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Control Synthesis using Dynamic D-Scales:

Part I – Robust Control

Carsten W. Scherer and I. Emre Köse

Abstract

We consider uncertain dynamical systems described in the standard LFT form. Following the

methods familiar from µ-theory, we use dynamic (i.e., frequency-dependent) D-scales for verifying

robust stability of the system. The main result of the paper gives necessary conditions for the

existence of robustly stabilizing controllers using parametrized dynamic D-scales which are sufficient

for robust stability in a certain sense. Based on these conditions, we propose a primal/dual D-scale

iteration for the design of robust controllers as an alternative to the well-known D/K-iteration. A

numerical example illustrates the advantages of the proposed iteration. The results of this paper lead

to a solution of the gain-scheduled control problem as reported in the sequel of this paper.

I. INTRODUCTION

The robust control synthesis problem can be summarized as one of finding a robustly stabiliz-

ing K in Figure 1, where G is the nominal plant, ∆ represents the uncertainties/nonlinearities

involved in the system model and Gcl stands for the lower LFT of G with respect to K, which

gives the nominal closed-loop system.

∆

G

K

∆

Gcl

p q

qp

u y
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Fig. 1. The closed-loop system.

If ∆ is linear time-invariant, stable, norm-bounded by unity and possesses a given structure,

robust stability is guaranteed iff K is nominally stabilizing and the structured singular value,

µ, of Gcl with respect to the uncertainty structure remains below 1 for all frequencies [16].

Since the computation of µ is non-convex in general, we resort to verifying that an upper

bound of µ is less than 1 in order to guarantee robust stability. This upper bound is given in

terms of so-called D-scales, which are frequency-dependent (i.e., dynamic) positive definite

matrices that commute with the structure of ∆.

Except for some special cases such as robust output estimation [13] and robust disturbance

feedforward [6], the joint search for such a D-scale and a nominally stabilizing K is a non-

convex problem in general. The most common procedure for overcoming this non-convexity

issue is the D/K-iteration [3]. The iteration is initiated with D = I and at each following

step, one of D and K is sought with the other one fixed from the previous step. When D is

fixed, the search for K can be cast as a nominal H∞ synthesis problem. When K is fixed,

the search for the D-scale is carried out at discrete frequency points first and the overall

expression for D(jω) is then obtained through curve fitting. Although each step in the D/K-

iteration is convex, the overall procedure is not. Hence, convergence to the global minimum

is not guaranteed.

In this paper, in contrast to standard µ-synthesis, we concentrate on the existence conditions

for a robustly stabilizing controller. In particular, we obtain existence conditions for a robustly

stabilizing K while parametrizing the D-scales in a numerically useful fashion. To that

end, we begin by factorizing the dynamic D-scale as D = ψ∗ψ, where ψ is frequency-

dependent. Using the state-space realization of ψ, we apply the Kalman-Yakubovich-Popov

(KYP) Lemma to obtain LMI conditions for the stability of the closed-loop condition. Elimi-

nation of K from these LMIs yields necessary and sufficient existence conditions for K using

non-parametrized D-scales. Through a sequence of non-trivial manipulations on the LMIs,

we can substitute the realization of ψ and its inverse with sufficiently close approximations

obtained from appropriate basis functions. What we thus obtain is necessary LMI conditions

for the existence of a robustly stabilizing controller using parametrized frequency-dependent

D-scales. Disregarding approximate inverse relations in the resulting LMIs, these conditions

are jointly convex.
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In the reverse direction, when the parametrized LMIs are satisfied, we can guarantee the

existence of a controller that robustly stabilizes the system against uncertainties with a

quantifiable norm bound that is necessarily less than 1.

We can utilize the findings of this paper in two ways. First, the main result lays the foundation

of the solution of the gain-scheduled control problem where it is assumed that the uncertainty

∆ can be reproduced on-line. With this assumption, the approximate inverse relations in

the solvability conditions are relaxed and we obtain a convex solution of the gain-scheduled

control synthesis problem using dynamic D-scales. This solution is given in full detail in the

sequel to the present paper [14].

Second, the main result allows us to formulate a novel iterative solution to the existence

conditions that avoids the difficulties encountered in the D/K-iteration. This solution is based

on the maximization of the uncertainty norm bound against which the designed controller

is guaranteed to robustly stabilize the system. Since bounded from above by 1 and non-

decreasing at each step, this sequence of guaranteed uncertainty bounds converges. Moreover,

the procedure we propose avoids curve fitting or loop transformations completely [3]. How-

ever, due to the non-convex nature of the underlying problem, a general comparison with the

D/K-iteration is not possible. Still, the application of the proposed solution to a mechanical

system demonstrates better behavior than the D/K-iteration that improves even further when

higher dynamics in the D-scales are allowed.

The paper is organized as follows: In Section II, we introduce a parametrization of suitable

D-scales that provides arbitrary accuracy in approximating any given stable transfer function.

Also in this section, we give two different nominal stability characterizations that are duals

of each other in a certain sense. Our main result, namely a new set of conditions for the

existence of a robustly stabilizing controller, is stated in Section III. In Section IV, we propose

an alternative to the D/K-iteration that does not involve obtaining the controller itself at any

step. In Section V, we apply the main result and the related iterative solution to the model of

a mechanical system. We give a summary and a brief discussion in Section VII. Technical

results and the proof of the main theorem are given in the Appendix.

Notation and conventions for realizations. C0 denotes the extended imaginary axis. For

the adjoint of a transfer matrix G with realization (A,B,C,D) we use the notation G∗(s) =

G(−s)T and the realization G∗ =

 −AT CT

−BT DT

 . If D is non-singular we use G−1 =

April 24, 2011 DRAFT



4 A−BD−1C BD−1

−D−1C D−1

. If A has no eigenvalues in C0 and M = MT ,

G∗MG ≺ 0 (1)

is read as G(jω)∗MG(jω) ≺ 0 for all ω ∈ R∪{∞} and called frequency-domain inequality

(FDI). By the KYP-Lemma, it is equivalent to feasibility of the LMI
I 0

A B

C D


T 

0 X 0

X 0 0

0 0 M


︸ ︷︷ ︸

=:M(X,M)


I 0

A B

C D

 ≺ 0, (2)

for some X = XT . It is convenient to say that (2) certifies (1) or that X is a certificate

for the FDI (1). In expressions like G∗MG we address M as middle term and G as outer

term/factor (not to be confused with outer transfer matrices), and use such a convention also

for LMIs like (2). If required by space-limitations, we abbreviate blocks that can be inferred

by symmetry (such as the left outer-factor in (2)) by ?. Lastly, we use He(M) := M +MT

and J(M) := diag (M,−M).

II. PRELIMINARIES

A. The closed-loop interconnection

Let the interconnection in Figure 1 be described as

 q

y

 =


A Bp Bu

Cq Dqp Dqu

Cy Dyp 0


 p

u

 , and u =

 Ac Bc

Cc Dc

 y (3)

which is affected by the uncertainty p = ∆q. For notational simplicity we consider full-block-

structured dynamic uncertainties only. Hence ∆ can be any proper and stable transfer matrix

which admits the structure

∆ =
m

diag
i=1

(∆i) and satisfies ‖∆‖∞ ≤ 1.

April 24, 2011 DRAFT
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The uncertain closed-loop system is described by z = Gclw, w = ∆z with Gcl having the

realization  A B

C D

 =


A+BuDcCy BuCc Bp +BuDcDyp

BcCy Ac BcDyp

Cq +DquDcCy DquCc Dqp +DquDcDyp

 .

Let us recall the so-called D-scalings stability test from structured singular value theory [9].

For this purpose consider the set

Q :=

{
m

diag
k=1

(Ink ⊗ qk) : qk ∈ RL∞, qk > 0

}
in correspondence with the structure of ∆. Robust stability of the controlled closed-loop

system is then guaranteed if there exists some multiplier Q ∈ Q with Gcl
I


∗ Q 0

0 −Q


 Gcl

I

 ≺ 0. (4)

B. Parametrization of D-scales

If Q satisfies (4) we can determine, for k = 1, . . . ,m, a spectral factorization qk = q̂∗kq̂k where

q̂k is stable and has a stable inverse. This motivates to parametrize the multipliers Q by the

stable factors q̂k in such a description. For this purpose we choose a pole-location p > 0 and

introduce the transfer function basis vector

bν(s) =

(
1

s− p
s+ p

(s− p)2

(s+ p)2
· · · (s− p)ν

(s+ p)ν

)T
(5)

for ν ∈ N. Then any proper and stable transfer function q̂ can be uniformly approximated on

C0 with arbitrary quality by cT bν for a suitable real-valued column vector c and sufficiently

large ν [10], [4], [11]. In particular, for sufficiently large ν there exist c1, . . . , cm such that

Q =
m

diag
i=1

(
I ⊗ (cTi bν)

∗(cTi bν)
)

still satisfies (4). Now observe that I⊗b∗ν(cicTi )bν = (I⊗bν)∗(I⊗Mi)(I⊗bν) for Mi := cic
T
i .

With

ψν :=
m

diag
i=1

(I ⊗ bν) and M :=
m

diag
i=1

(I ⊗Mi) ,

this leads to the parametrization

Q = ψ∗νMψν with M ∈Mν (6)

April 24, 2011 DRAFT
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where

Mν :=

{
m

diag
i=1

(I ⊗Mi) : Mi = MT
i ∀i = 1 : m

}
.

Clearly Mν admits an LMI description while the dependence on ν reflects the dependence

of the dimensions ν+ 1 of the diagonal blocks on this integer. We have proved the following

fact: There exists Q ∈ Q with (4) iff there exists some ν and M ∈Mν with

ψ∗νMψν � 0, (7a) ψνGcl

ψν


∗ M 0

0 −M


 ψνGcl

ψν

 ≺ 0. (7b)

C. Primal State-Space Conditions for Robust Stability

Now choose the input-balanced (minimal) realization ψν =

 Aψν Bψν

Cψν Dψν

 such that Aψν

is Hurwitz. It is then easy to translate (7) into LMIs. For the purpose of synthesis it is

also required to guarantee that A is Hurwitz. The following analysis result incorporates this

stability property as a suitable constraint on the solutions of the respective LMIs. Note that,

for this purpose, X is partitioned into three blocks in a natural fashion.

Lemma 1: A is Hurwitz and (4) holds for some Q ∈ Q iff there exist ν and M ∈ Mν such

that the following LMIs are feasible:

?TM (X , J(M))



I 0 0 0

0 I 0 0

0 0 I 0

Aψν 0 BψνC BψνD

0 Aψν 0 Bψν

0 0 A B

Cψν 0 DψνC DψνD

0 Cψν 0 Dψν



≺ 0, (8)

?TM (Z,M)


I 0

Aψν Bψν

Cψν Dψν

 � 0, (9)

April 24, 2011 DRAFT
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X + diag (−Z,Z, 0) � 0. (10)

Proof: Assume that (9) is feasible. Then, M̂ := DT
ψν
MDψν � 0. Hence, there exists

some square and non-singular Dψ̂ν
such that DT

ψ̂ν
Dψ̂ν

= M̂ . Moreover, since (Aψν , Bψν ) is

controllable, the related ARE

ATψν Ẑ + ẐAψν + CT
ψνMCψν − (ẐBψν + CT

ψνMDψν )M̂
−1
(
?
)T

= 0 (11)

has a stabilizing (largest) solution Ẑ [16]. If defining Cψ̂ν := D−T
ψ̂ν

(BT
ψν
Ẑ +DT

ψν
MCψν ) this

means that Aψ̂iν := Aψν −BψνD
−1

ψ̂ν
Cψ̂ν is Hurwitz. With Aψ̂ν := Aψν and Bψ̂ν

:= Bψν notice

that (11) can be rewritten as

?TM
(
Ẑ,diag (−I,M)

)


I 0

Aψ̂ν Bψ̂ν

Cψ̂ν Dψ̂ν

Cψν Dψν


= 0 (12)

which certifies the spectral factorizationAψ̂ν Bψ̂ν

Cψ̂ν Dψ̂ν


∗ Aψ̂ν Bψ̂ν

Cψ̂ν Dψ̂ν

 =

Aψν Bψν

Cψν Dψν


∗

M

Aψν Bψν

Cψν Dψν

 . (13)

If we diagonally combine (12) with the negative of (9), we get

?TM


 −Z 0

0 Ẑ

 ,diag (−I,−J(M))





I 0 0 0

0 I 0 0

Aψν 0 Bψν 0

0 Aψ̂ν 0 Bψ̂ν

0 Cψ̂ν 0 Dψ̂ν

Cψν 0 Dψν 0

0 Cψν 0 Dψν



� 0. (14)

Note that the left-upper block of (14) is negative definite. As one of the key technical

ingredients introduced in this paper, let us now systematically merge the LMIs (8) and (14)

April 24, 2011 DRAFT
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by using the instrumental Gluing Lemma (Section A). In fact, Lemma 6 a) and c) imply that

?TM
(
X̂ ,−I

)



I 0 0 0

0 I 0 0

0 0 I 0

Aψν 0 BψνC BψνD

0 Aψ̂ν 0 Bψ̂ν

0 0 A B

0 Cψ̂ν 0 Dψ̂ν



≺ 0,

where X̂ := X + diag
(
−Z, Ẑ, 0

)
. By an elementary operation (congruence) to eliminate

Cψ̂ν , this implies

?TM
(
X̂ ,−I

)



I 0 0 0

0 I 0 0

0 0 I 0

Aψν ∗ BψνC BψνD

0 Aψ̂iν 0 Bψ̂ν

0 ∗ A B

0 0 0 Dψ̂ν



≺ 0

so that He

X̂

Aψν ∗ BψνC

0 Aψ̂iν 0

0 ∗ A


 ≺ 0. Since Aψν and Aψ̂iν are Hurwitz, stability of A

is hence equivalent to X̂ � 0.

Now suppose that A is Hurwitz and Q ∈ Q satisfies (4). Then there exists a sufficiently

large ν and some M ∈Mν such that (7) holds. Let us fix M and apply the KYP Lemma in

order to infer that (8) and (9) have solutions X and Z. For any Z we can now exploit the

preparation in order to see that X̂ � 0. Since Z can be chosen arbitrarily closely to Ẑ, we

arrive at the validity of (10) for some particular Z.

Conversely, suppose that (8)-(10) are feasible for some M ∈Mν . Since Ẑ � Z we infer that

X̂ � 0 holds as well. Therefore A is Hurwitz. Then (7) follows from (8) and (9) by applying

April 24, 2011 DRAFT
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the KYP Lemma. Therefore we have found some Q ∈ Q, namely Q = ψ∗νMψν � 0, for

which (4) is valid.

D. Dual State-Space Conditions for Robust Stability

Due to the dualization lemma [12], (4) is equivalent to I

−G∗cl


∗ Q−1 0

0 −Q−1


 I

−G∗cl

 � 0. (15)

Let us now introduce the stable (typically wide) transfer matrix φν := ψTν as well as Nν :=

Mν . Moreover let us parameterize Q−1 as

Q−1 = φνNφ
∗
ν with N ∈ Nν . (16)

Choose the natural realization of φν as

φν =

 Aφν Bφν

Cφν Dφν

 =

 ATψν CT
ψν

BT
ψν

DT
ψν

 (17)

which is minimal and output-balanced. It is then not difficult to formulate a dual version of

Theorem 1.

Lemma 2: A is Hurwitz and (15) holds for some Q ∈ Q iff there exist ν and N ∈ Nν such

that

?M (Y , J(N))



−ATφν 0 0 CT
φν

0 −ATφν −CT
φν
BT −CT

φν
DT

0 0 −AT −CT

I 0 0 0

0 I 0 0

0 0 I 0

−BT
φν

0 0 DT
φν

0 −BT
φν
−DT

φν
BT −DT

φν
DT



� 0, (18)

?TM (W,N)


−ATφν CT

φν

I 0

−BT
φν

DT
φν

 � 0, (19)

April 24, 2011 DRAFT
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Y + diag (−W,W, 0) � 0. (20)

The proof follows the same steps as for Theorem 1. For future reference, we note that it

involves certifying the factorization φνNφ
∗
ν = φ̂νφ̂

∗
ν (in which φ̂ν and φ̂−1

ν are stable) with

the smallest solution Ŵ of the ARE

?TM
(
Ŵ ,diag (−I,N)

)


I 0

−AT
φ̂ν

CT
φ̂ν

−BT
φ̂ν

DT
φ̂ν

−BT
φν

DT
φν


= 0 (21)

where Aφ̂ν := Aφν and Cφ̂ν := Cφν .

III. MAIN RESULT

For system (3), introduce the annihilators U =



0

0

CT
y

DT
yp


⊥

and V =



0

0

Bu

Dqu


⊥

where M⊥

denotes a basis matrix of the null-space of MT and the zero blocks are chosen compatibly

with the dimension of Aψν (for U ) and Aφν (for V ) respectively.

Theorem 3: Consider the system in Figure 1 with G realized as in (3).

(i) Suppose that the inequalities

?TM (X, J(M))



I 0 0 0

0 I 0 0

0 0 I 0

Aψν 0 BψνCq BψνDqp

0 Aψν 0 Bψν

0 0 A Bp

Cψν 0 DψνCq DψνDqp

0 Cψν 0 Dψν



U ≺ 0, (22)

April 24, 2011 DRAFT
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?TM (Y, J(N))



−ATφν 0 0 CT
φν

0 −ATφν −CT
φν
BT
p −CT

φν
DT
qp

0 0 −AT −CT
q

I 0 0 0

0 I 0 0

0 0 I 0

−BT
φν

0 0 DT
φν

0 −BT
φν
−DT

φν
BT
p −DT

φν
DT
qp



V � 0, (23)



X11 −R11 X12 X13 −R12 0 0

X21 X22 +R11 X23 0 −R12 0

X31 X32 X33 0 0 I

−R21 0 0 Y11 −R22 Y12 Y13

0 −R21 0 Y21 Y22 +R22 Y23

0 0 I Y31 Y32 Y33


� 0, (24)

?TM

R,diag
M,N,

 0 I

I 0







I 0 0 0

0 I 0 0

Aψν 0 Bψν 0

0 −ATφν 0 CT
φν

Cψν 0 Dψν 0

0 −BT
φν

0 DT
φν

0 0 0 I

0 0 I 0



� 0. (25)

are feasible for some ν and M ∈Mν , N ∈ Nν . Then, there exists a controller rendering

A Hurwitz and for which

?∗

 (φνNφ
∗
ν)
−1 0

0 −ψ∗νMψν


 Gcl

I

 ≺ 0. (26)

(ii) Suppose there exists a controller which renders A Hurwitz and a Q ∈ Q for which (4)

holds. Then there exist ν and M ∈ Mν , N ∈ Nν for which the LMIs (22)-(25) are

April 24, 2011 DRAFT
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feasible.

The controller in (i) guarantees (4) for Q = ψ∗νMψν in case that (φνNφ
∗
ν)
−1 = ψ∗νMψν .

This non-convex constraint on M and N forces us to rely on a heuristic iteration for robust

controller synthesis as discussed in the next section.

Remark 4: When external disturbances (w) and controlled outputs (z) are present in the

system, the problem of designing robustly stabilizing controllers that achieve a closed-loop

H∞-gain less than γ can be solved by replacing the plant by

A Bp Bw Bu

Cq Dqp Dqw Dqu

Cz Dzp Dzw Dzu

Cy Dyp Dyw 0


,

the multiplier diag (ψ∗νMψν ,−ψ∗νMψν) by diag (ψ∗νMψν , γ
−1I,−ψ∗νMψν ,−γI) and

diag (φνNφ
∗
ν ,−φνNφ∗ν) by diag (φνNφ

∗
ν , γI,−φνNφ∗ν ,−γ−1I) . In this formulation, γ can

be treated as a variable which, after taking the Schur-complement, enters the solvability

conditions linearly.

Remark 5: Note that Theorem 3 comprises various well-known specializations. For example,

the LMIs (22)-(25) for M = N = I and ψν = φν = I (with empty Aψν and Aφν ) are

identical to those appearing in standard H∞-synthesis [1], [5]. In general, the additional LMI

(25) certifies the multiplier coupling ψ∗νMψν I

I φνNφ
∗
ν

 � 0. (27)

If the multiplies are non-dynamic (ψν = φν = I) then (22)-(25) are identical to those in

[8], [2] for the gain-scheduling synthesis problem with static D-scalings. In fact, the main

motivation for this work is to use Theorem 3 in order to arrive at a solution for gain-scheduling

synthesis with dynamic D-scalings as described in [14].

April 24, 2011 DRAFT
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IV. A PRIMAL MULTIPLIER/DUAL MULTIPLIER ITERATION

Due to [7], the FDI (26) implies robust stability for all proper and stable uncertainties

structured ∆ with  I

∆


∗ (φνNφ

∗
ν)
−1 0

0 −ψ∗νMψν


 I

∆

 � 0

⇐⇒ ∆∗(ψ∗νMψν)∆ � (φνNφ
∗
ν)
−1

⇐⇒ ∆∗∆ � (ψ∗νMψν)
− 1

2 (φνNφ
∗
ν)
−1(ψ∗νMψν)

− 1
2

since (ψ∗νMψν)∆ = ∆(ψ∗νMψν). This leads to a frequency-dependent norm-bound on the

individual blocks of ∆ for which robust stabilization of the controller is guaranteed. Due to

(27), note that the right-hand side is bounded from above by I . Hence, it is desired to push

this matrix as close as possible to I uniformly on C0, by minimizing η ∈ (1,∞) such that

1

η
I ≺ (ψ∗νMψν)

− 1
2 (φνNφ

∗
ν)
−1(ψ∗νMψν)

− 1
2 ≺ I

⇐⇒ ψ∗νMψν ≺ η(φνNφ
∗
ν)
−1 & (27) (28)

⇐⇒ φνNφ
∗
ν ≺ η(ψ∗νMψν)

−1 & (27). (29)

This leads us to the following iteration for robust controller synthesis:

Initialization: Fix some ν for which (22)-(25) are feasible.

Repeat until convergence:

Step k: Fix N and minimize η over (22)-(25) and the LMI corresponding to

(28).

Step k + 1: Fix M and minimize η over (22)-(25) and the LMI corresponding

to (29).

For fixed ν, the initialization amounts to a convex feasibility problem. If no suitable ν exists, it

is assured by Theorem 3 that no controller and Q ∈ Q can render (4) satisfied. The iterations

between steps k and k+ 1 serve to minimize η. Since (28) and (29) can be turned into LMIs

in M and N respectively, both steps just require to solve standard LMI problems. In each

step the achieved level η implies that robust stability against structured uncertainties with a

norm-bound 1√
η

can be assured.

Note that steps k and k + 1 are more powerful when compared to a completely separated

iteration between the search for a multiplier for a fixed controller and controller synthesis

April 24, 2011 DRAFT
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for fixed multipliers as in the standard D/K-iteration [3]. As the essential novel features,

our robust synthesis result is formulated directly in terms of the original description of the

uncontrolled system and for multipliers that are parameterized with general tall outer factors

without any further technical restrictions, such that the suggested iteration allows to completely

avoid frequency gridding or frequency domain multiplier fitting.

V. NUMERICAL EXAMPLE

Consider the mechanical system shown in Figure 2.

mm

x1
k

F

x2

w
c

Fig. 2. Mechanical system with uncertain spring and damper.

We assume that the values of k and c are constant, but that they vary around their nominal
values, k0 and c0, as k = k0(1 + k∗δk) and c = c0(1 + c∗δc), where |δk| ≤ 1 and |δc| ≤ 1. We
use the numerical values m0 = 10 kg, k0 = 10 N/m, c0 = 10 Ns/m and k∗ = c∗ = 0.5. Take
x1 as the measured output and x2 as the controlled output. We can now express the system
as


q

z

y

 =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−k0

m
k0

m − c0
m

c0
m −

√
k0k∗

m −
√

c0c∗

m 0 1
m

k0

m −k0

m
c0
m − c0

m

√
k0k∗

m

√
c0c∗

m
1
m 0√

k0k∗

m −
√

k0k∗

m 0 0 0 0 0 0

0 0
√

c0c∗

m −
√

c0c∗

m 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0




p

w

u



and p =

 δk 0

0 δc

 q. Our goal is to obtain robust controllers that yield the minimum

achievable performance level, γ, from the disturbance to x2 for different values of ν. Note

that the algorithm described in Section IV yields η values larger than 1, implying that the

performance guarantees are valid only for uncertainties with bound 1/
√
η. Since we want

guaranteed performance over the whole range of parameters (i.e., k∗ = c∗ = 0.5), we run the
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algorithm for k∗ = c∗ = 0.75 and find the smallest value of γ that yields 1/
√
η = 2/3, or,

η = 2.25.

We then solve for the resulting controller, form the closed-loop system and compute the

closed-loop H∞-norms for frozen values of the parameters corresponding to k∗ = 0.5, c∗ =

0.5. The results we obtain are listed in the table below. Note that due to non-convexity, the

γ value is not guaranteed to be monotonically decreasing with increasing ν. For each value

of ν, the worst value of the frozen H∞-norm is given in the third row (labeled “γachieved”).

ν 0 1 2 3 4

γ 4.98 1.55 1.49 1.46 1.45

γachieved 0.56 0.42 0.43 0.51 0.44

The D/G − K iteration as implemented in [3] yields a worst value of 1.08 for the frozen

H∞-norm computed in the same manner as the last row in the table above. (Note that since

neither one of the parameters is repeated, there is no material difference between D-scales

and D/G-scales in this problem.) For 25 samples of possible k and c values, the responses to

a unit step disturbance for the cases ν = 0, 2, 4 and the D/K-controller are given in Figure

3. These plots indicate better behavior than the D/K-controller even for the case ν = 0 and

further improvement when ν is increased.
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Fig. 3. Sampled responses to a unit step disturbance of the controlled systems obtained from the D/K-iteration and the

multiplier iteration for different ν values.

VI. CONCLUSIONS

Using parametrized dynamic D-scales, we have given necessary existence conditions for

a controller that robustly stabilizes a system against uncertainties bounded in norm by 1.

These conditions are shown to be sufficient for robust stability against uncertainties with

a norm bound demonstrably less than 1. We have also proposed an iterative procedure for

the maximization of this guaranteed allowable norm bound. Unlike the conventional D/K-

iteration, this procedure does not necessitate the computation of the controller and involves

basis functions for approximating D-scales only. The application of the proposed iterative

solution to a mechanical system yields better results than the conventional D/K-iteration.

The main result of the paper is essential for the solution of the gain-scheduled control problem

using dynamic D-scales as reported in [14].
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APPENDIX

A - OPERATIONS ON FDIS AND CORRESPONDING LMIS

The FDI G∗(ψ∗oMoψo)G ≺ 0 for the ’old’ multiplier ψ∗oMoψo persists to hold for the ’new’

multiplier ψ∗nMnψn as G∗(ψ∗nMnψn)G ≺ 0 in case that ψ∗nMnψn−ψ∗oMoψo � 0. With natural

notations for the corresponding realizations, the following gluing lemma reveals a relation of

suitable KYP certificates.

Lemma 6: (Gluing) Suppose that Do is invertible and that Ao − BoD
−1
o Co, An have no

eigenvalues in C0. Then there exist Ro, Rn with (Ao−BoD
−1
o Co)

TRo+Ro(Ao−BoD
−1
o Co) ≺ 0

and ATnRn +RnAn ≺ 0. Let X and R satisfy

?TM (X,Mo)



I 0 0

0 I 0

Ao BoC BoD

0 A B

Co DoC DoD


≺ 0, (30)

?TM (R,diag (Mn,−Mo))



I 0 0

0 I 0

An Ano Bn

0 Ao Bo

Cn Cno Dn

0 Co Do


� 0. (31)
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a) Then there exist ε > 0 and δ > 0 (that can be taken arbitrarily small) such that

?TM (Xno,Mn)



I 0 0 0

0 I 0 0

0 0 I 0

An Ano BnC BnD

0 Ao BoC BoD

0 0 A B

Cn Cno DnC DnD



≺ 0 (32)

holds for Xno =


R11 + εRn R12 0

RT
12 X11 +R22 + δRo X12

0 X21 X22

 . b) If Ano = 0 and Cno = 0 then

the middle block of Xno is non-singular and its Schur complement, denoted as Xn, satisfies

?TM (Xn,Mn)



I 0 0

0 I 0

An BnC BnD

0 A B

Cn C D


≺ 0. (33)

c) If the left-upper block of (31) is negative definite then a) and b) remain true for δ = 0 and

ε = 0.

If φi = φ−1 exists we require to relate certificates for the following, obviously equivalent,

FDIs:  ψ∗ψ I

I φφ∗

 � 0, (34)

 ψ

φ−1


∗ −I 0

0 I


 ψ

φ−1

 ≺ 0. (35)

Lemma 7: Let Dφ be non-singular and suppose that Aφ, Aφ−BφD−1
φ Cφ have no eigenvalues

in C0.
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a) Suppose R certifies (34) as

?TM


R,



I 0 0 0

0 I 0 0

0 0 0 I

0 0 I 0







I 0 0 0

0 I 0 0

Aψ 0 Bψ 0

0 −ATφ 0 CT
φ

Cψ 0 Dψ 0

0 −BT
φ 0 DT

φ

0 0 I 0

0 0 0 I



� 0. (36)

Then R22 is non-singular and Γ which can be taken arbitrarily closely to R12R
−1
22 R21 −R11 R12R

−1
22

R−1
22 R21 R−1

22


certifies (35) as

?TM (Γ,−J(I))



I 0 0

0 I 0

Aψ 0 Bψ

0 Aφi Bφi

Cψ 0 Dψ

0 Cφi Dφi


≺ 0. (37)

b) If Γ is a certificate for (35) as in (37) then Γ22 is non-singular and Γ12Γ−1
22 Γ21 − Γ11 Γ12Γ−1

22

Γ−1
22 Γ21 Γ−1

22


satisfies the non-strict version of (36), which certifies the non-strict version of the FDI (34).
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C - PROOF OF THEOREM 3 - STATEMENT (I)

We begin by noting that, through the same arguments as for the proofs of Lemma 1 and

Lemma 2, we can rewrite (22)-(25) as

?TM
(
X̂, J(I)

)



I 0 0 0

0 I 0 0

0 0 I 0

Aψ̂ν 0 Bψ̂ν
Cq Bψ̂ν

Dqp

0 Aψ̂ν 0 Bψ̂ν

0 0 A Bp

Cψ̂ν 0 Dψ̂ν
Cq Dψ̂ν

Dqp

0 Cψ̂ν 0 Dψ̂ν



U ≺ 0 (38)

?TM
(
Ŷ , J(I)

)



−AT
φ̂ν

0 0 CT
φ̂ν

0 −AT
φ̂ν
−CT

φ̂ν
BT
p −CT

φ̂ν
DT
qp

0 0 −AT −CT
q

I 0 0 0

0 I 0 0

0 0 I 0

−BT
φ̂ν

0 0 DT
φ̂ν

0 −BT
φ̂ν
−DT

φ̂ν
BT
p −DT

φ̂ν
DT
qp



V � 0, (39)



X̂11 − R̂11 X̂12 X̂13 −R̂12 0 0

X̂21 X̂22 + R̂11 X̂23 0 −R̂12 0

X̂31 X̂32 X̂33 0 0 I

−R̂21 0 0 Ŷ11 − R̂22 Ŷ12 Ŷ13

0 −R̂21 0 Ŷ21 Ŷ22 + R̂22 Ŷ23

0 0 I Ŷ31 Ŷ32 Ŷ33


� 0, (40)
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?TM

R̂,diag

 I 0

0 I

 ,

 0 I

I 0







I 0 0 0

0 I 0 0

Aψ̂ν 0 Bψ̂ν
0

0 −AT
φ̂ν

0 CT
φ̂ν

Cψ̂ν 0 Dψ̂ν
0

0 −BT
φ̂ν

0 DT
φ̂ν

0 0 0 I

0 0 I 0



� 0 (41)

with the definitions

X̂ := X + diag(−Ẑ, Ẑ, 0), Ŷ := Y + diag
(
−Ŵ , Ŵ , 0

)
, R̂ := R+ diag

(
−Ẑ,−Ŵ

)
.

The key ingredient of the proof is to use Lemmas 6 and 7 in order to reduces these coupled

LMIs to standard H∞-synthesis LMIs.

Step 1. From (41), we infer

He
((
−(Aφ̂ν −Bφ̂ν

D−1

φ̂ν
Cφ̂ν )

)
R̂22

)
� 0 and He

((
Aψ̂ν −Bψ̂ν

D−1

ψ̂ν
Cψ̂ν

)
R̂11

)
� 0.

Since −(Aφ̂ν − Bφ̂ν
D−1

φ̂ν
Cφ̂ν ) = −Aφ̂iν is anti-Hurwitz, we have R̂22 � 0. Similarly, since

Aψ̂ν −Bψ̂ν
D−1

ψ̂ν
Cψ̂ν = Aψ̂iν is Hurwitz, R̂11 ≺ 0. By the Schur complement formula, we infer

that (40) is equivalent to

R̂−1
22 0 0 0 I 0 0 0

0 X̂11 − R̂11 X̂12 X̂13 −R̂12 0 0 0

0 X̂21 X̂22 X̂23 0 I −R̂12 0

0 X̂31 X̂32 X̂33 0 0 0 I

I −R̂21 0 0 Ŷ11 0 Ŷ12 Ŷ13

0 0 I 0 0 −R̂−1
11 0 0

0 0 −R̂21 0 Ŷ21 0 Ŷ22 + R̂22 Ŷ23

0 0 0 I Ŷ31 0 Ŷ32 Ŷ33



� 0
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By elementary operations we can eliminate −R̂12 which leads to

R̂−1
22 R̂−1

22 R̂21 0 0 I 0 0 0

R̂12R̂
−1
22 R̂12R̂

−1
22 R̂21 − R̂11 + X̂11 X̂12 X̂13 0 0 0 0

0 X̂21 X̂22 X̂23 0 I 0 0

0 X̂31 X̂32 X̂33 0 0 0 I

I 0 0 0 Ŷ11 0 Ŷ12 Ŷ13

0 0 I 0 0 −R̂−1
11 −R̂−1

11 R̂12 0

0 0 0 0 Ŷ21 −R̂21R̂
−1
11 Ŷ22 + R̂22 − R̂12R̂

−1
11 R̂12 Ŷ23

0 0 0 I Ŷ31 0 Ŷ32 Ŷ33



� 0.

(42)

Step 2. If we apply Lemma 7 a) to (41) and permute we find Γ̂ that can be taken arbitrarily

close to

 R̂−1
22 R̂−1

22 R̂21

R̂12R̂
−1
22 R̂12R̂

−1
22 R̂21 − R̂11

 and that satisfies

?TM
(

Γ̂, J(I)
)



I 0 0

0 I 0

Aφ̂ν −Bφ̂ν
D−1

φ̂ν
Cφ̂ν 0 Bφ̂ν

D−1

φ̂ν

0 Aψ̂ν Bψ̂ν

−D−1

φ̂ν
Cφ̂ν 0 D−1

φ̂ν

0 Cψ̂ν D̂ψ̂ν


≺ 0. (43)

Similarly, performing a permutation in (41), applying Lemma 7 a), and permuting back, one

shows that there exists some Γ̃ arbitrarily close to

 R̂−1
11 R̂−1

11 R̂12

R̂21R̂
−1
11 R̂21R̂

−1
11 R̂12 − R̂22

 which

satisfies

?TM
(

Γ̃, J(I)
)



I 0 0

0 I 0

−AT
ψ̂iν

0 CT
ψ̂iν

0 −AT
φ̂ν

CT
φ̂ν

−BT
ψ̂iν

0 DT
ψ̂iν

0 −BT
φ̂ν

DT
φ̂ν


≺ 0. (44)
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In view of (42) we can hence make sure in addition that

Γ̂11 Γ̂12 0 0 I 0 0 0

Γ̂21 Γ̂22 + X̂11 X̂12 X̂13 0 0 0 0

0 X̂21 X̂22 X̂23 0 I 0 0

0 X̂31 X̂32 X̂33 0 0 0 I

I 0 0 0 Ŷ11 0 Ŷ12 Ŷ13

0 0 I 0 0 −Γ̃11 −Γ̃12 0

0 0 0 0 Ŷ21 −Γ̃21 Ŷ22 − Γ̃22 Ŷ23

0 0 0 I Ŷ31 0 Ŷ32 Ŷ33



� 0. (45)

Step 3. Let us now expand (43) by a last zero block row and column which then leads to

?TM
(

Γ̂,diag (J(I), J(−I))
)



I 0 0 0

0 I 0 0

Aφ̂iν 0 Bφ̂iν
0

0 Aψ̂ν Bψ̂ν
0

Cφ̂iν 0 Dφ̂iν
0

0 0 0 I

0 Cψ̂ν Dψ̂ν
0

0 0 0 I



� 0. (46)

Note that the left-upper block of this LMI is still negative definite. We can thus apply Lemma

6 c) (which persists to be true despite the annihilator U ) to infer from (38) that

?TM
(
X̃, J(I)

)



I 0 0 0

0 I 0 0

0 0 I 0

Aφ̂iν 0 Bφ̂iν
Cq Bφ̂iν

Dqp

0 Aψ̂ν 0 Bψ̂ν

0 0 A Bp

Cφ̂iν 0 Dφ̂iν
Cq Dφ̂iν

Dqp

0 Cψ̂ν 0 Dψ̂ν



U ≺ 0 (47)
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is satisfied by X̃ given as


Γ̂11 0 0

0 X̂22 X̂23

0 X̂32 X̂33

 −


Γ̂12

X̂21

X̂31

 (Γ̂22 + X11)−1(?)T . Dually, we

can expand (44) to

?T
(

Γ̃,diag (J(−I), J(I))
)



I 0 0 0

0 I 0 0

−ATψiν 0 0 CT
ψ̂iν

0 −AT
φ̂ν

0 −CT
φ̂ν

0 0 I 0

−BT
ψiν

0 0 DT
ψ̂iν

0 0 I 0

0 BT
φ̂ν

0 DT
φ̂ν



� 0

and glue it with (the negative of) (39) to infer

?TM
(
Ỹ , J(I)

)



−AT
φ̂ν

0 0 CT
φ̂ν

0 −AT
ψ̂iν
−CT

ψ̂iν
BT
p −CT

ψ̂iν
DT
qp

0 0 −AT −CT
q

I 0 0 0

0 I 0 0

0 0 I 0

−BT
φ̂ν

0 0 DT
φ̂ν

0 −BT
ψ̂iν
−DT

ψ̂iν
BT
p −DT

ψ̂iν
DT
qp



V � 0 (48)

for Ỹ given by


Ŷ11 0 Ŷ13

0 −Γ̃11 0

Ŷ31 0 Ŷ33

 −


Ŷ12

−Γ̃12

Ŷ32

 (Ŷ22 − Γ̃22)−1(?)T . By taking Schur-

complements in (45) we finally get  X̃ I

I Ỹ

 � 0. (49)
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By standard H∞ theory, (47), (48) and (49) imply that there exists a stabilizing controller such

that ‖φ̂−1
ν Gclψ̂−1

ν ‖∞ < 1 or

 Gcl
I


∗ (φ̂νφ̂

∗
ν)
−1 0

0 −ψ̂∗νψ̂ν


 Gcl

I

 ≺ 0. Since φ̂νφ̂∗ν =

φνNφ
∗
ν , ψ̂∗νψ̂

∗
ν = ψ∗νMψν , this is (26).

B - PROOF OF THEOREM 3 - STATEMENT (II)

Step 1. Suppose that there exists a stabilizing controller which renders (4) satisfied with

Q = ψ∗ψ, where ψ is minimum-phase and has the same diagonal structure as Q. Then there

is some δ ∈ (0, 1), close to one, with

?∗

 1

δ2
ψ∗ψ 0

0 −δ2ψ∗ψ


 Gcl

I

 ≺ 0. (50)

For sufficiently large ν0 we can make sure that φ̂ := φν0N̂ν0 with N̂ν0N̂
T
ν0

=: Nν0 ∈ Nν0 is

so close to ψ−1 such that it is minimum-phase and (50) persists to hold when ψ is replaced

by φ̂i = φ̂−1. Then

?∗

 1

δ2
I 0

0 −δ2I


 φ̂iGclφ̂

I

 ≺ 0.

Standard LMI controller synthesis techniques now imply that there exist solutions X̃ and Ỹ

of the LMIs,  X̃ I

I Ỹ

 � 0, (51)

?TM
(
X̃,diag

(
1

δ2
I,−δ2I

))



I 0 0 0

0 I 0 0

0 0 I 0

Aφ̂i 0 Bφ̂iCq Bφ̂iDqp

0 Aφ̂i 0 Bφ̂i

0 0 A Bp

Cφ̂i 0 Dφ̂iCq Dφ̂iDqp

0 Cφ̂i 0 Dφ̂i



U ≺ 0, (52)
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?TM
(
Ỹ ,diag

(
δ2I,− 1

δ2
I

))



−AT
φ̂

0 0 CT
φ̂

0 −AT
φ̂
−CT

φ̂
BT
p −CT

φ̂
DT
qp

0 0 −AT −CT
q

I 0 0 0

0 I 0 0

0 0 I 0

−BT
φ̂

0 0 DT
φ̂

0 −BT
φ̂
−DT

φ̂
BT
p −DT

φ̂
DT
qp



V � 0. (53)

Note that (53) still holds if the last two rows of the outer factor are multiplied by 1
δ

and the

inner matrix is replaced byM
(
Ỹ ,diag (δ4I,−I)

)
. Since δ ∈ (0, 1), we obtain the following

LMI which is of the format as required in (39):

?TM
(
Ỹ , J(I)

)



−AT
φ̂

0 0 CT
φ̂

0 −AT
φ̂
−CT

φ̂
BT
p −CT

φ̂
DT
qp

0 0 −AT −CT
q

I 0 0 0

0 I 0 0

0 0 I 0

−1
δ
BT
φ̂

0 0 1
δ
DT
φ̂

0 −1
δ
BT
φ̂
−1
δ
DT
φ̂
BT
p −1

δ
DT
φ̂
DT
qp



V � 0. (54)

Step 2. In order to arrive at (38) we bring ψ̂ν into (52) by gluing. For this purpose we choose

a sequence of coefficient matrices M̂ν with M̂T
ν M̂ν =: Mν ∈Mν and such that

ψ̂ν := M̂νψν
ν→∞−→ φ̂−1

exponentially in the H∞-norm. The existence of such a sequence is guaranteed by our choice

of the basis functions in the multiplier parametrization. For some sufficiently large ν > ν0

it is clearly assured that ψ̂∗νψ̂ν ≺ 1
δ2

(φ̂i)∗φ̂i and − ψ̂∗νψ̂ν ≺ −δ2(φ̂i)∗φ̂i. As proved in [15],
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one can even certify both FDIs as

?TM
(

Γ̂ν,µ,diag (δ1I, δ2I)
)



I 0 0

0 I 0

Aψ̂ν 0 Bψ̂ν

0 Aφ̂i Bφ̂i

Cψ̂ν 0 Dψ̂ν

0 Cφ̂i Dφ̂i


≺ 0 (55)

for (δ1, δ2) = (1,−1/δ2) and (δ1, δ2) = (−1, δ2) by

Γ̂ν,µ =

 Γ̂ν,µ11 Γ̂µ12

Γ̂µ21 Γ̂µ22

 :=



µK + βL 0 −µK 0

0 Kν 0 0

−µK 0 µK 0

0 0 0 µK̃


. (56)

Here K � 0, K̃ � 0, L � 0, β > 0 are fixed and the sequence Kν � 0 satisfies Kν → 0 for

ν →∞. Precisely, for all sufficiently large µ there exists some ν(µ) such that (55) holds for

all ν ≥ ν(µ) and for both choices of (δ1, δ2). We can combine the two LMIs (55) and obtain

Γ̂ν,µ11 0 Γ̂µ12 0

0 Γ̂ν,µ11 0 Γ̂µ12

Γ̂µ21 0 Γ̂µ22 0

0 Γ̂µ21 0 Γ̂µ22


as a certificate for the inequality

(?)∗



I 0 0 0

0 −I 0 0

0 0 − 1
δ2
I 0

0 0 0 δ2I





ψ̂ν 0

0 ψ̂ν

φ̂−1 0

0 φ̂−1


≺ 0.

Let us glue the corresponding LMI with (52) by Lemma 6 c). This implies that X̂ , defined

as the Schur-complement of



Γ̂ν,µ11 0 Γ̂µ12 0 0

0 Γ̂ν,µ11 0 Γ̂µ12 0

Γ̂µ21 0 X̃11 + Γ̂µ22 X̃12 X̃13

0 Γ̂ν,µ21 X̃21 X̃22 + Γ̂µ22 X̃23

0 0 X̃31 X̃32 X̃33


with respect to the

middle block, satisfies (38).
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Step 3. Now consider (41). We apply Lemma 7 b) to (55) for (δ1, δ2) = (−1, δ2) to infer that

R̃ :=

 Γ̂µ12(Γ̂µ22)−1Γ̂µ21 − Γ̂ν,µ11 Γ̂µ12(Γ̂µ22)−1

(Γ̂µ22)−1Γ̂µ21 (Γ̂µ22)−1

 (57)

satisfies

?TM


 R̃11 R̃12

R̃21 R̃22

 ,



I 0 0 0

0 I 0 0

0 0 0 I

0 0 I 0







I 0 0 0

0 I 0 0

Aψ̂ν 0 0 Bψ̂ν

0 −AT
φ̂

CT
φ̂

0

Cψ̂ν 0 0 Dψ̂ν

0 −1
δ
BT
φ̂

1
δ
DT
φ̂

0

0 0 I 0

0 0 0 I



� 0. (58)

Step 4. We arrive at (40) by exploiting the structure of the sequence Γ̂ν,µ in order to establish

the asymptotic behavior of X̂ and R̃ for µ → ∞. For this purpose let E :=

 I

0


and E⊥ =

 0

I

 in the row partition of Γ̂ν,µ11 . Then pre- and post-multiply (51) with

diag (E,E, I, I, I, I)T and its transpose to obtain

2βL+ ET X̃11E ET X̃12E ET X̃13 ET 0 0

ET X̃21E ET X̃22E ET X̃23 0 ET 0

X̃31 X̃32Ẽ X̃33 0 0 I

E 0 0 Ỹ11 Ỹ12 Ỹ13

0 E 0 Ỹ21 Ỹ22 Ỹ23

0 0 I Ỹ31 Ỹ32 Ỹ33


� 0. (59)

(since 2βL � 0). As shown in Section D we have

diag (E,E, I)T X̂ diag (E,E, I)
µ→∞−→


βL+ ET X̃11E ET X̃12E ET X̃13

ET X̃21E βL+ ET X̃22E ET X̃23

X̃31E X̃32E X̃33

 (60)
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and  ET R̃11E ET R̃12

R̃21E R̃22

 µ→∞−→

 −βL −ET

−E 0

 . (61)

Hence, for sufficiently large µ0 (fixed from now on) we have

ET (X̂11 − R̃11)E ET X̂12E ET X̂13 −ET R̃12 0 0

ET X̂21E ET (X̂22 + R̃11)E ET X̂23 0 −ET R̃12 0

X̂31E X̂32E X̂33 0 0 I

−R̃21 0 0 Ỹ11 − R̃22 Ỹ12 Ỹ13

0 −R̃21E 0 Ỹ21 Ỹ22 + R̃22 Ỹ23

0 0 I Ỹ31 Ỹ32 Ỹ33


� 0. (62)

We can then increase and fix ν to a sufficiently large ν1 with ν1 ≥ ν0 such that (55) and,

hence, also (38) and (58) hold for ν = ν1. Recall Kν1 � 0 which guarantees

ET (X̂11 − R̃11)E 0 ET X̂12E 0 ET X̂13 −ET R̃12 0 0

0 2Kν1 0 0 0 0 0 0

ET X̂21E 0 ET (X̂22 + R̃11)E 0 ET X̂23 0 −ET R̃12 0

0 0 0 εI 0 0 0 0

X̂31E 0 X̂32E 0 X̂33 0 I 0

−R̃21 0 0 0 0 Ỹ11 − R̃22 Ỹ12 Ỹ13

0 0 −R̃21E 0 0 Ỹ21 Ỹ22 + R̃22 Ỹ23

0 0 0 0 I Ỹ31 Ỹ32 Ỹ33



� 0.

(63)

for any ε > 0. If we add diag(0, εI) to X̂22 for some small ε > 0, the modified X̂ still

satisfies (38) for ν = ν1 and (64) is assured since its left-hand side is identical to that of (63).

Step 5. Recall that

 ψ̂∗ν1ψ̂ν1 I

I (1
δ
φ̂)(1

δ
φ̂)∗

 � 0. Due to (58) we can thus construct a

certificate of the corresponding strict inequality for ν = ν1 that is so close to R̃, and still
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denoted by R̃, such that

X̂11 − R̃11 X̂12 X̂13 −R̃12 0 0

X̂21 X̂22 + R̃11 X̂23 0 −R̃12 0

X̂31 X̂32 X̂33 0 0 I

−R̃21 0 0 Ŷ11 − R̃22 Ŷ12 Ŷ13

0 −R̃21 0 Ŷ21 Ŷ22 + R̃22 Ŷ23

0 0 I Ŷ31 Ŷ32 Ŷ33


� 0 (64)

persists.

Step 6. So far Ỹ satisfies (54) for φ̂ of the form φν0N̂ν0 . The last step consists of expanding

Ỹ into Ŷ in order to arrive at (39) for ν = ν1 which was taken with ν1 ≥ ν0. In fact,

by vertically concatenating 1
δ
Ñν0 with a zero block column of suitable length we obtain a

coefficient matrix N̂ν1 with Nν1 := N̂ν1N̂
T
ν1
∈ Nν1 and such that Aφ̂

1
δ
Bφ̂

Cφ̂
1
δ
Dφ̂

 =

 Aφν0
1
δ
Bφν0

Ñν0

Cφν0
1
δ
Dφν0

Ñν0

 =

 Aφν1 Bφν1
Ñν1

Cφν1 Dφν1
Ñν1

 =

 Aφ̂ν1
Bφ̂ν1

Cφ̂ν1
Dφ̂ν1

 .
Since both realizations are observable, the larger one can be adjusted by a state-coordinate

change (without loss of generality) such that

 Aφ̂ν1
Bφ̂ν1

Cφ̂ν1
Dφ̂ν1

 =


A0 0 0

∗ Aφ̂
1
δ
Bφ̂

∗ Cφ̂
1
δ
Dφ̂1

 . Since

A0 is stable we can choose Ỹ0 � 0 with −A0Ỹ0 − Ỹ0A
T
0 � 0. Next to (54) let us now

consider the corresponding inequality with the new realization of the outer factor. Due to

the particular realization structure it is assured that Ŷ :=



β1Ỹ0 0 0 0 0

0 Ỹ11 0 Ỹ12 Ỹ13

0 0 β1Ỹ0 0 0

0 Ỹ21 0 Ỹ22 Ỹ23

0 Ỹ31 0 Ỹ32 Ỹ33


renders the extended counterpart of (54) feasible for all sufficiently small β1 > 0. Note that

this is just (39) for ν = ν1. Similarly we can consider the strict version of (58) for the

extended realization. Expanding R̃ as


R̃11 0 R̃12

0 β2Ỹ0 0

R̃21 0 R̃22

 generates a (strict) solution for
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the extended realization if we choose β2 > 0 sufficiently small. This leads to satisfaction of

(39) and (41) for ν = ν1 as desired. Finally, (64) implies (40) if we assure that the newly

introduced diagonal blocks in Ŷ11 − R̂22 and Ŷ22 + R̂22, which read as (β1 − β2)Ỹ0 and

(β1 + β2)Ỹ0, are positive definite; this is achieved by taking β1 − β2 > 0.

Since, by construction, φ̂ν1φ̂
∗
ν1

= φν1Nν1φ
∗
ν1

and ψ̂∗ν1ψ̂
∗
ν1

= ψ∗ν1Mν1ψν1 , it is finally clear that

(38)-(41) are identical to (22)-(25) for ν = ν1, M = Mν1 and N = Nν1 . This finishes the

proof.

D - PROOF OF (60) AND (61)

Recall the definition (56) and that X̂ is given as

X̂ =


Γ̂ν,µ11 0 0

0 Γ̂ν,µ11 0

0 0 X̃33

−


Γ̂ν,µ12 0

0 Γ̂ν,µ12

X̃31 X̃32


 X̃11 + Γ̂µ22 X̃12

X̃21 X̃22 + Γ̂µ22


−1 Γ̂ν,µ21 0 X̃13

0 Γ̂ν,µ21 X̃23

 .

(65)

We clearly have for any symmetric matrix Z and for any Hµ → 0 that (Z+Γ̂µ22 +Hµ)−1 → 0.

Moreover,

ET Γ̂µ12(Z + Γ̂µ22 +Hµ)−1 = −ET Γ̂µ22(Z + Γ̂µ22 +Hµ)−1

= −ET

((
Z + Γ̂µ22 +Hµ

)(
Γ̂µ22

)−1
)−1

= −ET

(
(Z +Hµ)︸ ︷︷ ︸
→Z

(
Γ̂µ22

)−1

︸ ︷︷ ︸
→0

+I

)−1

→ −ET .

We then also get

ET [Γ̂ν,µ11 − Γ̂µ12(Z + Γ̂µ22 +Hµ)−1Γ̂µ21]E

= βL+ µK︸︷︷︸
−ET Γ̂µ12E

−ET Γ̂µ12(Z + Γ̂µ22 +Hµ)−1Γ̂µ21E

= βL− ET Γ̂µ12

[
I + (Z + Γ̂µ22 +Hµ)−1Γ̂µ21

]
E

= βL− ET Γ̂µ12(Z + Γ̂µ22 +Hµ)−1
[
(Z + Γ̂µ22 +Hµ) + Γ̂µ21

]
E

= βL− ETΓµ12

(
Z +Hµ + Γ̂µ22

)−1

︸ ︷︷ ︸
→−ET

[
(Z +Hµ)︸ ︷︷ ︸
→Z

E + Γ̂µ22E + Γ̂µ21E︸ ︷︷ ︸
0

]
→ βL+ ETZE. (66)
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If we hence define Gµ := (X̃11 + Γ̂µ22)−1, and Hµ := [(X̃22 + Γ̂µ22)− X̃21GµX̃12]−1, we infer Gµ

Hµ

→ 0,

 ET Γ̂µ12Gµ

ET Γ̂µ12Hµ

→
 −ET

−ET


and  ET (Γ̂ν,µ11 − Γ̂µ12GµΓ̂µ21)E

ET (Γ̂ν,µ11 − Γ̂µ12HµΓ̂µ21)E

→
 βL+ ET X̃11E

βL+ ET X̃22E

 .

Therefore, we have X̃11 + Γµ22 X̃12

X̃21 X̃22 + Γµ22


−1

=

 Gµ[I + X̃12HµX̃21Gµ] −GµX̃12Hµ

−HµX̃21Gµ Hµ

→ 0, (67)

 ET Γ̂µ12 0

0 ET Γ̂µ12


 X̃11 + Γ̂µ22 X̃12

X̃21 X̃22 + Γ̂µ22


−1

=

 ET Γ̂µ12Gµ[I + X̃12HµX̃21Gµ] −ET Γ̂µ12GµX̃12Hµ

−ET Γ̂µ12HµX̃21Gµ ET Γ̂µ12Hµ

→
 −ET 0

0 −ET

 (68)

and ET Γ̂ν,µ11 E 0

0 ET Γ̂ν,µ11 E

−
 ET Γ̂µ21 0

0 ET Γ̂µ21


T  X̃11 + Γ̂µ22 X̃12

X̃21 X̃22 + Γ̂µ22


−1 Γ̂µ21E 0

0 Γ̂µ21E


=

 ET (Γ̂ν,µ11 − Γ̂µ12Gµ[I + X̃12HµX̃21Gµ]Γ̂µ21)E ET Γ̂µ12GµX̃12HµΓ̂µ21E

ET Γ̂µ12HµX̃21GµΓ̂µ21E ET (Γ̂µ11 − Γ̂µ12HµΓ̂µ21)E


→

 βL+ ET X̃11E ET X̃12E

ET X̃21E βL+ ET X̃22E

 . (69)

Due to (65) and (57), these imply (60) and (61).
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