. By a transversal map we obtain an atlas consisting of
two standard charts. We just have to make sure that the two exceptional loci are disjoint.

(4) For the Cardan angles we similarly define a set

$$V = (\pi, \pi) \times (-\pi/2, \pi/2) \times (-\pi, \pi)$$
in the domain of all possible triples of angles \((\alpha, \beta, \gamma)\). In this case the unit matrix occurs as \(G(0,0,0)\).

We claim that the restriction of \(G\) to \(V\) is injective. For a proof we proceed as in case (3) above. A given rotation matrix

\[
A = \begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\]
determines the angle \(\beta \in (-\pi/2, \pi/2)\) uniquely by the condition \(a_{13} = -\sin \beta\) whenever such a \(\beta\) exists, i.e., if \(a_{13} \neq \pm 1\). Because of \(\cos \beta > 0\) the angle \(\alpha\) is then uniquely determined by \(a_{23}\) and \(a_{33}\), and \(\gamma\) is uniquely determined by \(a_{11}\) and \(a_{12}\). Therefore the equation \(G(\alpha, \beta, \gamma) = A\) has at most one solution in \(V\). The differential of \(G\) has maximal rank in \(V\) since there exists a differentiable inverse map on \(G(V)\).

Again \(V\) is maximal with this property, by analogy with the case of the Euler angles above: In \(\alpha\)-direction or in \(\gamma\)-direction we cannot go further. In \(\beta\)-direction this is impossible because of \(G(\alpha, \pi/2 + \beta, \gamma) = G(\alpha + \pi, \pi/2 - \beta, \gamma + \pi)\).

The exceptional locus: The set \(SO(3) \setminus G(V)\) consists of all matrices \(A\) with \(a_{13} = \pm 1\) and of those matrices, which can only be represented by \(\alpha = \pm \pi\) or \(\gamma = \pm \pi\). The special case \(a_{13} = \pm 1\) corresponds to \(\beta = \mp \pi/2\). The rest is nothing but the cartesian product of the \(\beta\)-interval \((-\pi/2, \pi/2)\) and the \((\alpha, \gamma)\)-torus \(S^1 \times S^1\).

In terms of unit quaternions \(q = a + bi + cj + dk \in \mathbb{H}_1\) the set of all \(R(q)\) with \(\sin \beta = \pm 1\) coincides with the set of all \(q\) with

\[
ad = bc, \quad ab = cd, \quad b^2 = d^2, \quad b^2 + c^2 = \frac{1}{2}, \quad ac + bd = \pm \frac{1}{2}.
\]

These equations imply \(a^2 = c^2\) with the sign restriction \(ad = bc\). Therefore this part of the exceptional locus lies in the union of the 2-dimensionalen linear subspaces \(c = a, d = b\) und \(c = -a, d = -b\).

Now we introduce two maps \(G_1, G_2: V \to SO(3)\) by

\[
G_1 = G, \quad G_2(\alpha, \beta, \gamma) = G(\alpha + \pi, \beta, \gamma + \pi)
\]

and consider the remaining exceptional locus \(SO(3) \setminus (G_1(V) \cup G_2(V))\). Besides the case \(\sin \beta = \pm 1\) described above the exceptional locus consists of the matrices \(G(\alpha, \beta, \gamma)\) with \((\alpha, \beta, \gamma) = (0, \beta, \pi)\) or with \((\alpha, \beta, \gamma) = (\pi, \beta, 0)\). Because of \(\cos \alpha \cdot \cos \gamma = -1\) these have the form

\[
\begin{pmatrix}
\mp \cos \beta & 0 & -\sin \beta \\
0 & -1 & 0 \\
-\sin \beta & 0 & \pm \cos \beta
\end{pmatrix}.
\]

Again the trace tells us that each such matrix represents a rotation by \(\pi\), independently of \(\beta\). In terms of quaternions these matrices are characterized by \(a = c = 0\). It follows that the entire exceptional locus can be described by linear equations between \(a, b, c, d\).

Finally we have to cover the exceptional locus by a third and a fourth map. We choose

\[
G_3(\alpha, \beta, \gamma) = \Omega \cdot G_1(\alpha, \beta, \gamma), \quad G_4(\alpha, \beta, \gamma) = \Omega \cdot G_2(\alpha, \beta, \gamma)
\]

with the same matrix \(\Omega\) as above. The exceptional locus \(SO(3) \setminus (G_3(V) \cup G_4(V))\) is the same as the other one, just rotated by \(\Omega\). These two exceptional sets are disjoint. This follows by analogy with the case of the Euler angles above. As an example we have

\[
(i + j + k)(a + bi + aj + bk) = -(2b + a) + bi + aj + (2a - b)k.
\]
How to switch between the four charts. In the case of Cayley parameters or geodesic polar co-
ordinates the four charts are transformed into each other by the subgroup \(\{ \mathbf{1}, \mathbf{R}_x(\pi), \mathbf{R}_y(\pi), \mathbf{R}_z(\pi) \} \) acting on \(SO(3) \) from the left. This group is isomorphic with the additive group \(\mathbb{Z}_2 \times \mathbb{Z}_2 \). From the practical point of view we have the following procedure: For a given matrix \(B \) one has to check which of the four matrices

\[
B, \ \mathbf{R}_x(\pi)B, \ \mathbf{R}_y(\pi)B, \ \mathbf{R}_z(\pi)B
\]

has an angle distinct from \(\pi \) or, equivalently, a trace distinct from \(-1\). The corresponding chart can be used. It follows that all parameter transformations between the charts are real analytic.

In the case of Euler angles or Cardan angles it seems that such a group argument can not work for any such atlas of four charts. Instead, switching between \(F_1 \) and \(F_2 \) [or \(G_1 \) and \(G_2 \)] means that each of the quantities \(\sin \gamma, \cos \gamma, \sin \gamma^*, \cos \gamma^* \) [or \(\sin \alpha, \cos \alpha, \sin \gamma, \cos \gamma \)] is replaced by its negative. This procedure is nothing but conjugation in \(O(3) \) by the reflection matrix

\[
T = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix}
\]

By definition switching between \(F_1 \) and \(F_3 \) or \(F_2 \) and \(F_4 \) means multiplication by \(\Omega \) from the left, similarly for \(G_1, G_2, G_3, G_4 \). It follows that switching from \(F_1 \) to \(F_4 \) means multiplication by \(\Omega \), followed by conjugation by \(T \), and again followed by multiplication by \(\Omega \). In particular the “gimbal lock” can never occur for \(A \) and \(\Omega A \) simultaneously. So from the practical point of view for a given matrix \(A \in SO(3) \) one has to check the four matrices

\[
A, \ TAT, \ \Omega A, \ \Omega TAT.
\]

By the proof above at least one of them lies in the image of the standard Euler chart or standard Cardan chart, respectively, with the domain \(U \) or \(V \) as above. The inverse map leads to the corresponding Euler angles in \(U \) or Cardan angles in \(V \). For the practical calculation compare [1]. Again all parameter transformations are real analytic. For numerical stability one can avoid a certain “dangerous region” around the boundaries of the charts, due to a large overlap of the four charts. In particular one can always stay away from the “gimbal lock”.

Remark. Higher dimensional analogues of the Euler angles are studied in [15].

References

Erik W. Grafarend
Geodätisches Institut
Universität Stuttgart
70550 Stuttgart
Germany
E-Mail: grafarend@gis.uni-stuttgart.de

Wolfgang Kühnel
Institut für Geometrie und Topologie
Universität Stuttgart
70550 Stuttgart
Germany
E-Mail: kuehnel@mathematik.uni-stuttgart.de
2010/015 Grafarend, E.W.; Kühnel, W.: A minimal atlas for the rotation group SO(3)
2010/014 Weidl, T.: Semiclassical Spectral Bounds and Beyond
2010/013 Stroppel, M.: Early explicit examples of non-desarguesian plane geometries
2010/012 Effenberger, F.: Stacked polytopes and tight triangulations of manifolds
2010/008 Poppitz, S.; Stroppel, M.: Polarieties of Schellhammer Planes
2010/005 Kaltenbacher, B.; Walk, H.: On convergence of local averaging regression function estimates for the regularization of inverse problems
2010/004 Kühnel, W.; Solanes, G.: Tight surfaces with boundary
2010/003 Kohler, M; Walk, H.: On optimal exercising of American options in discrete time for stationary and ergodic data
2010/002 Gulde, M.; Stroppel, M.: Stabilizers of Subspaces under Similitudes of the Klein Quadric, and Automorphisms of Heisenberg Algebras
2010/001 Leitner, F.: Examples of almost Einstein structures on products and in cohomogeneity one
2009/007 Griesemer, M.; Möller, J.S.: Bounds on the minimal energy of translation invariant n-polaron systems
2009/005 Bächle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups
2009/003 Walk, H.: Strong laws of large numbers and nonparametric estimation
2009/002 Leitner, F.: The collapsing sphere product of Poincaré-Einstein spaces
2009/001 Brehm, U.; Kühnel, W.: Lattice triangulations of E^3 and of the 3-torus
2008/006 Kohler, M.; Krzyżak, A.; Walk, H.: Upper bounds for Bermudan options on Markovian data using nonparametric regression and a reduced number of nested Monte Carlo steps
2008/004 Leitner, F.: Conformally closed Poincaré-Einstein metrics with intersecting scale singularities
2008/003 Effenberger, F.; Kühnel, W.: Hamiltonian submanifolds of regular polytope
2008/002 Hertweck, M.; Hofert, C.R.; Kimmerle, W.: Finite groups of units and their composition factors in the integral group rings of the groups $PSL(2, q)$

2008/001 Kovarik, H.; Vugalter, S.; Weidl, T.: Two dimensional Berezin-Li-Yau inequalities with a correction term

2007/006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term

2007/005 Frank, R.L.; Loss, M.; Weidl, T.: Polya's conjecture in the presence of a constant magnetic field

2007/003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides

2007/002 Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry

2007/001 Meister, A.: Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions