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On integral-like units
of modular group rings

W. Kimmerle and A. Konovalov

Abstract

In this note1 we study units of modular group algebras over a prime field F which have
similar properties as units of integral group rings. Nevertheless we demonstrate in specific ex-
amples that subgroups consisting of such units behave totally different as in the integral group
ring case. Towards the construction of possible counterexamples to the modular isomorphism
problem of p-groups we show that the normalized unit group V (FG) of the modular group
algebra of a finite p-group G may possess linearly independent subgroups non-isomorphic to
a subgroup of G. In particular, a normalized monomorphism of group rings FH −→ FG
does not imply that H is isomorphic to a subgroup G. This stands in a strong contrast to
the integral case where in the case when G is a p-group by [11, 13] a normalized monomor-
phism ZH −→ ZG implies that H is a isomorphic to a subgroup of G. Even the p-rank of
H may be bigger than that one of G, while H consists of elements with integral-like partial
augmentations.

The object of this note are special investigations of the unit group of a modular group algebra.
Let G be a finite group and let F be a prime field of characteristic dividing |G|. Denote the group
algebra of G over F by FG and the integral group ring of G by ZG.

A well known conjecture on torsion units of ZG due to H.Zassenhaus states that each torsion
unit of augmentation 1 is conjugate to a unit of G within the group algebra QG.

Let R be a commutative ring and let u =
∑

g∈G rgg be an element of its group ring RG. The
partial augmentation of u with respect to a conjugacy class C of G is defined as

∑
g∈C rg and

denoted by εC(u).
We say that a unit v of FG has integral-like partial augmentations if εCi

(v) = 1 for precisely one
conjugacy class Ci, and on all other classes partial augmentations are equal to zero.

A torsion unit u ∈ ZG of order k is rationally conjugate to an element of G if, and only if, for
every divisor m of k partial augmentations of um are integral-like [9, 10].

It is a natural question to ask whether a similar statement holds also in the modular group
algebra FG. Clearly, if a unit u is conjugate within FG to an element g ∈ G, then the partial
augmentations of each power of u will have this property. Our first example shows that the reverse
statement is not true.

1revised on March 11th, 2011
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Example 1.
Let Q8 = 〈a, b | a4 = b4 = 1, a4 = b2, b−1ab = a−1〉. Then the normalised unit group of F2Q8

contains three conjugacy classes of elements which are not conjugate to elements of G and have
integral-like partial augmentations:

C1 = {b−1 + a−1b−1 + a−1b, b + a−1b−1 + a−1b, a + a−1 + b−1, a + a−1 + b},

C2 = {a−1 + a−1b−1 + a−1b, a + a−1b−1 + a−1b, b + a−1 + b−1, a + b + b−1},

C3 = {a + a−1b−1 + a−1, b + a−1b−1 + b−1, a + a−1 + a−1b, b + b−1 + a−1b}.

Clearly, the center of the unit group of FG may be much bigger than the torsion center of an
integral group ring. However, if a unit has integral-like partial augmentations and is in FZ(G),
then it is obviously a central element of G. The well known theorem of S.Berman and G.Higman
[1] states that central torsion units in integral group rings of finite groups are trivial. This certainly
motivates to study in modular group algebras units with integral-like partial augmentations.

Proposition. Let G be a finite group and let F a finite field. Then the following are equivalent.

(i) Units of V (FG) with integral-like partial augmentations are trivial, i.e. they are elements
of G ⊂ V (FG).

(ii) G is abelian.

Proof. The reduction map ZG −→ FG is injective on finite torsion subgroups by a result of Cohn-
Livingstone 2. Therefore if V (ZG) has non-trivial torsion units u with εC(u) = 1 for precisely one
class C and εK(u) = 0 for all other conjugacy classes K of G, the same holds for FG.
Consequently FG has non-trivial units with integral-like partial augmentations provided G is not
normal in V (ZG). Assume that G C V (ZG) and let u ∈ V (ZG) be of finite order. Then 〈G, u〉
is a finite group. But torsion subgroups of V (ZG) divide |G|. Thus, if G C V (ZG), then torsion
units of G are trivial.
By the classification of finite groups G such that V (ZG) has only trivial units due to G.Higman
[4] it follows that a counterexample to the Proposition has a subgroup isomorphic to Q8. Now
Example 1 completes the proof. q.e.d.

Torsion subgroups in integral group rings have the property that they consist of linearly inde-
pendent elements over Z. This is obviously not the case in modular group rings. Therefore it is
reasonable to consider such subgroups of V (FG) whose elements are linearly independent over F .

Example 2. Examples of a subgroup consisting of linearly independent elements being non-
isomorphic to a subgroup of G. Using the GAP implementation reported in [7], in a project [3]
under the supervision of the 2nd author it was verified that:

• the normalised unit group of the modular group algebra F2Q16 contains linearly independent
copy of C2 × C2;

• the normalised unit group of the other two modular group algebras of 2-groups of maximal
class of order 16 contains linearly independent copy of C4 × C2.

Obviously we may combine both approaches. A subgroup V ⊆ V (FG) is called integral-like if
all elements of V have integral-like partial augmentations and the set of its elements is linearly
independent over F .

2This is also a consequence of an old result of Minkowski
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On the ICRA satellite conference in Granada in 2006 Z. Marciniak posed the question whether
the finite group G has a subgroup isomorphic to the Klein four-group provided V (ZG) has such a
subgroup. A positive answer to this question using the Brauer-Suzuki theorem has been given in
[6]. The question whether the same is valid in the situation of a modular group ring FG under the
assumption that the Klein four-group is integral-like is obvious. This question looks even more
promising in the case when G is a p-group and F is the field of p elements. Note that for p-groups
by results of Weiss [13] and Roggenkamp-Scott [11] each torsion subgroup of V (ZpG) is conjugate
to a subgroup of G.

However the answer is negative and surprisingly easy to find with the aid of the package
LAGUNA [8] for the computational algebra system GAP [2]. We give a detailed description of
the GAP session which serves as a tutorial on the LAGUNA package.

Example 3. We assume assume that the LAGUNA package is already loaded. First we
create an auxiliary function to check that an element of a group ring has integral-like partial
augmentations :

gap> IsIntegralLike := function( KG, u )

> local e,o,pa,i,ne,no;

> e := One(UnderlyingRing(KG));

> o := Zero(UnderlyingRing(KG));

> pa := PartialAugmentations(KG,u)[1];

> ne:=0; no:=0;

> for i in pa do

> if i=e then ne:=ne+1;

> elif i=o then no:=no+1;

> else break;

> fi;

> od;

> return ne=1 and no+1=Length(pa);

> end;

function( KG, u ) ... end

Now we retrieve from the GAP Small Groups Library the generalised quaternion group G of
order 16 and create its modular group algebra KG over the field of two elements:

gap> G:=SmallGroup(16,9); StructureDescription(G);

<pc group of size 16 with 4 generators>

"Q16"

gap> KG:=GroupRing(GF(2),G);

<algebra-with-one over GF(2), with 4 generators>

LAGUNA package computes the group V – the normalised unit group of KG in the very efficient
pc-presentation. Thus, it’s very fast to list all representatives of conjugacy classes of elements of
order 2 in V:

gap> V:=PcNormalizedUnitGroup(KG);

<pc group of size 32768 with 15 generators>

gap> cc:=Filtered(ConjugacyClasses(V),c->Order(Representative(c))=2);;

gap> reps:=List(cc,c->Representative(c));;

gap> Length(reps);

119

Now we will create another auxiliary function that will enumerate pairs of representatives of
conjugacy classes of order two to check that they generate a Klein four-group consisting of linearly
independent elements with integral-like partial augmentations:
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gap> FindIntegralLikeKleinFourGroup:=function( KG )

> local V, cc, reps, f, i, j, x, y, H, t, elts;

> V:=PcNormalizedUnitGroup(KG);

> cc:=Filtered(ConjugacyClasses(V),c->Order(Representative(c))=2);;

> reps:=List(cc,c->Representative(c));;

> f:=NaturalBijectionToNormalizedUnitGroup(KG);

> for i in [1..Length(reps)-1] do

> for j in [i+1..Length(reps)] do

> x:=reps[i]; y:=reps[j]; H:=Group(x,y);

> if IdGroup(H) = [4,2] then

> elts := List( H, t -> t^f );

> if ForAll( elts, t -> IsIntegralLike( KG, t ) ) then

> if Dimension( Subspace( KG, elts ) ) = Size(H) then

> return [x,y];

> fi;

> fi;

> fi;

> od;

> od;

> return fail;

> end;

function( KG ) ... end

This function now returns us a list of elements of V generating its integral-like subgroup iso-
morphic to C2 × C2. We may check these properties directly in the GAP session:

gap> x:=FindIntegralLikeKleinFourGroup(KG);

[ f10*f11*f13*f14, f5*f7*f8*f10*f11 ]

gap> H:=Group(x); StructureDescription(H);

<pc group with 2 generators>

"C2 x C2"

gap> elts:=List(H,t->t^NaturalBijectionToNormalizedUnitGroup(KG));;

gap> List(elts,t->PartialAugmentations(KG,t)[1]);

[ [ Z(2)^0 ], [ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ],

[ 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ],

[ Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ] ]

gap> Dimension(Subspace(KG,elts));

4

In the GAP notation, 0*Z(2) is the zero element of F2 and Z(2)^0 is the identity of F2, so it is
easy to see that partial augmentations are integral-like for all elements of H.

Still the result may be not very readable since it refers to the generators of the group V in the
pc-presentation, and even if we will map it back to the group algebra, the group algebra elements
will be written in terms of the polycyclic generating system of the group G from the GAP Small
Groups Library. It is possible to run the same computations slightly slower, creating Q16 in GAP
as a finitely presented group 〈a, b | a8 = b4 = 1, a4 = b2, b−1ab = a−1〉 and find the following
example of a generating set for the integral-like Klein four-group:

x1 = 1 + a + ab + a−1b2 + a−3 + a−2b + ab−1 + a−1 + a−2b−1,

x2 = a2 + b2 + ab + a−1b2 + a−3 + a−2 + a−1b.
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