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Unique Solutions to Hartree-Fock Equations

for Closed Shell Atoms

Marcel Griesemer and Fabian Hantsch

Universität Stuttgart, Fachbereich Mathematik

70550 Stuttgart, Germany

Abstract

In this paper we study the problem of uniqueness of solutions to the Hartree
and Hartree-Fock equations of atoms. We show, for example, that the Hartree-
Fock ground state of a closed shell atom is unique provided the atomic number Z
is sufficiently large compared to the number N of electrons. More specifically, a
two-electron atom with atomic number Z ≥ 35 has a unique Hartree-Fock ground
state given by two orbitals with opposite spins and identical spatial wave functions.
This statement is wrong for some Z > 1, which exhibits a phase segregation.

1 Introduction

The Hartree-Fock method is widely used in quantum chemistry for approximate elec-
tronic structure computations [12]. In the simplest case the state of the electrons is
described by a single Slater determinant and one seeks to minimize the energy by vari-
ation of the one-electron orbitals. This is done by some self-consistent field algorithm
such as the Roothaan, or the level-shift algorithm [5]. While there has been remarkable
progress recently in the analysis of convergence properties of these algorithms [5, 4], it
is still poorly understood what is actually being approximated. To some extent this is
due to our ignorance about the set of critical points of the Hartree-Fock functional: we
know that the Hartree-Fock functional for a neutral atom has a minimizer and infinitely
many other critical points [17, 18], but uniqueness of the minimizer, e.g., is not known
even in cases where it is expected. Neither is it known whether distinct methods for
finding critical points lead to distinct critical points. Our goal is to give answers to
such questions.

In this paper we establish existence and uniqueness of solutions to the Hartree-Fock
equations for positively charged atoms with prescribed filled shells. We consider both
restricted and unrestricted Hartree-Fock theory. In the unrestricted case a filled shell
refers to a set of qn2 electrons which means that we take the number of all electrons,
N , of the form N = q

∑s
k=1 n

2
k where 1 ≤ n1 < n2 . . . < ns and where q denotes the

number of spin states. In the restricted case our notion of a shell is the usual one
and hence all values of N that occur in noble gas atoms are admissible. For atoms
with partially filled shells our uniqueness results will not hold. Our method is based
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on a perturbation argument which exploits the fact that in the limit of large atomic
numbers, Z → ∞, the electron-electron interaction energy is negligible compared to
the total energy. This forces us to choose Z much larger than N , but thanks to a
novel technique for comparing spectral projections, values of Z as small as 35 can be
handled in the case of two-electron atoms. Also, we provide an example which shows
that Z > N−1 is not sufficient for our results to hold in general. As a byproduct of our
methods we obtain uniqueness of the minimizer of the N -electron Hartree functional
for sufficiently large Z.

The Hartree-Fock equations for an atom with atomic number Z > 0 and N electrons
are the set of equations

(
−∆− 2Z

|x|

)
ϕi(x) + 2

N∑
k=1

∫
|ϕk(y)|2ϕi(x)− ϕk(x)ϕk(y)ϕi(y)

|x− y|
dy = εiϕi(x) (1)

for N functions ϕ1, . . . , ϕN ∈ L2(R3 × {1, . . . , q}) subject to the constraints∫
ϕi(x)ϕj(x)dx = δij (2)

and real numbers ε1, . . . , εN . Here and henceforth x, y, . . . denote elements (x, s) of
R3 × {1, . . . , q},

∫
dx denotes integration with respect to the product of Lebesgue and

counting measure, and |x − y| = |x − y|. Of course q = 2 for (spin-1/2) electrons but
for later convenience we allow arbitrary q ∈ N. We have chosen atomic units where
~ = 1, the mass m of the electron equals 1/2 and the Rydberg energy equals 1.

The following theorem is our main result on critical points of the unrestricted
Hartree-Fock functional. An analog result on a restricted Hartree-Fock functional is
given in Theorem 4.1.

Theorem 1.1. Let q,N, s and n1, . . . , ns be positive integers with 1 ≤ n1 < n2 < . . . <

ns and N = q
∑s

k=1 n
2
k. Suppose that

Z >
1

∆s
(20N + 8

√
2N), ∆s = n−2

s − (ns + 1)−2. (3)

Then the Hartree-Fock equations (1) have a solution ϕ1, . . . , ϕN with

ε1, . . . , εN ∈ ∪sk=1

[
− Z2/n2

k,−Z2/(nk + 1)2
)
, (4)

and the space spanned by ϕ1, . . . , ϕN is uniquely determined by condition (4). The
orbitals ϕi may be chosen in the form

ϕnlmσ(x, µ) =
fnl(|x|)
|x|

Ylm(x)δσ,µ (5)

where n ∈ {n1, . . . , ns}, 0 ≤ l ≤ n − 1, −l ≤ m ≤ l, σ ∈ {1, . . . , q}, and each of these
quadruples (n, l,m, σ) occurs exactly once.
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The Hartree-Fock equations (1) are equivalent to the Euler-Lagrange equations of
the Hartree-Fock functional

EHF (ϕ1, . . . , ϕN ) =
N∑
k=1

∫
|∇ϕk(x)|2 − 2Z

|x|
|ϕk(x)|2 dx

+ 2
∑
i<k

∫
|ϕi(x)|2|ϕk(y)|2 − ϕi(x)ϕi(y)ϕk(x)ϕk(y)

|x− y|
dxdy (6)

where ϕ1, . . . , ϕN ∈ L2(R3 × {1, . . . , q}) are subject to the constraints (2). In fact, the
Euler-Lagrange equations of (6) are equations of the form (1) with εiϕi replaced by the
more general term

∑N
j=1 λijϕj , the coefficients λij being Lagrange multipliers. These

generalized Hartree-Fock equations, as well as the Hartree-Fock functional and the con-
straints (2) are invariant with respect to transformations (ϕ1, . . . , ϕN ) 7→ (ϕ̃1, . . . , ϕ̃N )
of the form ϕ̃i =

∑N
j=1 Uijϕj where (Uij) denotes any unitary N×N matrix. By choos-

ing this matrix to diagonalize the self-adjoint matrix (λij), the equations (1) emerge.
This also means that the Hartree-Fock functional only depends on the N -dimensional
subspace of L2(R3×{1, . . . , q}) spanned by ϕ1, . . . , ϕN or on the orthogonal projection

P =
N∑
k=1

|ϕk〉〈ϕk| (7)

onto this space. As a function of P the Hartree-Fock functional is quadratic and its
domain can be extended to a convex set without lowering the minimum [15, 3]. Nev-
ertheless the Hartree-Fock functional is not convex due to the presence of the negative
exchange term - the second term in the numerator of (6). The convex functional
obtained by dropping the exchange term is called reduced Hartree-Fock functional.

We are now in position to derive Theorem 1.2, below, on the uniqueness of the
minimizer of the Hartree-Fock functional (6). Suppose we choose n1 = 1, n2 = 2, . . .
in Theorem 1.1. Then, by Proposition 2.2, for Z sufficiently large the condition (4)
becomes equivalent to the statement that ε1, . . . , εN are the lowest N eigenvalues of
the Fock operator, which is the linear operator acting on ϕi on the left hand side of
(1). This condition on ε1, . . . , εN is satisfied for any solution of (1) associated with
a minimizer of the Hartree-Fock functional [17]. Hence the Theorem 1.1 implies the
following theorem with the exception of the bound on Z.

Theorem 1.2. Let s, q and N be positive integers with N = q
∑s

n=1 n
2 and suppose

that Z > ∆−1
s (12N + 4

√
2N − 4) where ∆s = s−2 − (s + 1)−2. Then the minimizer

of the Hartree-Fock functional is unique in the sense of a unique projection (7). It
may be represented by N orbitals ϕ1, . . . , ϕN of the form (5) satisfying the Hartree-
Fock equations (1). In particular, the density

∑N
k=1 |ϕk(x)|2 is unique and spherically

symmetric.

For N = q = 2 and Z ≥ 35 the Theorem 1.2 says that the Hartree-Fock functional
has a unique minimizer given by two one-electron orbitals with opposite spins and
equal spatial wave function ϕ ∈ L2(R3), ϕ being the unique minimizer of the restricted
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Hartree functional ϕ 7→ EH(ϕ,ϕ), where EH is defined in (8), below. In particular,
if q = 2 and Z ≥ 35 then inf EHF (ϕ1, ϕ2) ≥ inf EH(ϕ,ϕ). This statement is false for
Z < 1.0268 (see the remark after Theorem 1.3), which proves the necessity of some
lower bound on Z other than Z > 1.

The (unrestricted)N -particle Hartree functional EH is defined on arbitraryN tuples
of functions ϕk ∈ H1(R3) with

∫
|ϕk(x)|2dx = 1, and it is given by

EH(ϕ1, . . . , ϕN ) =
N∑
k=1

∫
|ϕk(x)|2 − 2Z

|x|
|ϕk(x)|2dx

+ 2
∑
i<k

∫
|ϕi(x)|2|ϕk(y)|2

|x− y|
dxdy. (8)

No orthogonality is assumed on ϕ1, . . . , ϕN . It is well-known that EH has a minimizer
if Z > N − 1 and that minimizing orbitals are pointwise positive by a suitable choice
of their phase [17]. To establish uniqueness of the minimizer we consider EH as a
spin-restricted Hartree-Fock functional with q = N , the spin-restriction being that
φk(x, s) = ϕk(x)δk,s. Then EHF (φ1, . . . , φN ) = EH(ϕ1, . . . , ϕN ), and the following
theorem, with the exception of the bound on Z, follows from Theorem 1.2 with q = N .

Theorem 1.3. Let N ∈ N and suppose that Z > 3−1(40N + 16
√

2N − 8). Let
ϕ1, . . . , ϕN be any minimizer of the Hartree functional (8). Then up to phases, ϕk = ϕ

for all k where ϕ is the unique, positive minimizer of the restricted Hartree functional
ϕ 7→ EH(ϕ, . . . , ϕ).

N 2 3 4 5 6 7 8 9
Zc 35 51 66 81 96 111 126 140

Figure 1: The Hartree minimizer is unique for Z ≥ Zc.

In general, the minimum of EH is strictly below the minimum of the restricted
Hartree functional EH(ϕ,ϕ). In fact, Ruskai and Stillinger show that for Z < 1.0268
and N = 2 the restricted Hartree functional is bounded below by −1, while for Z > 1
it is straightforward to show that the unrestricted Hartree functional has its minimum
below −1 [21]. A similar phenomenon of phase segregation is described in [2] for the
two-electron Hartree functional with a confining external potential.

We now briefly sketch our strategy for proving Theorem 1.1. First, we use the well-
known fact that N functions Z3/2ϕi(Zx, σ), i = 1, . . . , N , ϕi ∈ H2(R3 × {1, . . . , q}),
form a solution to the Hartree-Fock equations (1) if and only if ϕ1, . . . , ϕN is a solution
to the new set of equations(
−∆− 2

|x|

)
ϕi(x) +

2
Z

N∑
k=1

∫
|ϕk(y)|2ϕi(x)− ϕk(x)ϕk(y)ϕi(y)

|x− y|
dy = Z−2εiϕi(x). (9)

These rescaled Hartree-Fock equations clearly exhibit the perturbative nature of the
electron-electron repulsion in the large Z limit. Let HP denote the rescaled Fock
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operator on the left hand side in (9), see (13), the index P being the projection onto
span{ϕ1, . . . , ϕN}. For Z sufficiently large, HP has exactly N eigenvalues, counting
multiplicities, near the eigenvalues −n−2

k , k = 1, . . . , s, of −∆− 2/|x|. More precisely,
if d is smaller than the gap n−2

s − (ns + 1)−2 and if Z is sufficiently large, then the
spectrum of HP in Ω := ∪sk=1[−n−2

k ,−n−2
k +d] consists of N eigenvalues. The Hartree-

Fock equations subject to (4) are therefore equivalent to

P = χΩ

(
HP

)
. (10)

Here we use that all shells are filled. By making Z even larger, if necessary, we can
achieve that P 7→ χΩ

(
HP

)
becomes a contraction, and hence that (10) has a unique

solution. This strategy obviously requires good eigenvalue estimates for HP and good
control of χΩ

(
HP

)
− χΩ

(
HQ

)
in terms of P − Q. Concerning the second point we

develop a novel method that yields much better bounds than, e.g., a resolvent integral
for χΩ

(
HP

)
would give.

Our work was inspired by the paper of Huber and Siedentop on solutions of the
Dirac-Fock equations [13]. Using the contraction principle, they solve an equation
analog to (10) with the Laplacian replaced by the Dirac operator. We expect that
our methods would allow to improve the results in [13]. Minimization problems for
semi-bounded Dirac-Fock type functionals are studied in [11], and in the translation
invariant case (no external potential) the minimizer is shown to be unique. When an
external Coulomb potential is present the method of [11] does not seem to work. For
results on absence of a Hartree-Fock minimizer see [16, 22]. Existence and uniqueness of
radial solutions to Hartree equations are derived in [20]. Uniqueness results concerning
Hartree equations with attractive Coulomb interactions are established, e.g., in [14,
1]. Several of the aforementioned results have been extended to pseudo-relativistic
Hartree-Fock functionals and to Hartree-Fock functionals including a magnetic field
[7, 8, 10, 9, 6]. Last but not least we should mention the fundamental paper of Bach
on the accuracy of the Hartree-Fock approximation to the quantum mechanical ground
state energy [3].

This paper is organized as follows. In Section 2 we introduce all notations and we
prove eigenvalue bounds for Fock operators. Section 3 contains the proofs of all theo-
rem in this introduction. In Section 4 we establish a theorem analog to Theorem 1.1
in restricted HF-theory. Here, for proving existence of solutions we use the Schauder-
Tychonoff theorem, which does not require as large values of Z as the contraction
property does.

Acknowledgement. M.G. thanks Alex Elgart, George Hagedorn and Timo Weidl for
useful and inspiring discussions, Mathieu Lewin for explaining to him the uniqueness
proof in [11], and I.M. Sigal for hospitality at the University of Toronto, where part of
this work was done. F. H. is supported by the Studienstiftung des Deutschen Volkes.
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2 Notations and Eigenvalue Estimates

In this section we collect the operator- and eigenvalue estimates needed in later sections.
We also introduce the definitions and notations used throughout the paper.

The sets of bounded linear operators, of Hilbert-Schmidt operators, and of trace
class operators in a separable Hilbert space H are denoted by L(H), T2(H) and T1(H),
respectively. The corresponding norms are ‖ · ‖, ‖ · ‖2, and ‖ · ‖1. Recall that T1(H) ⊂
T2(H) ⊂ L(H) and that ‖K‖ ≤ ‖K‖2 ≤ ‖K‖1 for all K ∈ T1(H). Let

SN,q :=
{
P ∈ T1(L2(R3 × {1, . . . , q}))

∣∣∣ 0 ≤ P ≤ 1, trP = N
}
.

The only reason for working with SN,q rather than with the set of self-adjoint projec-
tions of rank N , is that we need SN,q to be convex in Section 4.

For each P ∈ SN,q there is a unique square-integrable kernel τ = τP such that
Pϕ(x) =

∫
τ(x, y)ϕ(y)dy and there is a unique way to associate a density ρ = ρP ∈ L1

with P , see Lemma 5.1. If P =
∑

n λn|ϕn〉〈ϕn|, then

τ(x, y) =
∑
n≥0

λnϕn(x)ϕn(y), (11)

ρ(x) =
∑
n≥0

λn|ϕn(x)|2. (12)

For given P ∈ SN,q we define a Fock operator HP in L2(R3 × {1, . . . , q}) by

HP = −∆− V +
1
Z

(UP −KP ), (13)

where V , UP are the multiplication operators associated with the real-valued functions
V (x) = 2/|x| and UP = ρ ∗ V , and for ψ ∈ H2,

(KPψ)(x) :=
∫
V (x− y)τ(x, y)ψ(y) dy.

From the fact that V has a positive Fourier transform it is easy to see, using (11), that
KP ≥ 0, and UP −KP ≥ 0 by a straightforward computation. Hence HP ≥ −∆−V ≥
−1. Moreover, by the Kato-Rellich theorem, HP is self-adjoint on the Sobolev space
H2(R3 × {1, . . . , q}).

By remarks in the introduction we may consider EHF as a function on SN,q∩{P 2 =
P} given by EHF (P ) = EHF (ϕ1, . . . , ϕN ) where (ϕ1, . . . , ϕN ) is any orthonormal basis
of RanP . Explicitely,

EHF (P ) = tr
[
(−∆− V )P

]
+

1
2Z

∫ (
ρ(x)ρ(y)− |P (x, y)|2

)
V (x− y) dxdy.

Lemma 2.1. Let P ∈ SN,q. Then for all ε > 0

(i) V ≤ −ε∆ + ε−1,

(ii) UP ≤ N
(
−ε∆ + ε−1

)
,
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(iii)
1
Z
UP ≤ ε (−∆− V ) +

1
ε

(
ε+

N

Z

)2

,

(iv) −∆ ≤ 1
1− ε

HP +
1

ε(1− ε)
if ε ∈ (0, 1).

Proof. Statement (i) follows from −∆−V ≥ −1 and from the scaling properties of −∆
and V with respect to the unitary transformation ϕ(x, σ) 7→ ε−3/2ϕ(x/ε, σ). Statement
(ii) follows from UP = ρ ∗ V , from (i) and from

∫
ρ(x)dx = N .

To prove (iii), fix ε > 0. By (i) and (ii),

εV +
1
Z
UP ≤

(
ε+

N

Z

)(
−δ∆ + δ−1

)
for all δ > 0. Upon subtracting εV from both sides and making the choice δ

(
ε+ N

Z

)
= ε

for δ, the desired estimate follows. Inequality (iv) follows from −∆ ≤ HP +V and from
(i).

Proposition 2.2. Given N ∈ N, Z > 0 and P ∈ SN,q, let E∞n and EZn denote the
n-th eigenvalue, counting multiplicities, of the Schrödinger operator −∆ − V and the
Hartree-Fock operator HP , respectively. Then:

(a) For all n ∈ N, E∞n ≤ EZn and

EZn ≤ E∞n + 2
N

Z
+ 2

N

Z

√
E∞n + 1.

(b) If P minimizes the Hartree-Fock functional, then EZN obeys the following estimate:

EZN ≤ E∞N + 2
N − 1
Z

+ 2
N − 1
Z

√
E∞N + 1.

Proof. From UP −KP ≥ 0, KP ≥ 0 and Lemma 2.1 (iii) we see that

−∆− V ≤ HP ≤ −∆− V +
1
Z
UP ≤ (1 + ε) (−∆− V ) +

1
ε

(
ε+

N

Z

)2

for all ε > 0. By the min-max principle, this implies that

E∞n ≤ EZn ≤ (1 + ε)E∞n +
1
ε

(
ε+

N

Z

)2

.

Optimizing with respect to ε yields the desired estimates of part (a).
To prove (b) let ϕ1, . . . , ϕN be an orthonormal basis of RanP with HPϕk = EZk ϕk.

Then the Hartree-Fock functional can be decomposed as

EHF (ϕ1, . . . , ϕN ) = EHFN−1(ϕ1, . . . , ϕN−1) + 〈ϕN , HP,N−1ϕN 〉
= EHFN−1(ϕ1, . . . , ϕN−1) + EZN ,
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where EHFN−1 and HP,N−1 denote the Hartree-Fock functional and Fock operator be-
longing to the (N − 1)-particle integral kernel τN−1(x, y) =

∑N−1
k=1 ϕk(x)ϕk(y). Since

ψ 7→ EHF (ϕ1, . . . , ϕN−1, ψ) is minimized by ϕN ,

EZN = inf
ψ∈D(HP,N−1); ‖ψ‖=1

ψ∈span{ϕ1,...,ϕN−1}⊥

〈ψ,HP,N−1ψ〉.

Thus, using the min-max principle again, EZN is bounded from above by the N -th
eigenvalue of HP,N−1. Part (a) applied to HP,N−1 completes the proof of (b).

3 Solving the Hartree-Fock Equations

This section contains the proofs of all the theorems given in the introduction. For
restricted Hartree-Fock theory see the next section. Our main tool is the following
abstract result comparing the spectral projections χΩ(A) and χΩ(B) of two self-adjoint
operators A and B.

Proposition 3.1. Let A,B : D ⊂ H → H be self-adjoint operators and let Ω ⊂ R be a
bounded Borel set for which the spectra of A and B satisfy the gap conditions

dist(σ(A) ∩ Ω, σ(B) \ Ω) ≥ δ,
dist(σ(B) ∩ Ω, σ(A) \ Ω) ≥ δ,

(14)

for some δ > 0. Suppose A and B have only point spectrum in Ω. Then

‖χΩ(A)− χΩ(B)‖2 ≤ δ
−1
(
‖(A−B)χΩ(A)‖22 + ‖(A−B)χΩ(B)‖22

)1/2
.

Proof. We only prove the proposition in the case where χΩ(A) and χΩ(B) are finite
rank projections. The more general case of infinite point spectrum in Ω is left as an
exercise for the reader. Let χ(A) := χΩ(A) and χ(B) := χΩ(B) for short. Then
χ(A)2 = χ(A) = χ(A)∗ and similarly for χ(B). It follows that

‖χ(A)− χ(B)‖22 = tr(χ(A)(1− χ(B))χ(A))

+ tr(χ(B)(1− χ(A))χ(B)) (15)

where we also used the cyclicity of the trace. To estimate the first term on the right hand
side of (15) we choose an orthonormal basis (ϕk)nk=1 of χ(A) consisting of eigenfunctions
of A:

Aϕk = εkϕk, εk ∈ σ(A) ∩ Ω, k = 1, . . . , n.

By the gap assumption (14), |λ− εk| ≥ δ for λ ∈ σ(B) \ Ω and hence, by the spectral
theorem,

1
δ
|B − εk| ≥ 1− χΩ(B), k = 1, . . . , n.
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We conclude that

tr(χ(A)(1− χ(B))χ(A)) =
n∑
k=1

〈ϕk, (1− χ(B))ϕk〉

≤ δ−2
n∑
k=1

〈
ϕk, (B − εk)2ϕk

〉
= δ−2

n∑
k=1

〈
ϕk, (B −A)2ϕk

〉
= δ−2‖(A−B)χ(A)‖22. (16)

The proposition follows from (15), (16) and from an estimate similar to (16) with A

and B interchanged.

Lemma 3.2. For all ϕ ∈ H1(R3 × {1, . . . , q}) and P,Q ∈ SN,q

(i) ‖(UP − UQ)ϕ‖ ≤ 4‖P −Q‖1‖∇ϕ‖

(ii) ‖(KP −KQ)ϕ‖ ≤ 4‖P −Q‖2‖∇ϕ‖.

Proof. For all ψ ∈ L2(R3 × {1, . . . , q})

|〈ψ, (UP − UQ)ϕ〉| ≤ 2
∫

dy|ρP (y)− ρQ(y)|
∫
|ψ(x)| |ϕ(x)|

|x− y|
dx

≤ 4
∫

dy|ρP (y)− ρQ(y)|‖ψ‖‖∇ϕ‖

≤ 4‖P −Q‖1‖ψ‖‖∇ϕ‖

by Cauchy-Schwarz, the uncertainty principle lemma [19, section X.2] and by Lemma 5.1.
This proves (i). The proof of (ii) is similar.

Proposition 3.3. Let P,Q ∈ SN,q ∩ {P 2 = P} and let Ω ⊂ (−∞, 0) be a bounded
Borel set such that dist(Ω, σ(HP ) \Ω) ≥ δ and dist(Ω, σ(HQ) \Ω) ≥ δ for some δ > 0.
Suppose moreover that tr(χΩ(HP )) = N = tr(χΩ(HQ)). Then

‖χΩ(HP )− χΩ(HQ)‖2

≤ 4
δZ

(
1 +
√

2N
)(∥∥√−∆χΩ(HP )

∥∥2

2
+
∥∥√−∆χΩ(HQ)

∥∥2

2

)1/2
‖P −Q‖2

≤ 8
δZ

(
1 +
√

2N
)√

2N‖P −Q‖2.

The factor 8 in the last line may be replaced by 4 if both P and Q satisfy the Hartree-
Fock equation (10). It may be replaced by 4

√
2.5 if P or Q satisfies (10).

Remark. The set SN,q∩{P 2 = P} is a closed subset of the Hilbert-Schmidt operators
on L2(R3 × {1, . . . , q}) and hence it is complete with respect to the metric d(P, P̃ ) =
‖P − P̃‖2.
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Proof. Applying Proposition 3.1 to HP and HQ we see that we need to estimate
‖(HP −HQ)χΩ(HP )‖2 and the same expression with P and Q interchanged. By defi-
nition of HP and HQ,

HP −HQ = Z−1(UP − UQ)− Z−1(KP −KQ)

and by Lemma 3.2,

‖(UP − UQ)χΩ(HP )‖2 ≤ 4‖P −Q‖1
∥∥√−∆χΩ(HP )

∥∥
2

‖(KP −KQ)χΩ(HP )‖2 ≤ 4‖P −Q‖2
∥∥√−∆χΩ(HP )

∥∥
2
.

The first inequality of the theorem now follows from ‖P −Q‖1 ≤
√

2N‖P −Q‖2. Here
we use that P and Q have rank N . From Lemma 2.1 (iv) with ε = 1/2 we see that
−∆ ≤ 2HP + 4. Therefore∥∥√−∆χΩ(HP )

∥∥2

2
= tr

(
χΩ(HP )(−∆)χΩ(HP )

)
≤ 4 trχΩ(HP ) = 4N.

If P solves the Hartree-Fock equation then
∥∥√−∆χΩ(HP )

∥∥2

2
= |EHF (P )| ≤ N by the

virial theorem and because −∆− V ≥ −1.

For each R ∈ SO(3) we define a unitary operator U(R) in L2(R3) by

[U(R)ψ](x) := ψ(R−1x). (17)

The following theorem describes the content of Theorem 1.1 in terms of rank N

projections.

Theorem 3.4. Under the assumptions of Theorem 1.1 the Hartree-Fock equation (10)
has a unique solution P ∈ SN,q with the property that Z2σ(HP |̀PH) is given by (4).
This P is of the form P = P ′ ⊗ 1 with respect to L2(R3) ⊗ Cq where P ′ ∈ SN/q,1 and
moreover P ′ = U(R)P ′U(R)∗ for all R ∈ SO(3).

Proof. We first prove existence and uniqueness of P using Proposition 3.3 with

Ω :=
s⋃

k=1

[
−n−2

k ,−n−2
k +

4N
Z

]
.

By Proposition 2.2, for Z large enough and all P ∈ SN,q

dist(Ω, σ(HP ) \ Ω) ≥ n−2
s − (ns + 1)−2 − 4N

Z
=: δ,

δ > 0, and trχΩ(HP ) = N . Hence the Proposition 3.3, the remark thereafter, and the
contraction principle imply that the equation P = χΩ(HP ) has a unique solution P

provided that
8
Z

(
1 +
√

2N
)√

2N < δ. (18)

This is satisfied for Z obeying (3).

10



We next show that P is of the form P ′ ⊗ 1 in L2(R3) ⊗ Cq where P ′ ∈ SN/q,1. To
this end we consider the modified Hartree-Fock equation

P ′ = χΩ(H(q)
P ′ ) (19)

where
H

(q)
P ′ := −∆− V +

q

Z
UP ′ −

1
Z
KP ′

in L2(R3). The eigenvalues of H(q)
P ′ satisfy the estimate given by Proposition 2.2 a).

Therefore, the arguments above show that (19) has a unique solution P ′ because (18)
holds by assumption (3). From HP ′⊗1 = H

(q)
P ′ ⊗ 1 and (19) it follows that P ′⊗ 1 solves

the Hartree-Fock equation (10). Hence, P = P ′ ⊗ 1 by the uniqueness of the solution
to (10).

Finally we prove that P ′ commutes with U(R). From the spherical symmetry of V
it follows that U(R)H(q)

P ′ U(R)∗ = H
(q)
P ′(R) where P ′(R) = U(R)P ′U(R)∗. Using (19),

we conclude that

P ′(R) = U(R)χΩ(H(q)
P ′ )U(R)∗ = χΩ

(
U(R)H(q)

P ′ U(R)∗
)

= χΩ

(
H

(q)
P ′(R)

)
which implies P ′(R) = P ′ because the solution to (19) is unique.

Proof of Theorem 1.1. Theorem 3.4 tells us that P = P ′ ⊗ 1 where P ′ commutes
with all rotations. Moreover, HP = H

(q)
P ′ ⊗ 1, P ′ = χΩ(H(q)

P ′ ) and H
(q)
P ′ commutes with

all rotations as well. Let εk ∈ Ω be an eigenvalue of H(q)
P ′ . The eigenspace associated

with εk carries a representation of SO(3) given by (17). Its irreducible subspaces are
spanned by functions of the form

|x|−1f(|x|)Ylm(x), f ∈ L2(R+), (20)

where Ylm denotes a spherical harmonic. Now fix l and m and let Hlm denote the
space of all functions of the form (20) with arbitrary f . This space is reducing for
both −∆− V and H(q)

P ′ . Since the spectrum of (−∆− V ) � Hlm in (−∞, 0) consists of
the simple eigenvalues −1/n2, n ≥ l + 1, it follows from Proposition 2.2 and from the
assumption on Z that H(q)

P ′ � Hlm has exactly one eigenvalue in each of the intervals
[−n−2

k ,−(nk + 1)−2) with nk ≥ l + 1. This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. For Z > N−1 the Hartree-Fock functional is known to have
a minimizer and any minimizer P is the spectral projection onto the spectral subspace
of HP associated with the lowest N eigenvalues [17]. If N = q

∑s
n=1 n

2 for some s, then,
by Proposition 2.2 the lowest N eigenvalues of HP belong to [−1,−(s+ 1)−2) provided
that 4(N − 1)/Z < s−2 − (s+ 1)−2. Thus for sufficiently large Z Theorem 1.1 implies
uniqueness of the minimizer of the Hartree-Fock functional as well as the assertions on
the one-particle orbitals. The bound on Z is obtained by inspection of the proof of
Theorem 1.1 keeping in mind that P is a minimizer which is given. Hence the improved
bounds from Proposition 2.2 and Proposition 3.3 are available.
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Proof of Theorem 1.3. Given ϕ1, . . . , ϕN ∈ H1(R3) with
∫
|ϕk(x)|2 dx = 1 let Φ1,

. . . ,ΦN ∈ H1(R3 × {1, . . . , N}) be defined by

Φk(x, s) := ϕk(x)δks, k = 1, . . . , N. (21)

Then Φ1, . . . ,ΦN are orthonormal in L2(R3 × {1, . . . , N}) and

EHF (Φ1, . . . ,ΦN ) = EH(ϕ1, . . . , ϕN ) (22)

by the definitions of EHF and EH . By (22), the minimization problem for EH is
equivalent to the minimization problem for EHF with q = N in the restricted class of
orbitals of the form (21). By Theorem 1.2, the (unrestricted) Hartree-Fock functional
for q = N and Z sufficiently large has a unique minimizer P ∈ SN,N , which is of the
form P = P ′ ⊗ 1 with respect to L2(R3 × {1, . . . , N}) = L2(R3) ⊗ CN . P ′ here is
a rank one projection that commutes with rotations. Hence (P ′ψ) = ϕ〈ϕ,ψ〉 with a
spherically symmetric function ϕ. It follows that EHF (P ) = EH(ϕ, . . . , ϕ). It remains
to determine the condition on Z for uniqueness of the Hartree-Fock minimizer in the
present case where q = N . To this end we use the improved eigenvalue estimate from
Proposition 2.2 b). The gap condition becomes

δ :=
3
4
− 2

N − 1
Z

> 0 (23)

and the contraction condition reads

4
Z

(
1 +
√

2N
)√

2N < δ. (24)

Both, (23) and (24) are satisfied if

Z >
40
3
N +

16
3

√
2N − 8

3
.

Corollary 3.5. Under the assumptions of Theorem 3.4 let PZ be the unique solution
provided by this theorem. Then

lim
Z→∞

PZ =
s∑

k=1

χ{−n−2
k }(−∆− V ). (25)

Proof. Let P∞ denote the right hand side of (25). A copy of the proof of Proposition 3.3
with P = PZ and HQ replaced by H∞ = −∆− V shows that

‖PZ − P∞‖2 ≤
4
δZ

(
1 +
√

2N
)√

2N‖PZ‖2 =
4
√

2
δ

N

Z

(
1 +
√

2N
)
→ 0 (Z →∞).

Here, by Proposition 2.2, δ can be chosen independently of Z for Z sufficiently large.
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4 Restricted Hartree-Fock Theory

In this section the Hartree-Fock functional is restricted to one-particle orbitals of the
special form (5). This will allow for all the electron configurations found in noble gas
atoms. In this section we set q = 1 to simplify the presentation.

By a shell index we mean a pair of integers (n, `) with n ≥ 1 and 0 ≤ ` ≤ n− 1.

Theorem 4.1. Let (n1, `1), . . . , (ns, `s) be given, pairwise distinct shell indices with
n1 ≤ n2 ≤ . . . ≤ ns. Suppose N =

∑s
j=1(2`j + 1) and let ∆s := n−2

s − (ns + 1)−2.

(i) If Z > 4N/∆s then there exist normalized functions f1, . . . , fs ∈ L2(R+) such
that the N functions

ϕjm(x) :=
1
|x|
fj(|x|)Y`jm(x), j = 1, . . . , s, m = −`j . . . `j ,

solve the Hartree-Fock equations (1) with eigenvalues εj satisfying

− 1
n2
j

≤ εj ≤ −
1
n2
j

+
4N
Z
. (26)

(ii) If Z satisfies (3) then the functions fj in (i) are unique up to global phases.

Remark: A result similar to part (i) of this theorem with the weaker assumption
Z ≥ N is described in Section III.3 of [18]. However, Lions’ argument is based on the
unproven assertion that all eigenvalues of a radial Hartree-Fock operator are simple.

To prove Theorem 4.1 we solve the fixed point equation

P = F (P ) :=
s∑
j=1

χΩj (HP )π`j (27)

where π` denotes the orthogonal projection associated with the eigenvalue `(` + 1) of
the square of the total angular momentum operator, and

Ωj :=
[
− 1
n2
j

,− 1
n2
j

+
4N
Z

]
.

The spherical symmetry will be imposed by restricting F to the subset

SsymN :=
{
P ∈ SN,1

∣∣U(R)PU(R)∗ = P, for all R ∈ SO(3)
}

of SN,1. To find a solution of (27) we use the Schauder-Tychonoff theorem. Its unique-
ness will follow from the contraction principle.

Lemma 4.2. Suppose the hypotheses of Theorem 4.1 are satisfied and that δ := ∆s −
4N/Z > 0. Then F (SsymN ) ⊂ SsymN and for all P,Q ∈ SsymN ,

‖F (P )− F (Q)‖1 ≤ 32
N

δZ
‖P −Q‖1. (28)

If P,Q ∈ SsymN ∩ {P 2 = P} then

‖F (P )− F (Q)‖2 ≤
8
δZ

√
2N(1 +

√
2N)‖P −Q‖2. (29)
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Remark. The Lipshitz constant in (29) agrees with the one in Proposition 3.3.

Proof. We first show that F (SsymN ) ⊂ SsymN . For P ∈ SsymN , the Fock operator HP

commutes with all rotations U(R) and hence so does its spectral projection χΩj (HP ).
It follows that Fj(P ) := χΩj (HP )π`j = π`jχΩj (HP ) is an orthogonal projection and
that

Fj(P )Fk(P ) = δjkFj(P ) (30)

because (nj , `j) 6= (nk, `k) for j 6= k. Hence F (P ) =
∑s

j=1 Fj(P ) is an orthogonal
projection that commutes with all rotations. As for the trace of F (P ), we note that
HP � π`jH has exactly 2`j + 1 eigenvalues in Ωj , counted with multiplicities. This
shows that trF (P ) =

∑s
j=1 trFj(P ) =

∑s
j=1(2`j + 1) = N .

By inspection of the proof of Proposition 3.1, using (30) we see that

‖F (P )− F (Q)‖22 = trF (P )(1− F (Q))F (P ) + trF (Q)(1− F (P ))F (Q) (31)

where

trF (P )(1− F (Q))F (P ) =
s∑
j=1

trFj(P )(1− F (Q))Fj(P )

≤ δ−2
s∑
j=1

‖(HP −HQ)Fj(P )‖22. (32)

Here it is important that HP and HQ are considered as operators on π`jL
2(R3), which

have 2`j+1 eigenvalues in Ωj separated by a gap of size δ from the rest of the spectrum.
To bound ‖(HP −HQ)Fj(P )‖2 we use estimates from the proof of Proposition 3.3 as
well as ‖P −Q‖2 ≤ ‖P −Q‖1. We find

‖(HP −HQ)Fj(P )‖2 ≤
16
Z

√
2`j + 1‖P −Q‖1. (33)

The proof of (28) is now completed by combining (31), (32), (33) with

‖F (P )− F (Q)‖1 ≤
√

2N‖F (P )− F (Q)‖2 (34)

and with estimates similar to (32), (33) where the roles of P and Q are interchanged.
(34) follows from the fact that F (P ) and F (Q) have rank N . For proving (29) we use
‖P −Q‖1 ≤

√
2N‖P −Q‖2 instead of (34). The rest is similar to the proof of (28).

Proof of Theorem 4.1. To prove (i) we check that the map F : SsymN → SsymN sat-
isfies the hypotheses of the Schauder-Tychonoff theorem. By construction, SsymN is
convex and closed in T1(L2(R3)), and F : SsymN → SsymN is continuous by Lemma 4.2.
To prove compactness of the map F let (Pn) be any sequence in SsymN . Then F (Pn)
may be written in the form

F (Pn) =
N∑
k=1

|ϕ(n)
k 〉〈ϕ

(n)
k |, HPnϕ

(n)
k = ε

(n)
k ϕ

(n)
k

14



with eigenvalues ε(n)
k < −(ns + 1)−2 for all k, n. By Lemma 2.1, the sequences (ϕ(n)

k )n
are bounded in H1(R3). We may assume they are weakly convergent in H1 and hence
locally convergent after passing to a subsequence of (Pn). Hence F (Pn) will be con-
vergent provided that ϕ(n)

k (x) → 0 as |x| → ∞ uniformly in n. To prove this uniform
decay we pick a function χ ∈ C∞(R; [0, 1]) with χ(t) = 0 for t ≤ 1 and χ(t) = 1 for
t ≥ 2. Let χR(x) = χ(|x|/R) for R > 0. The IMS-formula tells us that

2χR(HPn − ε
(n)
k )χR = χ2

R(HPn − ε
(n)
k ) + (HPn − ε

(n)
k )χ2

R − [[HPn , χR], χR],

where [[HPn , χR], χR] = 2|∇χR|2 − Z−1[[KPn , χR], χR] and

χR(HPn − ε
(n)
k )χR ≥ (−2R−1 − ε(n)

k )χ2
R ≥ cχ2

R

for some c > 0 if R ≥ R0 and R0 is large enough. It follows that

c‖χRϕ(n)
k ‖

2 ≤ 1
2Z

∣∣∣〈ϕ(n)
k , [χR, [χR,KPn ]]ϕ(n)

k

〉∣∣∣+O(R−2)

= O(R−1), (R→∞),

uniformly in n. In the last step we expanded the double commutator, we used |τ (n)(x, y)|
≤ ρ(n)(x)1/2ρ(n)(y)1/2, Cauchy-Schwarz, the spherical symmetry of ρ(n) and Newton’s
theorem to replace |x− y|−1 by min(|x|−1, |y|−1). Here τ (n) and ρ(n) denote the kernel
and density of Pn. Statement (ii) in Theorem 4.1 follows from (29) and the remark
following Lemma 4.2.

5 Appendix

The following lemma seems to be well-known, but we have not found it in the literature.

Lemma 5.1. There exists a bounded linear mapping

ρ : T1(L2(Rn)) → L1(Rn)

K 7→ ρK

which is uniquely determined by

|ψ〉〈ϕ| 7→ ψ(x)ϕ(x).

Furthermore, ρ has the following properties:

(i)
∫
ρK(x) dx = tr(K)

(ii)
∫
|ρK(x)| dx ≤ tr |K|

Proof. The map ρ is unique because, by linearity and continuity, it is completely deter-
mined by its action on operators of rank one. For the proof of existence let J ∈ C∞0 (Rn)
be a real, non-negative and even function with

∫
J(x) dx = 1. Let Jε(y) := ε−nJ(y/ε)

and Jε,x(y) := Jε(y − x). Then

〈Jε,x, ϕ〉 =
∫
Jε(x− y)ϕ(y) dy = (Jε ∗ ϕ)(x). (35)
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For given K ∈ T1(L2(Rn)) we define ρK ∈ L1(Rn) by

ρK := L1 − lim
ε→0

ρK,ε (36)

ρK,ε(x) := 〈Jε,x,KJε,x〉.

We claim that the limit (36) exists and that

ρK(x) =
∑
n≥0

λnϕn(x)ψn(x)

if K =
∑
n≥0

λn|ϕn〉〈ψn| (37)

denotes the singular value decomposition of K, that is λn ≥ 0 and ϕn, ψn are orthonor-
mal bases. Using (35), (37), ‖Jε ∗ ϕ‖ ≤ ‖Jε‖1‖ϕ‖ = ‖ϕ‖ and

∑
n λn = tr |K|, we see

that
‖ρK,ε‖1 ≤ tr |K|, for all ε > 0. (38)

Hence if the limit (36) exists, then (ii) holds and K 7→ ρK is a continuous linear map.
Moreover, if KN denotes the N -th partial sum of (37), then, by (38),

‖ρ(K−KN ),ε‖1 ≤ tr |K −KN | → 0, (N →∞),

uniformly in ε > 0. Therefore it suffices to prove the existence of ρKN
, which follows if

we prove that ρ maps the rank one operator |ϕ〉〈ψ| to ϕ(x)ψ(x). Indeed,∥∥∥(Jε ∗ ϕ)(Jε ∗ ψ)− ϕψ
∥∥∥

1

=
∥∥∥(Jε ∗ ϕ− ϕ)ψ + (Jε ∗ ϕ)

(
(Jε ∗ ψ)− ψ

)∥∥∥
1

≤ ‖Jε ∗ ϕ− ϕ‖‖ψ‖+ ‖Jε ∗ ϕ‖‖Jε ∗ ψ − ψ‖ → 0 (ε→ 0)

where we used that Jε ∗ ϕ → ϕ in L2(Rn). It now remains to prove (i). This follows
from ∫

ρK(x) dx =
∑
n≥0

λn

∫
ϕn(x)ψn(x) dx =

∑
n≥0

λn〈ψn, ϕn〉

trK =
∑
n≥0

〈ψn,Kψn〉 =
∑
n≥0

λn〈ψn, ϕn〉.
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