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On integral-like units
of modular group rings

W. Kimmerle and A. Konovalov

Abstract

In this noteE] we study units of modular group algebras over a prime field F which have
similar properties as units of integral group rings. Nevertheless we demonstrate in specific ex-
amples that subgroups consisting of such units behave totally different as in the integral group
ring case. Towards the construction of possible counterexamples to the modular isomorphism
problem of p-groups we show that the normalized unit group V(FG) of the modular group
algebra of a finite p-group G may possess linearly independent subgroups non-isomorphic to
a subgroup of G. In particular, a normalized monomorphism of group rings FH — FG
does not imply that H is isomorphic to a subgroup G. This stands in a strong contrast to
the integral case where in the case when G is a p-group by [11l [13] a normalized monomor-
phism ZH — ZG implies that H is a isomorphic to a subgroup of G. Even the p-rank of
H may be bigger than that one of GG, while H consists of elements with integral-like partial
augmentations.

The object of this note are special investigations of the unit group of a modular group algebra.
Let G be a finite group and let F' be a prime field of characteristic dividing |G|. Denote the group
algebra of G over F' by F'G and the integral group ring of G by ZG.

A well known conjecture on torsion units of ZG due to H.Zassenhaus states that each torsion
unit of augmentation 1 is conjugate to a unit of G within the group algebra QG.

Let R be a commutative ring and let v =) geG Tg9 be an element of its group ring RG. The
partial augmentation of u with respect to a conjugacy class C' of G is defined as > rg and
denoted by ec(u).

We say that a unit v of F'G has integral-like partial augmentations if ¢, (v) = 1 for precisely one
conjugacy class C;, and on all other classes partial augmentations are equal to zero.

gecC

A torsion unit u € ZG of order k is rationally conjugate to an element of G if, and only if, for
every divisor m of k partial augmentations of u™ are integral-like [9, [10].

It is a natural question to ask whether a similar statement holds also in the modular group
algebra F'G. Clearly, if a unit u is conjugate within F'G to an element g € G, then the partial
augmentations of each power of v will have this property. Our first example shows that the reverse
statement is not true.
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Example 1.

Let Qs = (a,b | a* = b* = 1,a* = b%,b~'ab = a~!). Then the normalised unit group of F2Qsg
contains three conjugacy classes of elements which are not conjugate to elements of G and have
integral-like partial augmentations:

Cr={b"+a " +ab+a b +abata +b7ata 40},

Co={at4+a b +atbata v +atbb+at +oa+ b+ b
Cs={a+a b +ao+a b b ata a0, b+0 +a b}

Clearly, the center of the unit group of F'G may be much bigger than the torsion center of an
integral group ring. However, if a unit has integral-like partial augmentations and is in FZ(G),
then it is obviously a central element of G. The well known theorem of S.Berman and G.Higman
[1] states that central torsion units in integral group rings of finite groups are trivial. This certainly
motivates to study in modular group algebras units with integral-like partial augmentations.

Proposition. Let G be a finite group and let F a finite field. Then the following are equivalent.

(i) Units of V(FG) with integral-like partial augmentations are trivial, i.e. they are elements
of G CV(FQG).

(ii) G is abelian.

Proof. The reduction map ZG — FG is injective on finite torsion subgroups by a result of Cohn-
Livingstone ﬂ Therefore if V(ZG) has non-trivial torsion units u with ec(u) = 1 for precisely one
class C and i (u) = 0 for all other conjugacy classes K of G, the same holds for F'G.
Consequently F'G has non-trivial units with integral-like partial augmentations provided G is not
normal in V(ZG). Assume that G < V(ZG) and let u € V(ZG) be of finite order. Then (G, u)
is a finite group. But torsion subgroups of V(ZG) divide |G|. Thus, if G < V(ZG), then torsion
units of G are trivial.

By the classification of finite groups G such that V(ZG) has only trivial units due to G.Higman
[] it follows that a counterexample to the Proposition has a subgroup isomorphic to Qg. Now
Example 1 completes the proof. q.e.d.

Torsion subgroups in integral group rings have the property that they consist of linearly inde-
pendent elements over Z. This is obviously not the case in modular group rings. Therefore it is
reasonable to consider such subgroups of V(F'G) whose elements are linearly independent over F'.

Example 2. Examples of a subgroup consisting of linearly independent elements being non-
isomorphic to a subgroup of G. Using the GAP implementation reported in [7], in a project [3]
under the supervision of the 2nd author it was verified that:

e the normalised unit group of the modular group algebra 314 contains linearly independent
copy of Cs x Cly;

e the normalised unit group of the other two modular group algebras of 2-groups of maximal
class of order 16 contains linearly independent copy of Cy x Cl.

Obviously we may combine both approaches. A subgroup V C V(FG@G) is called integral-like if
all elements of V' have integral-like partial augmentations and the set of its elements is linearly
independent over F'.

2This is also a consequence of an old result of Minkowski



On the ICRA satellite conference in Granada in 2006 Z. Marciniak posed the question whether
the finite group G has a subgroup isomorphic to the Klein four-group provided V(ZG) has such a
subgroup. A positive answer to this question using the Brauer-Suzuki theorem has been given in
[6]. The question whether the same is valid in the situation of a modular group ring F'G under the
assumption that the Klein four-group is integral-like is obvious. This question looks even more
promising in the case when G is a p-group and F' is the field of p elements. Note that for p-groups
by results of Weiss [13] and Roggenkamp-Scott [II] each torsion subgroup of V(Z,G) is conjugate
to a subgroup of G.

However the answer is negative and surprisingly easy to find with the aid of the package
LAGUNA [§] for the computational algebra system GAP [2]. We give a detailed description of
the GAP session which serves as a tutorial on the LAGUNA package.

Example 3. We assume assume that the LAGUNA package is already loaded. First we
create an auxiliary function to check that an element of a group ring has integral-like partial
augmentations :

gap> IsIntegrallike := function( KG, u )
local e,o0,pa,i,ne,no;
e := One(UnderlyingRing(KG));
o := Zero(UnderlyingRing(KG)) ;
pa := PartialAugmentations(XG,u) [1];
ne:=0; no:=0;
for i in pa do
if i=e then ne:=ne+il;
elif i=o then no:=no+1;
else break;
fi;
od;
return ne=1 and no+i=Length(pa);
end;
function( KG, u ) ... end

V VV V V V V V V V VVYV

Now we retrieve from the GAP Small Groups Library the generalised quaternion group G of
order 16 and create its modular group algebra KG over the field of two elements:

gap> G:=SmallGroup(16,9); StructureDescription(G);
<pc group of size 16 with 4 generators>

|’Q16||

gap> KG:=GroupRing(GF(2),G);

<algebra-with-one over GF(2), with 4 generators>

LAGUNA package computes the group V — the normalised unit group of KG in the very efficient
pe-presentation. Thus, it’s very fast to list all representatives of conjugacy classes of elements of
order 2 in V:

gap> V:=PcNormalizedUnitGroup (KG) ;

<pc group of size 32768 with 15 generators>

gap> cc:=Filtered(ConjugacyClasses(V),c->0rder(Representative(c))=2);;
gap> reps:=List(cc,c->Representative(c));;

gap> Length(reps);

119

Now we will create another auxiliary function that will enumerate pairs of representatives of
conjugacy classes of order two to check that they generate a Klein four-group consisting of linearly
independent elements with integral-like partial augmentations:



gap> FindIntegralLikeKleinFourGroup:=function( KG )

> local V, cc, reps, £, i, j, x, y, H, t, elts;

> V:=PcNormalizedUnitGroup (KG) ;

> cc:=Filtered(ConjugacyClasses(V),c->0rder(Representative(c))=2);;
> reps:=List(cc,c->Representative(c));;

> f:=NaturalBijectionToNormalizedUnitGroup (KG) ;

> for i in [1..Length(reps)-1] do

> for j in [i+1..Length(reps)] do

> x:=reps[il; y:=reps[j]; H:=Group(x,y);

> if IdGroup(H) = [4,2] then

> elts := List( H, t -> t°f );

> if ForAll( elts, t -> IsIntegrallLike( KG, t ) ) then
> if Dimension( Subspace( KG, elts ) ) = Size(H) then
> return [x,y];

> fi;

> fi;

> fi;

> od;

> od;

> return fail;

> end;

function( KG ) ... end

This function now returns us a list of elements of V generating its integral-like subgroup iso-
morphic to Cy x Cy. We may check these properties directly in the GAP session:

gap> x:=FindIntegrallikeKleinFourGroup (KG) ;
[ £10xf11%f13%f14, fH*+f7+£8*f10%f11 ]
gap> H:=Group(x); StructureDescription(H);
<pc group with 2 generators>
"C2 x C2"
gap> elts:=List(H,t->t"NaturalBijectionToNormalizedUnitGroup(KG));;
gap> List(elts,t->PartialAugmentations(XG,t) [1]);
[ [z201, [ Z(2)70, 0%Z(2), 0%z(2), 0xZ(2) 1,
[ 0xZ(2), Z(2)"0, 0%Z(2), 0%Z(2) 1,
[ Z(2)70, 0%Z(2), 0%Z(2), 0xZ(2) 1 1
gap> Dimension(Subspace(KG,elts));
4

In the GAP notation, 0%Z(2) is the zero element of F» and Z(2) "0 is the identity of F5, so it is
easy to see that partial augmentations are integral-like for all elements of H.

Still the result may be not very readable since it refers to the generators of the group V in the
pec-presentation, and even if we will map it back to the group algebra, the group algebra elements
will be written in terms of the polycyclic generating system of the group G from the GAP Small
Groups Library. It is possible to run the same computations slightly slower, creating Q16 in GAP
as a finitely presented group (a,b | a® = b* = 1,a* = b%,b~'ab = a~!) and find the following
example of a generating set for the integral-like Klein four-group:

ri=14a+ab+a B’ +a3+a2b+ab t+at+a 1,

ze=a’>+b+ab+a > +a3+a2+a'.
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