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Control Synthesis using Dynamic [)-Scales:

Part I — Robust Control

Carsten W. Scherer and 1. Emre Kose

Abstract

We consider uncertain dynamical systems described in the standard LFT form. Following the
methods familiar from p-theory, we use dynamic (i.e., frequency-dependent) D-scales for verifying
robust stability of the system. The main result of the paper gives necessary conditions for the
existence of robustly stabilizing controllers using parametrized dynamic D-scales which are sufficient
for robust stability in a certain sense. Based on these conditions, we propose a primal/dual D-scale
iteration for the design of robust controllers as an alternative to the well-known D/K-iteration. A
numerical example illustrates the advantages of the proposed iteration. The results of this paper lead

to a solution of the gain-scheduled control problem as reported in the sequel of this paper.

[. INTRODUCTION

The robust control synthesis problem can be summarized as one of finding a robustly stabiliz-
ing K in Figure 1, where G is the nominal plant, A represents the uncertainties/nonlinearities
involved in the system model and G,; stands for the lower LFT of G with respect to K, which

gives the nominal closed-loop system.
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Fig. 1. The closed-loop system.

If A is linear time-invariant, stable, norm-bounded by unity and possesses a given structure,
robust stability is guaranteed iff K is nominally stabilizing and the structured singular value,
1, of G, with respect to the uncertainty structure remains below 1 for all frequencies [16].
Since the computation of y is non-convex in general, we resort to verifying that an upper
bound of x is less than 1 in order to guarantee robust stability. This upper bound is given in
terms of so-called D-scales, which are frequency-dependent (i.e., dynamic) positive definite

matrices that commute with the structure of A.

Except for some special cases such as robust output estimation [13] and robust disturbance
feedforward [6], the joint search for such a D-scale and a nominally stabilizing K is a non-
convex problem in general. The most common procedure for overcoming this non-convexity
issue is the D/K-iteration [3]. The iteration is initiated with D = I and at each following
step, one of D and K is sought with the other one fixed from the previous step. When D is
fixed, the search for K can be cast as a nominal H., synthesis problem. When K is fixed,
the search for the D-scale is carried out at discrete frequency points first and the overall
expression for D(jw) is then obtained through curve fitting. Although each step in the D /K-
iteration is convex, the overall procedure is not. Hence, convergence to the global minimum

is not guaranteed.

In this paper, in contrast to standard p-synthesis, we concentrate on the existence conditions
for a robustly stabilizing controller. In particular, we obtain existence conditions for a robustly
stabilizing K while parametrizing the D-scales in a numerically useful fashion. To that
end, we begin by factorizing the dynamic D-scale as D = 1*\, where 1 is frequency-
dependent. Using the state-space realization of 1, we apply the Kalman-Yakubovich-Popov
(KYP) Lemma to obtain LMI conditions for the stability of the closed-loop condition. Elimi-
nation of K from these LMIs yields necessary and sufficient existence conditions for K using
non-parametrized D-scales. Through a sequence of non-trivial manipulations on the LMIs,
we can substitute the realization of \{ and its inverse with sufficiently close approximations
obtained from appropriate basis functions. What we thus obtain is necessary LMI conditions
for the existence of a robustly stabilizing controller using parametrized frequency-dependent
D-scales. Disregarding approximate inverse relations in the resulting LMIs, these conditions

are jointly convex.
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In the reverse direction, when the parametrized LMIs are satisfied, we can guarantee the
existence of a controller that robustly stabilizes the system against uncertainties with a

quantifiable norm bound that is necessarily less than 1.

We can utilize the findings of this paper in two ways. First, the main result lays the foundation
of the solution of the gain-scheduled control problem where it is assumed that the uncertainty
A can be reproduced on-line. With this assumption, the approximate inverse relations in
the solvability conditions are relaxed and we obtain a convex solution of the gain-scheduled
control synthesis problem using dynamic D-scales. This solution is given in full detail in the

sequel to the present paper [14].

Second, the main result allows us to formulate a novel iterative solution to the existence
conditions that avoids the difficulties encountered in the D /K -iteration. This solution is based
on the maximization of the uncertainty norm bound against which the designed controller
is guaranteed to robustly stabilize the system. Since bounded from above by 1 and non-
decreasing at each step, this sequence of guaranteed uncertainty bounds converges. Moreover,
the procedure we propose avoids curve fitting or loop transformations completely [3]. How-
ever, due to the non-convex nature of the underlying problem, a general comparison with the
D/ K-iteration is not possible. Still, the application of the proposed solution to a mechanical
system demonstrates better behavior than the D/ K -iteration that improves even further when

higher dynamics in the D-scales are allowed.

The paper is organized as follows: In Section II, we introduce a parametrization of suitable
D-scales that provides arbitrary accuracy in approximating any given stable transfer function.
Also in this section, we give two different nominal stability characterizations that are duals
of each other in a certain sense. Our main result, namely a new set of conditions for the
existence of a robustly stabilizing controller, is stated in Section III. In Section IV, we propose
an alternative to the D /K -iteration that does not involve obtaining the controller itself at any
step. In Section V, we apply the main result and the related iterative solution to the model of
a mechanical system. We give a summary and a brief discussion in Section VII. Technical

results and the proof of the main theorem are given in the Appendix.

Notation and conventions for realizations. C° denotes the extended imaginary axis. For

the adjoint of a transfer matrix G with realization (A, B, C, D) we use the notation G*(s) =

_ AT CT
G(—s)T and the realization G* = . If D is non-singular we use G™' =
—BT | DT
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A—BD7'C|BD™!
. If A has no eigenvalues in C° and M = M7,

-D-'C | D
G*MG <0 (1)

is read as G(jw)*MG(jw) < 0 for all w € RU{oo} and called frequency-domain inequality

(FDI). By the KYP-Lemma, it is equivalent to feasibility of the LMI

T
I 0 0 X 0 I 0

A B X 0 0 A B | <0, 2)

¢ D 0 0 M ¢ D

— M(X,M)
for some X = X7. It is convenient to say that (2) certifies (1) or that X is a certificate
for the FDI (1). In expressions like G*MG we address M as middle term and G as outer
term/factor (not to be confused with outer transfer matrices), and use such a convention also
for LMIs like (2). If required by space-limitations, we abbreviate blocks that can be inferred
by symmetry (such as the left outer-factor in (2)) by . Lastly, we use He(M) := M + M7
and J(M) := diag (M, —M).

II. PRELIMINARIES
A. The closed-loop interconnection

Let the interconnection in Figure 1 be described as

A| B, B,
q p
= | Cy;| Dy Dy : Y 3)
Yy u
Cy| Dy O

which is affected by the uncertainty p = Agq. For notational simplicity we consider full-block-
structured dynamic uncertainties only. Hence A can be any proper and stable transfer matrix

which admits the structure

A = diag (4A;) and satisfies ||Alls < 1.

i=1
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The uncertain closed-loop system is described by z = G w, w = Az with G, having the

realization
A+B,D.C, B,C.| B,+ B,D.D,,

= B.C, A, B.D,,

Cy+ DguD.Cy DyuCl| Dy + DyuDeD,,

Let us recall the so-called D-scalings stability test from structured singular value theory [9].

For this purpose consider the set

Q = {d;ciag (Ink ®qk): @ € RLoo, qx > 0}
=1

in correspondence with the structure of A. Robust stability of the controlled closed-loop

system is then guaranteed if there exists some multiplier () € Q with

*

Gel Q@ 0 Gel

< 0. 4)
I 0 —@ 1
B. Parametrization of D-scales
If () satisfies (4) we can determine, for £ = 1,...,m, a spectral factorization g;, = ¢;¢, where

gr 1s stable and has a stable inverse. This motivates to parametrize the multipliers () by the
stable factors ¢ in such a description. For this purpose we choose a pole-location p > 0 and
introduce the transfer function basis vector

Ms):(l s—p (s—p°  (s—p) ) )

s+p (s+p)? (s +p)”

for v € IN. Then any proper and stable transfer function ¢ can be uniformly approximated on
C° with arbitrary quality by ¢’b, for a suitable real-valued column vector ¢ and sufficiently
large v [10], [4], [11]. In particular, for sufficiently large v there exist cy, ..., c, such that
Q = diag (I @ (¢]b,)*(c]/ b))
i=1
still satisfies (4). Now observe that I ®b%(c;cl)b, = (I®b,)* (1@ M;)(I®0b,) for M; := ¢;cl.
With
b, = diag (I ©b,) and M := diag (I ® M,),
i=1

=1

this leads to the parametrization

Q = My, with M €M, (6)
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where

,M,:{dﬁgu®wm;A@:Aﬁ‘wz1;m}.

i=1
Clearly M,, admits an LMI description while the dependence on v reflects the dependence
of the dimensions v + 1 of the diagonal blocks on this integer. We have proved the following

fact: There exists () € Q with (4) iff there exists some v and M € M, with

Y, M, =0, (72)
vIc M O vIc
G VG 0 7b)
% 0 -M %

C. Primal State-Space Conditions for Robust Stability

Now choose the input-balanced (minimal) realization v, = such that A,

is Hurwitz. It is then easy to translate (7) into LMIs. For the purpose of synthesis it is
also required to guarantee that .4 is Hurwitz. The following analysis result incorporates this
stability property as a suitable constraint on the solutions of the respective LMIs. Note that,

for this purpose, X is partitioned into three blocks in a natural fashion.

Lemma 1: A is Hurwitz and (4) holds for some () € Q iff there exist v and M € M, such
that the following LMIs are feasible:

I 0 0 . 0
|
o I 0 1 0
|
o 0 I 3 0
SR
A, 0 B, C'By,D
IMx g | T 2, ®8)
0 Ay, 0 ! By
|
0 0 A ' B
,,,,,,,,,,, A
Cy, 0 DyC!D,D
|
0 Cy, 0 | Dy,
I 0
SM(ZM) | A, By, | -0, ©)
Cy, Dy,
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X +diag (—Z, Z,0) = 0. (10)

Proof: Assume that (9) is feasible. Then, M = DgVM Dy, = 0. Hence, there exists
some square and non-singular D ~such that DT D. = M. Moreover, since (Ay,, By,) is

WY
controllable, the related ARE
AT 7 4 ZAy, + CT MCy, — (ZBy, + CL MDy )M (%) =0 (11)

has a stabilizing (largest) solution Z [16]. If defining Cy, = DqguT(BgVZ + Dj, MCy,) this
means that A, := Ay, — By, D;:C@Z’v is Hurwitz. With A; := Ay, and B := By, notice

that (11) can be rewritten as

M (Z diag (—1, M)) T ) (12)

which certifies the spectral factorization

*

Ag,|Bs, | | A Bi | _ | Aw|Bu. (13)
CQZJU D"[)l/ Cl;y D"Z’u Cﬂlu Dwu
If we diagonally combine (12) with the negative of (9), we get
I 0,0 0
|
O I 10 0
,,,,,,, L __
|
Awu 0 ‘Bdﬂu 0
-Z 0 1
* M ,diag (=1, —J(M)) 0 A, ' 0 B, |[=0. (14
N Yy Yy
0 Z il S
0 Gy 0 Dy,
,,,,,,, U
Cy, 0 Dy, 0
|

0 Gy, 0 Dy,

Note that the left-upper block of (14) is negative definite. As one of the key technical

ingredients introduced in this paper, let us now systematically merge the LMIs (8) and (14)

April 24, 2011 DRAFT



by using the instrumental Gluing Lemma (Section A). In fact, Lemma 6 a) and c) imply that

I 0 0 . 0
|
0o I 0 1 0
|
o 0 I i 0
T S W T T
*MGZQ Ay, 0 ByC'B,D [ =0
|
0 Ay 0 | By
|
o 0 A ' B
,,,,,,,,,,,, i
|
0 Cp 0 1Dy

where X = X + diag (—Z, Z , 0>. By an elementary operation (congruence) to eliminate

Cy,» this implies

I 0 0 i 0
0o I 0 i 0
0 0 I 0
SM(2-1) | 4, + BLCIB,D | <0
0 Ay 0 i By,
0 x A i B
0 0 0 D,
Ay, x ByC
so that He | X 0 Ay 0 =< 0. Since Ay, and A% are Hurwitz, stability of A
0 * A

is hence equivalent to X > 0.

Now suppose that A4 is Hurwitz and ) € Q satisfies (4). Then there exists a sufficiently
large v and some M € M, such that (7) holds. Let us fix M and apply the KYP Lemma in
order to infer that (8) and (9) have solutions X and Z. For any Z we can now exploit the
preparation in order to see that X > 0. Since Z can be chosen arbitrarily closely to Z, we

arrive at the validity of (10) for some particular Z.

Conversely, suppose that (8)-(10) are feasible for some M € M,,. Since 7 = 7 we infer that
X = 0 holds as well. Therefore A is Hurwitz. Then (7) follows from (8) and (9) by applying
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the KYP Lemma. Therefore we have found some ) € Q, namely ) = ¢¥;Mv, > 0, for
which (4) is valid. [ |

D. Dual State-Space Conditions for Robust Stability

Due to the dualization lemma [12], (4) is equivalent to

*

I Q! 0 I
= 0. (15)
_(* O _Q—l _(*

cl cl

Let us now introduce the stable (typically wide) transfer matrix ¢, := ¢1 as well as N, :=

M,,. Moreover let us parameterize Q! as

Q'=¢,N¢p? with N eN,,. (16)

v

Choose the natural realization of ¢, as

Ay, | By, AL

T
Cwu

¢V:

7)

C¢U 'qul/ B'Z;V D;—Zp—’l/
which is minimal and output-balanced. It is then not difficult to formulate a dual version of

Theorem 1.

Lemma 2: A is Hurwitz and (15) holds for some Q € Q iff there exist v and N € N,, such
that

AT 0 0 cl
|
0 —Af, -C{BT -CIDT
0 0  —AT 1 T
,,,,,,,,,,,,,,,, .
|
I 0 0o ' 0
M (Y, J(N)) 1 -0, (18)
0 I o ' 0
|
0 0 I ' 0
,,,,,,,,,,,,,,,, PR
B, 0 0 | D
|
|
0 BY —D¥ B' | —D! DT
—AL Gl
*' M (W, N) I 0 |*~0, (19)
~Bj, D,
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10

Y +diag (—W, W, 0) > 0. (20)

The proof follows the same steps as for Theorem 1. For future reference, we note that it
involves certifying the factorization ¢, N¢; = qg,,qgjj (in which qg,, and dS;l are stable) with

the smallest solution W of the ARE

I 0
AT T

T M (W,diag(—f,N)) e o | = 1)
-B;, D,
—B;, D,

where A; = Ay, and Cy = Cy,.

III. MAIN RESULT

0 0
0 0
For system (3), introduce the annihilators U = and V = where M
cr B,
T
D,, D,

denotes a basis matrix of the null-space of M7 and the zero blocks are chosen compatibly

with the dimension of Ay, (for U) and A, (for V') respectively.

Theorem 3: Consider the system in Figure 1 with G realized as in (3).

(1) Suppose that the inequalities

I 0 0 ., 0
|

o I 0 .+ 0
|

o 0 I 1 0
|

*T M (X, J(M)) U <0, (22)

April 24, 2011 DRAFT



11

~AT 0 0
|
0 -4, =GBy 1 —=C3,Dy
0 0  —AT 1 T
e e Y
|
T I 0 0 ! 0
* ./\/l(Y, J(N)) } V=0, (23)
0 I 0 ' 0
|
0 0 I 0
,,,,,,,,,,,,,,,, (.
T | T
_quu 0 0 : D¢u
|
0 —=Bj, —D;, B, —D§,Dy,
Xu—Ry X Xz —Rp 0 0
|
Xo1 Xoo + Ry X23: 0 — Ry 0
|
Xa1 X390 X33: 0 0 I
777777777777777777 fmm e =0, (24)
|
—Ryy 0 0 Y11 — Ry Yo Yis
|
0 — Ry 0 : Yo, Yoo + Raa Yos
|
0 0 I Yy Y  Ya3
I 0 .0 0
|
o I 10 0
,,,,,,,, 1 _ - _ _ _ _ .
|
Awy 0 :Bwy 0
01 0 —AT 10 T
* M | R,diag | M, N, e =0. (25)
10 Cy, 0 'Dy, 0
|
0 -Bj 0 DJ
,,,,,,,, VLT
o o0 "o I
|
0 0o I 0

are feasible for some v and M € M,, N € N,.. Then, there exists a controller rendering

A Hurwitz and for which

JNg#)™1 0 .
o | @A) e (26)

0 —Y, M, I

(ii) Suppose there exists a controller which renders A Hurwitz and a () € Q for which (4)
holds. Then there exist v and M € M,, N € N, for which the LMIs (22)-(25) are

April 24, 2011 DRAFT



12
feasible.

The controller in (i) guarantees (4) for Q = v*M?1), in case that (¢, N¢¥)™t = ¢*Ma,.
This non-convex constraint on M and N forces us to rely on a heuristic iteration for robust

controller synthesis as discussed in the next section.

Remark 4: When external disturbances (w) and controlled outputs (z) are present in the
system, the problem of designing robustly stabilizing controllers that achieve a closed-loop

H~o-gain less than 7 can be solved by replacing the plant by

A|B, B, B,

Cq qu qu un

Cyl|Dyp Dy 0
the multiplier diag (7M1, —¢; M) by diag (3 M,y T, —5 M1, —I) and

diag (¢, N¢*, —¢,N¢?) by diag (¢, No*,vI, —¢,N¢%, —y~1I) . In this formulation, v can
be treated as a variable which, after taking the Schur-complement, enters the solvability

conditions linearly.

Remark 5: Note that Theorem 3 comprises various well-known specializations. For example,
the LMIs (22)-(25) for M = N = [ and ¢, = ¢, = I (with empty A, and A, ) are
identical to those appearing in standard H..-synthesis [1], [5]. In general, the additional LMI

(25) certifies the multiplier coupling
VM, 1

I oNo,

If the multiplies are non-dynamic (v, = ¢, = [I) then (22)-(25) are identical to those in

= 0. 27)

[8], [2] for the gain-scheduling synthesis problem with static D-scalings. In fact, the main
motivation for this work is to use Theorem 3 in order to arrive at a solution for gain-scheduling

synthesis with dynamic D-scalings as described in [14].
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IV. A PRIMAL MULTIPLIER/DUAL MULTIPLIER ITERATION

Due to [7], the FDI (26) implies robust stability for all proper and stable uncertainties

structured A with

*

I (GNep)™ 0 1
=0
= A (Y Mip,)A = (¢ Ngy) ™!
* * -1 *\ — * -1
— A A j (¢VM¢V) 2(¢VN¢V) 1(77ZJVM77Z}V) 2
since (YiM,)A = A(¢iM1),). This leads to a frequency-dependent norm-bound on the
individual blocks of A for which robust stabilization of the controller is guaranteed. Due to
(27), note that the right-hand side is bounded from above by /. Hence, it is desired to push

this matrix as close as possible to I uniformly on C°, by minimizing 1 € (1, 00) such that
1 * -1 *\ — * -1
51 < (Y M) "2 (0, Noy) T (Yp My,) 72 < 1
= My, <n(e,Ne)) " & (27) (28)

= ¢, Not <n(iMy,)™t & (27). (29)

This leads us to the following iteration for robust controller synthesis:

Initialization: Fix some v for which (22)-(25) are feasible.
Repeat until convergence:
Step %: Fix N and minimize n over (22)-(25) and the LMI corresponding to
(28).
Step % + 1: Fix M and minimize 1 over (22)-(25) and the LMI corresponding
to (29).

For fixed v, the initialization amounts to a convex feasibility problem. If no suitable v exists, it
is assured by Theorem 3 that no controller and () € Q can render (4) satisfied. The iterations
between steps k£ and k4 1 serve to minimize 7). Since (28) and (29) can be turned into LMIs
in M and N respectively, both steps just require to solve standard LMI problems. In each
step the achieved level n implies that robust stability against structured uncertainties with a

norm-bound \/%7 can be assured.

Note that steps k£ and k£ 4 1 are more powerful when compared to a completely separated

iteration between the search for a multiplier for a fixed controller and controller synthesis

April 24, 2011 DRAFT
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for fixed multipliers as in the standard D/K-iteration [3]. As the essential novel features,
our robust synthesis result is formulated directly in terms of the original description of the
uncontrolled system and for multipliers that are parameterized with general tall outer factors
without any further technical restrictions, such that the suggested iteration allows to completely

avoid frequency gridding or frequency domain multiplier fitting.

V. NUMERICAL EXAMPLE

Consider the mechanical system shown in Figure 2.

w—> m Wm -

® ® e ®

Fig. 2. Mechanical system with uncertain spring and damper.

We assume that the values of k£ and c are constant, but that they vary around their nominal
values, ko and ¢y, as k = ko(1 + k*0;) and ¢ = co(1 4 ¢*d..), where |9x| < 1 and |J.| < 1. We
use the numerical values my = 10 kg, kg = 10 N/m, ¢ = 10 Ns/m and £* = ¢* = 0.5. Take

21 as the measured output and x5 as the controlled output. We can now express the system

as _ -
0 0 1 0 0 0 ,0,0
| |
0 0 0 1 0 0 1010
| |
_ko ko _ c _ Rkt Jeect b gl L
| |
' b b wm w | EE fam o |
\ Rk JReEL 0 0 0 1010
y * * o u
0 0 - s 0 0 ;0,0
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, S
0 1 0 0 0 0 : 0 : 0
s oL
1 0 0 0 0 0 1010
o 0 . . . .
and p = g. Our goal is to obtain robust controllers that yield the minimum
0 o

achievable performance level, v, from the disturbance to x, for different values of v. Note
that the algorithm described in Section IV yields 7 values larger than 1, implying that the
performance guarantees are valid only for uncertainties with bound 1/,/7. Since we want

guaranteed performance over the whole range of parameters (i.e., k* = c¢* = 0.5), we run the

April 24, 2011 DRAFT
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algorithm for k* = ¢* = 0.75 and find the smallest value of ~y that yields 1/,/n = 2/3, or,
n = 2.25.

We then solve for the resulting controller, form the closed-loop system and compute the
closed-loop H.,-norms for frozen values of the parameters corresponding to k* = 0.5, ¢* =
0.5. The results we obtain are listed in the table below. Note that due to non-convexity, the
~ value is not guaranteed to be monotonically decreasing with increasing v. For each value

of v, the worst value of the frozen H.,-norm is given in the third row (labeled “V,chicved”)-

v 498 | 1.55 | 1.49 | 1.46 | 1.45

Vachicved | 0.56 | 0.42 | 0.43 | 0.51 | 0.44

The D/G — K iteration as implemented in [3] yields a worst value of 1.08 for the frozen
Hoo-norm computed in the same manner as the last row in the table above. (Note that since
neither one of the parameters is repeated, there is no material difference between D-scales
and D /G-scales in this problem.) For 25 samples of possible k£ and ¢ values, the responses to
a unit step disturbance for the cases v = 0,2,4 and the D/K-controller are given in Figure
3. These plots indicate better behavior than the D /K -controller even for the case v = 0 and

further improvement when v is increased.

D/K~-controller v=0
LR 1
0.8 0.8
[} [}
Z 06 35 06
2 2
< 04 < 04} 4
Ili RN
0.2 0.2
0 0
0 10 20 30 40 0 10 20 30 40
Time (sec) Time (sec)
v=2 v=4
1 1
0.8 0.8
[} [}
S o6 S o6
2 2
< 04 < 04
i
0.2 O.2| i
0 0
0 10 20 30 40 0 10 20 30 40
Time (sec) Time (sec)
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Fig. 3. Sampled responses to a unit step disturbance of the controlled systems obtained from the D /K -iteration and the

multiplier iteration for different v values.

VI. CONCLUSIONS

Using parametrized dynamic D-scales, we have given necessary existence conditions for
a controller that robustly stabilizes a system against uncertainties bounded in norm by 1.
These conditions are shown to be sufficient for robust stability against uncertainties with
a norm bound demonstrably less than 1. We have also proposed an iterative procedure for
the maximization of this guaranteed allowable norm bound. Unlike the conventional D/K-
iteration, this procedure does not necessitate the computation of the controller and involves
basis functions for approximating D-scales only. The application of the proposed iterative
solution to a mechanical system yields better results than the conventional D /K -iteration.
The main result of the paper is essential for the solution of the gain-scheduled control problem

using dynamic D-scales as reported in [14].
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APPENDIX
A - OPERATIONS ON FDIS AND CORRESPONDING LMIS

The FDI G* (¢} M,1,)G < 0 for the *old” multiplier ¢} M,1, persists to hold for the 'new’
multiplier 1 M1, as G* (1) M), )G < 0 in case that ¢ M1, — % M1p, < 0. With natural
notations for the corresponding realizations, the following gluing lemma reveals a relation of

suitable KYP certificates.

Lemma 6: (Gluing) Suppose that D, is invertible and that A, — B,D,;'C,, A, have no
eigenvalues in C°. Then there exist R, R, with (A,—B,D;'C,)" R,4+R,(A,—B,D;'C,) <0
and ATR, + R, A, < 0. Let X and R satisfy

I 0,0
|
0 I , 0
,,,,,, LT
SMX, M) | 4, BCIBD | <0, (30)
|
0 A, B
,,,,,, N
C, D,C'\ D,D
I 0,0
|
0o I ,0
,,,,,, L
A, Aot B,
*I M (R, diag (M,,, —M,)) | < 0. (31)
0 A, B,
,,,,,, 17
Cp Cho i Dy,
|
0 C,. D,
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a) Then there exist € > 0 and 6 > 0 (that can be taken arbitrarily small) such that

0 0 I 0

M (X M) | A, A B,COBD | <0 (32)
0 A, B,C'B,D
0 0 A B

c, C, D,C.D,D

Rll -+ GRn R12 0
holds for X,,, = R, X114+ Rog +0R, Xy |-0)If Ao =0 and C,, = 0 then
0 X1 Xoo

the middle block of X,, is non-singular and its Schur complement, denoted as X,, satisfies

I 0, 0
|
0o I , 0
* M (Xn, M) | A, B,C|B,D | =<0. (33)
0 A, B
,,,,,,, LT
c, C , D

¢) If the left-upper block of (31) is negative definite then a) and b) remain true for 6 = 0 and
e=0.

If ¢ = ¢! exists we require to relate certificates for the following, obviously equivalent,

FDIs:

LU
>0, (34)
I o¢*
v =10 v
< 0. (35)
d)fl 0o I d)fl

Lemma 7: Let Dy, be non-singular and suppose that Ay, Ay— DBy delCd) have no eigenvalues

in CO.
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a) Suppose R certifies (34) as

MR-

i 0
0 I
,,,,,,, 1
Ay, 0
0 Ay
Cp 0
0 —BI
7777777 T
0 0
0 0

77777 >~ 0.

1

Then Roy is non-singular and I' which can be taken arbitrarily closely to

312R521321 — Ry R12Po§21

Ry Ry Ry
certifies (35) as |
I 0,0
|
0 I,0
,,,,,, R
A, 0 | B
M@, gy |
,,,,,, LY
Cy 0 1Dy
|

< 0.

b) If ' is a certificate for (35) as in (37) then 'y is non-singular and

1112112_211121 —I'n F12F2_21

| n Iy

19

(36)

(37)

satisfies the non-strict version of (36), which certifies the non-strict version of the FDI (34).
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C - PROOF OF THEOREM 3 - STATEMENT (1)

We begin by noting that, through the same arguments as for the proofs of Lemma 1 and

Lemma 2, we can rewrite (22)-(25) as

I 0 0 1+ 0
|
0 I 0 1 0
|
0 0 I 0
o __a_____.
|
R A; 0 B;C,'B: D
T M (X, J(J)) v R Ny (38)
0 A; 0 | By,
|
0 0 A ' B
,,,,,,,,,,,, oo
C; 0 Dy C, Dy Dy
|
0.Cy 0 1 Dy
AT ! T
45, 0 N
|
0 —A; —CiBZ:—C;D%
0 0  —AT . T
S IO S
|
. I 0 0 ! 0
KT M (Y, J([)) i V0, (39)
0 I 0 0
|
0 0 I 0
,,,,,,,,,,,,,,,, Lol
_pT \ T
B;, 0 0 Dy
|
X1 — Ry X1a X131 —Rp 0 0
|
Xo1 X22 + ]:211 Xzs : 0 —]%12 0
|
X31 X32 A33 | 0 0 I
ffffffffffffffffff N (40)
) o ) A )
— R 0 0 1Y) — Ro Yio Yis
|
0 —R21 0 : A21 1A/22 + R22 ?23
|
0 0 I, Vi1 Vi Vi3
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I 0,0 0
|
0 I 10 0
,,,,,,,, 1 _ - _ _ _ _ .
|
Ay, 0 1By, 0
|
. I0 01 0 —AT o (T
+*" M | R,diag 0 - Pl __ ol -0 @
01 I0 C;, 0 'Dy 0
|
_ RT T
0 -BRLo D
0 0o o0 I
|
0 0o I 0

with the definitions

A

X = X +diag(—Z,2,0), Y :=Y +diag (—W, W, o) . R:= R+ diag (—Z, —W) .

The key ingredient of the proof is to use Lemmas 6 and 7 in order to reduces these coupled

LMIs to standard H..-synthesis LMIs.

Step 1. From (41), we infer
He ((—(4;, = B;,D;'C;,)) Bizz) =0 and  He ((4y, = By, D;'Cy ) Rir) - 0.

Since —(A 5, — B qSVD;quBV) = —A(;,i is anti-Hurwitz, we have Ry = 0. Similarly, since
Ay, — By, D@chiﬁu = A@ is Hurwitz, Ry; < 0. By the Schur complement formula, we infer

that (40) is equivalent to

R} 0 0 0. I 0 0 0
|
0 Xn—Rn X X —Ry, 0 0 0
0 X21 X22 X23 i 0 I —Rm 0
~ . |
0 X31 X32 X33 0 0 0 I
77777777 R 77777777777:77/\7777777777:777717’ >'0
I —R21 0 0 : 11 0 }/12 Y713
|
0 0 I 0! 0 -RY 0 0
|
0 0 —Ry O : 21 0 Yoo + Raa Yos
|
0 0 0 I | Yy 0 Yio Yss
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By elementary operations we can eliminate — R, which leads to

Ry Ry Ry 0 0 1 0 0 0
o o A . A o
RiaRyy RigRoy Roy — Riy + X11 Xio Xi3 : 0 0 0 0
0 Ko XKoo KXoz 0 I 0 0
|
0 X3 Xgo Xsz ! 0 0 0 I
77777777777777777777777777Tt 77777777777777 ;77777777/\77 >_O-
I 0 0 0 Y11 0 Yio Yi3
|
0 0 I 0,0 —RY —R'Ris 0
|
0 0 0 0 : o1 —Roi Ry Yoo+ Rog — RisR Ria Yo
. . .
| (42)

Step 2. If we apply Lemma 7 a) to (41) and permute we find [ that can be taken arbitrarily
Ry Ry Ry .
close to o o ) and that satisfies
RisRyy RiaRyy Roy — Riy

I 0., 0
|
0 I 0
,,,,,,,,,,,,,,,, oo
. A, —B, D7'C; 0 B; D!
M (F, J(I)) b b4, by ' Pe g, ~0. (43)
|
. A Ba
-l ! —1
D y Cs, 0 i D 5
SN
O C’lz)u | DJ}U
Similarly, performing a permutation in (41), applying Lemma 7 a), and permuting back, one
. S Ry Ry Ra :
shows that there exists some ' arbitrarily close to o o R which
Ryt R\ RoiRyj Ria — Roo
satisfies :
I 0 0
|
0 I 0
o .
~ AT 0, CT
T M (r, J(I)) & BRI ) (44)
T ' T
I A
_RT ' pT
B ; 0 i D i
T ' T
0 B b D 5
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In view of (42) we can hence make sure in addition that

23

T I'o 0 0.1 0 0 0
|
1;21 1;22 + Xu X12 X13 i 0 0 0 0
0 Xy Xy 5@33 0 I 0 0
N ~ |
0 X3 X3y X331 0 0 0 I
77777777777777777%:7777ffffiffffiﬂ = 0. (45)
I 0 0 0 Yn O Yo Yis
|
0 0 I 00 Ty -Tw o0
|
0 0 0 0 1Yy —Tg Yoo —Toy Yo3
|
0 0 0 I Yy O Vi Vi3

Step 3. Let us now expand (43) by a last zero block row and column which then leads to

KT M (P diag (J(I), J(—I)))

0

0. 0
|
I 10
- — L
|
0 1By
|
Ag, 1 By,
|
0 1Dy
|
0 ' 0
I
|
CJ»V:D@V
0,0

I

=< 0. (46)

Note that the left-upper block of this LMI is still negative definite. We can thus apply Lemma

6 ¢) (which persists to be true despite the annihilator U) to infer from (38) that

April 24, 2011

0 0 3 0
I 0 3 0
0o I : 0
0 B,C, ByD,
Ay, 0 By,
0 A : B,
,,,,,,,,,,,, IS
0 Dy Cy Dy Dy
c;, 0 ‘ D,

U=<0 47)

DRAFT



24

I'in 0 0 ['o
is satisfied by X given as 0 Xoo Xoz | — | Xu (fgz + X11)7 (%), Dually, we
0 Xz Xu Xa
can expand (44) to
I 0 0 0
|
0 I 10 0

") (f, diag (J(—1I), J(I))) 77777777 AR Y
0 0 'T 0
|

bu bu
and glue it with (the negative of) (39) to infer
—AT 0 0o . 7
v } v
|
0~y —COuB ) 0Dy
0 0  —AT 1 —cT
e e L
|
T N 1 0 0 ! 0
T M (Y, J(I)> i V=0 48)
0 1 0 | 0
|
0 0 1 | 0
,,,,,,,,,,,,,,,, R
-BT 0 o , Dt
b | bu
T T RT ! T T
0 —BWV -D Ain i —-D Aqup
Vi 0 Vi Yio
for Y given by 0 —-Ty O — | =Ty (Yoo — T99) 1(x)T. By taking Schur-
Yo 0 Ya Ysz
complements in (45) we finally get
X I
| =0 (49)
1Y
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By standard ., theory, (47), (48) anc}k (49) imply that there exists a stabilizing controller such
Gei ()™ 0 Gei
I 0~ I
SN @3, Gy = v My, this is (26).

that ||¢; Gut); e < 1 or < 0. Since ¢, ¢ =

B - PROOF OF THEOREM 3 - STATEMENT (II)

Step 1. Suppose that there exists a stabilizing controller which renders (4) satisfied with
@ = V™, where 1 is minimum-phase and has the same diagonal structure as (). Then there

is some 0 € (0, 1), close to one, with

1 *

ﬁll) I-I) 0 gcl
0 —&0 I

*

* =< 0. (50)
For sufficiently large 1 we can make sure that ¢ := ¢,,N,, with NZ,ONVTO =: N,, € N, is
so close to P! such that it is minimum-phase and (50) persists to hold when  is replaced

by ¢ = ¢~'. Then

1 PN
NG $Gud
0 —6%I I

Standard LMI controller synthesis techniques now imply that there exist solutions Xand Y

of the LMISs,

X I
BE (51
Iy
I 0 )
|
0 I 0 1+ 0
|
0o 0 I 3 0
,,,,,,,,,,,, S
. 1 A, 0 B.C,' B:.D
*QM(Xﬁmg(ﬁL—ﬁg) ¢ A I /aN)) (52)
|
0 0 A ' B,
,,,,,,,,,,,, P
|

|
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AT ! T
|
0 —Ag CgBZ:-CgD;
0 0 —AT . -]
,,,,,,,,,,,,,,, R
S L1 I 0 0 10
* M <Y,diag (5 I, —5—21>> | V= 0. (53)
0 I 0 0
|
0 0 I ' 0
,,,,,,,,,,,,,,, S
_RT ! T
B$ 0 0 : D$
|
0 —Bg —D£B§1—D5Dﬁ

Note that (53) still holds if the last two rows of the outer factor are multiplied by % and the
inner matrix is replaced by M (37, diag (§*1, -1 )> Since 0 € (0, 1), we obtain the following
LMI which is of the format as required in (39):

AT ! T
|
0 AT —CTBT!-CTDY,
0 0  —AT . T
S
|
o I 0 0 0
*A4GCJUD i V- 0. (54)
0o I 0 ' 0
|
0 0 I 0
,,,,,,,,,,,,,,, Sl
1 I 1
—5B; 0 0 : ;D%
1 T 1T pRT' 1T PT
0 —LiBI —iDTBII-LDIDY

Step 2. In order to arrive at (38) we bring 1[)V into (52) by gluing. For this purpose we choose

a sequence of coefficient matrices ]\2/1, with ME M,, =: M, € M, and such that
n ~ — T
¢V = le/ V—O>O ¢ !

exponentially in the H.,-norm. The existence of such a sequence is guaranteed by our choice
of the basis functions in the multiplier parametrization. For some sufficiently large v > 1

it is clearly assured that %1, < &(¢))*¢' and — ¢¥th, < —6%(¢')*¢’. As proved in [15],
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one can even certify both FDIs as

KT M (rﬂ diag (5,1, 521))

100

0 1 3 0
BN

Ay, 0By | o
0 A By

Cy, 01Dy,

0 Gy Dy

pK + 6L 0 —pK 0

o _ IR _ 0 K, 0 0
fgl ng —pkK 0 3 pk 0

0 0, 0 upK

27

(55)

(56)

Here K =0, K = 0, L = 0, B > 0 are fixed and the sequence K, > 0 satisfies K, — 0 for

v — oo. Precisely, for all sufficiently large . there exists some v(u) such that (55) holds for
all v > v(u) and for both choices of (41, ;). We can combine the two LMIs (55) and obtain

A

it
0

v
Iy

0

0
V5K
Iy

0

v
[y

I 0
0 I
Ie 0

0 T%

as a certificate for the inequality

Let us glue the corresponding LMI with (52) by Lemma 6 c¢). This implies that X, defined

as the Schur-complement of

middle block, satisfies (38).

April 24, 2011

0 0 0 Y, 0
T 0 0 0 ¥
R < 0.
0 —&I 0 1 0
00 0 &I 0 ¢!
oo Tl 0 0
0 Iy 3 0 . 3 0
oo .12 R
e 0 3 X + 1%, X1 3 Xis
0 Iy l Xor Xop + 1%, 3 Xos
| 5 .

with respect to the
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Step 3. Now consider (41). We apply Lemma 7 b) to (55) for (61, d2) = (—1,6?) to infer that

Dy (Thy) T — I Ty (%) 7!

R= Vo A (57)
(I',) 1%, (I'%,)~*
satisfies
I o , 0 0
|
0 I 0 0
N o - - -
| |
I 0:0 0 Az[;,, 0 : 0 qu}y
~ ~ |
Ry Ry 0 7,00 0 AT cT o
*' M I I EEEE R N EEEEE gl >0.  (58)
Ry Ry 0 030 I C;, 0 ' 0 Dy
|
0070 0 —3BI 3D 0
,,,,,,,,, Kt R
0 o ''I 0
|
0 0 , 0 I

Step 4. We arrive at (40) by exploiting the structure of the sequence [# in order to establish

the asymptotic behavior of X and R for @ — oo. For this purpose let £ := !
0
and £, = ’ in the row partition of I'/¥". Then pre- and post-multiply (51) with
I
diag (F,E,I1,1,1, [)T and its transpose to obtain
2L + E"X,E ETX,E ETXlgiET 0 0
ETXyE  ETXpnE ETXQ;;E 0 ET 0
Xa Kl X 0 01
——————————————————————— Fo--o—----| > 0. (59)
E 0 0 3 Vi Yie Vi
0 E 0 3 Vor Yoo Yo
0 0 I Yy Yap Yy
(since 25L > 0). As shown in Section D we have
BL+ETXE  ETX,E  ETXy;
diag (E,E,I)" X diag (E, E, 1) =% ETXyE  BL+ ETXoE ETX, | (60)

XSIE XBQE X?)B
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and

E"R,E E'R o | —BL —ET
] 11 ) 12 po 1)
Ry E Ras —F 0
Hence, for sufficiently large 1 (fixed from now on) we have
ET(XH - RH)E ETXlgE ETX13 : —ETRQ 0 0
|
ETXglE ET(XQQ + RH)E ETX23 : 0 _ETR12 0
|
XglE X32E X33 : 0 0 ]
————————————————————————————— Fommmmmmmmm - | = 0. (62)
- |~ - - -
— Ry 0 0 1Y — Ry Yio Yis
|
0 —~Ry E 0 Yoy Yag + Ryy Va3
|
0 0 I Yy V3 Va3

We can then increase and fix v to a sufficiently large 14 with 1y > 14y such that (55) and,

hence, also (38) and (58) hold for v = v4. Recall K,, > 0 which guarantees

E"(Xyy —Riy)E 0 ETX,E 0 ETXs : —ETRy, 0 0
0 2K, 0 0 0 3 0 0 0
ETXy\E 0 E'Xn+R0)E 0 E'Xyni 0 —E"Ri, 0
0 0 0 el0 0 0 0
X31E 0 X3 E 0 X i 0 I 0
— Ry 0 0 0 0 Vii— Ry Y o Yi
0 0 —Ry E 0 0 Yor Yoo+ Ry Yo
0 0 0 0 I i Y3, V3 Va3
(63)

for any ¢ > 0. If we add diag(0,€l) to X, for some small ¢ > 0, the modified X still
satisfies (38) for v = v and (64) is assured since its left-hand side is identical to that of (63).
Azlq//}ljl I
Step 5. Recall that o > (0. Due to (58) we can thus construct a
I (30)Go)r

certificate of the corresponding strict inequality for v = v, that is so close to R, and still
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denoted by R, such that

Xn — Ry, X12 XIS : Ry, 0 0
le X22 + Rn X23 : 0 —Ru 0
|
X X2 Xy O 0 I
777777777777777777 R () (64)
B . - N N
— R 0 0 1Y — Ro Yio Yis
|
0 _R21 0 : Yo Yoo + Rzz Yos
|
0 0 I Yy Vi Vi3

persists.

Step 6. So far Y satisfies (54) for gzg of the form ¢,, ]\7,,0. The last step consists of expanding
Y into Y in order to arrive at (39) for v = vy which was taken with 1y > 1. In fact,
by vertically concatenating %NVO with a zero block column of suitable length we obtain a

coefficient matrix Nyl with N, = Nyl NE; € N,, and such that

1 1 Y X
A 1585 | _ | Avwo [ 5B Nw | _ | Aow | Bon N | | 44, | B,
1 1 Y Y
Cﬁi; gDé C"15”0 5D¢V0 NVO C"15“1 D¢V1 NVl 0(271/1 in;ul
Since both realizations are observable, the larger one can be adjusted by a state-coordinate
‘ Ay 0 L0
A b : B 3 !
change (without loss of generality) such that | - -="-1- =2 - | = x A 3 | % By |- Since
Con Doy ) |\ TP
‘ * O(;B 1 5D(Z)1

Ay is stable we can choose Yy = 0 with —AyYy — ffoAg > 0. Next to (54) let us now

consider the corresponding inequality with the new realization of the outer factor. Due to
| |

BYy 0,0 0,0
| |

the particular realization structure it is assured that Y = 0 0, Yy, 0,0
|

0 Yo, 0 Yo, VYo

0 Yo 0 VYa Yy
renders the extended counterpart of (54) feasible for all sufficiently small 3; > 0. Note that

this is just (39) for v = vy. Similarly we can consider the strict version of (58) for the

Ry 0 Ri
- - = # 7777777
extended realization. Expanding R as 0 ByYy 0 generates a (strict) solution for
|
Roii 0 Ry
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the extended realization if we choose [ > 0 sufficiently small. This leads to satisfaction of
(39) and (41) for v = 1/, as desired. Finally, (64) implies (40) if we assure that the newly
introduced diagonal blocks in f/n - }?522 and 3722 + ]:222, which read as (5, — Bg)ffo and
(B + B2)Yy, are positive definite; this is achieved by taking 5, — 3 > 0.

Since, by construction, qigyl Al*,l = ¢,,N,, ¢}, and 7,@; A;jl =, M,,¢,,, it is finally clear that

vy

(38)-(41) are identical to (22)-(25) for v = 14, M = M,, and N = N,,. This finishes the

proof.

D - PROOF OF (60) AND (61)

Recall the definition (56) and that X is given as

0.0 Iy 0 o i o »
R . : X+ 1%, X2 Lo 01 Xy3
X=[ o Iy, 0 [-] o 17 3 3 A N
7777777 S T TITC Xo1 Xoo + T, 0 o Xog
0 0 | Xss X311 X3 ‘

(65)
We clearly have for any symmetric matrix Z and for any H,, — 0 that (Z +f"2‘2 +H,)"'—0.

Moreover,

ETf/fQ(Z + fgz + Hu)_l = _Eng2(Z + fg2 + Hu)_l

. o1\ L
_ _ET ((Z ST 4 HM> <F§2) )

1
R -1

— _ET ((Z + H,) (rgg) +I> BT
Sz T~

—0

We then also get

ET[f"ﬂu - f‘lfz(Z + fgz + Hu)ilfgﬁE

= BL+ puK —ETTV(Z 4T+ H,)'THE
—ETTH.E

— BL = BT 1+ (Z + Dy + H,) T B

= BL ~ ETD(Z + Dy + H) ™ [(Z 4 D+ H,) + %] B

N —1
— 8L — ETTY, (Z +H,+ F‘2‘2> 8L+ ETZE. (66)

J/

(Z+H,) E+T4%E+ThE
N— —_—

—Z 0

TV
——ET
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If we hence define G, := (X114 I'4,) ", and H, := [(Xa + I'%,) — X01G,, X121, we infer

G, ETT%G, —ET
— 0, X —
H, ETTY.H, —ET

and
ET(T = T,GuI5) E BL+ E"XuE
%

ET(TY = T, H, %) E BL + E"XpE
Therefore, we have
-1
X1y +Th, X2 Gull + X12H, XnG,| —G,X12H,
3 . = . — 0, (67)
Xop X + T, —H,XnG, H,
X ) R ) -1
ETFTz 0 Xll + FgQ X12
O ETf/fQ Xgl XQQ + f"gz
ETIA#{QG#[] + XleMXglGM] _ETf‘TQGuXHHM _ET 0
= X 3 R — (68)
—ETFTQHHXHG“ ETF‘fQHM 0 —ET
and
A A T ~ A ~ 71 A
ETF'ﬂ“E 0 ETI“’;1 0 X11 + 1%, X9 I'YE 0
0 ETf‘q’l'uE 0 ETf‘gl Xgl XQQ + f‘g2 0 f‘glE

ET(flf’lH - f/f2GuU + Xl?HMXQIGM]fgl)E ETflf2GuX12HufglE
ETflﬁHuX?lGufglE ET(f‘lltl - flﬁHufgl)E
BL+ETX,E  ETX\,E
— . ) . (69)
ETXglE BL + ETXQZE
Due to (65) and (57), these imply (60) and (61).
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